I. K. Gujral Punjab Technical University, Kapurthala

M.Sc. Mathematics

Course Structure and Syllabus (Based on Choice Based Credit System) 2022 onwards

DEPARTMENT OF APPLIED SCIENCES (MATHEMATICAL SCIENCES)

VISION

To be a knowledge nerve centre in Mathematics, Pure and Applied Research and industry requirements for creating sustainable infrastructure and enhancing quality of life.

MISSION

- To offer globally relevant, industry-linked, research-focused, technology-enabled seamless education at the graduate, postgraduate and research levels in various areas of Mathematical sciences keeping in mind that the manpower so spawned is excellent in quality, is relevant to the global scientific and technological needs, is motivated to give its best and is committed to the growth of the Nation.
- 2. To develop and conduct continuing education programs for science graduates with a view to update their fundamental knowledge base and problem-solving capabilities in the various areas of core specialization of the University.
- 3. To develop comprehensive linkages with premier academic and research institutions within the country and abroad for mutual benefit.

M.Sc. (Mathematics) Program

The main objective of this program is to cultivate a mathematical aptitude and nurture the interests of the students towards problem solving aptitude. Further, it aims at motivating the young minds for research in mathematical sciences and to train computational scientists who can work on real life challenging problems.

Duration: M.Sc. Mathematics is a postgraduate level program offered by the Department of Mathematical Sciences. This is a 2-years program, consisting of four semesters with two semesters per year.

Program Code: MSM (Master of Science in Mathematics)

Eligibility: B.A./B.Sc. or equivalent from a recognized university with Mathematics as one of the major subjects with at least 50% marks in aggregate.

PROGRAM OBJECTIVES: The Program Objectives are the knowledge skills and attributes which the students have at the time of post-graduation. At the end of the program, the student will be able to:

1	To provide comprehensive curriculum to groom the students into qualitative scientific manpower
2	Enable students to enhance mathematical skills and understand the fundamental concepts of pure and applied mathematics.
3	To provide qualitative education through effective teaching learning processes by introducing projects, participative learning, and latest software tools.
4	To inculcate innovative skills, teamwork, ethical practices among students so as to meet societal expectations.
5	To encourage collaborative learning and application of mathematics to real life situations.
6	To inculcate the curiosity for mathematics in students and to prepare them for future research.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Apply the knowledge of mathematical concepts in interdisciplinary fields.
PSO2	Understand the nature of abstract mathematics and explore the concepts in further details.
PSO3	Model the real-world problems into mathematical equations and draw the inferences by finding appropriate solutions.
PSO4	Identify challenging problems in mathematics and find appropriate solutions.
PSO5	Pursue research in challenging areas of pure/applied mathematics.
PSO6	Employ confidently the knowledge of mathematical software and tools for treating the complex mathematical problems and scientific investigations.
PSO7	Continue to acquire mathematical knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in mathematics.
PSO8	Comprehend and write effective reports and design documentation related to mathematical research and literature, make effective presentations.
PSO9	Qualify national level tests like NET/GATE etc.
PSO10	Effectively communicate and explore ideas of mathematics for propagation of knowledge and popularization of mathematics in society.

Course Code	Course Type	e Course Title Load Marks Distribution		Credits					
			Alle	ocatio	on				
			L	Т	Р	Internal	External	Total	
MSM-101-22		Algebra-I	4	1	0	40	60	100	4
MSM-102-22	-	Real Analysis-I	4	1	0	40	60	100	4
MSM-103-22	-	Complex	4	1	0	40	60	100	4
		Analysis							
MSM-104-22	-	Ordinary	4	1	0	40	60	100	4
		Differential							
	Compulsory	Equations and							
		Special							
		Functions							
MSM-105-22		Mathematical	4	1	0	40	60	100	4
		Methods							
MSM-106-22		Introduction to	0	0	4	30	20	50	2
		MATLAB (Lab)							
	Total		20	05	04	230	320	550	22

Scheme of the Program: First Semester

Contact Hours: 29 Hrs.

Scheme of the Program: Second Semester

Contact Hours: 29 Hrs.

Course Code	Course Type	Course Title	All	Load ocatio	on	Mark	Credits		
				1_	-				
			L	Т	Р	Internal	External	Total	
MSM-201-		Algebra-II	4	1	0	40	60	100	4
22									
MSM-202-		Real Analysis-	4	1	0	40	60	100	4
22		II							
MSM-203-	-	Mechanics-I	4	1	0	40	60	100	4
22									
MSM-204-	-	Partial	4	1	0	40	60	100	4
22	Compulsory	Differential							
		Equations							
MSM-205-		Numerical	4	1	0	40	60	100	4
22		Analysis							
MSM-206-		Numerical	0	0	4	30	20	50	2
22		Analysis (Lab)							
	Total	•	20	05	04	230	320	550	22

