Scheme & Syllabus of

Bachelor of Technology
Computer Science & Engg. (BlockChain)/
Comp. Sc. & Design/
(Batch2023 onwards)

Bachelor of Technology

Robotics & Artificial Intelligence
Batch 2023 onwards

3rd & 4th semester

By

Department of Academics (BoS- CSE/ IT)

IK Gujral Punjab Technical University

IK Gujral Punjab Technical University, Kapurthala

B. Tech-Computer Science (10T & Cyber security with Block Chain Technology)

Bachelor of Technology in : Computer Science & Engg. (BlockChain)/ Comp. Sc. & Design/Robotics & Artificial Intelligence

It is a Graduate (UG) Programme of 4 years duration (8 semesters)

Scheme: Third Semester

Course Code	Type of Course	Course Title		Hours per Week Marks Distribution			Total Marks	Credits	
			L	T	P	Internal	External		
BTES 301-18	Engineering Science Course	Digital Electronics	3	0	0	40	60	100	3
BTCS 301-18	Professional Core Courses	Data structure & Algorithms	3	0	0	40	60	100	3
BTCS 302-18	Professional Core Courses	Object Oriented Programming	3	0	0	40	60	100	3
BTAM 302-23	Basic Science Course	Mathematics-III* (Probability and Statistics)	4	1	0	40	60	100	3
HSMC 101/102- 18	Humanities & Social Sciences Including Management \Courses	Foundation Course in Humanities (Development of Societies/Philosophy)	2	1	0	40	60	100	3
BTES 302-18	Engineering Science Course	Digital Electronics Lab	0	0	2	30	20	50	1
BTCS 303-18	Professional Core Courses	Data structure & Algorithms Lab	0	0	4	30	20	50	2
BTCS 304-18	Professional Core Courses	Object Oriented Programming lab.	0	0	4	30	20	50	2
BTCS 305-18	Professional Core Courses	IT Workshop**	0	0	2	30	20	50	1
		Summer Institutional Training	0	0	0	0	0	0	Satisfactory/Un satisfactory
Total		15	2	12	320	380	700	21	

^{*} These are the minimum contact hrs. allocated. The contact hrs.may be increased by an institute as per the requirement of the subject.

^{**} Syllabus to be decided by respective institute internally. It may include latest technologies.

IK Gujral Punjab Technical University, Kapurthala BoS- CSE/IT, B.Tech Program

Fourth Semester

Course Code	Type of Course	Course Title		Ioui r W		Marks I	Distribution	Total Marks	Credits
			L	T	P	Internal	External		
BTCS 401-18	Professional Core Courses	Discrete Mathematics	3	1	0	40	60	100	4
BTES 401-18	Engineering Science Course	Computer Organization & Architecture	3	0	0	40	60	100	3
BTCS 402-18	Professional Core Courses	Operating Systems	3	0	0	40	60	100	3
BTCS 403-18	Professional Core Courses	Design & Analysis of Algorithms	3	0	0	40	60	100	3
HSMC 122-18	Humanities & Social Sciences including Management Courses	Universal Human Values 2	2	1	0	40	60	100	3
EVS101- 18	Mandatory Courses	Environmental Sciences	3	-	-	100	-	100	S/US
BTES 402-18	Engineering Science Course	Computer Organization & Architecture Lab	0	0	2	30	20	50	1
BTCS 404-18	Professional Core Courses	Operating Systems Lab	0	0	4	30	20	50	2
BTCS 405-18	Professional Core Courses	Design & Analysis of Algorithms Lab	0	0	4	30	20	50	2
	Total		15	2	10	390	360	750	24

Students will take up summer internship of 4-6 weeks at industry or organizations of repute after 4^{th} sem, that will be accredited in 5^{th} semester.

Third Semester

Course Code: BTCS301-18 | Course Title: Data Structure & Algorithms | 3L:0T:P | 3Credits

Detailed Contents:

Module 1: Introduction

Basic Terminologies: Elementary Data Organizations, Data Structure Operations: insertion, deletion, traversal etc.; Analysis of an Algorithm, Asymptotic Notations, Time-Space trade off.

Searching: Linear Search and Binary Search Techniques and their complexity analysis.

[6 hrs] (CO1)

Module 2: Stacks and Queues

ADT Stack and its operations: Algorithms and their complexity analysis, Applications of Stacks: Expression Conversion and evaluation – corresponding algorithms and complexity analysis. ADT queue, Types of Queue: Simple Queue, Circular Queue, Priority Queue; Operations on each types of Queues: Algorithms and their analysis.

[10 hrs] (CO2, CO4, CO5)

Module 3: Linked Lists

Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list; Linked representation of Stack and Queue, Header nodes, Doubly linked list: operations on it and algorithmic analysis; Circular Linked Lists: All operations their algorithms and the complexity analysis.

Trees: Basic Tree Terminologies, Different types of Trees: Binary Tree, Threaded Binary Tree, Binary Search Tree, AVL Tree; Tree operations on each of the trees and their algorithms with complexity analysis. Applications of Binary Trees. B Tree, B+ Tree: definitions, algorithms and analysis.

[10 hrs] (CO2, CO4, CO5)

Module 4: Sorting and Hashing

Objective and properties of different sorting algorithms: Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort; Performance and Comparison among all the methods, Hashing.

[10 hrs] (CO3)

Module 4: Graph

Basic Terminologies and Representations, Graph search and traversal algorithms and complexity analysis.

[6 hrs] (CO2, CO4)

Course Outcomes:

The student will be able to:

- 1. For a given algorithm student will able to analyze the algorithms to determine the time and computation complexity and justify the correctness;
- 2. Student will be able to handle operation like searching, insertion, deletion, traversing on various Data Structures and determine time and computational complexity;
- 3. Student will able to write an algorithm Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort and compare their performance in term of Space and Time complexity;
- 4. Students will be able to choose appropriate Data Structure as applied to specific problem definition; &

5. Demonstrate the reusability of Data Structures for implementing complex iterative problems.

Suggested Books:

- 1. "Classic Data Structures", Samanta and Debasis, 2nd edition, PHI publishers.
- 2. "Fundamentals of Data Structures", Illustrated Edition by Ellis Horowitz, SartajSahni, Computer Science Press.
- 3. "Data Structures with C (Schaum's Outline Series)", Seymour Lipschutz, 1st edition,McGraw Hill Education.

Reference Books:

- 1. Algorithms, Data Structures, and Problem Solving with C++", Illustrated Edition by Mark Allen Weiss, Addison-Wesley Publishing Company.
- 2. "How to Solve it by Computer", 2nd Impression by R. G. Dromey, Pearson Education.

Course Code: BTCS302-18 | Course Title: Object Oriented Programming | 3L:0T:0P | 3Credits

Pre-requisites: Programming in C

Detailed Contents:

Module 1: Introduction

Overview of C++, Sample C++ program, Different data types, operators, expressions, and statements, arrays and strings, pointers & function components, recursive functions, user - defined types, function overloading, inline functions, Classes & Objects – I: classes, Scope resolution operator, passing objects as arguments, returning objects, and object assignment.

[8 hrs] (CO1)

Module 2: Classes & Objects –II

Constructors, Destructors, friend functions, Parameterized constructors, Static data members, Functions, Arrays of objects, Pointers to objects, this pointer, and reference parameter, Dynamic allocation of objects, Copyconstructors, Operator overloading using friend functions, overloading.

[8 hrs] (CO1, CO2)

Module 3: Inheritance

Base Class, Inheritance and protected members, Protected base class inheritance, Inheriting multiple base classes, Constructors, Destructors and Inheritance, Passing parameters to base class constructors, Granting access, Virtual base classes.

[8 hrs] (CO3, CO4)

Module 4: Virtual functions, Polymorphism

Virtual function, calling a Virtual function through a base class reference, Virtual attribute is inherited, Virtual functions are hierarchical, pure virtual functions, Abstract classes, Using virtual functions, Early and late binding.

[8 hrs] (CO3, CO4)

Module 5: Exception Handling

Basics of exception handling, exception handling mechanism, throwing mechanism, catching mechanism, I/O System Basics, File I/O: Exception handling fundamentals, Exception handling options. C++ stream classes, Formatted I/O, fstream and the File classes, Opening and closing a file, Reading and writing text files.

[10 hrs] (CO5)

Course Outcomes:

The student will be able to:

- 1. Identify classes, objects, members of a class and the relationships among them needed to solve a specific problem;
- 2. Demonstrate the concept of constructors and destructors. And create new definitions for some of the operators;
- 3. Create function templates, overload function templates;
- 4. Understand and demonstrate the concept of data encapsulation, inheritance, polymorphism with virtual functions; &
- 5. Demonstrate the concept of file operations, streams in C++ and various I/O manipulators.

Suggested Books:

1. E. Balagurusamy, Object Oriented Programming with C++, Tata McGraw Hill.

Reference Books:

- 1. Stanley B.Lippmann, JoseeLajoie: C++ Primer, 4th Edition, Addison Wesley, 2012.
- 2. Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill, 2011.

Course Code: BTCS303-18 | Course Title: Data Structure & AlgorithmsLab | 0L:0T:4P | 2Credits

List of Experiment:

- **Task 1:** Write a program to insert a new element at end as well as at a given position in an array.
- **Task 2:** Write a program to delete an element from a given whose value is given or whose position is given.
- **Task 3:** Write a program to find the location of a given element using Linear Search.
- **Task 4:** Write a program to find the location of a given element using Binary Search.
- **Task 5:** Write a program to implement push and pop operations on a stack using linear array.
- **Task 6:** Write a program to convert an infix expression to a postfix expression using stacks.
- **Task 7:** Write a program to evaluate a postfix expression using stacks.
- **Task 8:** Write a recursive function for Tower of Hanoi problem.
- **Task 9:** Write a program to implement insertion and deletion operations in a queue using linear array.
- Task 10: Write a menu driven program to perform following insertion

operations in a single linked list:

- i. Insertion at beginning
- ii. Insertion at end
- iii. Insertion after a given node
- iv. Traversing a linked list

Task 11: Write a menu driven program to perform following deletion operations

in a single linked list:

- i. Deletion at beginning
- ii. Deletion at end
- iii. Deletion after a given node
- Task 12: Write a program to implement push and pop operations on a stack using linked list.
- **Task 13:** Write a program to implement push and pop operations on a queue using linked list.
- Task 14: Program to sort an array of integers in ascending order using bubble sort.
- Task 15: Program to sort an array of integers in ascending order using selection sort.
- Task 16: Program to sort an array of integers in ascending order using insertion sort.
- Task 17: Program to sort an array of integers in ascending order using quick sort.
- Task 18: Program to traverse a Binary search tree in Pre-order, In-order and Post-order.
- Task 19: Program to traverse graphs using BFS.
- Task 20: Program to traverse graphs using DFS.

Lab Outcomes:

The student will be able to:

- 1. Improve practical skills in designing and implementing basic linear data structure algorithms;
- 2. Improve practical skills in designing and implementing Non-linear data structure algorithms;
- 3. Use Linear and Non-Linear data structures to solve relevant problems;
- 4. Choose appropriate Data Structure as applied to specific problem definition; &
- 5. Implement Various searching algorithms and become familiar with their design methods.

Reference Books:

1. "Data Structures with C (Schaum's Outline Series)", Seymour Lipschutz, 1st edition,McGraw Hill Education.

.....

Course Code: BTCS304-18 | Course Title: Object Oriented Programming Lab | 0L:0T:4P | 2Credits

List of Experiment:

- **Task 1:** Write a program that uses a class where the member functions are defined inside a class.
- **Task 2:** Write a program that uses a class where the member functions are defined outside a class.
- **Task 3:** Write a program to demonstrate the use of static data members.
- **Task 4:** Write a program to demonstrate the use of const data members.
- **Task 5:** Write a program to demonstrate the use of zero argument and parameterized constructors.
- **Task 6:** Write a program to demonstrate the use of dynamic constructor.
- **Task 7:** Write a program to demonstrate the use of explicit constructor.
- **Task 8:** Write a program to demonstrate the use of initializer list.
- **Task 9:** Write a program to demonstrate the overloading of increment and decrement operators.
- **Task 10:** Write a program to demonstrate the overloading of memory management operators.
- **Task 11:** Write a program to demonstrate the typecasting of basic type to class type.
- **Task 12:** Write a program to demonstrate the typecasting of class type to basic type.
- **Task 13:** Write a program to demonstrate the typecasting of class type to class type.
- **Task 14:** Write a program to demonstrate the multiple inheritances.
- **Task 15:** Write a program to demonstrate the runtime polymorphism.
- **Task 16:** Write a program to demonstrate the exception handling.
- **Task 17:** Write a program to demonstrate the use of class template.
- **Task 18:** Write a program to demonstrate the reading and writing of mixed type of data.

Lab Outcomes:

The student will be able to:

- 1. Develop classes incorporating object-oriented techniques;
- 2. Design and implement object-oriented concepts of inheritance and polymorphism;
- 3. Illustrate and implement STL class of containers and need for exceptions to handle errors for object oriented programs; &
- 4. Design and implement any real world based problem involving GUI interface using object-oriented concepts.

