B.Sc. (Hons.) Mathematics

Course Structure and Syllabus
(Based on Choice Based Credit System)
Batch 2022 & onwards

DEPARTMENT OF MATHEMATICS

VISION

To be among the best mathematics departments in the region and to establish a national reputation as a centre for research and teaching in mathematics. Moreover, the department will contribute to the development of students as mathematical thinkers, and to function as productive citizens.

MISSION

- To discover, mentor, and nurture mathematically inclined students, and provide them a supportive environment that fosters intellectual growth.
- To prepare our undergraduate and graduate students to develop the attitude and ability to apply mathematical methods and ideas in a wide variety of careers.
- To perform widely recognized research in focused areas of mathematical and statistical theory, methodology, and education.
- To advocate for mathematical sciences and UTEP in schools and the local community.

B.Sc. (Honours Mathematics) Program

PROGRAM OBJECTIVES

Objective of the program is to catch young and talented students to motivate them to study Mathematics and to nurture them to develop their mathematical reasoning and logics. Other objectives of the program are to inspire students to pursue study in higher mathematics and grow as a skilful mathematician to cater the needs of knowledgeable society.

Duration: B.Sc. (Hons) Mathematics is a graduate level program offered by the Department of Mathematical Sciences. This is a 3-years program, consisting of six semesters with two semesters per year.

Program Code: BSHM (Bachelor of Science (Hons) in Mathematics)

Eligibility: 10+2 in any stream with Mathematics as one of the subjects with at least 50% marks in aggregate.

PROGRAM EDUCATIONAL OBJECTIVES: At the end of the program, the student will be able to:

PEO1	Apply principles of basic science concepts in understanding, analysis and prediction
	of mathematical systems.
PEO2	Develop human resource with knowledge, abilities and insight in Mathematics and
	related fields required for career in academia and industry.
PEO3	Engage in lifelong learning and adapt to changing professional and societal needs.

PROGRAM SPECIFIC OUTCOMES

At the end of the program,

PSO1	Students will be able to understand the nature of Mathematics and shall be ready to
	study higher 'Abstract Mathematics'.
PSO2	Students will be able to visualize the importance of Mathematics and apply the
	knowledge of Mathematics in Physical, Chemical and Social Sciences.
PSO3	Students will be able to use latest mathematical tools and software.
PSO4	Students will be able to formulate computer codes to tackle the complex mathematical problems.
PSO5	Students will become more confident due to enhanced level of reasoning, logics, skills
	and shall be able to understand the needs of the society.

PROGRAM OUTCOMES: At the end of the program, the student will be able to:

PO1	Understand the concepts of different branches of Mathematics.
PO2	Demonstrate expertise to conduct wide range of scientific modelling.
PO3	Apply the concepts of mathematics in areas of mechanics, analysis, calculus, algebra, geometry, mathematical modelling etc., in industry, academia, and day-to-day life.

Scheme of the Program: B.Sc. (Hons.) Mathematics

SEMESTER FIRST

Contact Hrs. 24 Hrs.

S.No.	Course Code	Course Type	Course Title	Load Allocation				Total Mark s	Cr	
				L	T	P	Internal	External		
1.	BSHM-101-22		Calculus-I	4	-	-	40	60	100	4
2.	BSHM-102-22	Compulsory	Algebra	5	1	-	40	60	100	6
3.	BSHM-103-22		Programming Lab-I	-	-	4	30	20	50	2
4.	BHHL-115-22		Communicative English	2	-	-	20	30	50	2
5.*	BSHP-111-21		Optics	3	1	-	40	60	100	4
	BSHP-113-21		Physics Lab-I	-	-	4	30	20	50	2
	UGCA-1902	Elective	Fundamentals of Computer and IT	3	1	-	40	60	100	4
	UGCA-1906		Fundamentals of Computer and IT (Laboratory)	-	-	4	30	20	50	2
							Total	<u> </u> 		20

L: Lectures T: Tutorial P: Practical Cr: Credits

Note*: Physics (BSHP-111-21 & BSHP-113-21) are compulsory for the Students with Non-Medical background. Students without Non-medical background should opt Fundamentals of Computer and IT (UGCA-1902 & UGCA-1906).

SEMESTER SECOND

Contact Hrs. 24 Hrs.

S.No.	Course Code	Course Type	Allocation	A	Load Allocation							Total Marks	Cr
				L	T	P	Internal	External					
1.	BSHM-201-22		Real Analysis	5	1	-	40	60	100	6			
2.	BSHM-202-22		Differential Equations	4	-	-	40	60	100	4			
3.	BSHM-203-22	Compulsory	Programming Lab-II	-	-	4	30	20	50	2			
4.*	BHHL-116A-22		Punjabi Compulsory										
	Or		Or	2	-	-	20	30	50	2			
	BHHL-116B-22		Mudli Punjabi										
5.**	BHIC-111-22		Chemistry-I	3	1	-	40	60	100	4			
	BHIC-112-22		Chemistry Lab-I	-	-	4	30	20	50	2			
	BBA-GE-201-18	Elective	Managerial Economics-II	5	1	0	40	60	100	6			
					l	ı	Total			20			

L: Lectures T: Tutorial P: Practical Cr: Credits

Note 1*: Students with Punjabi as a passing subject in 10th class will study Punjabi Compulsory (BHHL-116A-22). Students without Punjabi as a subject in 10th class will study Mudli Punjabi (BHHL-116B-22).

Note 2**: Chemistry (BHIC-111-22 & BHIC-112-22) is compulsory for the Students with Non-Medical background. Students without Non-medical background should opt Managerial Economics-I (BBA-GE-201-18)

SEMESTER THIRD

Contact Hrs. 28 Hrs.

S.No.	Course Code	Course Type	Course Title	Load Allocation				Total Mark s	Cr	
				L	T	P	Internal	External		
1.	BSHM-301-22		Theory of Real Functions	5	1	-	40	60	100	6
2.	BSHM-302-22		Group Theory I	5	1	-	40	60	100	6
3.	BSHM-303-22	Compulsory	Multivariable Calculus	5	1	-	40	60	100	6
4.	BSHM-304-22		Logic and Sets	2	-	-	20	30	50	2
5.*	BSHP-212-21		Elements of modern physics	3	1	-	40	60	100	4
	BSHP-213-21		Physics Lab-III	-	-	4	30	20	50	2
6.*	UGCA-1914	Elective	Programming in Python	3	1	-	40	60	100	4
	UGCA-1917		Programming in Python (Laboratory)	-	-	4	30	20	50	2
	ı	ı			ı	ı	Total			26

L: Lectures T: Tutorial P: Practical Cr: Credits

Note*: Physics (BSHP-212-21 & BSHP-213-21) are compulsory for the Students with Non-Medical background. Students without Non-medical background should opt Fundamentals of Computer and IT (UGCA-1914 & UGCA-1917).

SEMESTER FOURTH

Contact Hrs. 30 Hrs.

S.No.	Course Code	Course Type	Course Title	Load Allocation				Total Mark s	Cr	
				L	T	P	Internal	External		
1.	BSHM-401-22		Numerical Methods	4	-	-	40	60	100	4
2.	BSHM-402-22		Riemann Integration and Series of Functions	5	1	-	40	60	100	6
3.	BSHM-403-22	Compulsory	Ring Theory and Linear Algebra I	5	1	-	40	60	100	6
4.	BSHM-404-22		Programming Lab-III	-	-	4	30	20	50	2
5.	BSHM-405-22		Graph Theory	2	-	-	20	30	50	2
6.*	BHIC-211-22		Chemistry-II	3	1	-	40	60	100	4
	BHIC-212-22		Chemistry Lab-II	-	-	4	30	20	50	2
7.*	BBA-401-18	Elective	Business Research Methods	5	1	-	40	60	100	6
	1	1	1		ı	I	Total		1	26

L: Lectures T: Tutorial P: Practical Cr: Credits

Note*: Chemistry (BHIC-211-22 & BHIC-212-22) is compulsory for the Students with Non-Medical background. Students without Non-medical background should opt Managerial Economics (BBA-401-18)

Examination and Evaluation

Theory			
S. No.	Evaluation criteria	Weightage in Marks	Remarks
1	Mid term/sessional Tests	24	Internal evaluation (40 Marks) MSTs, Quizzes, assignments, attendance,
2	Attendance	6	etc., constitute internal evaluation.
3	Assignments/Seminars/Presentation s/Continuous Evaluation	10	Average of two mid semester test will be considered for evaluation.
4	End semester examination	60	External evaluation
5	Total	100	Marks may be rounded off to nearest integer.
Practic	al	1	
1	Evaluation of practical record/ Viva Voice/Attendance/Seminar/ Presentation	30	Internal evaluation
2	Final Practical Performance + Viva- Voce	20	External evaluation
3	Total	50	Marks may be rounded off to nearest integer.

Instructions for Paper-Setter in B. Sc (Hons.) Mathematics

A. Scope

- 1. The question papers should be prepared strictly in accordance with syllabus and format as prescribed by the University.
- 2. The question paper should cover the entire syllabus with uniform distribution among each unit and weightage of marks for each question.
- 3. The language of questions should be simple, direct, and documented clearly and unequivocally so that the candidates may have no difficulty in appreciating the scope and purpose of the questions. The length of the expected answer should be specified as far as possible in the question itself.
- 4. The distribution of marks to each question/answer should be indicated in the question paper properly.

B. Type and difficulty level of question papers

1. Questions should be framed in such a way as to test the student's intelligence and understanding of the applied aspects of the subject. The weightage of the marks as per the difficulty level of the question paper shall be as follows:

i) Easy question 30%

ii) Average questions 50%

iii) Difficult questions 20%

2. The numerical content of the question paper should be up to 40%.

C. Format of question paper

- 1. Paper code and Paper-ID should be mentioned properly.
- 2. The question paper will consist of three sections: Sections-A, B and C.
- 3. Section-A is COMPULSORY consisting of TEN SHORT questions carrying two marks each (total 20 marks) covering the entire syllabus.
- 4. The Section-B consists of FOUR questions of eight marks each covering Unit I & II of syllabus (Taking two questions from each Unit I & II).
- 5. The Section-C consists of FOUR questions of eight marks each covering Unit III & IV of syllabus (Taking two questions from each Unit III & IV).
- 6. Sub-parts of the questions in Section B and C should be preferred for numerical/conceptual questions.
- 7. Attempt any five questions in all, selecting at least two questions from each of the two sections.

Question paper pattern for MST:

Roll No:	No of pages:						
IK Gujral Punjab Technical Un	niversity- Jalandhar						
Department of Mathematical Sciences							
Academic Session:							
Mid-Semester Test: I/II (Regular/reappear)	Date:						
Programmse: B.Sc. (Hons.) Mathematics	Semester:						
Course Code:	Course:						
Maximum Marks: 24	Time: 1 hour 30 minutes						

Note: Section A is compulsory; Attempt any two questions from Section B and one question from Section C.

Sec	tion: A	Marks	Cos
1		2	
2		2	
3		2	
4		2	
Sec	tion: B		
5		4	
6		4	
7		4	
Sec	tion: C		
8		8	
9		8	

Details of Course Objectives

CO1	
CO2	
CO3	
CO4	
CO5	

I. K. Gujral Punjab Technical University, Kapurthala

SEMESTER-I

BSHM-101-22 Calculus-I L-4, T-0, P-0 4 Credits									
Pre-requisite: Elementary calculus of senior secondary level.									
_	Course Objectives: The objectives of this course are to make the students understand the following:								
1. The fundamental concepts of differential calculus.									
	_	_	functions, limits, o	continuity,	derivatives, mean va	alue theorems.			
		ns of derivatives.							
		ion of Higher orde		_	-				
		•	er derivatives to	establish 7	Taylor's theorem, I	Leibnitz theorem and			
		theorem.							
Course Outco	omes:	At the end of the c	ourse, the student	ts will be al	ole to				
	l								
CO1		erstand the basic co		ential and Ir	ntegral Calculus.				
CO2		alize all concepts g	•						
CO3	Sket	ch curves of the fu	nctions intuitively	y with the h	elp of Differential (Calculus.			
CO4	Appl	ly the knowledge o	f Differential and	Integral C	alculus.				
CO5	Unde	erstand the fundam	ental relation bet	ween differ	ential and Integral (Calculus.			
		Mapping of co	ourse outcomes v	with the pr	ogram outcomes				
		PSO 1	PSO 2	PSO	3 PSO 4	PSO 5			
CO1		√	✓	✓	✓	✓			
CO2		√	✓	√	✓	√			
CO3						✓			
CO4						√			
CO5		√	√	√	√	√			

Course Title: Calculus-I Course Code: BSHM-101-22

UNIT-I

Functions, their limits and continuity: Real line, intervals, order properties of real numbers, the least upper bound and the greatest lower bound properties, Archimedean property. Functions, Graphs of functions, Exponential functions, Inverse functions and Logarithmic functions, implicitly defined functions, some special functions, one-one functions, onto functions, composition of functions, limit of a function, calculating limits through limit laws, limits using L' Hospital's rule, The precise definition of limit and continuity (ϵ - δ definition), continuous functions and classification of discontinuities, uniform continuity.