	Third Se	emester				Contact Hours: 25 Hrs.				
Course	Course Type	Course Title]	Load		Marks Distribution			Credits	
Code			All	ocati	on					
			L	Т	Р	Internal	External	Total		
MSM301-		Topology	4	1	0	30	70	100	4	
22										
MSM302-		Number Theory	4	1	0	30	70	100	4	
22		and Cryptography								
MSM303-	Compulsory	Mathematical	4	1	0	30	70	100	4	
22		Statistics								
MSM304-		Functional	4	1	0	30	70	100	4	
22		Analysis								
MSM305-		Tensor Calculus	4	1	0	30	70	100	4	
22		and Applications								
	Total		20	05	00	150	350	500	20	

Examination and Evaluation

Theory			
S. No.	Evaluation criteria	Weightage	Remarks
		in Marks	
1	Mid term/sessional Tests	24	Internal evaluation (40 Marks)
			MSTs, Quizzes, assignments,
2	Attendance	6	attendance, etc., constitute internal
3	Assignments	10	evaluation. Average of two mid
			semester test will be considered for
			evaluation.
4	End semester examination	60	External evaluation
5	Total	100	Marks may be rounded off to nearest
			integer.
Practic	al		
1	Evaluation of practical record/	30	Internal evaluation
	Viva Voice/Attendance/Seminar/		
	Presentation		
2	Final Practical Performance +	20	External evaluation
	Viva-Voce		
3	Total	50	Marks may be rounded off to nearest
			integer.
Semina	ar		

				Diss	ertation				
Internal Assessment									
	Communica present	ation and ation		Re	sponse 1	o queries	Maximum Marks	Evaluat by	ed
Departmental Presentation	20				3()	50	Commi Membe 1.Head 2.Supe 3.One Faculty Membe	ttee er: rvisor of er
	Plagiarism	Subject	Usag	je of	Publica	ition/Presentation			
Dissertation		Matter	Lang	uage	ir	Conference	150		
	25	70	2	5		30			
		Ex	ternal	Asses	sment				
			Committee Member: 1.Head 2.External						
External Examiner				50			50	Expert 3.Supe 4. Direc (MC) nomine	rvisor ctor
	Communica	ition and		Re	sponse t	o queries	50		
	20	auon			3()	50		
	20	To	tal			,	300		
				-	1 -		500		
I Con	ent				15				
2 Que	ries			-	15	Internal	evaluation		
3 Com	3 Communication skills			-	10				
4 Visu	al effects				10				
5 Tota	I				50	Marks may be rou integer.	nded off to r	nearest	

Evaluation Process:

- 1. The subject matter evaluation can further be defined on the basis of Title, Review of literature/Motivation, Objectives, Methodology, Results and discussions, and Conclusion.
- 2. The usage of language and the subject matter shall be evaluated by the supervisor. Out of 300 marks, 95 marks are to be evaluated by the concerned supervisor.
- 3. Total 15% Plagiarism is admissible for submission of the dissertation. For (0-5)% of plagiarism, candidate should be awarded 25 marks. For >5%-10% candidate should be awarded 15 marks and for the range of > 10% to < 15%, candidate should be awarded 5 marks.
- 4. For publication candidate should be awarded full 30 marks and for presenting the work related to dissertation, candidate should be awarded 25 marks.

Instructions for Paper-Setter in M. Sc Mathematics

A. Scope

- 1. The question papers should be prepared strictly in accordance with the prescribed syllabus and pattern of question paper of the University.
- 2. The question paper should cover the entire syllabus with uniform distribution among each unit and Weightage of marks for each question.
- 3. The language of questions should be simple, direct, and documented clearly and unequivocally so that the candidates may have no difficulty in appreciating the scope and purpose of the questions. The length of the expected answer should be specified as far as possible in the question itself.
- 4. The distribution of marks to each question/answer should be indicated in the question paper properly.

B. Type and difficulty level of question papers

- 1. Questions should be framed in such a way as to test the students intelligent grasp of broad principles and understanding of the applied aspects of the subject. The Weightage of the marks as per the difficulty level of the question paper shall be as follows:
 - i) Easy question 30%
 - ii) Average questions 50%
 - iii) Difficult questions 20%
- 2. The numerical content of the question paper should be up to 40%.

C. Format of question paper

- 1. Paper code and Paper-ID should be mentioned properly.
- 2. The question paper will consist of three sections: Sections-A, B and C.

- 3. Section-A is COMPULSORY consisting of TEN SHORT questions carrying two marks each (total 20 marks) covering the entire syllabus.
- 4. The Section-B consists of FOUR questions of eight marks each covering Unit I & II of syllabus (Taking two questions from each unit I & II).
- 5. The Section-C consists of FOUR questions of eight marks each covering Unit III & IV of syllabus (Taking two questions from each unit III & IV).
- 6. Sub-parts of the questions in Section B and C should be preferred for numerical/conceptual questions.
- 7. Attempt any five questions from Section-B and Section-C, selecting at least two questions from each of the two sections.

Question paper pattern for MST:

Roll No:	No of pages:						
IK Gujral Punjab Technical University- Jalandhar							
Department of Mathematical Sciences							
Academic Session:							
Mid-Semester Test: I/II/III (Regular/reappear)	Date:						
Programme: M.Sc. Mathematics	Semester:						
Course Code:	Course:						
Maximum Marks: 24	Time: 1 hour 30 minutes						

Note: Section A is compulsory; Attempt any two questions from Section B and one question from Section C.