Reference Books:

- 1. Stanley B.Lippmann, JoseeLajoie: C++ Primer, 4th Edition, Addison Wesley, 2012.
- 2. E. Balagurusamy, Object Oriented Programming with C++, Tata McGraw Hill.

BTAM302-2	3 Mathematics-III	L-4, T-1, P-0	4 Credits							
	(Probability and Statistics)									
Pre-requisit	Pre-requisite: Intermediate Calculus and Basic algebra									
	ectives: The objective of this course is to familia									
	neory of probability and statistics. The major focus of	of the course will be	on a systematic							
mathematical	treatment of these concepts and their applications.									
Course Out	comes: At the end of the course, the student will	be able to								
CO1	Analyze given data using measures of central tender	ncy, skewness and ku	ırtosis.							
CO2	Understand and deal with randomness occurring in 1	eal world phenomen	a.							
CO3	Apply theoretical discrete and continuous probability distributions to deal with real									
	world problems.									
CO4	Analyze given data using the concepts of correlation and regression and fitting of curves.									
CO5	Analyze hypothesis based on small and large sample									

Detailed Content:

Unit I

Measures of Central tendency: Moments, skewness and Kurtosis, Random experiment, Probability axioms, Definition of Probability, conditional probability, Discrete and Continuous random variables, Expectation of Discrete and Continuous random variables.

Unit II

Probability distributions: Binomial, Poisson and Normal, Poisson approximation to the binomial distribution, Evaluation of statistical parameters for these three distributions, Bivariate distributions and their properties.

Unit III

Correlation and regression for bivariate data, Rank correlation. Curve fitting by the method of least squares, fitting of straight lines, second degree parabolas and more general curves.

Unit IV

Test of significances: Sampling and standard error, Tests of significance for large samples and small samples (t-distribution, F-distribution), Chi-square test for goodness of fit and independence of attributes.

Recommended Books:

- 1. S.P. Gupta, Statistical Methods, Sultan Chand & Sons, 33rd Edition, 2005.
- 2. S.C. Gupta and V. K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand & Sons, 2014.
- 3. S. Ross, A First Course in Probability, 6th Edition, Pearson Education India, 2002.
- 4. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010
- 5. Robert V. Hogg, Joseph W. Mckean and Allen T. Craig, Introduction to Mathematical Statistics, 7th Edition, Pearson, 2012.

Development of Societies Course code: HSMC101-18

Credits: 3

COURSE TOPICS:

2.1 Unit I: Social Development

(5 hours)

- 1. Concepts behind the origin of Family, Clan and Society
- 2. Different Social Systems
- 3. Relation between Human being and Society
- 4. Comparative studies on different models of Social Structures and their evolution

2.2 Unit II: Political Development

(3 hours)

- 1. Ideas of Political Systems as learnt from History
- 2. Different models of Governing system and their comparative study

2.3 Unit III: Economic Development

(18 hours)

- 1. Birth of Capitalism, Socialism, Marxism
- 2. Concept of development in pre-British, British and post British period-Barter, Jajmani
- 3. Idea of development in current context.
- 4. E. F. Schumacher's idea of development, Buddhist economics.

Gandhian idea of development. Swaraj and Decentralization.

3. READINGS

- 3.1 TEXTBOOK:
- 3.2 *REFERENCE BOOKS:

4. OTHER SESSIONS

- 4.1 *TUTORIALS:
- 4.2 *LABORATORY:
- 4.3 *PROJECT: Possible projects in this course could be
- a) Interact with local communities and understand their issues.
- b) Study local cottage industry and agricultural practices. Role of engineering and specialized knowledge.
- c) Evaluation of technology in the context of its application. Social impact of technology. Environmental impact of technology. Evaluation from a holistic perspective.

PHILOSOPHY Course code: HSMC102-18

Credits: 3

COURSE TOPICS:

2.1 Unit 1:

The difference between knowledge (Vidya) and Ignorance (Avidya):

- a. Upanishads;
- b. Six systems orthodox and Heterodox Schools of Indian Philosophy.
- c. Greek Philosophy:

2.2 Unit 2:

Origin of the Universe:

- NasidiyaSukta: "Who really knows?"
- Brhadaranyaka Upanishad; Chandogya Upanishad: Non-self, Self, real and unreal.
- Taittiriya Upanishad: SikshaValli.
- Plato's Symposium: Lack as the source of desire and knowledge.
- Socratic's method of knowledge as discovery.
- Language: Word as root of knowledge (Bhartrahari's Vakyapadiyam)
- Fourteen Knowledge basis as a sources of Vidya: Four Vedas; Six auxiliary sciences (Vedangas); Purana, Nyaya, Mimamsa and Dharma Sastras.

2.3 Unit 3:

Knowledge as Power: Francis Bacon. Knowledge as both power and self-realization in Bagavad Gita.

2.4 Unit 4:

Knowledge as oppression: M. Foucault. Discrimination between Rtam and Satyam in Indian Philosophy.

2.5 Unit 5:

Knowledge as invention: Modern definition of creativity; scientific activity in the claim that science invents new things at least through technology.

2.6 Unit 6:

Knowledge about the self, transcendental self; knowledge about society, polity and nature.

2.7 Unit 7:

Knowledge about moral and ethics codes.

2.8 Unit 8:

Tools of acquiring knowledge: Tantrayuktis, a system of inquiry (Caraka, Sushruta, Kautilya, Vyasa)

3. READINGS

- 1. Copleston, Frederick, History of Philosophy, Vol. 1. Great Britain: Continuum.
- 2 Hiriyanna, M. Outlines of Indian Philosophy, MotilalBanarsidass Publishers; Fifth Reprint edition (2009)
- 3 Sathaye, Avinash, Translation of NasadiyaSukta
- 4. Ralph T. H. Griffith. The Hymns of the Rgveda. MotilalBanarsidass: Delhi: 1973.
- 5. Raju, P. T. Structural Depths of Indian Thought, Albany: State University of New York Press.
- 6. Plato, Symposium, Hamilton Press.
- 7. KautilyaArtha Sastra. Penguin Books, New Delhi.
- 8. Bacon, Nova Orgum
- 9. Arnold, Edwin. The Song Celestial.
- 10. Foucault, Knowledge/Power.
- 11. Wildon, Anthony, System of Structure.
- 12. Lele, W.K. The Doctrine of Tantrayukti. Varanasi: Chowkamba Series.
- 13. Dasgupta, S. N. History of Indian Philosophy, MotilalBanasidas, Delhi.
- 14. Passmore, John, Hundred Years of Philosophy, Penguin.

4. OTHER SESSIONS:

4.1 Mode of Conduct

5. ASSESSMENT (indicative only):

Ask students to do term papers, for example, writing biographical details of founders, sustainers, transmitters, modifiers, rewriters; translating monographs of less known philosophers such as K. C. Bhattacharys, Daya Krishna, Gopinath Bhattacharya; comparative study of philosophical system such as MadhyasthaDarshan.

6. OUTCOME OF THE COURSE:

Students will develop strong natural familiarity with humanities along with right understanding enabling them to eliminate conflict and strife in the individual and society. Students shall be able to relate philosophy to literature, culture, society and lived experience can be considered.

Course Code:BTES301-18 | Course Title: Digital Electronics | 3L:0T:0P | 3Credits

Detailed Contents:

Module 1:

NUMBER SYSTEMS: Binary, Octal, Decimal, Hexadecimal. Number base conversions, 1's, 2's complements, signed Binary numbers. Binary Arithmetic, Binary codes: Weighted BCD, Gray code, Excess 3 code, ASCII.

LOGIC GATES: AND, OR, NOT, NAND, NOR, Exclusive-OR and Exclusive-NOR. Implementations of Logic Functions using gates, NAND-NOR implementations.

Module 2:

BOOLEAN ALGEBRA: Boolean postulates and laws – De-Morgan's Theorem, Principle of Duality, Boolean expression – Boolean function, Minimization of Boolean expressions – Sum of Products (SOP), Product of Sums (POS), Minterm, Maxterm, Canonical forms, Conversion between canonical forms, Karnaugh map Minimization, Don't care conditions, Quine-McCluskey method.

Module 3:

COMBINATIONAL CIRCUITS: Design procedure – Adders, Subtractors, BCD adder, Magnitude Comparator, Multiplexer/Demultiplexer, encoder/decoder, parity checker, code converters. Implementation of combinational logic using MUX, BCD to 7 segment decoder.

SEQUENTIAL CIRCUITS: Flip flops SR, JK, T, D and Master slave, Excitation table, Edge triggering, Level Triggering, Realization of one flip flop using other flip flops. Asynchronous/Ripple counters, Synchronous counters, Modulo-n counter, Ring Counters. Design of Synchronous counters: state diagram, Circuit implementation. Shift registers.

Module 4:

MEMORY DEVICES: Classification of memories, RAM organization, Write operation, Read operation, Memory cycle. ROM organization, PROM, EPROM, EPROM, Programmable logic array, Programmable array logic, complex Programmable logic devices (CPLDS), Field Programmable Gate Array (FPGA).

A/D & D/A CONVERTORS : Analog & Digital signals. sample and hold circuit, A/D and D/A conversion techniques (Weighted type, R-2R Ladder type, Counter Type, Dual Slope type, Successive Approximation type).

COURSE OUTCOME: At the end of course the student will be able to:

- 1. Demonstrate the operation of simple digital gates, identify the symbols, develop the truth table for those gates; combine simple gates into more complex circuits; change binary, hexadecimal, octal numbers to their decimal equivalent an vice versa.
- 2. Demonstrate the operation of a flip-flop. Design counters and clear the concept of shift registers.
- 3. Study different types of memories and their applications. Convert digital signal into analog and vice versa.

Suggested Readings/ Books:

- Morris Mano, Digital Design, Prentice Hall of India Pvt. Ltd
- Donald P.Leach and Albert Paul Malvino, Digital Principles and Applications, 5 ed., Tata McGraw HillPublishing CompanyLimited, New Delhi, 2003.
- R.P.Jain, Modern Digital Electronics, 3 ed., Tata McGraw–Hill publishing company limited, New Delhi, 2003.
- Thomas L. Floyd, **Digital Fundamentals**, Pearson Education, Inc, New Delhi, 2003
- Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss, Digital System -Principles and Applications, PearsonEducation.
- Ghosal , Digital Electronics, Cengage Learning.

Course Code:BTES302-18 Course Title: Digital Electronics Lab 0L:0T:2P 1Credits

List of Experiments:

- 1. To verify the Truth-tables of all logic gates.
- 2. To realize and verify the Half & full adder circuits using logic gates.
- 3. To realize Half & full subtractor circuits using logic gates.
- 4. To realize Encoder and Decoder circuits
- 5. To realize Multiplexer circuits
- 6. To realize 4-bit binary-gray & gray-binary converters.
- 7. To realize comparator circuit for two binary numbers of 2-bit each.
- 8. To realize Full adder & full subtractor circuits using encoder.
- 9. To design Full adder & full subtractor circuits using multiplexer.
- 10. To design and verify the Truth tables of all flip-flops.
- 11. To design Mod-6/Mod-9 synchronous up-down counter.

Course Outcomes

At the end of this course student will demonstrate the ability to:

- 1. Realize combinational circuits using logic gates.
- 2. Realize sequential circuits using logic gates.
- 3. Realize various types of Flip-flops and counters

Fourth Semester

Pre-requisites: Digital Electronics

Detailed Contents:

Module 1: Functional blocks of a computer

CPU, memory, input-output subsystems, control unit. Instruction set architecture of a CPU – registers, instruction execution cycle, RTL interpretation of instructions, addressing modes, instruction set. Case study – instruction set of 8085 processor.

Data representation: signed number representation, fixed and floating point representations, character representation. Computer arithmetic – integer addition and subtraction, ripple carry adder, carry look-ahead adder, etc. multiplication – shift-andadd, Booth multiplier, carry save multiplier, etc. Division restoring and non-restoring techniques, floating point arithmetic.

[10 hrs] (CO1, CO2)

Module 2: Introduction to x86 architecture.

CPU control unit design: Hardwired and micro-programmed design approaches, Case study – design of a simple hypothetical CPU.

Memory system design: semiconductor memory technologies, memory organization.

Peripheral devices and their characteristics: Input-output subsystems, I/O device interface, I/O transfers – program controlled, interrupt driven and DMA, privileged and non-privileged instructions, software interrupts and exceptions. Programs and processes –role of interrupts in process state transitions, I/O device interfaces – SCII, USB.

[12 hrs] (CO2, CO4)

Module 3: Pipelining

Basic concepts of pipelining, throughput and speedup, pipeline hazards.

Parallel Processors: Introduction to parallel processors, Concurrent access to memory and cache coherency.

[10 hrs] (CO5)

Module 4: Memory Organization

Memory interleaving, concept of hierarchical memory organization, cache memory, cache size vs. block size, mapping functions, replacement algorithms, write policies.