UNIT-II

Differentiation: Derivative of a function, the derivative as a function, derivatives of polynomials and exponential functions, the product and quotient rules, rates of change in natural and social sciences, derivatives of trigonometric, inverse trigonometric, logarithmic, and hyperbolic functions, the chain rule, implicit differentiation, differentiation of determinants.

UNIT-III

Applications of derivative: maximum and minimum values, increasing and decreasing functions, Intermediate value theorems: Rolle's theorem, Lagrange's theorem, Cauchy's mean value theorem, how derivatives affect the shape of graph, concavity, convexity, the second derivative test, points of inflexion.

UNIT-IV

Higher order derivatives, calculation to the nth derivative, determination of nth derivative of rational functions. The nth derivative of the products of power of sines and cosines, Leibnitz's theorem, the nth derivative of the product of two functions, Maclaurin's theorem, Taylor's theorem.

TEXT BOOKS

1. Shanti Narayan and P. K. Mittal, Differential Calculus, S. Chand, 2015

- 2. James Stewart, Calculus, 5th Edition, Brooks/Cole(Thomson), 2003.
- 3. Robert Wrede and Murray R. Spiegel, Advanced Calculus, 3rd Edition, Schaum's Outline Series (McGraw Hill), 2010.
- 4. Maurice D Weir, <u>Frank R. Giordano</u> and Joel Hass, Thomas' Calculus, 11th Edition, Pearson, 2008.
- 5. N. Piskunov, Differential and Integral Calculus, Mir Publishers, Moscow (CBS Publishers & Distributors, India), 1996.

BSHM-102-	22	-	Algebra	L-	5, T-1, P-0	6 Credits		
Pre-requisite	Pre-requisite: - Complex numbers, Sets, Relation and Functions							
•			signed to introductive's theorem &		•	· ·		
			lation of theory of			en use m		
			course, the studer					
CO1		ne De Moivre's the complex roots of po	_	problems conce	erning powers of	f complex numbers		
CO2			system of equation					
CO3			ependence and dep		et of vectors.			
CO4	Find i	nverse of a matrix	using Gauss-Jor	dan method.				
CO5			of solutions of po	•				
	Ferra	i method and Des	scarte's method fo	r finding solution	ns of equations.			
		Mapping of co	ourse outcomes v	vith the progra	m outcomes			
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5		
CO1		✓	✓	√	√	✓		
CO2		✓	✓	√	√	√		
CO3	CO3							
CO4	CO4							
CO5)5							

Course Title: Algebra Course Code: BSHM-102-22

Unit I

Polynomials and Complex Numbers: Polynomials, The remainder and factor theorem, Synthetic division, Factored form of a polynomial, Fundamental theorem of algebra, Polar representation of complex numbers, De Moivre's theorem for integer and rational indices and their applications. The nth roots of unity.

Unit II

Roots of a Polynomial: Relations between the roots and the coefficients of polynomial equations, Theorems on imaginary, integral and rational roots Fundamental theorem of symmetric polynomials (without proof). Evaluation of symmetric functions of roots, Rational roots of polynomials with integral coefficients. Descartes rule of sign.

Unit III

Cubic and Biquadratic Equations: Strum's theorem (statement only), Solution of cubic equation using Cardano's method, and biquadratic equation by Descartes method and Ferrari's method.

Unit IV

System of Equations: Systems of linear equations (homogeneous and non-homogeneous), Row reduction and echelon forms, Row rank, column rank and their equivalence, Vector equations, The matrix equation Ax = b, Solution sets of linear systems, Gauss elimination method, Consistency of Linear System of equations, Augmented matrices, The inverse of a matrix, Gauss Jordon method.

- Andreescu, Titu & Andrica Dorin, Complex Numbers from A to...Z. (2nd ed.). Birkhäuser (2014).
- Dickson, Leonard Eugene First Course in the Theory of Equations. The Project Gutenberg E-Book (http://www.gutenberg.org/ebooks/29785), (2009)
- Kolman, Bernard, & Hill, David R., Introductory Linear Algebra with Applications (7th ed.). Pearson Education, Delhi. First Indian Reprint 2003.

BSHM-103-	22	Progra	amming Lab-I	L-0	, T-0, P-2	2 Credits		
Pre-requisite: Knowledge of basic concepts in Mathematics, such as, graphs, functions, conics, matrices								
etc.								
_			-			ter programming t		
simple algebr	aic ope	rations on matrice	es and to visualize	the geometry of o	curves and conic	s. two dimensions.		
-			~	efinition of two-	limensional sha	pes and a rigorous		
discussion on	their p	properties and use						
Course Outc	omes:	At the end of the	course, the studen	ats will be able to				
CO1			epts of programmi					
CO2	Apply	the knowledge o	f programming in	different Matrix	Operations.			
CO3	Use p	rogramming in pl	otting and visualiz	zation of graphs o	of algebraic and	transcendental		
	functi	ons.						
CO4	Obtain	n Surface of revol	ution of curves.					
CO5	Study	further the tracin	g of conics.					
		Mapping of co	ourse outcomes v	vith the progran	n outcomes			
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5		
CO1			<	√	√	√		
CO2								
CO3	3							
CO4	CO4							
CO5		✓	√	✓	✓	✓		

Course Title: Programming Lab-I

Course Code: BSHM-103-22

The following topics to be practiced using MATLAB:

- i) Introduce the programming through MATLAB
- ii) Perform Matrix Operations, such as, Addition, Multiplication, inverse, Transpose etc.
- iii) Plot the graphs of algebraic and transcendental functions (For example, e^{ax+b} , $\log(ax+b)$, $\frac{1}{ax+b}$, with constants a, b, etc.)
- iv) Obtain the surface of revolution of curves.
- v) Trace of conics in Cartesian Coordinates /Polar Coordinates.
- vi) Applications of derivative.

- 1. Higham, D.J. and Higham, N.J., MATLAB Guide, 2nd Edition. Society for Industrial and Applied Mathematics (SIAM), 2005.
- 2. Gilat, A., MATLAB: An Introduction with Applications, 5th Edition. John Wiley & Sons, 2014.

BHHL-	-115-22	Commu	nicative English	L-2, T-0,	2 Credits					
				P-0						
Pre-requisite: Basic proficiency in Communication Skills										
Course objecti	Course objectives:									
•	To help the str	udents becom	ne proficient in LSR	W-Listening	, Speaking, Reading &					
	Writing skills		•							
•	To help the stu	idents becom	e independent users	of the Englis	sh language					
•	To develop in	them vital co	mmunication skills, i	ntegral to the	eir personal, social, and					
	professional ir	nteractions			-					
•	To teach them	the appropri	ate language of profe	essional com	munication					
•	To prepare the	em for the job	market in their resp	ective doma	ins of specialization.					
Course Outcor			se, the students will		<u> </u>					
CO1	acquire basic p	proficiency in	reading &listening,	writing and	speaking skills					
CO2	be able to unde	rstand spoker	n and written English	language, pa	articularly the language					
	of their chosen	technical fie	ld.							
CO3	be able to conv	verse fluently	•							
CO4	be able to prod	luce their own	n clear and coherent	texts.						
CO5	_	_			as interviews, group					
	discussions, of	fice environr	ments, important read	ding skills a	s well as writing skills					
	and thereby wi									
N		1	es with the Progran							
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	-	-	-	-	✓					
CO2	-	-	-	-	✓					
G02										
CO3	-	-	-	-	✓					
COA										
CO4	-	-	-	-	✓					
CO.5										
CO5	-	-	-	-	√					

Course Title: Communicative English

Course Code: BHHL-115-22

UNIT I-(Literature)

(A) The Poetic Palette (Orient Black Swan, Second Edition, 2016)

The following poems from this anthology are prescribed:

- 1. Pippa's Song: Robert Browning
- 2. I Sit and Look Out: Walt Whitman
- 3. Women's Rights: Annie Louise Walker

(B) Prose Parables (Orient Black Swan, 2013)

The following stories from the above volume are prescribed:

- 1. Grief: Anton Chekov
- 2. The Doctor's Word: R.K. Narayan
- 3. The Doll's House: Katherine Mansfield

UNIT-II

Vocabulary: Synonyms, Antonyms; Standard Abbreviations; One-word substitution **Grammar:** Subject-Verb Agreement; Noun- Pronoun Agreement; Use of phrases and clauses in sentences; Sentence Structures; Transformation of Sentences

UNIT-III

Reading and Understanding: Comprehension; Summarizing; Paraphrasing; Translation (from Hindi/Punjabi to English and vice-versa); Précis Writing

UNIT-IV

Mechanics of Writing & Speaking Skills: Business letters; Report writing; Career Documents- Job applications, Resume/CV writing, Conversations & Dialogues, Formal Presentations; Dynamics of Group Discussion.

Text & Reference Books:

- 1. John Eastwood, Oxford Practice Grammar, Oxford University Press, 2014.
- 2. Michael Swan, Practical English Usage, OUP, 1995
- 3. F.T. Wood, Remedial English Grammar, Macmillan, 2007.
- **4.** William Zinsser, On Writing Well, Harper Resource Book, 2001.
- **5.** Sanjay Kumar and Pushp Lata, *Communication Skills*, Oxford University Press, 2011.
- **6.** Liz Hamp-Lyons and Ben Heasly, *Study Writing*, Cambridge University Press, 2006.

BSHP-111-2	1	Optics	L-3, T-1, P	-0	(04 Credits			
Pre-requisite: Understanding of senior secondary level Physics and Mathematics									
Diffraction a Students will	Course Objectives: The objective of the course is to develop basic understanding of Interference, Diffraction and Polarization among students. They also learn about the LASER and its applications. Students will be equipped with knowledge to measure wavelength, refractive index, and other related parameters, which will act as a strong background if he/she chooses to pursue physics as a career.								
Course Outo	comes: At the	e end of the course,	the student will be a	ble to					
CO1	Identify and wave pheno	* *	concepts and termin	ology used	in optics	and other related			
CO2	Analyze an	d understand coher	ence and phenomeno	n of interfe	rence and	their applications			
CO3			Fraunhofer's diffract						
CO4			the polarization o						
CO5	Describe th	e different types of	lasers, its principle, p	roperties ar	nd applicat	tions of laser beam.			
	Ma	pping of course or	utcomes with the pr	ogram out	comes				
	PS	O1 PS	O2 PSO	3	PSO4	PSO5			
CO1	-	✓	-	√		✓			
CO2	-								
CO3	-	✓	-	√		✓			
CO4	-	√	-	√		✓			
CO5	-	√	-	√		✓			

Course Title: Optics

Course Code: BSHP-111-21

PART-A

UNIT I

Interference: Definition and properties of wave front, Temporal and Spatial Coherence, Young's double slit experiment, Lloyd's single mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films, Fringes of equal inclination (Haidinger Fringes), Newton's Rings: Measurement of wavelength and refractive index, Interferometer: Michelson Interferometer-(1) idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, Fabry-Perot interferometer.

UNIT-II

Diffraction: Huygens Principle, Huygens-Fresnel Diffraction theory, Fraunhofer diffraction: Single slit. Circular aperture, Rayleigh criterion of resolution, Resolving Power of a telescope, Double slit, Multiple slits, Diffraction grating, Resolving power of grating. Fresnel Diffraction: Fresnel's Assumptions, Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light, Theory of a Zone Plate: Multiple Foci of a Zone Plate, Fresnel diffraction pattern of a straight edge and circular aperture.

PART-B

UNIT-III

Polarization: Plane polarized light, Representation of Unpolarized and Polarized light, Polarization by Reflection, Brewster's law, Malus Law, Polarization by Selective absorption by Crystals, Polarization by Scattering, Polarization by Double Refraction, Nicol Prism, Huygen's theory of Double Refraction, Polaroid, Elliptically and Circularly polarized lights, Quarter and Half wave plates.

UNIT-IV

Laser and Application: Lasers, Spontaneous emission, Stimulated absorption, Stimulated emission, Einstein coefficients, Einstein relations, Conditions for Laser actions, Population inversion, Different types of Laser Pumping mechanism: Optical Pumping, Electric Discharge and Electrical pumping, Resonators, Two, Three and Four level laser systems, Ruby laser, He-Ne gas Laser, Semiconductor laser, CO2 laser, applications of laser: Holography, Principle of Holography.

Text and Reference Books:

- 1. Optics: A.K. Ghatak (Tata-McGraw Hill), 1992.
- 2. Fundamentals of Optics: F.A. Jenkins and H.E. White (McGraw Hill), 1981.
- 3. A Textbook of Optics: Subrahmaniyam N. & et al., S. Chand Publishing, 2006.
- 4. O. Svelto: Principles of Lasers, Springer Science & Business Media, 2010.