See	ction: A	Marks	Cos
1		2	
2		2	
3		2	
4		2	
See	ction: B		
5		4	
6		4	
7		4	
See	ction: C		
8		8	
9		8	

Details of Course Objectives

CO1	
<i>CO2</i>	
СО3	
<i>CO4</i>	
СО5	

I. K. Gujral Punjab Technical University, Kapurthala

SEMESTER-I

Scheme & Syllabus (M.Sc. Mathematics) Batch 2022 & Onwards

Page 10 of 46

MSM-101	1-22		Alg	ebra-I		l	-4, T-1,	P-0	4 Crea	lits
Pre-requis	ite: Disc	rete Stru	ctures							
Course Ob	jectives	: This cou	rse is des	signed to	give stud	ents a fo	undation	for all fut	ure math	ematics
courses. T	courses. The fundamentals of algebraic problem-solving are explained. Students will explore									
foundation	ns of Al	gebraic s	tructures	, Groups	, Rings,	Ideals,	Fields, Ho	omomorp	hisms, e	tc. The
course als	so fulfil	ls the ol	ojective	to make	student	s aware	of the	applicab	ility of a	abstract
mathemat	ics in re	al world p	problems.							
Course Ou	itcomes	: At the e	nd of the	course, 1	the stude	nts will t	be able to	1		
CO1	Apply to bu	y the know IIId mathe	wledge of ematical t	f Algebra hinking a	to attain nd skill.	a good r	nathemat	ical matu	irity and	enables
CO2	Utiliz	e the clas	s equatio	on and Sy	low theo	rems to	solve diffe	erent rela	ted prob	lems.
CO3	Iden	tify and a	nalyze di	fferent ty	pes of al	gebraic s	tructures	such as	Solvable	groups,
	Simp	le groups	, Alterna	te groups	s to unde	erstand a	nd use th	ne fundar	mental re	sults in
60.4	Alge	ora.		<u> </u>						
CO4	Desig	jn, analyz	ze and in	nplement	the con	cepts of	homomo	rpnism a	nd isomo	orphism
	Detw	een grou	ps and r	ings for	solving (types or	problem	is, for ex	kampie,
CO5	Creat	te select	and ann	ly appror	riate alo	ebraic st		such as fi	nitely ae	nerated
	abeli	an groups	s, Ideals,	Fields to	explore t	the exist	ing result	S.	filtery ge	liciated
CO6	Iden	tify the ch	allenging	g problem	ns in mod	ern matł	nematics a	and find t	their appi	ropriate
	solut	ions.								
		Mappin	g of cour	se outcor	nes with	the prog	iram outc	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	\checkmark	\checkmark	-	\checkmark	\checkmark	-	\checkmark	-	\checkmark	\checkmark
CO2	\checkmark	\checkmark	-	\checkmark	-	-	\checkmark	-	\checkmark	\checkmark
CO3	\checkmark	\checkmark	-	\checkmark	\checkmark	-	\checkmark	-	\checkmark	\checkmark
CO4	\checkmark	\checkmark	-	\checkmark	\checkmark	-	\checkmark	-	\checkmark	\checkmark
CO5	\checkmark	\checkmark	-	\checkmark	-	-	√	-	\checkmark	\checkmark
CO6	\checkmark	√	-	\checkmark	-	-	√	-	\checkmark	\checkmark

Course Title: Algebra-I Course Code: MSM-101-22

UNIT-I

Groups, Subgroups & Homomorphisms: Groups, homomorphisms, Subgroups and Cosets, Cyclic groups, Permutation groups, Normal subgroups and quotient groups, Isomorphism theorems, Automorphisms, Symmetric groups, Conjugacy. [Ref 2: Unit 1]

UNIT-II

Solvability & Simplicity: Normal series, Derived Series, Composition Series, Solvable Groups, Simple groups and their examples, Alternating group A_n , Simplicity of A_n . [Ref 2: Unit 1]

UNIT-III

Finite Abelian Groups: Direct products, Finite Abelian Groups, Fundamental Theorem on Finitely generated Abelian Groups, Invariants of a finite abelian groups, Sylow's Theorems and their applications, Groups of order p^2 , pq. [Ref 2: Unit 1]

UNIT-IV

Rings & Ideals: Ring, Subring, Ideals, Homomorphism and Algebra of Ideals, Maximal and prime ideals, Ideals in quotient rings, Nilpotent and nil ideals. [Ref 2: Unit 2]

- 1. Bhattacharya, P. B., Jain, S.K. and Nagpaul, S.R., *Basic Abstract Algebra*, 2nd *Edition*. U.K.: Cambridge University Press, 2004.
- 2. Dummit, David. S., and Foote, Richard M., *Abstract Algebra, 3rd Edition*. New Delhi: Wiley, 2011.
- 3. Herstein, I.N., *Topics in Algebra, 2nd Edition*. New Delhi: Wiley, 2006.
- 4. Singh, Surjeet, and Zameeruddin, Q., *Modern Algebra, 7th Edition*. New Delhi: Vikas Publishing House, 1993.
- 5. Artin, M., *Algebra, 2nd Edition*. Pearson Publications, 2010.