[10 hrs] (CO3)

Course Outcomes:

The student will be able to:

- 1. Understand functional block diagram of microprocessor;
- 2. Apply instruction set for Writingassembly language programs;
- 3. Design a memory module and analyze its operation by interfacing with the CPU;
- 4. Classify hardwired and microprogrammed control units; &
- 5. Understand the concept of pipelining and its performance metrics.

Suggested Books:

- 1. "ComputerOrganization and Architecture", Moris Mano,
- 2. "ComputerOrganization and Design: The Hardware/Software Interface", 5th Edition by David A. Patterson and John L. Hennessy, Elsevier.
- 3. "Computer Organization and Embedded Systems", 6th Edition by CarlHamacher, McGraw Hill Higher Education.

Reference Books:

- 1. "Computer Architecture and Organization", 3rd Edition by John P. Hayes, WCB/McGraw-Hill
- 2. "Computer Organization and Architecture: Designing for Performance", 10th Edition by William Stallings, Pearson Education.
- 3. "Computer System Design and Architecture", 2nd Edition by Vincent P. Heuring and Harry F. Jordan, Pearson Education.

Course Code: BTCS402-18 | Course Title: Operating Systems | 3L:0T:0P | 3Credits

Detailed Contents:

Module 1: Introduction

Concept of Operating Systems, Generations of Operating systems, Types of Operating Systems, OS Services, System Calls, Structure of an OS - Layered, Monolithic, Microkernel Operating Systems, Concept of Virtual Machine. Case study on UNIX and WINDOWS Operating System.

[6 hrs] (CO1)

Module 2: Processes

Definition, Process Relationship, Different states of a Process, Process State transitions, Process Control Block (PCB), Context switching

Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads,

Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: Pre-emptive and Non-pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM and EDF.

[10 hrs] (CO2, CO3)

Module 3: Inter-process Communication

Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, StrictAlternation, Peterson's Solution, TheProducer\ConsumerProblem, Semaphores,EventCounters,Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem etc.

[8 hrs] (CO2)

Module 4: Deadlocks

Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery.

[8 hrs] (CO3)

Module 5: MemoryManagement

Basicconcept,LogicalandPhysical address map, Memory allocation: Contiguous Memory allocation –Fixedandvariable partition—Internaland External fragmentation and Compaction; Paging: Principle of operation – Page allocation—Hardware support for paging, Protection and sharing, Disadvantages of paging.

Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of

reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU).

[10 hrs] (CO4)

Module 6: I/O Hardware

I/O devices, Device controllers, Direct memory access Principles of I/O Software: Goals of Interrupt handlers, Device drivers, Device independent I/O software, Secondary-Storage Structure: Disk structure, Disk scheduling algorithms

File Management: Concept of File, Access methods, File types, File operation, Directory structure, File System structure, Allocationmethods (contiguous, linked, indexed), Free Space Management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency and performance.

Disk Management: Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk formatting, Boot-block, Bad blocks.

[8 hrs] (CO5, CO6)

Course Outcomes:

The student will be able to:

- 1. Explain basic operating system concepts such as overall architecture, system calls, user mode and kernel mode;
- 2. Distinguish concepts related to processes, threads, process scheduling, race conditions and critical sections;
- 3. Analyze and apply CPU scheduling algorithms, deadlock detection and prevention algorithms;
- 4. Examine and categorize various memory management techniques like caching, paging, segmentation, virtual memory, and thrashing;
- 5. Design and implement file management system; &
- 6. Appraise high-level operating systems concepts such as file systems, disk-scheduling algorithms and various file systems.

Suggested Books:

- 1. Operating System Concepts Essentials, 9th Edition by AviSilberschatz, Peter Galvin, Greg Gagne, Wiley Asia Student Edition.
- 2. Operating Systems: Internals and Design Principles, 5th Edition, William Stallings, Prentice Hall of India.

Reference Books:

- 1. Operating System: A Design-oriented Approach, 1st Edition by Charles Crowley, Irwin Publishing
- 2. Operating Systems: A Modern Perspective, 2nd Edition by Gary J. Nutt, Addison-Wesley
- 3. Design of the Unix Operating Systems, 8th Edition by Maurice Bach, Prentice-Hall of India
- 4. Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, Marco Cesati, O'Reilly and Associates

Pre-requisites: Data Structures

Detailed Contents:

Module 1: Introduction

Characteristics of algorithm. Analysis of algorithm: Asymptotic analysis of complexity bounds – best, average and worst-case behavior; Performance measurements of Algorithm, Time and space trade-offs, Analysis of recursive algorithms through recurrence relations: Substitution method, Recursion tree method and Masters' theorem.

[8 hrs] (CO1)

Module 2: Fundamental Algorithmic Strategies

Brute-Force, Greedy, Dynamic Programming, Branch- and-Bound and Backtracking methodologies for the design of algorithms; Illustrations of these techniques for Problem-Solving: Bin Packing, Knap Sack, TSP.

[10 hrs] (CO1, CO2)

Module 3: Graph and Tree Algorithms

Traversal algorithms: Depth First Search (DFS) and Breadth First Search (BFS); Shortest path algorithms, Transitive closure, Minimum Spanning Tree, Topological sorting, Network Flow Algorithm.

[10 hrs] (CO3)

Module 4: Tractable and Intractable Problems

Computability of Algorithms, Computability classes - P, NP, NP-complete and NP-hard. Cook's theorem, Standard NP-complete problems and Reduction techniques.

[8 hrs] (CO5)

Module 5: Advanced Topics

Approximation algorithms, Randomized algorithms, Heuristics and their characteristics.

[6 hrs] (CO1, CO4, CO5)

Course Outcomes:

The student will be able to:

- 1. For a given algorithms analyze worst-case running times of algorithms based on asymptotic analysis and justify the correctness of algorithms;
- 2. Explain when an algorithmic design situation calls for which design paradigm (greedy/ divide and conquer/backtrack etc.);
- 3. Explain model for a given engineering problem, using tree or graph, and writethe corresponding algorithm to solve the problems;
- 4. Demonstrate the ways to analyze approximation/randomized algorithms (expected running time, probability of error); &
- 5. Examine the necessity for NP class based problems and explain the use of heuristic techniques.

Suggested Books:

- 1. Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill.
- 2. Data Structures and Algorithms in C++, Weiss, 4th edition, Pearson.
- 3. Fundamentals of Computer Algorithms E. Horowitz, Sartaj Saini, Galgota Publications.

Reference Books

- 1. Algorithm Design, 1stEdition, Jon Kleinberg and ÉvaTardos, Pearson.
- 2. Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition, Michael T Goodrich and Roberto Tamassia, Wiley.
- 3. Algorithms -- A Creative Approach, 3RD Edition, UdiManber, Addison-Wesley, Reading, MA.

Course Code: BTES402-18 | Course Title: Computer Organization & ArchitectureLab | 0L:0T:2P | 1Credits

List of Experiment:

- **Task 1:** Computer Anatomy- Memory, Ports, Motherboard and add-on cards.
- **Task 2:** Dismantling and assembling PC.
- **Task 3:** Introduction to 8085 kit.
- **Task 4:** 2. Addition of two 8 bit numbers, sum 8 bit.
- **Task 5:** Subtraction of two 8 bit numbers.
- **Task 6:** Find 1's complement of 8-bit number.
- **Task 7:** Find 2's complement of 8-bit number.
- **Task 8:** Shift an 8-bit no. by one bit.
- **Task 9:** Find Largest of two 8 bit numbers.
- **Task 10:** Find Largest among an array of ten numbers (8 bit).
- **Task 11:** Sum of series of 8 bit numbers.
- **Task 12:** Introduction to 8086 kit.
- **Task 13:** Addition and subtraction of two 16 bit numbers, sum 16 bit.
- **Task 14:** Implement of Booth's algorithm for arithmetic operations.
- **Task 15:** Find 1's and 2's complement of 16-bit number.
- **Task 16:** Implement simple programs using I/O based interface.

Lab Outcomes:

The student will be able to:

- 1. Assemble personal computer;
- 2. Implement the various assembly language programs for basic arithmetic and logical operations; &
- 3. Demonstrate the functioning of microprocessor/microcontroller based systems with I/O interface.

Reference Books:

1. Fundamentals of Microprocessors and Microcontrollersby B. Ram, Dhanpat Rai Publications.

Course Code: BTCS404-18 | Course Title: Operating Systems Lab | 0L:0T:4P | 2Credits

List of Experiment:

Task 1: Installation Process of various operating systems.

- **Task 2:** Implementation of CPU scheduling algorithms to find turnaround time and waiting time. a) FCFS b) SJF c) Round Robin (pre-emptive) d) Priority.
- **Task 3:** Virtualization, Installation of Virtual Machine Software and installation of Operating System on Virtual Machine.
- Task 4: Commands for files & directories: cd, ls, cp, md, rm, mkdir, rmdir. Creating and viewing files using cat. File comparisons. Disk related commands: checking disk free spaces. Processes in linux, connecting processes with pipes, background processing, managing multiple processes. Background process: changing process priority, scheduling of processes at command, batch commands, kill, ps, who, sleep. Printing commands, grep, fgrep, find, sort, cal, banner, touch, file. File related commands ws, sat, cut, grep.
- **Task 5:** Shell Programming: Basic of shell programming, various types of shell, Shell Programming in bash, conditional & looping statement, case statements, parameter passing and arguments, shell variables, shell keywords, creating shell programs for automate system tasks, report printing.
- **Task 6:** Implementation of Bankers algorithm for the purpose of deadlock avoidance.

Lab Outcomes:

The student will be able to:

- 1. Understand and implement basic services and functionalities of the operating system;
- 2. Analyze and simulate CPU Scheduling Algorithms like FCFS, Round Robin, SJF, and Priority;
- 3. Implement commands for files and directories;
- 4. Understand and implement the concepts of shell programming;
- 5. Simulate file allocation and organization techniques; &
- 6. Understand the concepts of deadlock in operating systems and implement them in multiprogramming system.

Reference Books:

1. Operating Systems: Design and Implementation, Albert S. Woodhull and Andrew S. Tanenbaum, Pearson Education.

Course Code: BTCS405-18 | Course Title: Design and Analysis of Algorithms Lab | 0L:0T:4P | 2Credit

List of Experiment:

- **Task 1:** Code and analyze solutions to following problem with given strategies:
 - i. Knap Sack using greedy approach
 - ii. Knap Sack using dynamic approach
- **Task 2:** Code and analyze to find an optimal solution to matrix chain multiplication using dynamic programming.
- **Task 3:** Code and analyze to find an optimal solution to TSP using dynamic programming.
- **Task 4:** Implementing an application of DFS such as:
 - i. to find the topological sort of a directed acyclic graph
 - ii. to find a path from source to goal in a maze.
- **Task 5:** Implement an application of BFS such as:
 - i. to find connected components of an undirected graph
 - ii. to check whether a given graph is bipartite.
- **Task 6:** Code and analyze to find shortest paths in a graph with positive edge weights using Dijkstra's algorithm.
- **Task 7:** Code and analyze to find shortest paths in a graph with arbitrary edge weights using Bellman-Ford algorithm.
- **Task 8:** Code and analyze to find shortest paths in a graph with arbitrary edge weights using Flyods' algorithm.
- **Task 9:** Code and analyze to find the minimum spanning tree in a weighted, undirected graph using Prims' algorithm
- **Task 10:** Code and analyze to find the minimum spanning tree in a weighted, undirected graph using Kruskals' algorithm.
- **Task 11:** Coding any real world problem or TSP algorithm using any heuristic technique.

Lab Outcomes:

The student will be able to:

- 1. Improve practical skills in designing and implementing complex problems with different techniques;
- 2. Understand comparative performance of strategies and hence choose appropriate, to apply to specific problem definition;
- 3. Implement Various tree and graph based algorithms and become familiar with their design methods; &
- 4. Design and Implement heuristics for real world problems.

Reference Books

- 1. Data Structures and Algorithms in C++, Weiss, 4th edition, Pearson
- 2. Data Structures and Algorithms using Python and C++, David M. Reed and John Zelle, 2009 edition (available as e book), Franklin Beedle& Associates.

UNIVERSAL HUMAN VALUES 2: UNDERSTANDING HARMONY

Course code: HSMC122-18

Credits: 3

COURSE TOPICS:

The course has 28 lectures and 14 practice sessions in 5 modules:

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- 2. Self-Exploration—what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration.
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario.
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking.

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 10. Understanding the characteristics and activities of 'I' and harmony in 'I'
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- 12. Programs to ensureSanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease.

Module 3: Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship.
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship.
- 16. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals.
- 17. Visualizing a universal harmonious order in society- Undivided Society,

Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives.

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of nature recyclability and self-regulation in nature
- 20. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space
- 21. Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on Professional Ethics

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of peoplefriendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 26. Case studies of typical holistic technologies, management models and production systems.
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations.
- 28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. to discuss the conduct as an engineer or scientist etc.

3. READINGS:

- 3.1 Text Book
- 1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010.

3.2 Reference Books

- 1. Jeevan Vidya: EkParichaya, A. Nagaraj, Jeevan VidyaPrakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.

- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J CKumarappa
- 8. Bharat Mein Angreji Raj -PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

OUTCOME OF THE COURSE:

By the end of the course, students are expected to become more aware of themselves, and their surroundings (family, society, nature); they would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind. They would have better critical ability. They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society). It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.