BSHP-113-	21	Physics Lab-I	L-0, T-0	, P-4	2 (Credits				
Pre-requisi	te (If any): High	-school education								
	Course Objectives: The aim and objective of the lab course is to introduce the students to the formal									
	structure of electromagnetism and phenomenon of wave optics so that they can use these as per their									
requirement		nd of the course, the stu	rdant will be abl	a to						
Course Ou	icomes: At the er	Able to verify the the			earnt in theor	ry courses				
CO2		Trained in carrying				·				
CO2		equipment.	out precise me	asuitili	ents and hai	iding schsilive				
CO3		* *	athode usad f	or acti	mating and	dealing with				
CO3		Understand the methods used for estimating and dealing with								
G 0.4		experimental uncertainties and systematic "errors".								
CO4		Learn to draw conclusions from data and develop skills in experimental								
		design.								
CO5		Document a technical report which communicates scientific information								
		in a clear and concise manner.								
	Mappi	ng of course outcome	s with the prog	ram ou	tcomes					
	PO1	PO2	PO3		PO4	PO5				
CO1	-	✓	-	✓	,	✓				
CO2	-	✓	-	√	,	√				
CO3	-	✓	-	√	,	√				
CO4	-	✓	-	√	,	√				
CO5	-	✓	-	√	,	√				

Course Title: Physics Lab-I

Course Code: BSHP-113-21

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses.
- 2. To study the laser beam characteristics like; wavelength, aperture, spot size, etc. using diffraction grating.
- 3. To study the diffraction using laser beam and thus to determine the grating element.
- 4. To study wavelength and laser interference using Michelson's Interferometer.
- 5. To find the refractive index of a material/glass using spectrometer.
- 6. To find the refractive index of a liquid using spectrometer.
- 7. To determine the angle of prism and resolving power of a prism.
- 8. To study the magnetic field of a circular coil carrying current using a Steward and Gees Tangent Galvanometer.
- 9. Determine the radius of circular coil using the Circular coil.
- 10. To study B-H curve using CRO.
- 11. To find out polarizability of a dielectric substance.
- 12. To find out the horizontal component of earth's magnetic field (B_h).

Text and Reference Books:

- 1. A Textbook of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 2. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 3. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 4. Practical Physics, C L Arora. S. Chand & Company Ltd.
- 5. http://www.vlab.co.in

UGCA-190	72 Fundamentals of Computer and IT	L-3, T-1, P-0	4 Credits				
Pre-requisite	e: NA						
G 0.4	A. d. 1 Cd d 1 . 111	11 ,					
Course Outo	comes: At the end of the course, the student will be	e able to					
CO1	Understanding the concept of input and output	levices of Computers					
CO2	Learn the functional units and classify types of	computers, how they p	process information and				
	how individual computers interact with other of	omputing systems and					
	devices.						
CO3	O3 Understand an operating system and its working, and solve common problems related						
	to operating systems						
CO4	Learn basic word processing, Spreadsheet and Presentation Graphics Software skills.						
CO5	Study to use the Internet safely, legally, and responsibly						

Course Title: Fundamentals of Computer and IT Course Code: UGCA-1902

UNIT-I

Human Computer Interface: Concepts of Hardware and Software; Data and Information. **Functional Units of Computer System:** CPU, registers, system bus, main memory unit, cache memory, Inside a computer, SMPS, Motherboard, Ports and Interfaces, expansion cards, ribbon cables, memory chips, processors.

Devices: Input and output devices (with connections and practical demo), keyboard, mouse, joystick, scanner, OCR, OMR, bar code reader, web camera, monitor, printer, plotter. **Memory:** Primary, secondary, auxiliary memory, RAM, ROM, cache memory, hard disks, optical disks.

Data Representation: Bit, Byte, Binary, Decimal, Hexadecimal, and Octal Systems, Conversions and Binary Arithmetic (Addition/ Subtraction/ Multiplication) Applications of IT.

UNIT II

Concept of Computing, Types of Languages: Machine, assembly and High-level Language; Operating system as user interface, utility programs.

Word processing: Editing features, formatting features, saving, printing, table handling, page settings, spell-checking, macros, mail-merge, equation editors.

UNIT-III

Spreadsheet: Workbook, worksheets, data types, operators, cell formats, freeze panes, editing features, formatting features, creating formulas, using formulas, cell references, replication, sorting, filtering, functions, Charts & Graphs.

Presentation Graphics Software: Templates, views, formatting slide, slides with graphs, animation, using special features, presenting slide shows.

UNIT-IV

Electronic Payment System: Secure Electronic Transaction, Types of Payment System: Digital Cash, Electronic Cheque, Smart Card, Credit/Debit Card E-Money, Bit Coins and Crypto currency, Electronic Fund Transfer (EFT), Unified Payment Interface (UPI), Immediate Payment System (IMPS), Digital Signature and Certification Authority. Introduction to Bluetooth, Cloud Computing, Big Data, Data Mining, Mobile Computing and Embedded Systems and Internet of Things (IoT)

- 1. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 2. A. Goel, Computer Fundamentals, Pearson Education, 2010.
- 3. P. K. Sinha & P. Sinha, Fundamentals of Computers, BPB Publishers, 2007.
- 4. R.K. Jain, IT Tools, Khanna Publishing House.
- 5. Satish Jain, Ambrish Rai & Shashi Singh, Introduction to Information Technology, Paperback Edition, BPB Publications, 2014.
- 6. www.sakshat.ac.in
- 7. https://swayam.gov.in/course/4067-computer-fundamentals

UGCA-1906	Fundamentals of Computer and IT Laboratory	L-0, T-0, P-4	2 Credits			
Pre-requisite (I	f any): NA					
CO1	Familiarizing with Open Office (Word processing, Spreadsheets and Presentation).					
CO2	To acquire knowledge on editor, spread sheet and presentation software.					
CO3	The students will be able to perform documen	vill be able to perform documentation and accounting operations.				
CO4	Students can learn how to perform presentation skills.					

Course Title: Fundamentals of Computer and IT (Laboratory)

Course Code: UGCA-1906

List of experiments:

- ➤ Word Orientation: The instructor needs to give an overview of word processor. Details of the four tasks and features that would be covered Using word Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter.
 - 1) Using word to create Resume:

Features to be covered: Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in Word.

- 2) Creating an Assignment
 - Features to be covered: Formatting Styles, inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.
- 3) Creating a Newsletter
 - Features to be covered: Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes and Paragraphs
- 4) Creating a Feedback form Features to be covered: Forms, Text Fields, Inserting objects, Mail Merge in Word.
- > Excel Orientation: The instructor needs to tell the importance of Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered Excel Accessing, overview of toolbars, saving excel files.
 - 1) Creating a Scheduler
 - Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text
 - 2) Creating an Assignment
 - Features to be covered: Formatting Styles, inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.
 - 3) Creating a Newsletter
 - Features to be covered: Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes and Paragraphs
 - 4) Creating a Feedback form Features to be covered: Forms, Text Fields, Inserting objects, Mail Merge in Word.

> Presentation Orientation:

- 1) Students will be working on basic power point utilities and tools which help them create basic power point presentation.
 - Topic covered includes: PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows
- 2) This session helps students in making their presentations interactive. Topics covered include: Hyperlinks, Inserting-Images, ClipArt, Audio, Video, Objects, Tables and Charts
- 3) Concentrating on the in and out of Microsoft power point. Helps them learn best practices in designing and preparing power point presentation.

- Topics covered includes: Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes, etc), Inserting Background, textures, Design Templates, Hidden slides, Auto content wizard, Slide Transition, Custom
- 4) Animation, Auto Rehearsing
- 5) Power point test would be conducted. Students will be given model power point presentation which needs to be replicated
- ➤ Internet and its Applications: The instructor needs to tell the how to configure Web Browser and to use search engines by defining search criteria using Search Engines
 - 1) To learn to setup an e-mail account and send and receive e-mails.
 - 2) Tolearntosubscribe/postonablogandtousetorrentsforaccelerateddownloads.
 - 3) Hands on experience in online banking and making an online payment for any domestic bill.

- 1. R.K. Jain, IT Tools, Khanna Publishing House.
- 2. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 3. Turban, Rainer and Potter, Introduction to information technology, John Wiley and Sons.
- 4. Joseph Brady & Ellen F Monk, Problem Solving Cases in Microsoft Excel, Thomson Learning.

I. K. Gujral Punjab Technical University, Kapurthala

SEMESTER-II

BSHM-201-	22	Re	al Analysis	L-	5, T-1, P-0	6 Credits		
Pre-requisite: Elementary calculus								
G 011			0.11					
•		3				nd the fundamental		
_						d and limit suprema		
						roots.They observe		
			s.They can apply	various teststo c	neck the conver	gence or divergence		
of sequences								
Course Outco	mes:	At the end of the c	ourse, the student	s will be able to				
CO1	Undo	erstand the basic co	nconts of Paul liv	no and its proper	± 1,			
CO2		erstand the bounder			•			
CO3	Use (of monotone conve	ergence meorem i	or the calculation	i or square root	S.		
CO4	Chec	k the convergence	and divergence s	equences and inf	inite series.			
CO5	Appl	y the knowledge o	of various test to e	establish the con	vergence and di	vergence sequences		
	and i	nfinite series.						
		Mapping of co	ourse outcomes v	with the prograi	n outcomes			
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5		
CO1		√	✓	-	-	√		
CO2		✓	√	-	-	✓		
CO3	CO3							
CO4	CO4							
CO5	CO5							

Course Title: Real Analysis Course Code: BSHM-201-22

UNIT-I

Real Numbers: Field and order structure of R, Bounded above sets, Bounded below sets, Bounded Sets, Unbounded sets, Supremum and Infimum.

UNIT-II

Completeness of \mathbb{R} : Completeness Property of R, The Archimedean Property, Density of Rational (and Irrational) numbers in R, Intervals. Limit points of a set, Isolated points, Closed sets, Countable and Uncountable sets.

UNIT-III

Sequences: Sequences, Limit points of a sequence, Limit Inferior and Superior, Convergent Sequences, Non convergent sequences (Definitions), Cauchy's sequence, Cauchy's General Principle of Convergence, Algebra of sequences, Some Important Theorem, [Ref. Text Book 1], Monotonic sequences.

UNIT-IV

Infinite Series: Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, D'Alembert's Ratio Test, Rabb's. Gauss and Logrithmic test (Statement of these three tests only). Cauchy's Root test, Integral test, Alternating series, Leibniz test, Absolute and Conditional convergence.

TEXT BOOKS:

1. S. C. Malik and Savita Arora, Mathematical Analysis, New Age International (P) Ltd., New Delhi, 2017.

- 1. R.G. Bartle and D. R. Sherbert, Introduction to Real Analysis, 3rd Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2002.
- 2. Gerald G. Bilodeau, Paul R. Thie, G.E. Keough, An Introduction to Analysis, 2nd Ed., Jones & Bartlett, 2010.
- 3. Brian S. Thomson, Andrew. M. Bruckner and Judith B. Bruckner, Elementary Real Analysis, Prentice Hall, 2001.
- 4. S.K. Berberian, A First Course in Real Analysis, Springer Verlag, New York, 1994.

BSHM-202-	-22	Differe	ntial Equations	L-4	, T-0, P-0	4 Credits	
Pre-requisite	e: - Fur	nctions, Differenti	ation, Integration.		<u>.</u>		
theory ofexis	stence the sol	and uniqueness	of solutions. This	s course further	explains the a	quations and basic nalytic techniques us fields ofscience	
Course Outo	comes:	At the end of the	course, the studer	its will be able to			
CO1		rstand the basic do	efinitions to know solutions.	about ordinary d	ifferential equat	tions, its	
CO2	Visua	lize the geometric	cal meaning of firs	st order differenti	al equation.		
CO3		rstand the fundam problem.	ental concepts abo	out existence and	uniqueness of s	solution ofinitial	
CO4		rstand the applica	tions of differentia	al equations in dif	ferent type of		
CO5	Apply	y power series me	thod to obtain seri	ies solutions of di	fferential equat	ions.	
		Mapping of c	ourse outcomes v	vith the progran	outcomes		
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO1		✓	✓	-	-	✓	
CO2		✓	✓	-	-	✓	
CO3	CO3						
CO4	CO4						
CO5	CO5						

Course Title: Differential Equations Course Code: BSHM-202-22

Unit I

Differential equations: General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, Cauchy's linear equation and Bernoulli equations.

Unit II

Mathematical models (Linear Models): Introduction to compartmental model, exponential decay model, lake pollution model (case study of Lake Burley Griffin), drug assimilation into the blood (case of a single cold pill, case of a course of cold pills), exponential growth of population, limited growth of population, limited growth with harvesting.