MSM-102	2-22		Real A	Analysis	·I	L	4, T-1,	P-0	4 Crea	lits
Pre-requ	isite:	Basic Calc	ulus							
Course Objectives: This course is designed to provide a deeper and rigorous understanding of fundamental concepts viz. metric spaces, continuous functions, sequences, series: power series and the Riemann-Stieltjes integral etc. The focus of this course will be on theoretical foundation of the above said concepts and it will cultivate the rigorous mathematical logics and skills in the students.										
Course O	utcom	es: At the	end of t	he course	e, the stu	dents wi	ll be able	to		
C01	Appl of di	y the kno fferent ma	wledge o athematio	of concept cal techni	ts of real ques and	analysis their ap	to study plications	theoreti	cal devel	opment
CO2	Unde deta	erstand th ils.	e nature	of abstra	act mathe	ematics a	nd exploi	e the co	ncepts in	further
CO3	Iden solut	tify challe tions.	enging p	roblems	in real v	ariable t	heory ar	nd find t	heir app	ropriate
CO4	Deal sequ	with axi iences and	omatic s d continu	tructure ous funct	of metric ions in m	c spaces ietric spa	and gen ices.	neralize	the conc	epts of
CO5	Use of in	theory of tegration.	Riemann	-Stieltjes	integral	which is	a modifi	cation of	Riemann	theory
CO6	Exte at m	nd their k ore advar	nowledge nced leve	e of real v I.	variable t	heory for	further e	exploratio	on of the	subject
	M	lapping o	of course	e outcor	nes with	the pro	ogram o	utcomes	5	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark
CO2	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark
CO3	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark	\checkmark
CO4	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark
CO5	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark
CO6	-	-	-	-	\checkmark	-	\checkmark	-	√	\checkmark

Course Title: Real Analysis-I Course Code: MSM-102-22

UNIT-I

Finite, Countable and Uncountable sets, Metric spaces, Open sets, closed sets, Compact sets, Perfect sets, Connected sets.

UNIT-II

Sequences, Convergent sequences, Subsequences, Cauchy sequences, Complete metric spaces. Cantor's intersection theorem, power series, absolute convergence.

UNIT-III

Continuity: Limits of functions, Continuous functions, Continuity and Compactness, Continuity and Connectedness, Discontinuities, Monotonic functions, Uniform continuity.

UNIT-IV

The Riemann-Stieltjes integral: Definition and existence of the Riemann-Stieltjes integral, Condition of integrability, The Riemann-Stieltjes integral as a limit of sum, Properties of the integral, Relation between Riemann integral and Riemann-Stieltjes integral, First and second mean value theorems of Riemann-Stieltjes integral.

- 1. Rudin, W., *Principles of Mathematical Analysis, 3rd Edition*. New Delhi: McGraw-Hill Inc., 2013.
- 2. Royden, H.L. and Fitzpatrick, P.M., *Real Analysis, 4th Edition.* New Delhi: Pearson, 2010.
- 3. Carothers, N. L., *Real Analysis*, Cambridge University Press, 2000.
- 4. Apostol, T.M., *Mathematical Analysis –A modern approach to Advanced Calculus*. New Delhi: Narosa Publishing House, 1957.
- 5. Abbott, S., *Understanding Analysis, 2nd Edition.* Springer, 2016.
- 6. Malik S. C., Arora Savita, *Mathematical Analysis, 5th Edition,* New Age International Publishers, 2017.

MSM-103-22	Complex Analysis	L-4, T-1, P-0	4 Credits
Dro-roquisito:	Calculus of several variables and complex n	umber system	

Pre-requisite: Calculus of several variables and complex number system.

Course Objectives: The objective of this course is to introduce and develop a clear understanding of the fundamental concepts of Complex Analysis such as analytic functions, Cauchy-Riemann relations and harmonic functions and to make students equipped with the understanding of the fundamental concepts of complex variable theory. In particular, to enable students to acquire skill of contour integration to evaluate complicated real integrals via residue calculus.

Course C	Outcome	es: At the	end of t	he course	e, the stu	dents wil	l be able	to					
CO1	Know	the func	lamental	concepts	of comp	lex analy	sis.						
CO2	Evalu	Evaluate complex integrals and apply Cauchy integral theorem and formula.											
CO3	Evalu	ate limits	and che	cking the	e continui	ty of com	plex fund	ction & a	pply the o	concept			
	of and	alyticity a	and the C	auchy-Rie	emann eo	quations.							
CO4	Solve	the prob	lems usii	ng comple	ex analys	is technic	ques app	lied to dif	ferent sit	uations			
	in eng	gineering	and othe	er mather	matical co	ontexts.							
CO5	Estab	lish the o	capacity	for math	ematical	reasonin	g throug	h analysi	ng, provi	ing and			
	expla	ining con	cepts fro	m comple	ex analys	is							
CO6	Exten	d their k	nowledge	e to pursu	le resear	ch in this	field.						
	Ma	apping o	of course	e outcon	nes with	the pro	gram o	utcomes	5				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	\checkmark	\checkmark	-	-	\checkmark	-	\checkmark	-	\checkmark	\checkmark			
CO2	\checkmark	\checkmark	-	\checkmark	\checkmark	-	\checkmark	-	\checkmark	\checkmark			
CO3	\checkmark	$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
CO4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	-	\checkmark	\checkmark			