This is only an introductory foundational input. It would be desirable to follow it up by

- a) Faculty -student or mentor-mentee programs throughout their time with the institution.
- b) Higher level courses on human values in every aspect of living. E.g. as a professional.

Course Code: EVS101-18	Course Title: Environmental Studies-	L:2; T:0;	0Credits
		P:0	

.Detailed Contents

${\bf Module~1: Natural~Resources: Renewable~and~non-renewable~resources}$

Natural resources and associated problems.

- a) Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forest and tribal people.
- b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
- d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- e) Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. Case studies.
- f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.
- Role of an individual in conservation of natural resources.
- Equitable use of resources for sustainable lifestyles.

Module 2 : Ecosystems

Concept of an ecosystem. Structure and function of an ecosystem.

Food chains, food webs and ecological pyramids. Introduction, types, characteristic features,

structure and function of following ecosystems:

- a. Forest ecosystem
- b. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Module 3: Biodiversity and its conservation

- Introduction Definition : genetic, species and ecosystem diversity.
- Biodiversity at global, National and local levels.
- Inida as a mega-diversity nation
- Hot-sports of biodiversity.
- Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts.
- Endangered and endemic species of India

Module 4 : Social Issues and the Environment

- From Unsustainable to Sustainable development
- Resettlement and rahabilitation of people; its problems and concerns.
- Environmental ethics: Issues and possible solutions.
- Climate change, global warming, acid rain, ozone layer depletion, Nuclear accidents and holocaust. Case Studies.
- Public awareness.

*ACTIVITIES

Nature club (bird watching, recognizing plants at institute/at home, recognizing local animals, appreciating biodiversity

Impart knowledge and inculcate the habit of taking interest and understanding biodiversity in and around the college campus. The students should be encouraged to take interest in bird watching, recognizing local plants, herbs and local animals. The students should be encouraged to appreciate the difference in the local biodiversity in their hometown, in the place of their study and other places they visit for vacation/breaks etc.

Following activities must be included.

Identify a tree fruit flower peculiar to a place or having origin from the place.

Making high resolution big photographs of small creatures (bees, spiders, ants. mosquitos etc.) especially part of body so that people can recognize (games on recognizing animals/plants).

Videography/ photography/ information collections on specialties/unique features of different types of common creatures.

Search and explore patents and rights related to animals, trees etc. Studying miracles of mechanisms of different body systems.

1(A) Awareness Activities:

- a) Small group meetings about water management, promotion of recycle use, generation of less waste, avoiding electricity waste
- b) Slogan making event
- c) Poster making event
- d) Cycle rally
- e) Lectures from experts
- *f*) Plantation
- g) Gifting a tree to see its full growth
- h) Cleanliness drive
- *i*) Drive for segregation of waste
- i) To live with some eminent environmentalist for a week or so to understand his work vi) To work in kitchen garden for mess
- j) To know about the different varieties of plants
- k) Shutting down the fans and ACs of the campus for an hour or so
- l) Visit to a local area to document environmental assets river/forest/grassland/hill/mountain/lake/Estuary/Wetlands

- m) Visit to a local polluted site-Urban/Rural/Industrial/Agricultural
- n) Visit to a Wildlife sanctuary, National Park or Biosphere Reserve

Suggested Readings

- 1. Agarwal, K.C. 2001 Environmental Biology, Nidi Publ. Ltd. Bikaner.
- 2. BharuchaErach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad 380 013, India, Email:mapin@icenet.net (R)
- 3. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc. 480p
- 4. Clark R.S., Marine Pollution, Clanderson Press Oxford (TB)
- 5. Cunningham, W.P. Cooper, T.H. Gorhani, E & Hepworth, M.T. 2001, Environmental Encyclopedia, Jaico Publ. House, Mumabai, 1196p
- 6. Hawkins R.E., Encyclopedia of Indian Natural History, Bombay Natural History Society, Bombay (R)
- 7. Heywood, V.H &Waston, R.T. 1995. Global Biodiversity Assessment. Cambridge Univ. Press 1140p.
- 8. Mhaskar A.K., Matter Hazardous, Techno-Science Publication (TB)
- 9. Miller T.G. Jr. Environmental Science, Wadsworth Publishing Co. (TB)
- 10. Odum, E.P. 1971. Fundamentals of Ecology. W.B. Saunders Co. USA, 574p
- 11. Townsend C., Harper J, and Michael Begon, Essentials of Ecology, Blackwell Science (TB)
- 12. Trivedi R.K., Handbook of Environmental Laws, Rules Guidelines, Compliances and Stadards, Vol I and II, Enviro Media (R)
- 13. Trivedi R. K. and P.K. Goel, Introduction to air pollution, Techno-Science Publication (TB)
- 14. Wanger K.D., 1998 Environmental Management. W.B. Saunders Co. Philadelphia, USA 499p

Course Code: HSMC101-	Course Title: Development of Societies	3L:0T:0P	3Credits
18			

Detailed Contents:

Unit I: Social Development

(5 hours)

- 1. Concepts behind the origin of Family, Clan and Society
- 2. Different Social Systems
- 3. Relation between Human being and Society
- 4. Comparative studies on different models of Social Structures and their evolution

Unit II: Political Development

(3 hours)

- 1. Ideas of Political Systems as learnt from History
- 2. Different models of Governing system and their comparative study

Unit III: Economic Development

(18 hours)

- 1. Birth of Capitalism, Socialism, Marxism
- 2. Concept of development in pre-British, British and post British period- Barter, Jajmani
- 3. Idea of development in current context.
- 4. E. F. Schumacher's idea of development, Buddhist economics.

Gandhian idea of development. Swaraj and Decentralization.

PROJECT: Possible projects in this course could be

- a) Interact with local communities and understand their issues.
- b) Study local cottage industry and agricultural practices. Role of engineering and specialized knowledge.
- c) Evaluation of technology in the context of its application. Social impact of technology. Environmental impact of technology. Evaluation from a holistic perspective.

Course Code: HSMC102-	Course Title: PHILOSOPHY	3L:0T:0P	3Credits
18			

Detailed Contents:

Unit 1:

The difference between knowledge (Vidya) and Ignorance (Avidya):

- a. Upanishads;
- b. Six systems orthodox and Heterodox Schools of Indian Philosophy.
- c. Greek Philosophy:

Unit 2:

Origin of the Universe:

- NasidiyaSukta: "Who really knows?"
- Brhadaranyaka Upanishad; Chandogya Upanishad: Non-self, Self, real and unreal.
- Taittiriya Upanishad: SikshaValli.
- Plato's Symposium: Lack as the source of desire and knowledge.
- Socratic's method of knowledge as discovery.
- Language: Word as root of knowledge (Bhartrahari's Vakyapadiyam)
- Fourteen Knowledge basis as a sources of Vidya: Four Vedas; Six auxiliary sciences (Vedangas); Purana, Nyaya, Mimamsa and Dharma Sastras.

Unit 3:

Knowledge as Power: Francis Bacon. Knowledge as both power and self-realization in Bagavad Gita.

Unit 4:

Knowledge as oppression: M. Foucault. Discrimination between Rtam and Satyam in Indian Philosophy.

Unit 5:

Knowledge as invention: Modern definition of creativity; scientific activity in the claim that science invents new things at least through technology.

Unit 6:

Knowledge about the self, transcendental self; knowledge about society, polity and nature.

Unit 7:

Knowledge about moral and ethics codes.

Unit &

Tools of acquiring knowledge: Tantrayuktis, a system of inquiry (Caraka, Sushruta, Kautilya, Vyasa)

READINGS

- 1. Copleston, Frederick, History of Philosophy, Vol. 1. Great Britain: Continuum.
- 2 Hiriyanna, M. Outlines of Indian Philosophy, MotilalBanarsidass Publishers; Fifth Reprint edition (2009)
- 3 Sathaye, Avinash, Translation of NasadiyaSukta
- 4. Ralph T. H. Griffith. The Hymns of the Rgveda. MotilalBanarsidass: Delhi: 1973.
- 5. Raju, P. T. Structural Depths of Indian Thought, Albany: State University of New York Press.
- 6. Plato, Symposium, Hamilton Press.
- 7. KautilyaArtha Sastra. Penguin Books, New Delhi.
- 8. Bacon, Nova Orgum
- 9. Arnold, Edwin. The Song Celestial.
- 10. Foucault, Knowledge/Power.
- 11. Wildon, Anthony, System of Structure.
- 12. Lele, W.K. The Doctrine of Tantrayukti. Varanasi: Chowkamba Series.
- 13. Dasgupta, S. N. History of Indian Philosophy, MotilalBanasidas, Delhi.

IK Gujral Punjab Technical University, Kapurthala

B. Tech- Computer Science (IoT & Cyber security with Block Chain Technology)

14. Passmore, John, Hundred Years of Philosophy, Penguin.

ASSESSMENT (indicative only):

Ask students to do term papers, for example, writing biographical details of founders, sustainers, transmitters, modifiers, rewriters; translating monographs of less known philosophers such as K. C. Bhattacharys, Daya Krishna, Gopinath Bhattacharya; comparative study of philosophical system such as MadhyasthaDarshan.

OUTCOME OF THE COURSE:

Students will develop strong natural familiarity with humanities along with right understanding enabling them to eliminate conflict and strife in the individual and society. Students shall be able to relate philosophy to literature, culture, society and lived experience can be considered.

BTCS401-18	Discrete Mathematics	3L:1T:0P	4 Credits
------------	----------------------	----------	-----------

Detailed contents:

Module 1:

Sets, Relation and Function: Operations and Laws of Sets, Cartesian Products, Binary Relation, Partial Ordering Relation, Equivalence Relation, Image of a Set, Sum and Product of Functions, Bijective functions, Inverse and Composite Function, Size of a Set, Finite and infinite Sets, Countable and uncountable Sets, Cantor's diagonal argument and The Power Set theorem, Schroeder-Bernstein theorem.

Principles of Mathematical Induction: The Well-Ordering Principle, Recursive definition, The Division algorithm: Prime Numbers, The Greatest Common Divisor: Euclidean Algorithm, The Fundamental Theorem of Arithmetic.

CO1, CO2

Module 2:

Basic counting techniques-inclusion and exclusion, pigeon-hole principle, permutation and combination.

Module 3:

Propositional Logic: Syntax, Semantics, Validity and Satisfiability, Basic Connectives and Truth Tables, Logical Equivalence: The Laws of Logic, Logical Implication, Rules of Inference, The use of Quantifiers. **Proof Techniques:** Some Terminology, Proof Methods and Strategies, Forward Proof, Proof by Contradiction, Proof by Contraposition, Proof of Necessity and Sufficiency.

CO3, CO4

Module 4:

Algebraic Structures and Morphism: Algebraic Structures with one Binary Operation, Semi Groups, Monoids, Groups, Congruence Relation and Quotient Structures, Free and Cyclic Monoids and Groups, Permutation Groups, Substructures, Normal Subgroups, Algebraic Structures with two Binary Operation, Rings, Integral Domain and Fields. Boolean Algebra and Boolean Ring, Identities of Boolean Algebra, Duality, Representation of Boolean Function, Disjunctive and Conjunctive Normal Form CO4

Module 5:

Graphs and Trees: Graphs and their properties, Degree, Connectivity, Path, Cycle, Sub Graph, Isomorphism, Eulerian and Hamiltonian Walks, Graph Colouring, Colouring maps and Planar Graphs, Colouring Vertices, Colouring Edges, List Colouring, Perfect Graph, definition properties and Example, rooted trees, trees and sorting, weighted trees and prefix codes, Biconnected component and Articulation Points, Shortest distances. CO5

Suggested books:

IK Gujral Punjab Technical University, Kapurthala

B. Tech- Computer Science (IoT & Cyber security with Block Chain Technology)

- 1. Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata McGraw Hill
- 2. Susanna S. Epp, Discrete Mathematics with Applications, 4th edition, Wadsworth Publishing Co. Inc.
- 3. C L Liu and D P Mohapatra, Elements of Discrete Mathematics A Computer Oriented Approach, 3rd Edition by, Tata McGraw Hill.

Suggested reference books:

- 1. J.P. Tremblay and R. Manohar, Discrete Mathematical Structure and Its Application to Computer Science", TMG Edition, TataMcgraw-Hill
- 2. Norman L. Biggs, Discrete Mathematics, 2nd Edition, Oxford University Press. Schaum's Outlines Series, Seymour Lipschutz, Marc Lipson,
- 3. Discrete Mathematics, Tata McGraw Hill

Course Outcomes

- 1. To be able to express logical sentence in terms of predicates, quantifiers, and logical connectives
- 2. To derive the solution for a given problem using deductive logic and prove the solution based on logical inference
- 3. For a given a mathematical problem, classify its algebraic structure
- 4. To evaluate Boolean functions and simplify expressions using the properties of Boolean algebra
- 5. To develop the given problem as graph networks and solve with techniques of graph theory.