Unit III

Higher Order Linear Differential Equations: General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneous equations of higher order with constant coefficients, Euler's equation, method of undetermined coefficients, method of variation of parameters.

Unit IV

Mathematical Models (Non-linear Models): Equilibrium points, Interpretation of the phase plane, predatory-prey model and its analysis, epidemic model of influenza and its analysis, battle model and its analysis.

TEXT BOOKS:

- 1. J. N. Kapur,, Mathematical Modelling, 1st Ed., New Age International (P) Ltd.,, New Delhi, 2021.
- 2. Shanti Narayan, Differential Equations and it's Applications,

- 1. Belinda Barnes and Glenn R. Fulford, Mathematical Modeling with Case Studies, A Differential Equation Approach using Maple and MATLAB, 2nd Ed., Taylor and Francis group, London and New York, 2009.
- 2. C.H. Edwards and D.E. Penny, Differential Equations and Boundary Value problems Computing and Modeling, Pearson Education India, 2005.
- 3. S.L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, India, 2004.

BSHM-203-	22	Progra	mming Lab-II	L-0	, T-0, P-2	2 Credits			
Pre-requisite	Pre-requisite: Knowledge of basic concepts in Differential equations and Real analysis, such as, ODE,								
Order, Degree, Linear Differential Equations, sequence, series, limit point, convergence, divergence, etc.									
Course Obje	ctives:	This course is de	signed to introduc	e the basic knowl	edge of compu	ter programming to			
simple differe	ential e	quations and to vi	sualize the conve	rgence and diverg	gence of sequer	nces and series. The			
major focus o	f this c	course will be on u	understanding the	mathematical mo	dels behind a r	eal-life situation.			
Course Outc	omes:	At the end of the	course, the studen	its will be able to					
CO1	Evalo	in the besie sones	epts of MATLAB	and Mathamatica					
CO2			f programming in						
CO2			otting the solution						
COS	_	rogramming in pr ematical models.	oung the solution	i and visuanzadoi	i or growth and	i decay			
COA				41	f	41			
CO4		~	equences and stud	·	e or sequences	through plotting.			
CO5	Study	the convergence/	divergence of infi	nite series					
		Manning of co	ourse outcomes v	vith the nrogram	outcomes				
		mapping or ev	ourse outcomes v	in the program	outcomes				
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5			
CO1		√	√	√	✓	✓			
CO2		√	√	√	✓	✓			
CO3	CO3 / / / / /								
CO4		√	√	√	✓	✓			
CO5		√	√	√	✓	√			
Ì									

Course Title: Programming Lab-II

Course Code: BSHM-203-22

The following topics to be practiced using any software:

- vii) Introduce the programming through MATLAB and MATHEMATICA
- viii) Plotting of second order solution family of differential equation.
- ix) Plotting of third order solution family of differential equation.
- x) Growth model (exponential case only).
- xi) Decay model (exponential case only).
- xii) Plotting of recursive sequences.
- xiii) Study the convergence of sequences through plotting.
- xiv) Verify Bolzano-Weierstrass theorem through plotting of sequences and hence identify convergent subsequences from the plot.
- xv) Study the convergence/divergence of infinite series by plotting their sequences of partial sum.
- xvi) Cauchy's root test by plotting nth roots.
- xvii) Ratio test by plotting the ratio of nth and (n+1)th term.

RECOMMENDED BOOKS:

- 1. Gilat, A., MATLAB: An Introduction with Applications, 5th Edition. John Wiley & Sons, 2014.
- 2. Martha L Abell, James P Braselton, Differential Equations with MATHEMATICA, 3rd Ed., Elsevier Academic Press, 2004.

ਪੰਜਾਬੀ ਲਾਜ਼ਮੀ BHHL-116A-22

ਬੈਚੂਲਰ ਆਫ ਸਾਇੰਸ (ਸਲੇਬਸ) ਸਮੈਸਟਰ -ਦੂਜਾ

Credit-2-0-0

ਯੂਨਿਟ-1

ਕਵਿਤਾ ਭਾਗ:

ਭਾਈ ਵੀਰ ਸਿੰਘ: ਚਸ਼ਮਾ

ਪ੍ਰੋ.ਪੂਰਨ ਸਿੰਘ : ਹੱਲ ਵਾਹੁਣ ਵਾਲੇ

ਪ੍ਰੇ.ਮੋਹਨ ਸਿੰਘ : ਕੋਈ ਆਇਆ ਸਾਡੇ ਵਿਹੜੇ

ਅੰਮਿਤਾ ਪੀਤਮ: ਅੰਨਦਾਤਾ

ਡਾ.ਹਰਿਭਜਨ ਸਿੰਘ: ਤੇਰੇ ਹਜ਼ੁਰ ਮੇਰੀ ਹਾਜ਼ਰੀ ਦੀ ਦਾਸਤਾਨ

ਸ਼ਿਵ ਕਮਾਰ ਬਟਾਲਵੀ: ਕੰਡਿਆਲੀ ਥੋਰੂ

ਪਾਸ਼: ਇਨਕਾਰ

ਸਰਜੀਤ ਪਾਤਰ: ਹਣ ਘਰਾਂ ਨੂੰ ਪਰਤਣਾ

ਕਹਾਣੀ ਭਾਗ:

ਸੂਜਾਨ ਸਿੰਘ :ਕਲਫੀ

ਕੁਲਵੰਤ ਸਿੰਘ ਵਿਰਕ : ਤੂੜੀ ਦੀ ਪੰਡ

ਗੁਰਦਿਆਲ ਸਿੰਘ : ਸਾਂਝ

ਸੰਤੋਖ ਸਿੰਘ ਧੀਰ: ਕੋਈ ਇਕ ਸਵਾਰ

ਮੋਹਨ ਭੰਡਾਰੀ :ਘੋਟਣਾ

ਵਰਿਆਮ ਸਿੰਘ ਸੰਧੂ : ਆਪਣਾ ਆਪਣਾ ਹਿੱਸਾ

ਯੂਨਿਟ-2 (ਭਾਸ਼ਾ ਤੇ ਲਿਪੀ)

ਭਾਸ਼ਾ ਦਾ ਟਕਸਾਲੀ ਰੂਪ, ਭਾਸ਼ਾ ਤੇ ਉਪ-ਭਾਸ਼ਾ ਵਿਚ ਅੰਤਰ, ਪੰਜਾਬੀ ਦੀਆਂ ਉਪ-ਭਾਸ਼ਾਵਾਂ ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਉਪਰ ਪਏ ਪ੍ਰਭਾਵ ਭਾਸ਼ਾ ਤੇ ਲਿਪੀ, ਗਰਮਖੀ ਲਿਪੀ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ

ਯੂਨਿਟ-3 (ਲੇਖਣੀ-ਕਲਾ)

ਪੈਰਾ ਰਚਨਾ

ਅਨੁਵਾਦ: ਅੰਗਰੇਜ਼ੀ ਤੋਂ ਪੰਜਾਬੀ, ਪੰਜਾਬੀ ਤੋਂ ਅੰਗਰੇਜ਼ੀ

ਦਫਤਰੀ ਚਿੱਠੀ ਪੱਤਰ

ਸਾਹਿਤ ਦੇ ਰੰਗ (ਸੰਪ.ਡਾ.ਮਹਿਲ ਸਿੰਘ),ਰਵੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ,ਪਹਿਲੀ ਵਾਰ, 2016.

ਮੁਢਲੀ ਪੰਜਾਬੀ BHHL-116B-22 ਬੈਚੂਲਰ ਆਫ ਸਾਇੰਸ (ਸਲੇਬਸ) ਸਮੈਸਟਰ -ਦੂਜਾ

Credit-2-0-0

ਯੂਨਿਟ-1

ਪੈਂਤੀ ਅੱਖਰੀ (ਵਰਣਮਾਲਾ), ਅੱਖਰ ਕ੍ਰਮ ਮਾਤਰਾਵਾਂ : ਮੁਢਲੀ ਜਾਣ-ਪਛਾਣ ਲਗਾਖਰ :ਬਿੰਦੀ, ਟਿੱਪੀ, ਅੱਧਕ ਪੰਜਾਬੀ ਸ਼ਬਦ ਬਣਤਰ: ਮੁਢਲੀ ਜਾਣ-ਪਛਾਣ

ਮੂਲ ਸ਼ਬਦ , ਅਗੇਤਰ, ਪਿਛੇਤਰ

ਸਮਾਨਾਰਥਕ ਸ਼ਬਦ, ਵਿਰੋਧਾਰਥਕ ਸ਼ਬਦ

ਸ਼ੁੱਧ- ਅਸ਼ੁੱਧ: ਦਿੱਤੇ ਪੈਰ੍ਹੇ ਵਿੱਚੋਂ ਅਸ਼ੁੱਧ ਸ਼ਬਦ ਨੂੰ ਸ਼ੁੱਧ ਕਰਨਾ

ਯੂਨਿਟ-2

ਹਫਤੇ ਦੇ ਸੱਤ ਦਿਨਾਂ ਦੇ ਨਾਂ ਬਾਰ੍ਹਾਂ ਮਹੀਨਿਆਂ ਦੇ ਨਾਂ ਰੁੱਤਾਂ ਦੇ ਨਾਂ ਇਕ ਸੌ ਤੱਕ ਗਿਣਤੀ ਸ਼ਬਦਾਂ ਵਿਚ ਰੋਜ਼ਾਨਾ ਵਰਤੋਂ ਦੀ ਪੰਜਾਬੀ ਸ਼ਬਦਾਵਲੀ: ਬਾਜ਼ਾਰ, ਵਪਾਰ,ਰਿਸ਼ਤੇ-ਨਾਤੇ ਤੇ ਕਿੱਤਿਆਂ ਸਬੰਧੀ।

ਯੂਨਿਟ-3

ਸ਼ਬਦ ਸ਼੍ਰੇਣੀਆਂ : ਪਛਾਣ ਤੇ ਵਰਤੋਂ-ਨਾਂਵ, ਪੜਨਾਂਵ, ਵਿਸ਼ੇਸ਼ਣ, ਕਿਰਿਆ, ਕਿਰਿਆ ਵਿਸ਼ੇਸ਼ਣ ਪੰਜਾਬੀ ਵਾਕ ਬਣਤਰ : ਸਧਾਰਣ ਵਾਕ ਸੰਯੁਕਤ ਵਾਕ ਮਿਸ਼ਰਤ ਵਾਕ ਮਿਸ਼ਰਤ ਵਾਕ