 $\sqrt{}$

 $\sqrt{}$

-

-

 $\sqrt{}$

 $\sqrt{}$

-

-

CO5

CO6

 $\sqrt{}$

 \checkmark

 $\sqrt{}$

 \checkmark

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 \checkmark

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

Course Title: Complex Analysis Course Code: MSM-103-22

UNIT-I

Function of complex variable, continuity and differentiability, Analytic functions, Cauchy Riemann equation (Cartesian and polar form). Harmonic functions, Harmonic conjugate, Construction of analytic functions. Stereographic projection and the spherical representation of the extended complex plane.

Unit-II

Complex line integral, Cauchy-Goursat theorem, independence of path; Cauchy's integral formulas and their consequences, Cauchy inequality, Liouville's theorem, Fundamental theorem of algebra, Morera's theorem.

Unit-III

Power series: Zeros and singularities of complex functions, classification of singularities: removable singularity, poles, essential singularities, Residue at a pole and at infinity, Circle of convergence, radius of convergence. Taylor's series and Taylor's theorem, Laurent'z series and Laurent theorem, Cauchy's Residue theorem and its applications in evaluation of real integrals: integration around unit circle, integration over semi-circular contours (with and without real poles), integration around rectangular contours.

Unit-IV

Conformal transformations, Bilinear transformations, Critical points, Fixed points, Problems on crossratio and bilinear transformation.

RECOMMENDED BOOKS:

- 1. Ahlfors, L.V., *Complex Analysis, 2nd Edition*. McGraw-Hill International Student Edition, 1990.
- 2. Kumar, R.R., Complex Analysis, Pearson Education, 2015.
- 3. Churchill, R. and Brown, J.W., *Complex Variables and Applications, 6th Edition*. New- York: McGraw-Hill, 1996.

MSM-10	4-22	Ordinary	/ Differe	ntial Eq	uations	and L	4, T-1,	P-0	4 Crea	lits			
			Special	Functio	ns								
Pre-requ	i site: D	oifferential	Calculus	, Integral	Calculus	and son	ne introdu	uction to	linear alg	ebra.			
Course O)bjectiv	ves: The (Objective	of this c	ourse is t	o introd	uce ordin	ary differ	ential eq	uations			
and funda	mental	theorems	for existe	ence and	uniquene	ss. This o	course fui	ther expl	ains the	analytic			
technique	techniques in computing the solutions of various ordinary differential equations appearing in												
various fields of science and technology.													
Course Outcomes: At the end of the course, the students will be able to													
CO1	Und	erstand o	rdinary d	lifferentia	l equatio	ons of va	arious ty	bes, their	r solutior	ns, and			
	fund	amental c	oncepts a	about the	ir exister	ice.							
CO2	Und	erstand th	e concep	t and app	olications	of eigen	value pro	oblems.					
CO3	Und	erstand di	fferential	equation	s of Stru	m Liouvil	le type.						
CO4	Appl equa	ply various power series methods to obtain series solutions of differential uations.											
CO5	Disc	viscuss various kinds of special functions in detail, their properties, and relations.											
CO6	Solv	e problem	s of ordir	nary diffe	rential eq	uations a	arising in	various f	ields.				
	Μ	lapping o	of course	e outcon	nes with	the pro	ogram ou	utcomes	5				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	\checkmark	-	\checkmark	\checkmark	\checkmark	-	\checkmark	-	\checkmark	\checkmark			
CO2	\checkmark	-	\checkmark	\checkmark	\checkmark	-	\checkmark	-	\checkmark	\checkmark			
CO3	\checkmark	-	\checkmark	\checkmark	\checkmark	-	\checkmark	-	\checkmark	\checkmark			
CO4	\checkmark	-	\checkmark	\checkmark	\checkmark	-	\checkmark	-	\checkmark	\checkmark			
CO5	\checkmark												
CO6	\checkmark	-	\checkmark	\checkmark	\checkmark	-	\checkmark	-	\checkmark	\checkmark			

Course Title: Ordinary Differential Equations and Special Functions

Course Code: MSM-104-22

UNIT-I

Review of linear differential equations with constant & variable coefficients, Fundamental existence and uniqueness theorem for system and higher order equations (Picard's and Piano theorems), System of linear differential equations, an operator method for linear system with constant coefficients, Phase plane method.