B.Tech Computer Science and Design

5th Semester

Course Code	Type of Course	Course Title		ours Wee	k	Distr	arks ibution	Total Marks	Credits
			L	T	P	Internal	External	IVIGI KS	
BTCS 501-18	Professional Core Courses	Database Management Systems	3	0	0	40	60	100	3
BTCS 502-18	Professional Core Courses	Formal Language & Automata Theory	3	0	0	40	60	100	3
BTCS 504- 18	Professional Core Courses	Computer Networks	3	0	0	40	60	100	3
BTCD 501- 23	Professional Core Courses	Software Engineering and Design	3	0	0	40	60	100	3
BTCD 502-23	Professional Core Courses	UI/UX Design using open source	3	0	0	40	60	100	3
BTCS XXX-XX	Professional Elective	Elective-I	3	0	0	40	60	100	3
MC	Mandatory Courses	Constitution of India/ Essence of Indian Traditional Knowledge	2	-	-	100	-	100	S/US
BTCS 505-18	Professional Core Courses	Database Management Systems Lab	0	0	4	30	20	50	2
BTCS 507-18	Professional Core Courses	Computer Networks Lab	0	0	2	30	20	50	1
BTCD 503-23	Professional Core Courses	UI/UX Design using open source Lab	0	0	2	30	20	50	1
BTCS XXX-XX	Professional Elective	Elective-I Lab	0	0	2	30	20	50	1
	Total			0	10	460	440	900	23

Elective-I

BTCS 510-18 Programming in Python

BTCS 513-18 Programming in Python Lab

BTCS 515-18 Computer Graphics

BTCS 518-18 Computer Graphics lab

BTCD 504-23 Web Designing

BTCD 505-23 Web Designing Lab

Database Management Systems

Course Code: BTCS501-18 3L:0T:0P 3Credits

Detailed Contents:

Module 1: Database system architecture

Data Abstraction, Data Independence, Data Definition Language (DDL), Data Manipulation Language (DML). Data models: Entity-relationship model, network model, relational and object oriented Data models, integrity constraints, data manipulation operations.

Module 2: Relational query languages

Relational algebra, Tuple and domain relational calculus, SQL3, DDL and DML constructs, Open source and Commercial DBMS - MYSQL, ORACLE, DB2, SQL server. Relational database design: Domain and data dependency, Armstrong's axioms, Normal forms, Dependency preservation, Lossless design. Query processing and optimization: Evaluation of relational algebra expressions, Query equivalence, Join strategies, Query optimization algorithms.

[10hrs] (CO2,4)

Module 3:

Storage strategies, Indices, B-trees, hashing.

[3hrs] (CO3)

Module 4: Transaction processing

Concurrency control, ACID property, Serializability of scheduling, Locking and timestamp based schedulers, Multi-version and optimistic Concurrency Control schemes, Database recovery.

[6hrs] (CO3)

Module 5: Database Security

Authentication, Authorization and access control, DAC, MAC and RBAC models, Intrusion detection, SQL injection.

[8hrs] (CO 4,5)

Module 6: Advanced Topics

Object oriented and object relational databases, Logical databases, Web databases, Distributed databases.

[8hrs] (CO 5)

Course Outcomes:

At the end of study the student shall be able to:

CO1: write relational algebra expressions for a query and optimize the Developed expressions

CO2: design the databases using ER method and normalization.

CO3: construct the SQL queries for Open source and Commercial DBMS-MYSQL, ORACLE, and DB2.

CO4: determine the transaction atomicity, consistency, isolation, and durability.

CO5: Implement the isolation property, including locking, time stamping based on concurrency control and Serializability of scheduling.

Text Books:

Course Code: BTCS501-18 Course Title: Database Management Systems 3L:0T:0P 3Credits

1. "Database System Concepts", 6th Edition by Abraham Silberschatz, Henry F. Korth, S. Sudarshan, McGraw-Hill.

Reference Books:

- 1. "Principles of Database and Knowledge-Base Systems", Vol1 by J. D. Ullman, Computer Science Press.
- 2. "Fundamentals of Database Systems", 5th Edition by R. Elmasri and S. Navathe, Pearson Education.
- 3. "Foundations of Databases", Reprint by Serge Abiteboul, Richard Hull, Victor Vianu, Addison-Wesley.

Course Code: BTCS502-18 Course Title: Formal Language & Automata Theory

3L:1T:0P 3Credits 42 Hours

Detailed Contents

Module 1: Introduction

Alphabet, languages and grammars, productions and derivation, Chomsky hierarchy of languages.

[3hrs] (CO1)

Module 2: Regular languages and finite automata:

Regular expressions and languages, deterministic finite automata (DFA) and equivalence with regular expressions, nondeterministic finite automata (NFA) and equivalence with DFA, regular grammars and equivalence with finite automata, properties of regular languages, pumping lemma for regular languages, minimization of finite automata.

[8hrs] (CO2)

Module 3: Context-free languages and pushdown automata

Context-free grammars (CFG) and languages (CFL), Chomsky and Greibach normal forms, nondeterministic pushdown automata (PDA) and equivalence with CFG, parse trees, ambiguity in CFG, pumping lemma for context-free languages, deterministic pushdown automata, closure properties of CFLs.

[8hrs] (CO3)

Module 4: Context-sensitive languages

Context-sensitive grammars (CSG) and languages, linear bounded automata and equivalence with CSG.

[5hrs] (CO4)

Module 5: Turing machines

The basic model for Turing machines (TM), Turing recognizable (recursively enumerable) and Turing-decidable (recursive) languages and their closure properties, variants of Turing machines, nondeterministic TMs and equivalence with deterministic TMs, unrestricted grammars and equivalence with Turing machines, TMs as enumerators.

[8hrs] (CO 5)

Module 6: Undecidability & Intractablity:

Church-Turing thesis, universal Turing machine, the universal and diagonalization languages, reduction between languages and Rice's theorem, undecidable problems about languages.

Intractability: Notion of tractability/feasibility. The classes NP and co-NP, their importance.

Polynomial time many-one reduction. Completeness under this reduction. Cook-Levin theorem: NP-completeness of propositional satisfiability, other variants of satisfiability. NP-complete problems from other domains: graphs (clique, vertex cover, independent sets, Hamiltonian cycle), number problem (partition), set cover

[12hrs] (CO5)

Course Outcomes: The student will be able to:

CO1: Write a formal notation for strings, languages and machines.

CO2: Design finite automata to accept a set of strings of a language.

CO3: Design context free grammars to generate strings of context free language

CO4: Determine equivalence of languages accepted by Push Down Automata and languages generated by context free grammars

CO5: Distinguish between computability and non-computability and Decidability and undecidability.

Text Books:

1. John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson Education Asia.

Reference Books:

- 1. Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Computation, Pearson Education Asia.
- 2. Dexter C. Kozen, Automata and Computability, Undergraduate Texts in Computer Science, Springer.
- 3. Michael Sipser, Introduction to the Theory of Computation, PWS Publishing.
- 4. John Martin, Introduction to Languages and The Theory of Computation, Tata McGraw Hill.

.....

Course Code: BTCS 504-18 Course Title: Computer Networks 3L:1T:0P 3Credits 42 Hours

Detailed Contents:

Module 1: Data Communication Components

Representation of data and its flow Networks, Various Connection Topology, Protocols and Standards, OSI model, Transmission Media, LAN: Wired LAN, Wireless LANs, Connecting LAN and Virtual LAN, Techniques for Bandwidth utilization: Multiplexing – Frequency division, Time division and Wave division, Concepts on spread spectrum.

[8hrs] (CO1)

Module 2: Data Link Layer and Medium Access Sub Layer

Error Detection and Error Correction - Fundamentals, Block coding, Hamming Distance, CRC; Flow Control and Error control protocols - Stop and Wait, Go back – N ARQ, Selective Repeat ARQ, Sliding Window, Piggybacking, Random Access, Multiple access protocols Pure ALOHA, Slotted ALOHA, CSMA/CDCDMA/CA.

[10 hrs] (CO2)

Module 3: Network Layer

Switching, Logical addressing – IPV4, IPV6; Address mapping – ARP, RARP, BOOTP and DHCP–Delivery, Forwarding and Unicast Routing protocols.

[8 hrs] (CO3)

Module 4: Transport Layer

Process to Process Communication, User Datagram Protocol (UDP), Transmission Control Protocol (TCP), SCTP Congestion Control; Quality of Service, QoS improving techniques: Leaky Bucket and Token Bucket algorithm.

[8 hrs] (CO3)

Module 5: Application Layer

Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls, Basic concepts of Cryptography.

[8 hrs] (CO4)

Course Outcomes: The student will be able to:

CO1: Explain the functions of the different layer of the OSI Protocol;

CO2:. Describe the function of each block of wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs);

CO3: Develop the network programming for a given problem related TCP/IP protocol; &

CO4: Configure DNS DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls using open source available software and tools.

Text Books:

- 1. Data Communication and Networking, 4th Edition, Behrouz A. Forouzan, McGraw-Hill.
- 2. Data and Computer Communication, 8th Edition, William Stallings, Pearson Prentice Hall India.

Reference Books:

- 1. Computer Networks, 8th Edition, Andrew S. Tanenbaum, Pearson New International Edition.
- 2. Internetworking with TCP/IP, Volume 1, 6th Edition Douglas Comer, Prentice Hall of India.
- 3. TCP/IP Illustrated, Volume 1, W. Richard Stevens, Addison-Wesley, United States of America.

Course Title: Software Engineering and Design

Course Code: BTCD 501-23 3L:0T:P 3Credits

Detailed Contents:

Unit-I: Design Issues in Software

Social and ethical issues, Hardware and software issues, Software development approaches, Software development life cycle models

Unit 2: Software Development Process:

Defining and understanding the problem, Planning and designing software solutions, Implementing software solutions, Testing and evaluating software solutions, Maintaining software solutions

Unit 3: Software Design:

Architecture Design, component-level design, Interface Design, Detailed design

Unit 5: Software Testing

Unit Testing, Integration Testing, System Testing, Acceptance Testing, Blackbox Testing, Whitebox Testing.

Suggested Books:

1. Software Design for Engineers and Scientists by John Allen Robinson, John Allen, Publisher: Newnes

Software Engineering: A Practitioner's Approach 9th Edition, by Roger Pressman and Bruce Maxim

UI/UX Design using open source

Course Code: BTCD 502-23 3L:0T:P 3Credits

Unit 1: Introduction to UI/UX

UI/UX Overview, Intro to UI/UX, Good vs Bad design, Visual elements, Interactive components, Digital products, Similarities and differences between UI and UX, Design Principles, Challenges of UI/UX design, Design Thinking

Unit 2: Prototyping

Incorporate UI kits and components into a prototype, Prototyping tools for product design, User interactions to create a clickable prototype, Usability Testing, Remote usability tests, Iterations on prototypes.

Unit 3: UI/UX Tools:

Design UI/UX using open sources such as Figma, Portfolio Designs

Unit 4: Industry Trends and Case Studies:

Analyzing successful UI/UX case studies in the industry, Study effective design strategies and methodologies. Design blogs, forums, and conferences.

Suggested Readings:

https://www.figma.com/education/

Course Code: BTCS505-18 CourseTitle: Database management System lab

0L:0T:4P 2Credits

List of Experiments:

- Task 1: Introduction to SQL and installation of SQL Server / Oracle.
- Task 2: Data Types, Creating Tables, Retrieval of Rows using Select Statement, Conditional Retrieval of Rows, Alter and Drop Statements.
- Task 3: Working with Null Values, Matching a Pattern from a Table, Ordering the Result of a Query, Aggregate Functions, Grouping the Result of a Query, Update and Delete Statements.
- Task 4: Set Operators, Nested Queries, Joins, Sequences.
- Task 5: Views, Indexes, Database Security and Privileges: Grant and Revoke Commands, Commit and Rollback Commands.
- Task 6: PL/SQL Architecture, Assignments and Expressions, Writing PL/SQL Code, Referencing Non-SQL parameters.
- Task 7: Stored Procedures and Exception Handling.
- Task 8: Triggers and Cursor Management in PL/SQL. Suggested Tools MySQL, DB2, Oracle, SQL Server 2012, Postgre SQL, SQL lite

Course Outcomes:

- CO1: This practical will enable students to retrieve data from relational databases using SQL.
- CO2: students will be able to implement generation of tables using datatypes
- CO3: Students will be able to design and execute the various data manipulation queries.
- CO4: Students will also learn to execute triggers, cursors, stored procedures etc.

Course Code: BTCS507-18 Course Title: Computer Networks Lab 0L:0T:2P 1 Credits

List of Experiments:

- Task 1: To study the different types of Network cables and network topologies.
- Task 2: Practically implement and test the cross-wired cable and straight through cable using clamping tool and network lab cable tester.
- Task 3: Study and familiarization with various network devices.
- Task 4: Familiarization with Packet Tracer Simulation tool/any other related tool.
- Task 5: Study and Implementation of IP Addressing Schemes
- Task 6: Creation of Simple Networking topologies using hubs and switches
- Task 7: Simulation of web traffic in Packet Tracer
- Task 8: Study and implementation of various router configuration commands
- Task 9: Creation of Networks using routers.
- Task 10: Configuring networks using the concept of subnetting
- Task 11: Practical implementation of basic network command and Network configuration commands like ping, ipconfig, netstat, tracert etc. for troubleshooting network related problems.
- Task 12: Configuration of networks using static and default routes.