BHIC-111	-22	CHEMISTRY-I	L-3, T-1, P-0	Credits:4			
Prerequisite: S	Subject ki	nowledge of senior second	lary level				
Objective(s):	1.	To teach the fundament	tal concepts of Inorganic	Chemistry and chemical			
	bonding.						
	2. To teach the basic principles, chemical reaction and reaction mechani						
		of organic compounds.					
At the end of th	e course,	the student will be able to	0				
CO1.	Underst	and the fundamental cond	cepts and postulates of va	arious theories regarding			
	the struc	cture of atom					
CO2.	Learn al	bout the various theories p	pertaining to the different	types of bonding			
~~~							

- CO3. Understand the fundamental concepts of organic chemistry i.e structure, bonding and various effects in organic compounds
- CO4. To study the various known reactive intermediate in organic synthesis
- CO5. To learn the fundamental and advanced concepts of reaction mechanisms along with the study of reaction mechanisms in various types of substitution addition and elimination reactions

	Mapping of course outcomes with the program outcomes								
	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	<b>√</b>	-	-	<b>√</b>	<b>√</b>				
CO2	<b>√</b>	<b>√</b>	<b>√</b>	<b>√</b>	<b>√</b>				
CO3	<b>√</b>	<b>√</b>	<b>√</b>	✓	<b>√</b>				
CO4	-	✓	<b>√</b>	<b>✓</b>	<b>√</b>				
CO5	-	<b>√</b>	✓	<b>√</b>	✓				

Course Title: Chemistry-I Course Code: BHIC-111-22

#### Unit-I

**Atomic Structure:** Bohr's theory and its limitations and atomic spectrum of hydrogen atom. Wave mechanics: deBroglie equation, Heisenberg's Uncertainty Principle and its significance, Schrödinger's wave equation, significance of  $\psi$  and  $\psi$ 2. Quantum numbers and their significance. Radial and angular wave functions for hydrogen atom. Radial and angular distribution curves. Shapes of s, p, d and f orbitals. Contour boundary and probability diagrams. Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations.

**Chemical Bonding-I:** Ionic bond: General characteristics, types of ions, size effects, radius ratio rule and its limitations, Packing of ions in crystals, Born-Landé equation with derivation and importance of Kapustinskii expression for lattice energy. Madelung constant, Born-Haber cycle and its application.

#### **Unit-II**

**Chemical Bonding-II:** Covalent bond: Lewis structure, Valence Bond theory (Heitler London approach), Valence shell electron pair repulsion theory (VSEPR), shapes of simple molecules and ions containing lone pairs and bond pairs of electrons, Covalent character in ionic compounds, polarizing power and polarizability. Fajan's rules and consequences of polarization. Molecular orbital theory. Molecular orbital diagrams of diatomic and simple polyatomic molecules N₂, O₂, C₂, B₂, F₂, CO NO, and their ions.

#### Unit-III

# **Basics of Organic Chemistry Organic Compounds:**

Classification, and Nomenclature, Hybridization, Influence of hybridization on bond properties. Electronic Displacements: Inductive, electromeric, resonance and mesomeric effects, hyper conjugation and their applications; Dipole moment; Homolytic and Heterolytic fission with suitable examples. Curly arrow rules, Electrophiles and Nucleophiles; Nucleophileity and basicity; Types, shape and their relative stability of Carbocations, Carbanions, Free radicals and Carbenes.

# **Chemistry of Aliphatic Hydrocarbons-I:**

Formation of alkanes, Wurtz Reaction, Wurtz-Fittig Reactions, Free radical substitutions: Halogenation -relative reactivity and selectivity.

### **Unit-IV**

### Chemistry of Aliphatic Hydrocarbons-II:

Formation of alkenes and alkynes by elimination reactions, Mechanism of E1, E2, E1cb reactions. Saytzeff and Hofmann eliminations. Reactions of alkenes: Electrophilic additions their mechanisms (Markownikoff/Anti Markownikoff addition), mechanism of oxymercuration-demercuration, hydroborationoxidation, ozonolysis, reduction (catalytic and chemical).

### **Aromatic Hydrocarbons Aromaticity:**

Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions and heterocyclic compounds with suitable examples. Electrophilic aromatic substitution: halogenation, nitration, sulphonation and Friedel-Craft's alkylation/acylation with their mechanism.

# **Reference Books**

1 Lee, J.D. Concise Inorganic Chemistry, ELBS, 1991.

2 Cotton, F.A. & Wilkinson, G. Advanced Inorganic Chemistry, Wiley, VCH, 1999

- 3 Douglas, B.E; Mc Daniel, D.H. & Alexander, J.J. Concepts & Models of Inorganic Chemistry 3rd Ed., John Wiley Sons, N.Y. 1994
- 4 Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 5 Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education)

BHIC-112-	-22	Chemi	stry Lab-I	L-0, T-0, P	2-4 Credi	ts: 02			
Pre-requis	Pre-requisite: Understanding of senior secondary level Chemistry								
<b>Course Objectives:</b> The objective of this course is to provide practical knowledge and illustrative									
experiments about various types of inorganic titrations and general organic techniques									
Course Ou	<b>Course Outcomes:</b> At the end of the course, the students will be able to								
	,								
CO1	Lea	rn the quantitativ	ve analysis of var	ious metal ions/c	ations and anio	ns.			
CO2	Uno	derstand the vari	ous principles of	different techniqu	ies involved in	the quantitative			
	analysis.								
CO3	CO3 Learn the basic qualitative techniques								
CO4	Lea	rn chromatograp	hic techniques fo	or the identification	on and separation	on of compounds			
CO5	Lea	rn about the app	lications of basic	techniques					
		Mapping of	course outcomes	with the progra	m outcomes				
		PSO1	PSO2	PSO3	PSO4	PSO5			
CO1		<b>✓</b>	<b>√</b>	✓	<b>\</b>	✓			
CO2		<b>✓</b>	<b>✓</b>	✓	<b>\</b>	✓			
CO3	<b>√ √ √ √</b>								
CO4		<b>✓</b>	<b>√</b>	✓	<b>√</b>	<b>√</b>			
CO5		<b>√</b>	<b>√</b>	<b>√</b>	<b>✓</b>	<b>√</b>			

Course Title: Chemistry Lab-I Course Code: BHIC-112-22

#### Part-I

### (A) Acid-Base Titrations

- (i) Estimation of carbonate and hydroxide present together in mixture.
- (ii) Estimation of carbonate and bicarbonate present together in a mixture.
- (iii) Estimation of free alkali present in different soaps/detergents

### (B) Oxidation-Reduction Titrations

- (i) Estimation of Fe(II) and oxalic acid using standardized KMnO₄ solution.
- (ii) Estimation of oxalic acid and sodium oxalate in a given mixture.
- (iii) Estimation of Fe(II) with K₂Cr₂O₇ using internal (diphenylamine, anthranilic acid) and external indicator.

#### Part-II

- (i) Checking the calibration of the thermometer
- (ii) Purification of organic compounds by crystallization using the following solvents: a) Water b) Alcohol, and c) Alcohol-Water.
- (iii) Determination of the melting points of above compounds and unknown organic compounds (Kjeldahl method and electrically heated melting point apparatus)
- (iv) Effect of impurities on the melting point mixed melting point of two unknown organic compounds
- (v) Determination of boiling point of liquid compounds. (boiling point lower than and more than 100°C by distillation and capillary method)
- (vi) Chromatography a) Separation of a mixture of two amino acids by ascending and horizontal paper chromatography b) Separation of a mixture of two sugars by ascending paper chromatography, c) Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC)

# **Reference Books:**

- 1. Vogel, A.I. A Textbook of Quantitative Inorganic Analysis, ELBS.
- 2. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009).
- 3. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson (2012).

BBA-GE	201-	Managerial Ec	onomics II	L-5, T-1, P-0	6 Credits				
Pre-requis	ite: Unders	tanding of basic know	ledge of Manage	erial Economics					
of national	income,		oloyment, which	an objective to inc	ole including measurement culcate understanding of				
Course Ou	tcomes: Af	fter completion of the	course, the stude	nts shall be able to:					
CO1	Explain	Explain the concept of national income and its measurement using different approaches.							
CO2	Describe	e the underlying theor	ries of demand an	d supply of money in	an economy.				
CO3		se of employment and the economy in quant		statistics students w	ill be able to describe and				
CO4		t macroeconomic issu		flation and unemploy	ment.				
CO5		the phases of the bus	siness cycle and t	he problems caused	by cyclical fluctuations in				
		Mapping of course	outcomes with t	he program outcom	es				
	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	-	✓	-	-	✓				
CO2	-								
CO3	-	✓	-	-	✓				
CO4	-	✓	-	-	✓				
CO5	-	✓	-	-	✓				

**Course Title: Managerial Economics II** 

Course Code: BBAGE 201-18

#### **UNIT-I**

National Income: Measuring National Income. Problems in the measurement of National Income. Theories of Money: Nature and functions of money – Types of money: Near money, inside money and outside money. Theories of demand for money – defining demand for money – Classical theories of demand for money – Friedman's re-statement of Quantity Theory of Money; Liquidity preference theory and Keynesian Liquidity Trap. Theories of Supply of money; Defining supply of money; Measuring supply of money.

#### **UNIT-II**

Theories of Inflation and Unemployment: Meaning, Types and Theories of Inflation. - Cost of inflation and sacrifice ratio. - Measurement of Inflation in India - Policies to control inflation Meaning and types of unemployment. - Cost of unemployment and Oakun's Law Measurement of unemployment in India. - Concept of Stagflation - Concept of Philips Curve.

#### **Unit-III**

Business cycle: Meaning, types and phases. Monetary, Fiscal and Income policy – Meaning and instruments. Multiplier: Concept, Features and Leakages. Foreign trade multiplier.

#### **Unit-IV**

Macro-economic Framework in Indian Economy–Public Finance–Tax system in India– Financial Administration: Finance Commission.

#### **RECOMMENDED BOOKS:**

- 1. Ahuja, H.L.(2015) Macroeconomics-Theory and Policy. New Delhi: Sultan Chand.
- 2. Jhingan, M.L. (2016) Macro Economic Theory. Delhi: Vrinda Publications Pvt. Ltd
- 3. Dwivedi, D.N.(2017)Macroeconomics: Theory and Practice: Theory & Practice. New Delhi: McGraw Hill.
- 4. Jain, T.R., Khanna, O.P.(2014) Managerial Economics: V.K. Publications
- 5. Dewett, K.K., Navalur, M.H., (2006) Modern Economic Theory: New Delhi: Sultan Chand.

I. K. Gujral Punjab Technical University, Kapurthala

**SEMESTER-III** 

BSHM-301	-22	Theory	of Real Functions	s	L-5, T-1, P-0	6 Credits	
Pre-requisit	e: Seq	uences and Series					
G 01:	4•	701 1: .:	C.1.				
_		•	of this course are to		n theoretical naint	of view and also to	
		portant application		netions moi	n meorencar point	of view and also to	
			outational skills of	students.			
		•	n for limits and co	ntinuity.			
		rivative and its ap		C C			
	auce cation	*	with its different	iorms of re	mainder and also	to explore its various	
			esentation of certa	in functions			
			course, the student				
Course outer	Jines.	The the end of the v	course, the student	is will be do	10 10		
CO1	Deal	with the basic con	ncepts of real anal	ysis rigorou	sly.		
CO2	Use the concepts of limit, continuity and derivative in different fields of study.						
CO3			approximating fu	nctions, dea	l with certain inequ	nalities and convex	
	funct	tion.					
CO4	Unde	erstand different	forms of remaind	ler term of	Taylor series and	also to utilize these	
			ess the error in ap		-		
CO5	Expa		ons in terms of Fou				
		Mapping of o	course outcomes v	with the pro	ogram outcomes		
		PSO 1	PSO 2	PSO 3	3 PSO 4	PSO 5	
CO1		<b>√</b>	<b>√</b>	-	-	<b>√</b>	
002							
CO2							
CO3	CO3						
CO4		✓	✓	-	-	✓	
CO5		<b>✓</b>	<b>√</b>	-	-	✓	

# Course Title: Theory of Real Functions Course Code: BSHM-301-22

#### **UNIT-I**

Limits of functions ( $\epsilon - \delta$  approach), sequential criterion for limits, divergence criteria. Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion for continuity, discontinuity criterion. Algebra of continuous functions. Continuous functions on an interval, intermediate value theorem, location of roots theorem, preservation of intervals theorem. (Scope: Section 4.1, 4.2, 4.3, 5.1,5.2, 5.3 of Textbook: Bartle et al. [1]).

#### **UNIT-II**

Uniform continuity, non-uniform continuity criteria, uniform continuity theorem, Lipschitz condition, continuous extension theorem, Weierstrass approximation theorem (without proof), Differentiability of a function at a point and in an interval, Caratheodory's theorem, Chain rule, Darboux's theorem. (Scope: Section 5.4.1-5.4.8, 6.1, 6.2.12 of Textbook: Bartle et al. [1]).

#### **UNIT-III**

Taylor polynomial, Taylor's theorem, estimate of error in approximating a function, convex function, application of Taylor theorem to inequalities and convex functions. (Scope: Section 6.4.1, 6.4.2,6.4.3, 6.4.5, 6.4.6 of Textbook: Bartle et al. [1]).

Inner product of functions, orthogonal functions, orthogonal set of functions, orthonormal set of functions, periodic functions, piecewise continuous function, even and odd functions. (Scope: Section 12.1 of Textbook: Zill [2]).