UNIT-II

Homogeneous linear system with constant coefficients, Eigenvalues and eigen functions, orthogonality of eigen functions, Complex eigenvalues, repeated eigenvalues, Ordinary differential equations of the Sturm-Liouville problems, Expansion theorem, Extrema properties of the eigen values of linear differential operators, Formulation of the eigen value problem of a differential operator as a problem of integral equation, Linear homogeneous boundary value problems

UNIT-III

Power series solution of differential equations: about an ordinary point, solution about regular singular points, the method of Frobenius, Bessel equation and Bessel functions, Recurrence relations and orthogonal properties., Series expansion of Bessel Coefficients, Integral expression, Integral involving Bessel functions, Modified Bessel function, Ber and Bei functions, Asymptotic expansion of Bessel Functions, Legendre's differential equations, Legendre Polynomials, Rodrigue's formula, Recurrence relations and orthogonal properties.

UNIT-IV

The Hermite polynomials, Chebyshev's polynomial, Laugrre's polynomial: Recurrence relations, generating functions and orthogonal properties.

- 1. Ross, S.L., *Differential Equations, 3rd Edition.* John Wiley & Sons, 2004.
- 2. Boyce, W.E. and Diprima, R.C., *Elementary Differential Equations and Boundary Value problems,* 4th *Edition*. John Wiley and Sons, 1986.
- 3. Sneddon, I.N., *Special Functions of Mathematical Physics and Chemistry.* Edinburg: Oliver & Boyd, 1956.
- 4. Bell, W.W., *Special Functions for Scientists and Engineers.* Dover, 1986.

MSM-1	.05-	Mathematical Methods L-4, T-1, P-0 4 Credits												
Pre-requ	i site: E	Basic Calcu	llus and L	inear Alg	jebra									
Course C of mather Also, one backgrour	Course Objectives: The objective of the course is to acquaint the students with the knowledge of mathematical techniques frequently applied in various branches of engineering and sciences. Also, one of the objectives of this course is to equip the students with the mathematical background required for the development of such techniques. Course Outcomes: At the end of the course, the students will be able to													
Course Outcomes: At the end of the course, the students will be able to														
C01	Und	erstand th	e theory	and appl	ications c	of integra	al transfor	ms.						
C02	equa	Explain how integral transforms can be used to solve a variety of differential equations.												
CO3	Solv	Solve integro-differential equations of Fredholm and Volterra type.												
CO4	Und	erstand th	e propert	ties of va	rious kind	ls of inte	egral equa	tions.						
C05	Deve	elop their	attitude t	owards p	problem s	olving.								
	P	lapping o	of course	e outcon	nes with	the pro	ogram ol	itcome	S					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10				
C01	\checkmark	-	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark				
C02	\checkmark	-	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark				
CO3	\checkmark	-			\checkmark	-	-	-	\checkmark					
C04	\checkmark	\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark												
CO5	\checkmark	-	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark				

Course Title: Mathematical Methods Course Code: MSM-105-22

UNIT I

Laplace Transforms: Laplace Transform, Properties of Laplace Transform, Inverse Laplace Transform, Convolution theorem, Laplace transform of periodic functions, unit step function and impulsive function, Application of Laplace Transform in solving ordinary and partial differential equations and Simultaneous linear equations.

UNIT II

Fourier Transforms: Fourier transform, properties of Fourier transform, inversion formula, convolution, Parseval's equality, Fourier transform of generalized functions, application of Fourier transforms in solving heat, wave and Laplace equation. Fast Fourier transform.

UNIT III

Integral Equations: Relations between differential and integral equations, Integral equations of Fredholm and Volterra type, solution by successive substitution and successive approximation, integral equations with degenerate kernels.

UNIT IV

Integral equations of convolution type and their solutions by Laplace transform, Fredholm's theorems, integral equations with symmetric kernel, Solutions with separable kernels, Characteristic numbers, Resolvent kernel, Eigen values and Eigen functions of integral equations and their simple properties.

Text and Reference Books:

- 1. Sneddon, I.N., *The Use of Integral Transforms*. McGraw Hill, 1985.
- 2. Goldberg, R.R., *Fourier Transforms.* Cambridge University Press, 1970.
- 3. Smith, M.G., Laplace Transform Theory. Van Nostrand Inc., 2000.
- 4. Elsegolc, L., Calculus of Variation. Dover Publications, 2010.
- 5. Kenwal, R.P., *Linear Integral Equation; Theory and Techniques*. Academic Press, 1971.
- 6. Hildebrand, F.B., *Methods of Applied Mathematics (Latest Reprint)*. Dover Publications.
- 7. Pal, S. and Bhunia, S.C., *Engineering Mathematics*. Oxford University Press, 2015.