Course Outcomes:

The students will be able to:

- CO1: Know about the various networking devices, tools and also understand the implementation of network topologies;
- CO2: Create various networking cables and know how to test these cables;
- CO3: Create and configure networks in packet trace rtool using various network devices and topologies;
- CO4: Understand IP addressing and configure networks using the subnet in;
- CO5: Configure routers using various router configuration commands. Suggested Tools NS2/3, Cisco packet tracer, Netsim etc.

UI/UX Design using open source Lab Course Code: BTCD 503-23 0L:0T:2P 1 Credit

Lab may be designed by instructor based on theory curriculum.

ELECTIVE-I

Course Code: BTCS 510-18 Course Title: Programming in Python 3L:0T:0P 3 Credits 42 Hours

Detailed Contents:

Module 1:

Python Basics, Objects- Python Objects, Standard Types, Other Built-in Types, Internal Types, Standard Type Operators, Standard Type Built-in Functions, Categorizing the Standard Types, Unsupported Types Numbers - Introduction to Numbers, Integers, Floating Point Real Numbers, Complex Numbers, Operators, Built-in Functions, Related Modules Sequences - Strings, Lists, and Tuples, Mapping and Set Types.

[8hrs] (CO1)

Module 2:

FILES: File Objects, File Built-in Function [open()], File Built-in Methods, File Built-in Attributes, Standard Files, Command-line Arguments, File System, File Execution, Persistent Storage Modules, Related Modules

Exceptions: Exceptions in Python, Detecting and Handling Exceptions, Context Management,

*Exceptions as Strings, Raising Exceptions, Assertions, Standard Exceptions, *Creating

Exceptions, Why Exceptions (Now)?, Why Exceptions at All?, Exceptions and the sys Module,

Related Modules

Modules: Modules and Files, Namespaces, Importing Modules, Importing Module Attributes, Module Built-in Functions, Packages, Other Features of Modules.

[10hrs] (CO1,2)

Module 3:

Regular Expressions: Introduction, Special Symbols and Characters, Res and Python Multithreaded Programming: Introduction, Threads and Processes, Python, Threads, and the Global Interpreter Lock, Thread Module, Threading Module, Related Modules.

[8hrs] (CO 2,3)

Module 4:

GUI Programming: Introduction, Tkinter and Python Programming, Brief Tour of Other GUIs, Related Modules and Other GUIs

WEB Programming: Introduction, Wed Surfing with Python, Creating Simple Web Clients, Advanced Web Clients, CGI-Helping Servers Process Client Data, Building CGI ApplicationAdvanced CGI, Web (HTTP) Servers.

Module 5:

Database Programming: Introduction, Python Database Application Programmer's Interface (DB-API), Object Relational Managers (ORMs), Related Modules. [6 hrs] (CO5)

Text Books:

1. Core Python Programming, Wesley J. Chun, Second Edition, Pearson.

Course Outcomes:

The students should be able to:

CO1: Examine Python syntax and semantics and be fluent in the use of Python flow control and functions.

CO2: Demonstrate proficiency in handling Strings and File Systems.

CO3: Create, run and manipulate Python Programs using core data structures like Lists, Dictionaries and use Regular Expressions.

CO4: Interpret the concepts of Object-Oriented Programming as used in Python.

CO5: Implement exemplary applications related to Network Programming, Web Services and Databases in Python.

Course Code: BTCS 513-18 Course Title: Programming in Python Lab 0L:0T:2P 1 Credits 2 Hours/ week

Prerequisites: Students should install Python.

List of Experiments:

- Task 1: Write a program to demonstrate different number data types in Python.
- Task 2: Write a program to perform different Arithmetic Operations on numbers in Python.
- Task 3: Write a program to create, concatenate and print a string and accessing sub-string from a given string.
- Task 4: Write a python script to print the current date in the following format "Sun May 29 02:26:23 IST 2017"
- Task 5: Write a program to create, append, and remove lists in python.
- Task 6: Write a program to demonstrate working with tuples in python.
- Task 7: Write a program to demonstrate working with dictionaries in python.
- Task 8: Write a python program to find largest of three numbers.
- Task 9: Write a Python program to convert temperatures to and from Celsius, Fahrenheit. [Formula: c/5 = f-32/9]
- Task 10: Write a Python program to construct the following pattern, using a nested for loop *

*

* *

* * *

* * * *

* * *

* *

*

*

- Task 11: Write a Python script that prints prime numbers less than 20.
- Task 12: Write a python program to find factorial of a number using Recursion.
- Task 13: Write a program that accepts the lengths of three sides of a triangle as inputs.

The program output should indicate whether or not the triangle is a right triangle (Recall from the Pythagorean Theorem that in a right triangle, the square of one side equals the sum of the squares of the other two sides).

- Task 14: Write a python program to define a module to find Fibonacci Numbers and import the module to another program.
- Task 15: Write a python program to define a module and import a specific function in that module to another program.
- Task 16: Write a script named copyfile.py. This script should prompt the user for the names of two text files. The contents of the first file should be input and written to the second file.
- Task 17: Write a program that inputs a text file. The program should print all of the unique words in the file in alphabetical order.
- Task 18: Write a Python class to convert an integer to a roman numeral.
- Task 19: Write a Python class to implement pow(x, n)
- Task 20: Write a Python class to reverse a string word by word.

Course Code: BTCS 515-18 Course Title: Computer Graphics 3L:0T:0P 3 Credits 45 Hours

Detailed Contents:

Module 1:

Overview of Computer Graphics: Basics of Computer Graphics, Applications, Video Display devices, Raster–Scan displays, Random–Scan displays, Color CRT Monitors, Flat–Panel Displays; Video Controller, Display Processor, Common Graphic Input and Output devices, Graphic File Formats, Graphics Software's.

[6hrs] (CO1)

Module 2:

Output Primitives: Line Drawing, DDA, Bresenham Line Algorithm; Mid-Point Line Algorithm, Bresenham Circle Algorithm, Midpoint Circle drawing algorithms; Midpoint Ellipse Algorithm; Flood and Boundary Filling.

[6hrs] (CO1)

Module 3:

Two-Dimensional Geometric Transformation: Translation, Rotation, Scaling, Reflection, Shearing, Matrix representations; Composite transformations.

[6hrs] (CO1,2)

Module 4:

Two-Dimensional Viewing: Viewing coordinate reference frame; Window to Viewport coordinate transformation. Point Clipping, Line Clipping, text Clipping; Cohen–Sutherland and Liang–Barskey Algorithms for line clipping; Sutherland–Hodgeman algorithm for polygon clipping.

[6hrs](CO2)

Module 5:

Three Dimensional Transformations & Viewing: Translation, Rotation, Scaling, Reflection and composite transformations. Parallel and Perspective Projections, Viewing Transformation: View Plan, View Volumes and Clipping.

[6hrs] (CO2)

Module 6:

3 D Graphics and Visibility: Plane projections and its types, Vanishing points, Specification of a 3D view. Image and object precision, Hidden edge/surface removal or visible edge/surface determination techniques; z buffer algorithms, Depth sort algorithm, Scan line algorithm and Floating horizon technique.

[6hrs] (CO2,3)

Module 7:

Color Models: Properties of Light, Intuitive Color Concepts, concepts of chromaticity, RGB Color Model, CMY Color Model, HLS and HSV Color Models, Conversion between RGB and CMY color Models, Conversion between HSV and RGB color models, Color Selection and Applications.

[6hrs] (CO2,3)

Module 8:

Animation: Graphics Design of Animation sequences, General Computer Animation Functions Introduction to Rendering, Raytracing, Antialiasing, Fractals, Gourard and Phong shading.

[3hrs] (CO3)

Reference Books:

- 1. D. Hearn and M.P. Baker, Computer Graphics: C version, 2nd Edition, PHI, 2004.
- 2. D.F. Rogers, Mathematical Elements for Graphics, 2nd Edition., McGraw Hill, 2004.
- 3. J.D. Foley et al, Computer Graphics, Principles and Practices, 2nd Edition, Addison Wasley, 2004.
- 4. Roy A. Plastock, Gordon Kalley, Computer Graphics, Schaum's Outline Series, 1986.

Course Outcomes: The students shall be able to:

CO1: Understand about fundamentals of Graphics to enable them to design animated scenes for virtual object creations.

CO2: Make the student present the content graphically.

CO3: Work in computer aided design for content presentation for better analogy data with pictorial representation

Course Code: BTCS 518-18 Course Title: Computer Graphics Lab 0L:0T:4P 2 Credits 2 Hours/week

List of Experiments:

- Task 1: WAP to draw different geometric structures using different functions.
- Task 2: Implement DDA line generating algorithm.
- Task 3: Implement Bresenham's line generating algorithm.
- Task 4: Implement Mid-point circle line generating algorithm.
- Task 5: Implementation of Bresenham's circle drawing algorithm.
- Task 6: Implementation of mid-point circle generating Algorithm.
- Task 7: Implementation of ellipse generating Algorithm.
- Task 8: WAP of color filling the polygon using Boundary fill and Flood fill algorithm.
- Task 9: To translate an object with translation parameters in X and Y directions.
- Task 10: To scale an object with scaling factors along X and Y directions.
- Task 11: Program of line clipping using Cohen-Sutherland algorithm.
- Task 12: To perform composite transformations of an object.
- Task 13: To perform the reflection of an object about major.

Web Designing

Course Code: BTCD 504-23 3L:0T:P 3Credits

Unit 1:

Web Development Fundamentals: Fundamentals of Web Design, Webpage and Website, Web application, HTML Typography, Images, Tables, Lists, Hyperlinks etc., CSS Syntax and usage, CSS Selectors, CSS on body, CSS on Text, CSS on Links, CSS on Tables, CSS on Lists, CSS on Forms, CSS on Images, CSS Framework.

Unit 2

JavaScript Fundamentals, Grammar and types, Control flow and error handling, Loops, Function, Objects, Arrays, Promises.

Unit 3

Node JS and Express JS Module: Node.js overview, Node.js - basics and setup, Node.js console, Node.js command utilities, Node.js modules, concepts, Node.js events, database access, Node.js with Express.js, Express.js Request/Response, Express.js Get, Express.js Post, Express.js Routing, Express.js Cookies, Express.js File Upload, Middleware, Express.js Scaffolding, Template.

Unit 4

MySQL and MongoDB: MySQL Concepts, Create, Read, Update, Delete Operation, SQL and NoSQL concepts, Create and manage MongoDB, Migration of data into MongoDB.

Unit 5

ReactJS: Introduction and overview, ReactJS installation and environment setup, Introducing JSX, Rendering Elements, Components and Props, State and Lifecycle, Handling Events, Conditional Rendering, Lists and Keys, Forms, Lifting State Up, Redux for state management, Redux Saga or Thunk.

Text Books: -

- 1. Jeffrey C Jackson, Web Technology A computer Science perspective, Pearson Education, 2007.
- 2. Kyle Simpson, Know JS ES6 & Beyond January 2016
- 3. Zakas, Nicholas C, Understanding ECMAScript 6: The Definitive Guide for JavaScript Developers
- 4. Greg Lim, Beginning Node.js, Express & MongoDB Development
- 5. Robin Wieruch, The Road to React: Your journey to master React.js in JavaScript 2021 Edition.

References: -

- 1. https://www.geeksforgeeks.org/web-technology
- 2. https://reactjs.org/docs/getting-started.html

Web Designing Lab

Course Code: BTCD 505-23 0L:0T:2P 1Credits

Lab may be designed by instructor based on theory curriculum.