# **UNIT-IV**

Trigonometric series, Fourier series, sufficient conditions for convergence of a Fourier series, sequence of partial sums of Fourier series, Fourier cosine series, Fourier sine series, Gibbs phenomenon, half range expansions. (Scope: Section 12.2,12.3 of Textbook: Zill [2]).

#### TEXT BOOKS

- 1. R. Bartle and D.R. Sherbert, Introduction to Real Analysis, John Wiley and Sons, 2003.
- 2. Dennis G. Zill, Advanced Engineering Mathematics, 6th Edition, Jones and Bartlett Publishers, 2016.
- 3. Shanti Narayan, M. D. Raisinghania, Elements of Real Analysis, 14th Revised Edition, S. Chand & Company LTD, New Delhi, 2013.

### **RECOMMENDED BOOKS:**

- 1. K.A. Ross, Elementary Analysis: The Theory of Calculus, Springer, 2004.
- 2. A. Mattuck, Introduction to Analysis, Prentice Hall, 1999.
- 3. S.R. Ghorpade and B.V. Limaye, A Course in Calculus and Real Analysis, Springer, 2006.

BSHM-302-2	22	Gro	oup Theory I	L-5	, T-1, P-0	6 Credits	
Pre-requisite	: Set	Гћеогу			<u>,                                      </u>		
						epts from abstract	
		the notion of a g					
		amiliarize you with					
	•	ovide the learner vin a pure Mathem		•	ipetencies to carr	y out their duties	
		At the end of the c					
Course Outco.	illes. 1	At the end of the c	ourse, the student	s will be able to			
CO1	learn	the basic conc	epts like groups	s, subgroups, cy	clic groups, no	ormal subgroups,	
		omorphisms, etc.					
CO2			rations on algebra	nic structures whi	ch are quite sign	ificant in modern	
	math	ematics.					
CO3	under	rstand the theorem	ns of group isomor	rphisms and isom	orphisms.		
	_						
CO4		quainted with pre-		· •	rn advanced alge	bra.	
CO5	apply	the learnt technic					
		Mapping of c	ourse outcomes v	with the progran	outcomes		
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO1		✓	✓	-	-	✓	
CO2	CO2						
CO3	CO3						
CO4		✓	✓	-	-	✓	
CO5		<b>√</b>	<b>√</b>	-	-	<b>✓</b>	
CO5							

Course Title: Group Theory I Course Code: BSHM-302-22

#### **UNIT-I**

**Groups:** Symmetries of a square, Dihedral groups, definition and examples of groups including permutation groups and quaternion groups (illustration through matrices), elementary properties of groups.

#### **UNIT-II**

**Subgroups:** Subgroups and examples of subgroups, properties of subgroups, centralizer, center of a group, product of two subgroups, inverse of a subset of a group.

**Cosets:** Properties of cosets, Lagrange's theorem and consequences including Fermat's Little theorem, Euler's  $\phi$ -function.

#### **UNIT-III**

**Cyclic groups:** Properties of cyclic groups, subgroups of cyclic groups, generators of cyclic group, important theorem on cyclic groups.

**Normal Subgroups:** Normal subgroups and their properties, examples of normal subgroups, product of two normal subgroups, normalizer of a subset of a group, quotient groups.

#### **UNIT-IV**

**Group homomorphisms:** Properties of homomorphisms, Cayley's theorem, properties of isomorphisms, First, Second and Third isomorphism theorems.

#### Text Book:

1. V. Khanna and S.K. Bhambari, Abstract Algebra, 5th Ed., Vikas Publishing House, New Delhi, 2016.

# **Books Recommended:**

- 1. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002.
- 2. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.
- 3. Joseph A. Gallian, Contemporary Abstract Algebra, 4th Ed., Narosa Publishing House, New Delhi, 1999.
- 4. Joseph J. Rotman, An Introduction to the Theory of Groups, 4th Ed., Springer Verlag, 1995.
- 5. I.N. Herstein, Topics in Algebra, Wiley Eastern Limited, India, 1975.

BSHM-303	1-303-22 Multivariable Calculus L-5, T-1, P-0 2 Cre									
Pre-requisit	Pre-requisite: Sets, Binary operations									
variable func integrals. The of surfaces en	etions, le ey will tc.	imit, continuity, di	ifferentiability, pa ne acquired know	rtial derivative ledge to find c	es, gradient, diver center of mass, vo	c concepts of several rgence, curl, multiple blume of solids, areas				
CO1		the basic concep	ts like several va	riable function	ons, limit continu	ity, differentiability,				
CO2	_	about Lagrange m	nultiplier method.							
CO3	understand the concept of the directional derivatives, curl, divergence, gradient, etc.									
CO4		equainted with the	e properties of r	nultiple integ	rals, change of	coordinates to polar				
CO5	apply	the learnt techniq	ues to find center	of mass, volu	me of solids, area	as of surfaces, etc				
		Mapping of co	ourse outcomes v	vith the prog	ram outcomes					
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5				
CO1		<b>√</b>	<b>√</b>	-	-	<b>√</b>				
CO2	<b>√</b>									
CO3										
CO4	CO4									
CO5	CO5									

Use of Scientific calculator is allowed.

Course Title: Multivariable Calculus Course Code: BSHM-303-22

#### UNIT-I

Functions of several variables, limit and continuity of functions of two variables Partial differentiation, total differentiability and differentiability, sufficient condition for differentiability. Chain rule for one and two independent parameters, Extrema of functions of two variables, method of Lagrange multipliers, constrained optimization problems.

### **UNIT-II**

Double integration over rectangular region, double integration over non-rectangular region, double integrals in polar co-ordinates, Triple integrals, Triple integral over a parallelepiped and solid regions. Volume by triple integrals, cylindrical and spherical co-ordinates, change of variables in double integrals and triple integrals.

#### **UNIT-III**

Definition of vector field, divergence and curl, directional derivatives, the gradient, maximal and normal property of the gradient, tangent planes, line integrals, applications of line integrals.

### **UNIT-IV**

Green's theorem, Stoke's theorem, Divergence theorem, their applications.

#### **Books Recommended**

- 1. G.B. Thomas and R.L. Finney, *Calculus*, 9th Ed., Pearson Education, Delhi, 2005.
- 2. M.J. Strauss, G.L. Bradley and K. J. Smith, *Calculus*, 3rd Ed., Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), Delhi, 2007.
- 3. E. Marsden, A.J. Tromba and A. Weinstein, *Basic Multivariable Calculus*, Springer (SIE), Indian reprint, 2005.
- 4. James Stewart, *Multivariable Calculus*, *Concepts and Contexts*, 2nd Ed., Brooks /Cole, Thomson Learning, USA, 2001.

BSHM-304-2	22	L-2, T-0, P-0 2 Credit							
Pre-requisite	Pre-requisite: Sets, Binary operations								
G OI:	4.	TEN	.1	. 1 .1 .	1 1 .				
•						oncepts from sets and			
						lations between sets			
-						orm the operations of			
union, interse	ction,	complement, and	difference on sets	using proper n	iotation.				
Course Outco	mes: A	At the end of the c	ourse, the student	s will be able to	0				
601					<del></del>				
CO1					egation, conjunc	etion and disjunction.			
CO2		cations, bicondition			valamana Dwadia	ates and quantifiers,			
CO2		ing variables and N	_	Logical equiv	alences, Fredica	ates and quantifiers,			
CO3				set operations	and the laws of	set theory and Venn			
	diagra	_	or sees, subsees,	set operations	and the laws of	see theory and veim			
CO4	be acc	quainted with the p	properties of prod	uct set, Compo	sition of relation	s, Types of relations,			
		ions, Equivalence							
CO5	apply	the learnt techniq	•						
		Mapping of co	ourse outcomes v	with the progra	am outcomes				
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5			
CO1		<b>√</b>	<b>√</b>	✓	✓	✓			
CO2	✓ ✓ ✓ ✓ ✓								
CO3	CO3 / / / / /								
CO4		<b>√</b>	✓	✓	<b>√</b>	<b>✓</b>			
CO5		<b>√</b>	✓	✓	✓	<b>√</b>			

Course Title: Logic and Sets Course Code: BSHM-304-22

#### UNIT-I

**Logic and Sets:** Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions, converse, contra positive and inverse propositions and precedence of logical operators. Propositional equivalence, Logical equivalences.

Predicates and quantifiers: Introduction, Quantifiers, Binding variables and Negations.

### **UNIT-II**

Sets, subsets, Set operations and the laws of set theory and Venn diagrams. Examples of finite and infinite sets. Finite sets and counting principle. Empty set, properties of empty set. Standard set operations. Classes of sets. Power set of a set. Difference and Symmetric difference of two sets. Set identities, Generalized union and intersections.

**Relation:** Product set, Composition of relations, Types of relations, Partitions, Equivalence Relations with example of congruence modulo relation, Partial ordering relations, *n*-ary relations.

#### **Books Recommended:**

- 1. R.P. Grimaldi, Discrete Mathematics and Combinatorial Mathematics, Pearson Education, 1998
- 2. P.R. Halmos, Naive Set Theory, Springer, 1974. 3. E. Kamke, Theory of Sets, Dover Publishers, 1950.

PHYSICS-C-6	BSHP-212-21	Elements of	L-3, T-1, P-	4 Credits
		modern physics	0	
Pre-requisite: Una	derstanding of senior secondary lev	el Physics and Mathem	atics	

Course Objectives: The course content covers foundations of modern physics, experiments forming basis of quantum mechanics, Schrodinger equation and applications, uncertainty principle and applications. The topics covered in the course build a foundation of undergraduate physics students to study the advance branches: quantum physics, nuclear physics, particle physics and high energy physics.

Course Ou	tcome	es: At the	end of t	he course	e, the stud	lent will be able to					
CO1	Un	Understand the implication of special theory of relativity.									
CO2	Un	derstand	and exp	lain the d	ifference	s between classical and quantum mechanics.					
CO3	Ide	entify pro	perties o	f the nuc	leus and	other sub-atomic particles.					
CO4				lution to potentials		problem is physically reasonable and solve Schrodinger					
CO5	De	scribe the	eories ex	plaining	the struct	ure of atoms and the origin of the observed spectra.					
		M	apping	of course	outcom	es with the program outcomes					
		PO1	PO2	PO3	PO4	PSO5					
CO1		-	✓	-	-	✓					
CO2		-	✓	-	-	✓					
CO3		-	<b>√</b>	-	-	✓					
CO4		-	✓	-	-	✓					
CO5		-	<b>√</b>	-	-	✓					

# **Detailed Syllabus:**

#### PART-A

Special Theory of Relativity: Michelson-Morley Experiment and its outcome, Postulates of Special Theory of Relativity, Lorentz Transformations. Simultaneity and order of events, Lorentz contraction, Time dilation. Relativistic transformation of velocity, frequency, and wave number. Relativistic addition of velocities. Variation of mass with velocity, Massless Particles, Mass-energy Equivalence. Relativistic Doppler effect, Relativistic Kinematics. Transformation of Energy and Momentum. Energy-Momentum Four Vector. (10 Lectures)

# **UNIT-II**

Particle Properties of Waves: Electromagnetic waves, Blackbody Radiation, ultraviolet catastrophe, Rayleigh-Jeans formula, Planck radiation hypothesis, Photoelectric Effect, Compton Scattering, Quantum theory of light: wave and particle nature, X-Rays, X-Ray Diffraction, determination of wavelengths using Compton Effect, Pair-Production. (10 Lectures)

# PART-B

# **UNIT-III**

**Dual Nature of Waves and Particles:** Waves of probability, Description of a Waves in general, Group and Phase velocities and relation between them, De Broglie wavelength, wave-particle duality, Matter waves, Davisson-Germer experiment, Two-Slit experiment with electrons, gamma ray microscope thought experiment, Heisenberg uncertainty principle: Derivation and applications- impossibility of a particle following a trajectory, estimating minimum energy of a confined particle; Energy-time uncertainty principle-application to virtual particles and range of interaction.

(10 Lectures)

#### **UNIT-IV**

**Introduction to Quantum mechanics**: Need for Quantum mechanics, Wave description of particles by wave packets, Physical interpretation of a wave function: Born interpretation, probabilities, and normalization time-dependent and time-independent Schrodinger equation for wave function, Solution of stationary-state Schrodinger equation for one dimensional problem: particle in a box. **(10 Lectures)** 

# **Text and Reference Books:**

- **1.** 1. Concepts of Modern Physics, Arthur Beiser, 2002, McGraw-Hill.
- 2. Introduction to Quantum Mechanics, David J. Griffith, 2005, Pearson Education.
- **3.** Introduction to Modern Physics, Rich Meyer, Kennard, Coop, 2002, Tata McGraw Hill.
- **4.** Physics for Scientists and Engineers with Modern Physics, Jewett and Serway, 2010, Cengage Learning.
- **5.** Modern Physics, G.Kaur and G.R. Pickrell, 2014, McGraw Hill.
- **6.** Quantum Mechanics: Theory & Applications, A.K.Ghatak & S.Lokanathan, 2004, Macmillan.
- **7.** Modern Physics, J.R. Taylor, C.D. Zafiratos, M.A. Dubson, 2004, PHI Learning.
- **8.** Theory and Problems of Modern Physics, Schaum's outline, R. Gautreau and W. Savin, 2nd Edn, Tata McGraw-Hill Publishing Co. Ltd.
- **9.** Quantum Physics, Berkeley Physics, Vol.4. E.H.Wichman, 1971, Tata McGraw-Hill Co.
- **10.** Basic ideas and concepts in Nuclear Physics, K.Heyde, 3rd Edn., Institute of Physics Pub.
- **11.** Six Ideas that Shaped Physics: Particle Behave like Waves, T.A.Moore, 2003, McGraw Hill.

PHYSICS-	C	BSHP-213-21				L-0, T-0, P-4	2 Credits
Pre-requisi	ite: Underst	anding of senior	secondary le	vel Physics and	l Mathematics		
					quantum mechan nd tunneling effe		ctric effect,
Course Ou	tcomes: At	the end of the c	ourse, the stud	dent will be abl	e to		