MSM-10	6-22	22Introduction to MATLAB (Lab)L-0, T-0, P-42 Credits											
Pre-requ	i isite: Ba	asic know	ledge of	compute	r								
Course C	Objectiv	ves: This	course	is design	ed to inf	troduce a	a powerf	ul langua	age MATI	LAB for			
	computi	ng. The n	nain focu	is of the	course w	Ill be on	Introduc	tion to b	asic conc	cepts of			
MAILAB and their applications using simple examples. This course will also develop programming skills for solving real world problems more efficiently and accurately													
skills for solving real world problems more efficiently and accurately													
Course Outcomes: At the end of the course, the students will be able to													
C01	Apply	/ the knc	wledge	of mathe	ematical s	software	viz. MAT	LAB to	solve rea	l world			
	probl	ems effic	iently.										
CO2	Utiliz	e the syn	nbolic too	ols of MA	TLAB for	handling	g differen	t mather	natical pr	oblems			
	for e	xample, s	olution o	f equatio	ns, differ	entiation	, and inte	gration e	etc.				
CO3	Desig	in and an	alyze the	eir own co	omputer o	codes of	mathema	tical met	hods.				
CO4	Unde	erstand ar	nd modify	y existing	codes ir	n scientif	ic compu	ting base	ed on the	use of			
	differ	ent loops	and con	ditional s	tructures								
CO5	Use I	MATLAB s	oftware	effectively	y for plot	ting in 2[D and 3D.						
	M	apping o	of course	e outcon	nes with	the pro	ogram o	utcomes	5				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
C01	V	-	-	-	-	∕	-	-		V			
CO2	\checkmark	-	-	-	-	\checkmark	-	-		\checkmark			
<u> </u>	_ /					- /				_/			
03	V	-	-	-	-	V	-	-		V			
CO4	-	V V											
CO5		-	-	-	-		-	-					

Course Title: Introduction to MATLAB (Lab) Course Code: MSM-106-22

UNIT-I

The MATLAB environment, scalars, variables, arrays, mathematical operations with arrays, built-in and user defined functions, script file, input to a script file, output commands: disp and fprintf, function files, comparison between script file and function file.

Plotting: Two-dimensional plots and three-dimensional plots.

UNIT-II

Programming: Relational and logical operators, Conditional statements: if-end structure; if-else-end structure; if-elseif-else-end structure, loops: for-end loop and while-end loop, Nested loops and nested conditional statements, the break and continue command.

Symbolic math: symbolic objects and symbolic expressions; commands: collect, expand, factor, simplify, simple, solve, diff and int.

Text and Reference Books:

- 1. Higham, D.J. and Higham, N.J., MATLAB Guide, 2nd Edition. Society for Industrial and Applied Mathematics (SIAM), 2005.
- 2. Gilat, A., MATLAB: An Introduction with Applications, 5th Edition. John Wiley & Sons, 2014.

SEMESTER-II

Scheme & Syllabus (M.Sc. Mathematics) Batch 2022 & Onwards

Page 23 of 46

MSM-20	1-22	22Algebra-IIL-4, T-1, P-04 Credits										
Pre-requ	isite: C	alculus o	f several	variables	and Rea	l Analysis	5-I					
Course O as Polynor students t	bjectiv mial ring	es: This s, Field th about Eis	course is neory, Alg senstein's	designed gebraic clo irreducil	d to intro osures, s pility crite	duce the plitting fiderion	e students elds and (ch is quit	s to adva Galois the te helpfu	nced idea eory. It he	as such elps the study of		
solvability theory in a	solvability of a polynomial. It makes the students to understand about the applications of Galois theory in other branches of mathematics.											
Course Outcomes: At the end of the course, the students will be able to												
CO1	Apply	the know	wledge of	f concept	s of Poly	nomial rir	ngs, Eucli	dean Doi	main, UFI	D etc.		
CO2	Unde detai	rstand th Is	e nature	of abstra	act mathe	ematics a	nd explor	e the co	ncepts in	further		
CO3	Utiliz polyr	e the cor Iomials, e	ncepts of extension	f Einstein of fields	irreduci etc.	bility crit	eria to c	heck the	factoriza	ation of		
CO4	Reco view	gnize the point.	need of	concept	of fundar	mental th	neorem of	f algebra	from a p	oractical		
CO5	Unde differ	rstand G ent fields	alios extension of applic	ensions fi cations.	rom theo	retical po	oint of vi	ew and a	apply its	tools in		
CO6	Exter selec	nd their l ting and a	knowledg applying	je of Hoi its tools f	momorph ^f or furthe	nisms, au r researc	itomorph h in this a	isms and and othe	l fixed fi r related	elds by areas.		
	М	apping o	of course	e outcon	nes with	the pro	ogram oi	utcomes	5			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	\checkmark	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark		
CO2	-	\checkmark	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark		
CO3	\checkmark	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark		
CO4	-	- V - V V V V										
CO5	-	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
CO6	-	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark		

Course Title: Algebra-II

Course Code: MSM-201-22

UNIT-I

Polynomial rings, factorization Domain and divisibility, Principal Ideal Domain (PID), Euclidean Domain (ED), factorization of polynomials in one variable over a field. Unique factorization domains, unique factorization in R[x], where R is a Unique Factorization Domain. Euclidean and Principal ideal domain. [Ref 2: Unit 2]

UNIT-II

Gauss Lemma, irreducible polynomials and Eisenstein's Irreducibility Criterion, Fields, Adjunction of roots, Algebraic extensions of field. [Ref 2: Unit 2,4]