B.Tech Computer Science and Design

6th Semester

Course	Type of Course	Course Title	Hours per Week			Marks Distribution		Total	Credits
Code			L	T	P	Internal	External	Marks	
BTCS	Professional	Compiler Design							
601-18	Core Courses		3	0	0	40	60	100	3
BTCS	Professional	Artificial							
602-18	Core Courses	Intelligence	3	0	0	40	60	100	3
BTCD XXX-23	Professional Elective Courses	Elective-II	3	0	0	40	60	100	3
BTCD XXX-23	Professional Elective Courses	Elective-III	3	0	0	40	60	100	3
BTOE XXX-XX	Open Elective Courses	Open Elective-I	3	0	0	40	60	100	3
BTCD 613-23	Project	Project-1	0	0	6	60	40	100	3
BTCS	Professional	Compiler Design							
604-18	Core Courses	Lab	0	0	2	30	20	50	1
BTCS 605-18	Professional Core Courses	Artificial Intelligence Lab	0	0	2	30	20	50	1
BTCD XXX-23	Professional Core Courses	Elective-II Lab	0	0	2	30	20	50	1
BTCD XXX-23	Professional Core Courses	Elective-III Lab	0	0	2	30	20	50	1
Total			20	0	12	380	420	800	22

Elective II:

BTCD 601-23 Data Analytics and Visualization

BTCD 602-23 Data Analytics and Visualization Lab

BTCD 603-23 Game Design

BTCD 604-23 Game Design Lab

BTCD 605-23 3-D Printing and Design

BTCD 606-23 3-D Printing and Design Lab

Elective III:

BTCD 607-23 Applied Design Thinking

BTCD 608-23 Applied Design Thinking Lab

BTCD 609-23 Multimedia and Animation

BTCD 610-23 Multimedia and Animation Lab

BTCD 611-23 Augmented and Virtual Reality

BTCD 612-23 Augmented and Virtual Reality Lab

Course Code: BTCS601-18 Course Title: Compiler Design 3L:0T:0P 3Credits

Detailed Contents:

UNIT 1: Unit I Introduction to Compilers:

Structure of a compiler – Lexical Analysis – Role of Lexical Analyzer – Input Buffering – Specification of Tokens – Recognition of Tokens – Lex – Finite Automata – Regular Expressions to Automata – Minimizing DFA. [8 hrs., CO 1]

Unit II : Syntax Analysis:

Role of Parser – Grammars – Error Handling – Context-free grammars – Writing a grammar, Top-Down Parsing – General Strategies Recursive Descent Parser – Predictive Parser-LL(1) Parser-Shift Reduce Parser-LR Parser-LR (0) Item Construction of SLR Parsing Table – Introduction to LALR Parser – Error Handling and Recovery in Syntax Analyzer-YACC. [8 hrs., CO 2]

Unit III: Intermediate Code Generation: Syntax Directed Definitions, Evaluation Orders for Syntax Directed Definitions, Intermediate Languages: Syntax Tree, Three Address Code, Types and Declarations, Translation of Expressions, Type Checking. [8 hrs., CO 3]

Unit IV: Run-Time Environment and Code Generation:

Storage Organization, Stack Allocation Space, Access to Non-local Data on the Stack, Heap Management – Issues in Code Generation – Design of a simple Code Generator. [6 hrs., CO 4]

Unit V: Code Optimization:

Principal Sources of Optimization – Peep-hole optimization – DAG- Optimization of Basic Blocks-Global Data Flow Analysis – Efficient Data Flow Algorithm. [6 hrs., CO 5]

Course Outcomes:

After undergoing this course, the students will be able to:

CO1: Build concepts on lexical analysis.

CO2: Understand strategies of syntax analysis.

CO3: Learn techniques of Intermediate code generation.

CO4: Undestand code design issues and design code generator.

CO5: Design and develop optimized codes.

Suggested Readings/ Books:

- 1. A.V. Aho, Monica, R.Sethi, J.D.Ullman, "Compilers, Principles, Techniques and Tools", Second Edition, Pearson Education/Addison Wesley, 2009.
- 2. 2. Andrew W. Appel, "Modern Compiler Implementation in Java", Second Edition, 2009. 3. J.P. Tremblay and P.G. Sorrenson, "The Theory and Practice of Compiler Writing", McGraw Hill, 1985.

Course Code: BTCS602-18 Course Title: Artificial Intelligence 3L:0T:0P 3Credits

Detailed Contents:

UNIT 1: Introduction (3 Hours)

Concept of AI, history, current status, scope, agents, environments, Problem Formulations, Review of tree and graph structures, State space representation, Search graph and Search tree. [8hrs] (CO 1)

UNIT 2: Search Algorithms

Random search, Search with closed and open list, Depth first and Breadth first search, Heuristic search, Best first search, A* algorithm, Game Search. [9hrs] (CO 2)

UNIT 3: Probabilistic Reasoning

Probability, conditional probability, Bayes Rule, Bayesian Networks- representation, construction and inference, temporal model, hidden Markov model. [6hrs] (CO 3)

UNIT 4 Markov Decision process

MDP formulation, utility theory, utility functions, value iteration, policy iteration and partially observable MDPs. [6hrs] (CO 4)

UNIT 5 Reinforcement Learning

Passive reinforcement learning, direct utility estimation, adaptive dynamic programming, temporal difference learning, active reinforcement learning- Q learning. [6hrs] (CO 5)

Course Outcomes:

After undergoing this course, the students will be able to:

CO1: Build intelligent agents for search and games

CO2: Solve AI problems by learning various algorithms and strategies

CO3: Understand probability as a tool to handle uncertainity

CO4: Learning optimization and inference algorithms for model learning

CO5: Design and develop programs for an reinforcement agent to learn and act in a structured environment

Suggested Readings/ Books:

- 1.Stuart Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", 3rd Edition, Prentice Hall
- 2. Elaine Rich and Kevin Knight, "Artificial Intelligence", Tata McGraw Hill
- 3. Trivedi, M.C., "A Classical Approach to Artifical Intelligence", Khanna Publishing House, Delhi.
- 4. Saroj Kaushik, "Artificial Intelligence", Cengage Learning India,
- 5. David Poole and Alan Mackworth, "Artificial Intelligence: Foundations for Computational Agents", Cambridge University Press 2010

Course Code: BTCS604-18 Course Title: Compiler Design Lab L:0;T:0; 2P 1Credits

List of Experiments

- 1 Design a lexical analyser for given language and the lexical analyser should ignore redundant spaces, tabs and new lines. It should also ignore comments. Although the syntax specification states that identifiers can be arbitrarily long, you may restrict the length to some reasonable value. Simulate the same in C language.
- 2 Write a C program to identify whether a given line is a comment or not.
- 3 Write a C program to recognize strings under 'a', 'a*b+', 'abb'.
- 4 Write a C program to test whether a given identifier is valid or not.
- 5 Write a C program to simulate lexical analyzer for validating operators.
- 6 Implement the lexical analyzer using JLex, flex or other lexical analyzer generating tools.
- 7 Write a C program for implementing the functionalities of predictive parser for the mini language specified in Note 1.
- 8 a) Write a C program for constructing of LL(1) parsing. b) Write a C program for constructing recursive descent parsing.
- 9 Write a C program to implement LALR parsing.
- 10 a) Write a C program to implement operator precedence parsing. b) Write a C program to implement Program semantic rules to calculate the expression that takes an expression with digits, + and * and computes the value.
- 11 Convert the BNF rules into YACC form and write code to generate abstract syntax tree for the mini language specified in Note 1.
- 12 Write a C program to generate machine code from abstract syntax tree generated by the parser. The instruction set specified in Note 2 may be considered as the target code.

Course Code: BTCS 605-18 Course Title Artificial Intelligence Lab L:0;T:0;2P:1 Credits

Detailed List of Tasks:

- 1. Write a programme to conduct uninformed and informed search.
- 2. Write a programme to conduct game search.
- 3. Write a programme to construct a Bayesian network from given data.
- 4. Write a programme to infer from the Bayesian network.
- 5. Write a programme to run value and policy iteration in a grid world.
- 6. Write a programme to do reinforcement learning in a grid world

BTCD 601-23 DATA ANALYTICS AND VISUALIZATION 3L 0T 0P 3Credit

COURSE OBJECTIVES:

To understand the need of data analytics
To understand the different methods of analytics
To learn the applications of predictive analytics
To understand the impact of data visualization in data analytics
To provide hands on experience in Data Analytics

UNIT I: INTRODUCTION TO DATA ANALYTICS

Data Analytics, Steps in Data Analytics, Data Gathering, Data Scrubbing, Data Analysis, Descriptive Analytics, Inferential Statistics

UNIT II: PREDICTIVE ANALYTICS

Definition, Different Predictive Models, Descriptive Modeling, Decision Modeling, Machine Learning Techniques: Regression, Neural Networks, Support Vector Machines, Naïve Bayes, Data driven methods, Computation driven methods, Result driven methods

UNIT III: APPLICATION OF PREDICTIVE ANALYTICS

Analytical Customer Relationship Management, Use of Predictive Analytics in Healthcare and Financial Sector, Predictive Analytics & Business – Marketing Strategies – Fraud Detection

UNIT IV: DATA VISUALIZATION

Stacked Bar Chart, Histogram, Butterfly Chart, Donut Chart, Scatter Plot, Bubble Chart, Box Plot, Pareto Chart, Bump Chart, Maps, Gantt Chart

UNIT V DASHBOARD

Dashboard and its Types, Dashboard Design Approach, Healthcare Quality Dashboard, Airline Quality Dashboard, Manufacturing Quality Dashboard, Warehouse Quality Dashboard.

TEXT BOOKS

- 1. Arshdeep Bahga, Vijay Madisetti, "Big Data Science and Analytics A Hands-On Approach", 2016
- 2. Jaejin Hwang Youngjin Yoon, "Data Analytics and Visualization in Quality Analysis using Tableau", CRC, 2022

REFERENCES

- 1. Bart Baesens, "Analytics in a Big Data World, The essential guide to data science and its applications", Wiley, 2014.
- 2. S Christian Albright, Wayne L Winston, "Business Analytics, Data analysis and Decision Making", Cengage Learning, 2014, Sixth edition.
- 3. Phuong Vo.T.H, Martin Czygan, Ashish Kumar, "Python: Data Analytics and Visualization", Packt Publishing Ltd. 2017.
- 4. Purna Chander Rao. Kathula", "Hands-on Data Analysis and Visualization with Pandas", Published by BPB Publications, 2020.
- 5. Christian Tominski, Heidrun Schumann," Interactive Visual Data Analysis", CRC Press 2020.

BTCD 602-23 DATA ANALYTICS AND VISUALIZATION LAB 0L 0T 2P 1C

LIST OF EXPERIMENTS

- 1. Working with Python Pandas Data Science Library
- 2. Working with Python Numpy and Lambdas Library
- 3. Data cleaning and manipulation
- 4. Data Wrangling
- 5. Plots in Python
- 6. Creation, manipulation of list, dictionaries, Tuples, Series, Data Frames
- 7. Linear Regression with Python
- 8. Logistic Regression with Python
- 9. Clustering with Python

COURSE OBJECTIVES:

- To Understand the Fundamental principles of Game Design and Development
- To know the importance and application of Game AI
- To learn the detailed processes of typical Game Engine
- To Implement simple 2D games using the design and development process learnt
- To Implement simple 3D games using the design and development process learnt

UNIT I: GAME DESIGN FUNDAMENTALS

Role of Game Designer, Structure of Games, major genres, game concepts, game worlds, working with formal elements, dramatic elements and system dynamics, storytelling, game play, core mechanics, game balancing, principles of Level Design, Conceptualization, prototyping, playtesting.

UNIT II: GAME AI

Game AI, AI model, algorithms for Movement, Path finding, Decision making, Tactical and Strategic AI, Procedural Content Generation, Board Games

UNIT III: GAME ENGINE

Rendering engine and pipeline, Scene Graph, Level of Detail, sorting, Animation Systems,

Collision and Rigid Body dynamics.

UNIT IV: 2D GAME DESIGN AND IMPLEMENTATION

GoDot game engine Designing and Prototyping a simple 2D Game, including character design, storytelling, levels. Implementing the Game in pygame or Godot engine or equivalent.

UNIT V. 3D GAME DESIGN AND IMPLEMENTATION

Designing and Prototyping a simple 3D Game, including character design, storytelling, levels. Implementing the Game in pygame or Godot engine or Blender or equivalent.

TEXT BOOKS:

- 1. Ernest Adams, "Fundamentals of Game Design", 3rd Edition, Pearson Education, 2015. (Unit-I)
- 2. Ian Millington, "AI for Games", CRC Press, 3rd edition, 2019. (Unit-II)
- 3. Jung Hyun Han, "3D Graphics for Game Programming", Delmar Cengage Learning, 2011. (Unit-III)

REFERENCES:

- 1. Tracy Fullerton: Game Design Workshop, A Play centric Approach to Creating Innovative Games, 4th Edition, CRC Press, 2018. (Unit-I)
- 2. 5. Jason Gregory, "Game Engine Architecture", CRC Press, Third Edition, 2018. (Unit-III)
- 3. Ernest Adams and Joris Dormans, "Game Mechanics: Advanced Game Design", New Riders Press, 2012.
- 4. Jesse Schell, "The Art of Game Design, A Book of Lenses", Third Edition, CRC Press, 2019.
- 5. Sanjay Madhav, "Game Programming in C++: Creating 3D Games", Addison-Wesley Professional; 1st edition
- 6. https://godotengine.org/
- 7. https://www.pygame.org
- 8. https://www.blender.org/

Laboratory Experiments:

- 1. Install any Game Engine (Ex: Godot engine / equivalent) and understand the features and functions.
- 2. Install Blender and learn some basic 3D graphics including rendering pipeline, textures, coordinate systems, lighting, simple animation
- 3. Experiment with creating and importing simple 2D / 3D characters, into the work environment
- 4. Design and document a simple 2D game, following the principles of game design, including genre, characters, game world, characters, game mechanics, levels.
- 5. Implement the 2D game using pygame / equivalent tools.
- 6. Implement any simple path finding algorithm and incorporate the same in the 2D game.
- 7. Implement any other simple AI techniques, to the game
- 8. Design and document a simple 3D game, following the principles of game design, including genre, characters, game world, characters, game mechanics, levels.
- 9. Implement the 3D game using Blender / equivalent tools.
- 10. Evaluate the design and the implementation of the games.