CO1	Able to v	verify the theore	tical concepts	s/laws learnt in	theory courses.		
CO2					ndling sensitive		
CO3		and the methods ic "errors".	used for esti	mating and dea	aling with experi	mental uncer	tainties and
CO4	Learn to	draw conclusion	ns from data a	and develop ski	lls in experimen	tal design.	
CO5	Docume manner.	nt a technical re	port which co	mmunicates sc	ientific informat	ion in a clear	and concise
		Mapping of co	ourse outcom	es with the pro	ogram outcome	s	
	PO1	PO2	PO3	PO4	PSO5		
CO1	-	<b>√</b>	-	-	✓		
CO2	-	✓	-	-	✓		
CO3	-						
CO4	-	✓	-	-	✓		
CO5	-	✓	-	-	✓		

### **Detailed Syllabus:**

Note: Students are expected to perform 8-10 experiments from the list taking at least 2-3 from the virtual lab.

# **List of experiment:**

- **1.** Measurement of Planck's constant using black body radiation and photo-detector.
- **2.** Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photoelectrons versus frequency of light.
- **3.** To determine work function of material of filament of directly heated vacuum diode.
- **4.** To determine the Planck's constant using LEDs of at least 4 different colours.
- **5.** To determine the wavelength of H-alpha emission line of Hydrogen atom.
- **6.** To determine the ionization potential of mercury.
- **7.** To determine the absorption lines in the rotational spectrum of Iodine vapour.
- **8.** To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- **9.** To setup the Millikan oil drop apparatus and determine the charge of an electron.
- **10.** To show the tunneling effect in tunnel diode using I-V characteristics.
- **11.** To determine (i) wavelength and (ii) angular spread of a laser using plane diffraction grating.
- **12.** Dependence of scattering angle on kinetic energy and impact parameter in Rutherford scattering (mechanical analogue).
- **13.** Measurement of the electrical and thermal conductivity of copper to determine its Lorentz number.
- **14.** To determine energy band gap of a given semiconductor.

#### **Reference Books:**

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- **2.** Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- **3.** A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.

UGCA191	4	Program	ming in Python		L-3, T-1, P-0	4 Credits
Pre-requisite	: NA			<u>.</u>	<u>.</u>	
Course Obje	ctives:	The main aim of	the course is to in	ntroduce the stu	dents to basic co	ncepts from Pythor
Course Outco	mes: A	at the end of the co	ourse, the student	s will be able t	0	
CO1	Famil	iar with Python er	vironment, data	types, operator	s used in Python.	
CO2	Comp	are and contrast P	ython with other	programming	languages.	
CO3	Learn	the use of control	structures and n	umerous native	data types with	their methods.
CO4	Desig	n user defined fun	ctions, modules,	and packages a	and exception har	ndling methods.
CO5	Create	and handle files	in Python and lea	ırn Object Orie	nted Programmir	g Concepts.
		Mapping of co	ourse outcomes v	with the progr	am outcomes	
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1		✓	✓	✓	✓	✓
CO2		<b>√</b>	<b>√</b>	<b>√</b>	✓	✓
CO3						✓
CO4						✓
CO5		✓	<b>√</b>	<b>✓</b>	<b>√</b>	<b>√</b>

# Course Title: Programming in Python Course Code: UGCA-1914

#### **UNIT-I**

Introduction to Python Programming Language: Programming Language, History and Origin of Python Language, Features of Python, Limitations, Major Applications of Python, Getting, Installing Python, Setting up Path and Environment Variables, Running Python, First Python Program, Python Interactive Help Feature, Python differences from other languages. Python Data Types & Input/Output: Keywords, Identifiers, Python Statement, Indentation, Documentation, Variables, Multiple Assignment, Understanding Data Type, Data Type Conversion, Python Input and Output Functions, Import command. Operators and Expressions: Operators in Python, Expressions, Precedence, Associativity of Operators, Non Associative Operators. (12)

#### **UNIT-II**

Control Structures: Decision making statements, Python loops, Python control statements. Python Native Data Types: Numbers, Lists, Tuples, Sets, Dictionary, Functions & Methods of Dictionary, Strings (in detail with their methods and operations). (10)

#### UNIT-III

Python Functions: Functions, Advantages of Functions, Built-in Functions, User defined functions, Anonymous functions, Pass by value Vs. Pass by Reference, Recursion, Scope and Lifetime of Variables. Python Modules: Module definition, Need of modules, Creating a module, Importing module, Path Searching of a Module, Module Reloading, Standard Modules, Python Packages. (12)

#### **UNIT-IV**

Exception Handling: Exceptions, Built-in exceptions, Exception handling, User defined exceptions in Python. File Management in Python: Operations on files (opening, modes, attributes, encoding, closing), read() & write() methods, tell() & seek() methods, renaming & deleting files in Python, directories in Python. (10)

Classes and Objects: The concept of OOPS in Python, Designing classes, Creating objects, Accessing attributes, Editing class attributes, Built-in class attributes, Garbage collection, Destroying objects.

### **Text Books:**

**1.** Pooja Sharma, Programming in Python, BPB Publications, 2017. 2. R. Nageswara Rao, Core Python Programming, 2nd Edition, Dreamtech.

# **Recommended Books:**

- 1. Martin C. Brown , Python, The complete Reference , Mc Graw Hill Education.
- 2. A. Martelli, A. Ravenscroft and S. Holden, Python in a Nutshell, OREILLY.

**SEMESTER-IV** 

BSHM-401-	22	Nume	rical Methods	L-4	l, T-0, P-0	4 Credits	
Pre-requisite	: Diffe	erential and Integr	al Calculus		,		
<ol> <li>Introde analy</li> <li>Deve</li> <li>Introde</li> <li>Introde</li> <li>Introde</li> <li>Introde</li> <li>Obeve</li> </ol>	luce n tically lop and luce m luce m luce n ential	alytical and complethods to deal with the de	s for solving con utational skills of th nonlinear equat acting interpolatin with numerical d	students. ions, system of ling polynomials. lifferentiation, nu	near algebraic eo	Ficult to deal with quations.  tion and ordinary its importance in	
Course Outco	mes: A	At the end of the c	ourse, the student	s will be able to			
CO1	Find approximate numerical solutions of nonlinear equations and system of linear algebraic equations.						
CO2	Develop and use interpolating polynomials when explicit form of the function of interest is not known or complicated to deal with.						
CO3	Deal with differentiation and definite integral problems approximately when it is difficult to get exact evaluation of these.						
CO4	Apply the numerical methods for solving ordinary differential equations when it is difficult to deal with them analytically.						
CO5	Apply the understanding of computational techniques in dealing with real world problems occurring in science and engineering.						
		Mapping of co	ourse outcomes v	with the progran	n outcomes		
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO1					✓		
CO2					✓		
CO3						✓	
CO4	· · · · · ·						

CO5

Course Title: Numerical Methods Course Code: BSHM-401-22

#### **UNIT-I**

Computer representation of numbers, scientific notation, accuracy of numbers, errors and its different types, estimation of errors, propagation of errors, the concepts of stability and condition number. Algorithms and convergence.

Polynomial and transcendental equations: Bisection method, Newton-Raphson's method, Secant method, Regula-Falsi method, General iteration method, Rate of convergence.

# **UNIT-II**

System of linear algebraic equations, Gaussian elimination method, Gauss-Jordan method. Iterative methods: Gauss Jacobi method, Gauss-Seidel method and their convergence analysis.

Interpolation, Lagrange interpolation, Newton's divided difference interpolation, Gregory-Newton's forward and Gregory-Newton's backward difference interpolation formulas, Error in interpolation.

#### **UNIT-III**

Numerical differentiation: methods based on finite differences. Numerical integration: Midpoint rule, Trapezoidal rule, Simpson's rule, Simpson's  $\frac{3}{8}$ -rule, Boole's rule, composite Trapezoidal rule, composite Simpson's rule.

#### **UNIT-IV**

Ordinary differential equations, Taylor series method, Euler's methods, Runge-Kutta methods, linear multi-step methods: Adams-Bashforth methods, Adams-Moulton methods and Milne-Simpson's method.

### **TEXT BOOKS**

- 1. M. K. Jain. S. R.K. Iyengar and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, 7th Ed., 2019.
- 2. Richard L. Burden and J. Douglas Faires, Numerical Analysis, 9th Edition, Cengage Learning, 2012.

# **RECOMMENDED BOOKS:**

- 1. Brian Bradie, A Friendly Introduction to Numerical Analysis, Pearson Education, 2007.
- 2. K. E. Atkinson, An Introduction to Numerical Analysis, 2nd Ed., Wiley, 1989.
- 3. C.F. Gerald and P.O. Wheatley, Applied Numerical Analysis, Pearson Education, India, 2008.
- 4. Uri M. Ascher and Chen Greif, A First Course in Numerical Methods, 7th Ed., PHI Learning Private Limited, 2013.
- 5. John H. Mathews and Kurtis D. Fink, Numerical Methods using Matlab, 4th Ed., PHI Learning Private Limited, 2012.

<b>BSHM-402</b>	2-22	Riemann Integra	tion and Series o	f	L-5, T-1, P-0	4 Credits		
		<b>Functions</b>						
Pre-requisit	t <b>e:</b> Fur	ections, limit, conti	nuity, differentiab	oility, integra	bility, sequence a	nd series		
•		s: The objectives o				•		
		ntegration and their				culus.		
		and uniform conve	•	ce of function	ns			
3. Serie	es and	infinite series of fu	unctions.					
4. Test	s for u	niform convergence	ee of a series.					
Course Outc	omes:	At the end of the c	ourse, the student	s will be abl	e to			
CO1		ne Riemann Stiel	tjes integral and	illustrate t	he properties of	integration and		
	-	erentiation						
CO2		Acquire the knowledge of sequence and series.						
CO3	Hav	Have the knowledge of uniformly convergence of series by different Test.						
CO4	App	Apply the differentiation to find out the maximum and minimum value of functions.						
CO5	To understand the statement and prove of important theorems.							
		Mapping of cou	rse outcomes wit	h the progr	am outcomes			
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5		
CO1		✓	✓	-	-	✓		
001			,					
CO2								
CO3	3 /							
200		•	•			<b>√</b>		
CO4 / /				<b>√</b>				
CO5		✓	<b>√</b>	_	-	✓		

# Course Title: Riemann Integration and Series of Functions Course Code: BSHM-402-22

### **UNIT-I**

Riemann integration; inequalities of upper and lower sums; Riemann conditions of integrability. Riemann sum and definition of Riemann integral through Riemann sums; equivalence of two definitions;

#### UNIT-II

Riemann integrability of monotone and continuous functions, Properties of the Riemann integral; definition and integrability of piecewise continuous and monotone functions. Intermediate Value theorem for Integrals; Fundamental theorems of Calculus. Improper integrals; Convergence of Beta and Gamma functions.

#### **UNIT-III**

Pointwise and uniform convergence of sequence of functions; Cauchy's general principle of uniform convergence, A test for uniform convergence of sequence of functions, Countinuity of the uniform limit of a uniformly convergent sequence of continuous functions, Integrability of uniform limit of a uniformly convergent sequence of integrable functions. Derivability of the point-wise limit of a sequence of derivable functions if the derivatives are continuous and the sequence of derivatives is uniformly convergent

### **UNIT-IV**

Infinite Series of functions, Test for uniform convergence of a series; Cauchy's general principle of convergence and Weierstrass M-Test for uniform convergence. Abel's test and Dirichlet's test. Weierstrass Approximation Theorem.

#### RECOMMENDED BOOKS

- 1. Shanti Narayan, Dr. M.D. Raisinghania, Elements of Real Analysis, S. Chand & Company, New Delhi.
- 2. K.A. Ross, Elementary Analysis, The Theory of Calculus, Undergraduate Texts in Mathematics, Springer (SIE), Indian reprint, 2004.
- 3. R.G. Bartle D.R. Sherbert, Introduction to Real Analysis, 3rd Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2002.
- 4. Charles G. Denlinger, Elements of Real Analysis, Jones & Bartlett (Student Edition), 2011

BSHM-403-22	Ring Theory	and Linear Alge	bra I L-:	5, T-1, P-0	6 Credits			
Pre-requisite: Set Theory, Group Theory								
	res: The main aim of							
-	y the notion of a rin	-						
•	a as well as familian	•		•				
	course is to provide			age and compet	encies to carry out			
	esponsibilities in a p							
Course Outcome	s: At the end of the o	course, the student	s will be able to					
CO1 lea	rn the basic conc	ents like groups	subgroups cy	velie groups n	ormal subgroups			
	momorphisms, etc.	septs into groups	, saegroups, c	ene groups, n	ormar suogroups,			
		erations on algebra	ic structures whi	ch are quite sig	nificant in modern			
	learn about binary operations on algebraic structures which are quite significant in modern mathematics.							
CO3 un	understand the theorems of group isomorphisms and isomorphisms.							
	g i r i i r i i i i i i i i i i i i i i							
	be acquainted with prerequisite knowledge required to learn advanced algebra.							
CO5 app	apply the learnt techniques in modern algebra.							
	<b>Mapping of c</b>	course outcomes v	vith the progran	n outcomes				
	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5			
CO1	✓	<b>√</b>	-	-	<b>√</b>			
CO2	CO2							
CO3	CO3							
CO4					<b>√</b>			
CO5	05 / /							
CO3								

# Course Title: Ring Theory and Linear Algebra I Course Code: BSHM-403-22

# UNIT-I

**Ring Theory:** Definition and examples of rings, properties of rings, integral domains and fields, characteristic of a ring,

**Subrings and Ideals:** subrings, ideals, ideal generated by a subset of a ring, operations on ideals, principal, prime and maximal ideals.

#### UNIT-II

**Ring Homomorphism:** Quotient rings, Ring homomorphisms, properties of ring homomorphisms, Isomorphism theorems I, II and III.

#### **UNIT-III**

**Vector Spaces:** Vector spaces, vector subspaces, algebra of subspaces, disjoint subspaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces, cosets of subspaces, quotient spaces, dimension of quotient spaces.

#### **UNIT-IV**

**Linear transformations**: Linear transformation, matrix representation of a linear transformation, properties of linear transformations, null space, range, rank and nullity of a linear transformation, algebra of linear transformations. Isomorphisms invertibility and isomorphisms, matrix of a linear transformation with respect to basis.

#### Text Book:

1. V. Khanna and S.K. Bhambari, Abstract Algebra, 5th Ed., Vikas Publishing House, New Delhi, 2016.

# **Books Recommended:**

- 1. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002.
- 2. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.
- 3. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Algebra, 4th Ed., Prentice Hall of India Pvt. Ltd., New Delhi, 2004.
- 4. Joseph A. Gallian, Contemporary Abstract Algebra, 4th Ed., Narosa Publishing House, New Delhi, 1999.
- 5. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
- 6. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.
- 7. S. Kumaresan, Linear Algebra- A Geometric Approach, Prentice Hall of India,1999.
- 8. Kenneth Hoffman, Ray Alden Kunze, Linear Algebra, 2nd Ed., Prentice-Hall of India Pvt. Ltd., 1971.
- 9. D.A.R. Wallace, Groups, Rings and Fields, Springer Verlag London Ltd., 1998

# Course Title: Programming Lab-III Course Code: BSHM-404-22

# List of Practicals (using any software)

- 1. Calculate the sum  $1/1 + 1/2 + 1/3 + 1/4 + \dots + 1/N$ .
- 2. To find the absolute value of an integer.
- 3. Enter 100 integers into an array and sort them in ascending order.
- 4. Bisection Method.
- 5. Newton Raphson Method.
- 6. Secant Method.
- 7. Regulai Falsi Method.
- 8. LU decomposition Method.
- 9. Gauss-Jacobi Method.
- 10. SOR Method or Gauss-Siedel Method.
- 11. Lagrange Interpolation or Newton Interpolation.
- 12. Simpson's rule.

# **RECOMMENDED BOOKS:**

1. John H. Mathews and Kurtis D. Fink, Numerical Methods using Matlab, 4th Ed., PHI Learning Private Limited, 2012.

BSHM-405-	22	Gr	aph Theory	L-2	2, T-0, P-0	2 Credits		
Pre-requisite: Sets, Binary operations								
Course Obje	ctives:	The main aim of	the course is to in	troduce the stude	nts to the basic o	oncepts of graphs,		
•						be able to identify		
			a vertex, express		•	J		
_		_	-	_	-			
Course Outco	omes: A	At the end of the c	ourse, the student	s will be able to				
CO1			C 1 1	seudo graphs, co	omplete graphs,	bi-partite graphs,		
COA	isomorphism of graphs, etc.							
CO2	learn about Eulerian circuits, Hamiltonian cycles.							
CO3	understand the concept of the adjacency matrix, weighted graph, travelling salesman's problem.							
CO4	be acquainted with the properties of shortest path, Dijkstra's algorithm, Floyd-Warshall							
	algorithm.							
CO5	apply the learnt techniques in computer algebra.							
		Mapping of c	ourse outcomes v	with the progran	n outcomes			
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5		
CO1		✓	✓	-	-	<b>√</b>		
CO2 ✓ ✓		-	-	<b>√</b>				
CO3				<b>√</b>				
CO4		✓	✓	-	-	<b>√</b>		
CO5 ✓ ✓			-	-	<b>√</b>			

Course Title: Graph Theory Course Code: BSHM-405-22

#### UNIT-I

**Graphs:** Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bipartite graphs, isomorphism of graphs.

#### **UNIT-II**

Paths and Circuits: Introduction with examples, Eulerian circuits, Hamiltonian cycles, the adjacency matrix, weighted graph, travelling salesman's problem, shortest path, Dijkstra's algorithm, Floyd-Warshall algorithm.

### **Books Recommended:**

- 1. B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge, 1990.
- 2. Edgar G. Goodaire and Michael M. Parmenter, Discrete Mathematics with Graph Theory, 2nd Edition, Pearson Education (Singapore) P. Ltd., Indian Reprint 2003.
- 3. Rudolf Lidl and Gunter Pilz, Applied Abstract Algebra, 2nd Ed., Undergraduate Texts in Mathematics, Springer (SIE), Indian reprint, 2004.

BHIC-21	11-22	Chemistry-II	-	L-3, T-1,	P-0 C	credits: 4			
Pre-requis	Pre-requisite: Understanding of senior secondary level chemistry								
the fundame	<b>Course Objectives:</b> This course will equip students with the necessary knowledge concerning the fundamentals in the basic areas of physical chemistry viz. different states of matter, solutions, and ionic equilibrium. The problem-solving skills of students are expected to be enhanced through due weightage given to numerical problems in each unit.								
	Course Outcomes: At the end of the course, the student will be able to								
CO1	Understand the b	Understand the basic principles and theories pertaining to different states of matter							
CO2	Solve various pro			1					
CO3	Define the various laws pertaining to gaseous state and solutions.								
CO4	Familiarize with the different colligative properties of solutions and the concept of								
CO5	abnormal molecular mass  Understand the basic structure and symmetry elements in solids								
	Mapping of course outcomes with the program outcomes								
	mapping of course outcomes with the program outcomes								
	PO1 PO2 PO3 PO4 PO5								
	CO1								
	CO2								
	CO3								
	CO4	<b>√</b>	✓	✓	✓	✓			
	CO5								

Course Title: Chemistry-II Course Code: BHIC-211-22

#### **UNIT-I**

**States of Matter:** The kinetic molecular theory of gases, Postulates and derivation of kinetic gas equation and various gas laws, The ideal gas law: Applications, Behaviour of real gases: Deviations from ideal gas behaviour, compressibility factor, Z and its variation with pressure for different gases. Causes of deviation from ideal behavior. Van der Waals equation of state, its derivation and application in explaining real gas behaviour. Critical state, relation between critical constants and vander Waal constants, Numericals based on above concepts.

#### **UNIT-II**

Liquid and Solid State: Physical properties of liquids; vapour pressure, surface tension and its effects, coefficient of viscosity and effect of temperature and pressure. Liquid Crystals: their types and applications. Nature of the solid state, law of constancy of interfacial angles, law of rational indices, Miller indices, elementary ideas of symmetry, symmetry elements and symmetry operations, qualitative idea of point and space groups, seven crystal systems and fourteen Bravais lattices; X-ray diffraction, Bragg's law. Defects in Crystals.

### **UNIT-III**

**Ionic equilibria:** Concept of Acids and Bases, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect; dissociation constants of mono-, di-and triprotic acids. Buffer solutions; buffer capacity, buffer range, buffer action. Salt Hydrolysis, Acid Base Titrations, Solubility and solubility product of sparingly soluble salts – applications of solubility product principle.

#### **UNIT-IV**

**Solutions and Colligative Properties:** Ways of expressing the concentration, Colligative properties: derivation of expression and determination of molecular masses (i) relative lowering of vapour pressure, Raoult's Law. (ii) elevation of boiling point, (iii) Depression of freezing point, (iv) osmotic pressure, effects of Osmosis and Semi permeability, Reverse Osmosis. Applications in calculating molar masses of normal, dissociated, and associated solutes in solution, Van't Hoff Factor, Numerical problems based on above concepts.

# **RECOMMENDED BOOKS:**

- 1. P.W. Atkins & J. de Paula, Atkin's Physical Chemistry, Oxford University Press (2006).
- S.H. Maron & C.F. Prutton, Principles of Physical Chemistry, 1st edition, Oxford and IBH (1958).
- 3. G.W. Castellan, Physical Chemistry, 4th edition, Narosa (2004)
- 4. I.N. Levine, Physical Chemistry 6th Ed., Tata Mc Graw Hill (2010)
- 5. T. Engel & P. Reid, Physical Chemistry 3rd Ed., Prentice-Hall (2012)

BHIC-212-2	22	Chemi	stry Lab-II	L-0, T-0, P	-4 Cre	edits: 02		
Pre-requisi	Pre-requisite: Understanding of senior secondary level Chemistry							
Course Obj	Course Objectives: To provide students practical knowledge and skills about various topics taught							
in theory cla	in theory class of physical chemistry, which in turn will enhance their problem solving and analytical							
skills.								
Course Out	tcomes: At	the end o	f the course, the s	students will be al	ole to			
CO1				carrying out a phy				
	preparation and standardization of solutions, handling the equipment and measuring							
	with precision.							
CO2	Correlate the theoretical and practical aspects and know about the limits of the							
	experimental error.							
CO3	Determine the various physical parameters for the various problems under							
	consideration.							
CO4	CO4 Verify various laws studied in the theory part.							
	Mapping of course outcomes with the program outcomes							
	PSO1 PSO2 PSO3 PSO4 PSO5							
CO1		✓						
CO2	CO2					✓		
CO3	CO3					✓		
CO4	4   1   1   1   1   1   1   1   1   1							

Course Title: Chemistry Lab-II Course Code: BHIC-212-22

### **UNIT-I**

Preparation and Standardization of Solutions.

#### **UNIT-II**

Surface tension measurements.

- a) Determine the surface tension by (i) drop number (ii) drop weight method.
- b) Study the variation of surface tension of detergent solutions with concentration.

#### **UNIT-III**

Viscosity measurement using Ostwald's viscometer.

- a) Determination of viscosity of aqueous solutions of (i) polymer (ii) ethanol and (iii) sugar at room temperature.
- b) Study the variation of viscosity of sucrose solution with the concentration of solute.

#### **UNIT-IV**

pH metry

- a) Study the effect on pH of addition of HCl/NaOH to solutions of acetic acid, sodium acetate and their mixtures.
- b) Preparation of buffer solutions of different pH;
- (i) Sodium acetate-acetic acid
- (ii) Ammonium chloride-ammonium hydroxide
- c) pH metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base.
- d) Determination of dissociation constant of a weak acid.

#### **Recommended Books:**

- 1. J.B. Yadav, Practical Physical Chemistry, Krishna
- 2. Findlay, Practical Physical Chemistry, Longman, New York

# Course Title: Business Research Methods Course Code: BBA-401-18

**Course Objective:** The course aims at equipping students with an understanding of the research process, tools and techniques in order to facilitate managerial decision making.

**Course Outcomes (COs):** After completion of the course, the students shall be able to:

**CO1:** Explain the objectives and process of conducting research and its application in business.

**CO2:** Analyse the different types of research design and experimental errors.

CO3: Understand various techniques of sampling and methods of data collection.

CO4: Examine different types of scales and appraise about data preparation and analysis.

**CO5:** Identify and prepare various types of reports.

#### **UNIT I**

**Research Methodology:** definition, objectives, scope in management research, process of Research and limitations. Research Design: Formulating the Research Problem, Choice of Research Design, Types of Research Design, Sources of Experimental Errors

#### **UNIT II**

**Sampling:** Advantages and Limitation of Sampling, Sampling process, Types of Sampling: Non-probability sampling techniques, Probability sampling techniques, Sampling and non-sampling errors. Data collection: primary, secondary data collection, observation methods and survey methods.

#### **UNIT III**

Measurement Concept, Levels of measurement—Nominal, Ordinal, Interval and Ratio Attitude Measurement: Comparative scaling techniques, Non-comparative scaling techniques, Questionnaire Designing: Types, Guidelines for developing a good questionnaire

### **UNIT IV**

**Data Preparation And Analysis:** Editing, Coding, Cross Tabulation and Practices through Excel (Basic Concepts) Report Writing: Types of Research Reports, Guidelines for Writing a Report, Report Format, Guidelines for evaluating a report.

# **Suggested Readings:**

- 1. K.V. Rao: Research Methodology, Sterling Publishers
- 2. Srivastava and Rego: Business Research Methodology Tata McGraw Hill
- 3. Rajinder Nargundhkar: Marketing Research, Tata McGraw Hill
- 4. Cooper and Schindler, Business Research Methods, Tata McGraw Hill
- 5. C.R. Kothari: Research Methodology, New Age International Publishers