COURSE OBJECTIVES:

- To discuss on basics of 3D printing
- To explain the principles of 3D printing technique
- To explain and illustrate inkjet technology
- To explain and illustrate laser technology
- To discuss the applications of 3D printing

UNIT I: INTRODUCTION

Introduction; Design considerations – Material, Size, Resolution, Process; Modelling and viewing - 3D; Scanning; Model preparation – Digital; Slicing; Software; File formats

UNIT II: PRINCIPLE

Processes – Extrusion, Wire, Granular, Lamination, Photopolymerisation; Materials - Paper, Plastics, Metals, Ceramics, Glass, Wood, Fiber, Sand, Biological Tissues, Hydrogels, Graphene; Material Selection - Processes, applications, limitations;

UNIT III: INKJET TECHNOLOGY

Printer - Working Principle, Positioning System, Print head, Print bed, Frames, Motion control; Print head Considerations – Continuous Inkjet, Thermal Inkjet, Piezoelectric Drop-On-Demand; Material Formulation for jetting; Liquid based fabrication – Continuous jet, Mulitjet; Powder based fabrication – Colourjet.

UNIT IV: LASER TECHNOLOGY

Light Sources – Types, Characteristics; Optics – Deflection, Modulation; Material feeding and flow – Liquid, powder; Printing machines – Types, Working Principle, Build Platform, Print bed Movement, Support structures;

UNIT V INDUSTRIAL APPLICATIONS

Product Models, manufacturing – Printed electronics, Biopolymers, Packaging, Healthcare, Food, Medical, Biotechnology, Displays; Future trends;

TEXT BOOKS

- 1. Christopher Barnatt, 3D Printing: The Next Industrial Revolution, CreateSpace Independent Publishing Platform, 2013.
- 2. Ian M. Hutchings, Graham D. Martin, Inkjet Technology for Digital Fabrication, John Wiley & Sons, 2013.

REFERENCES:

- 1. Chua, C.K., Leong K.F. and Lim C.S., Rapid prototyping: Principles and applications, second edition, World Scientific Publishers, 2010
- 2. Ibrahim Zeid, Mastering CAD CAM Tata McGraw-Hill Publishing Co., 2007
- 3. Joan Horvath, Mastering 3D Printing, APress, 2014

PRACTICAL EXERCISES:

- 1. Study the interface and basic tools in the CAD software.
- 2. Study 3D printer(s) including print heads, build envelope, materials used and related support removal system(s).
- 3. Review of geometry terms of a 3D mesh.
- 4. Commands for moving from 2D to 3D.
- 5. Advanced CAD commands to navigate models in 3D space
- 6. Design any four everyday objects

Refer to web sites like Thingiverse, Shapeways and GitFab to design four everyday objects that utilize the advantages of 3D printing

Choose four models from a sharing site like Thingiverse, Shapeways or Gitfab.

- a. Improve upon a file and make it your own. Some ideas include:
- Redesign it with a specific user in mind
- Redesign it for a slightly different purpose
- Improve the look of the product
- 7. Use the CAM software to prepare files for 3D printing.
- 8. Manipulate machine movement and material layering.
- 9. Repair a 3D mesh using
- a) Freeware utilities: Autodesk MeshMixer (http://goo.gl/x5nhYc), MeshLab (http://goo.gl/fgztLl) or Netfabb Basic or Cloud Service (http://goo.gl/Q1P47a)
- b) Freeware tool tutorials: Netfabb Basic or Cloud Service (http://goo.gl/Q1P47a), Netfabb and MeshLab (http://goo.gl/WPOVec)
- c) Professional tools: Magics or Netfabb Equipment : one 3D printer for every 10-15 students

BTCD 607-23 APPLIED DESIGN THINKING 3L 0T 0P 3C

The course aims to

- Introduce tools & techniques of design thinking for innovative product
- development Illustrate customer-centric product innovation using on simple
- use cases Demonstrate development of Minimum usable Prototypes
- Outline principles of solution concepts & their evaluation
- Describe system thinking principles as applied to complex systems

UNIT I: DESIGN THINKING PRINCIPLES

Exploring Human-centered Design - Understanding the Innovation process, discovering areas of opportunity, Interviewing & empathy-building techniques, Mitigate validation risk with FIR [Forge Innovation rubric] - Case studies

UNIT II: END USER-CENTRIC INNOVATION

Importance of customer-centric innovation - Problem Validation and Customer Discovery - Understanding problem significance and problem incidence - Customer Validation. Target user, User persona & user stories. Activity: Customer development process - Customer interviews and field visit

UNIT III: APPLIED DESIGN THINKING TOOLS

Concept of Minimum Usable Prototype [MUP] - MUP challenge brief - Designing & Crafting the value proposition - Designing and Testing Value Proposition; Design a compelling value proposition; Process, tools and techniques of Value Proposition Design

UNIT IV: CONCEPT GENERATION

Solution Exploration, Concepts Generation and MUP design- Conceptualize the solution concept; explore, iterate and learn; build the right prototype; Assess capability, usability and feasibility. Systematic concept generation; evaluation of technology alternatives and the solution concepts

UNIT V: SYSTEM THINKING

System Thinking, Understanding Systems, Examples and Understandings, Complex Systems

TEXT BOOKS

- 1. Steve Blank, (2013), The four steps to epiphany: Successful strategies for products that win, Wiley.
- 2. Alexander Osterwalder, Yves Pigneur, Gregory Bernarda, Alan Smith, Trish Papadakos, (2014), Value
- 3. Proposition Design: How to Create Products and Services Customers Want, Wiley
- 4. Donella H. Meadows, (2015), "Thinking in Systems -A Primer", Sustainability Institute.
- 5. Tim Brown,(2012) "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", Harper Business.

REFERENCES

- 1. https://www.ideou.com/pages/design-thinking#process
- 2. https://blog.forgefor ward.in/product-innovation-rubric-adf5ebdfd356
- 3. https://blog.forgefor.ward.in/evaluating-product-innovations-e8178e58b86e
- 4. https://blog.forgefor.ward.in/user-guide-for-product-innovation-rubric-857181b253dd
- 5. https://blog.forgefor ward.in/star tup-failure-is-like-true-lie-7812cdfe9b85

BTCD 608-23 APPLIED DESIGN THINKING LAB 3L 0T 0P 3C

Experiment based upon the theory subject.

COURSE OBJECTIVES:

- To grasp the fundamental knowledge of Multimedia elements and systems
- To get familiar with Multimedia file formats and standards
- To learn the process of Authoring multimedia presentations
- To learn the techniques of animation in 2D and 3D and for the mobile UI
- To explore different popular applications of multimedia

UNIT I: INTRODUCTION TO MULTIMEDIA

Definitions, Elements, Multimedia Hardware and Software, Distributed multimedia systems, challenges: security, sharing / distribution, storage, retrieval, processing, computing. Multimedia metadata, Multimedia databases, Hypermedia, Multimedia Learning.

UNIT II: MULTIMEDIA FILE FORMATS AND STANDARDS

File formats – Text, Image file formats, Graphic and animation file formats, Digital audio and Video file formats, Color in image and video, Color Models. Multimedia data and file formats for the web.

UNIT III: MULTIMEDIA AUTHORING

Authoring metaphors, Tools Features and Types: Card and Page Based Tools, Icon and Object Based Tools, Time Based Tools, Cross Platform Authoring Tools, Editing Tools, Painting and Drawing Tools, 3D Modeling and Animation Tools, Image Editing Tools, audio Editing Tools, Digital Movie Tools, Creating interactive presentations, virtual learning, simulations.

UNIT IV: ANIMATION

Principles of animation: staging, squash and stretch, timing, onion skinning, secondary action, 2D, 2½D, and 3D animation, Animation techniques: Keyframe, Morphing, Inverse Kinematics, Hand Drawn, Character rigging, vector animation, stop motion, motion graphics, , Fluid Simulation, skeletal animation, skinning Virtual Reality, Augmented Reality.

UNIT V: MULTIMEDIA APPLICATIONS

Multimedia Big data computing, social networks, smart phones, surveillance, Analytics, Multimedia Cloud Computing, Multimedia streaming cloud, media on demand, security and forensics, Online social networking, multimedia ontology, Content based retrieval from digital libraries.

TEXT BOOKS:

1. Ze-Nian Li, Mark S. Drew, Jiangchuan Liu, Fundamentals of Multimedia", Third Edition, Springer Texts in Computer Science, 2021. (UNIT-I, II, III)

REFERENCES:

1. John M Blain, The Complete Guide to Blender Graphics: Computer Modeling & Animation, CRC press, 3rd Edition, 2016.

- 2. Gerald Friedland, Ramesh Jain, "Multimedia Computing", Cambridge University Press, 2018.
- 3. Prabhat K.Andleigh, Kiran Thakrar, "Multimedia System Design", Pearson Education, 1st Edition, 2015.
- 4. Mohsen Amini Salehi, Xiangbo Li, "Multimedia Cloud Computing Systems", Springer Nature, 1st Edition, 2021.
- 5. Mark Gaimbruno, "3D Graphics and Animation", Second Edition, New Riders, 2002.
- 6. Rogers David, "Animation: Master A Complete Guide (Graphics Series)", Charles River Media, 2006.
- 7. Rick parent, "Computer Animation: Algorithms and Techniques", Morgan Kauffman, 3rd Edition, 2012.
- 8. Emilio Rodriguez Martinez, Mireia Alegre Ruiz, "UI Animations with Lottie and After Effects: Create, render, and ship stunning After Effects animations natively on mobile with React Native", Packt Publishing, 2022.

Web References:

https://developer.android.com/training/animation/overview (UNIT-IV)

BTCD 610-23 MULTIMEDIA AND ANIMATION LAB 0L 0T 2P 1C

LIST OF EXPERIMENTS:

Working with Image Editing tools:

Install tools like GIMP/ InkScape / Krita / Pencil and perform editing operations:

Ø Use different selection and transform tools to modify or improve an image

Ø Create logos and banners for home pages of websites.

Working with Audio Editing tools:

Ø Install tools like, Audacity / Ardour for audio editing, sound mixing and special effects like fadein or fade-out etc.,

Ø Perform audio compression by choosing a proper codec.

Working with Video Editing and conversion tools:

Install tools like OpenShot / Cinelerra / HandBrake for editing video content.

Ø Edit and mix video content, remove noise, create special effects, add captions.

Ø Compress and convert video file format to other popular formats.

Working with Animation tools:

Install tools like, Krita, Wick Editor, Blender:

Ø Perform a simple 2D animation with sprites

Ø Perform simple 3D animation with keyframes, kinematics

Web References:

- 1. https://itsfoss.com/
- 2. https://www.ucl.ac.uk/slade/know/3396
- 3. https://handbrake.fr/
- 4. https://opensource.com/article/18/2/open-source-audio-visual-production-tools

https://camstudio.org/

5. https://developer.android.com/training/animation/overview

- Unit 1: Introduction to Augmented-Virtual and Mixed Reality, Taxonomy, technology and features of augmented reality, difference between AR ,VR and MR, Challenges with AR, AR systems and functionality, Augmented reality methods, visualization techniques for augmented reality.
- Unit 2: VR systems: VR as a discipline, Basic features of VR systems, Architecture of VR systems, VR Hardware: VR input hardware: tracking systems, motion capture systems, data gloves, VR output hardware: visual displays.
- Unit 3: VR software development: Challenges in VR software development, Master/slave and Client/server architectures, Cluster rendering, Game Engines and available sdk to develop VR applications for different hardware (HTC VIVE, Oculus, Google VR).
- Unit 4: 3D interaction techniques: 3D Manipulation tasks, Manipulation Techniques and Input Devices, Interaction Techniques for 3D Manipulation.
- Unit 5: AR software development: AR software, Camera parameters and camera calibration, Marker-based augmented reality, AR Toolkit.

Unit 6: Application of VR in Digital Entertainment: VR Technology in Film & TV Production. VR Technology in Physical Exercises and Games. Demonstration of Digital Entertainment by VR.

Reference Books:

- 1. George Mather, Foundations of Sensation and Perception:Psychology Press; 2 edition, 2009.
- 2. The VR Book: Human Centered Design for Virtual Reality, by Jason Jerald
- 3. Learning Virtual Reality by Tony Parisi, O' Reilly
- 4. Burdea, G. C. and P. Coffet. Virtual Reality Technology, Second Edition. Wiley ☐ IEEE Press, 2003/2006.
- 5. Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013.
- 6. Alan Craig, William Sherman and Jeffrey Will, Developing Virtual Reality Applications, Foundations of Effective Design, Morgan Kaufmann, 2009.

e□Resources:

• http://msl.cs.uiuc.edu/vr/

BTCD 612-23 Augmented and Virtual Reality Lab 0L 0T 2P 1C

List of experiments:

- 1. Study of different game engines
- 2. Implementation on Video/ Feature Viewing
- 3. Implementation on Virtual tour
- 4. Implementation on material animation
- 5. Implementation to show portal planets
- 6. Explore projects in Unity 2D and 3D
- 7. Mini Project on Augmented Reality or Virtual Reality