UNIT-III

Algebraically closed fields, Splitting fields, normal extensions, finite fields, separable extensions. [Ref 2: Unit 4]

UNIT-IV

Automorphism of groups and fixed fields, Galois extensions. The fundamental theorem of Galois Theory, Fundamental theorem of algebra. [Ref 2: Unit 4]

- 1. Bhattacharya, P.B., Jain, S.K. and Nagpaul, S.R., *Basic Abstract Algebra*, 2nd Edition. U. K.: Cambridge University Press, 2004.
- 2. Dummit, David. S., and Foote, Richard M., *Abstract Algebra, 3rd Edition*. New Delhi: Wiley, 2011.
- 3. Herstein, I.N., *Topics in Algebra, 2nd Edition*. New Delhi: Wiley, 2006.
- 4. Singh, Surjeet, and Q. Zameeruddin. *Modern Algebra, 7th Edition*. New Delhi: Vikas Publishing House, 1993.
- 5. Ash, R., Abstract Algebra: The Basic Graduate Year, Dover Publications Inc, 2006.

MSM-202	2-22		Real A	nalysis-	II	L	-4, T-1,	P-0	4 Crea	lits			
Pre-requ	isite: C	alculus o	f several	variables	and Rea	l Analysis	5-I						
Course O mathemat	bjectiv ical anal	es: This ysis, viz. ant applic	course is sequence ations in	designe and seri different	d to prov es of fun- branches	vide theo ctions, m s of pure	retical fo easure th and appli	undation leory and ed mathe	s of conc l integrat ematics. l	cepts of ion that urther,			
this course	this course will also develop rigorous understanding of the above said concepts. Course Outcomes: At the end of the course, the students will be able to												
Course O	utcome	es: At the	end of t	he course	e, the stu	dents wi	li be able	to					
C01	Apply of dif	the kno ferent ma	wledge o athematio	f concept cal concept	ts of real pts and tl	analysis neir appli	to study	theoreti	cal devel	opment			
CO2	Unde detai	rstand th s.	e nature	of abstra	act mathe	matics a	nd explor	e the co	ncepts in	further			
CO3	Apply	the cond	cepts of r	eal analy	sis in solv	ing and	analyzing	real wo	rld proble	ems.			
CO4	Reco	gnize and	lelaborat	e the nee	ed of con	cept of m	neasure fr	om a pra	ictical vie	wpoint.			
CO5	Unde its to	rstand m ols in diff	easure th erent fiel	leory and ds of app	integrati	on from	theoretica	al point o	f view an	d apply			
CO6	Exter its to	nd their k ols for fu	nowledge rther rese	e of Lebe earch in t	sgue theo his and o	ory of int ther rela	egration ted areas	by select	ing and a	pplying			
	M	apping o	of course	e outcon	nes with	the pro	ogram oi	utcomes	5				
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10			
CO1	\checkmark	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark			
CO2	-	\checkmark	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark			
CO3	\checkmark	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark			
CO4	-	- V - V V V V											
CO5	-	- V - V V V V											
CO6	-	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark			

Course Title: Real Analysis-II

Course Code: MSM-202-22

UNIT-I

Sequences and series of functions, Uniform convergence, Uniform convergence and continuity, Uniform convergence and integration, Uniform convergence and differentiation, Equicontinuous families of functions, Weierstrass approximation theorem.

UNIT-II

Lebesgue Measure: Introduction, Lebesgue outer measure, Measurable sets and Lebesgue measure, non-measurable set, Measurable functions, Borel and Lebesgue measurability, Littlewood's three principles.

UNIT-III

Lebesgue Integral: The Lebesgue integral of a bounded function over a set of finite measure, the Comparison of Riemann and Lebesgue integral, the integral of a nonnegative function, The general Lebesgue integral, Convergence in measure.

UNIT-IV

Differentiation and Integration: The Four derivatives, Differentiation of monotone functions, differentiation of an integral. Absolute continuity.

- 1. Royden, H.L. and Fitzpatrick, P.M., *Real Analysis, 4th Edition.* New Delhi: Pearson, 2010.
- 2. Barra, G. de., *Measure Theory and Integration*, New Delhi: Woodhead Publishing, 2011.
- 3. Rudin, W., *Principles of Mathematical Analysis, 3rd Edition*. New Delhi: McGraw-Hill Inc., 2013.
- 4. Carothers, N. L., *Real Analysis*, Cambridge University Press, 2000.
- 5. Apostol, T.M., *Mathematical Analysis –A modern approach to Advanced Calculus*. New Delhi: Narosa Publishing House, 1957.
- 6. Malik S. C., Arora Savita, *Mathematical Analysis, 5th Edition,* New Age International Publishers, 2017.

MSM-203	3-22	22Mechanics-IL-4, T-1, P-04 Credits											
Pre-requi	i site: Ba	asic Mech	anics and	d Calculus	s of sever	al variab	les						
Course O	bjectiv	es: To d	demonstr	ate knov	vledge of	f functio	nal and	extremur	n path a	and the			
application	of the	e knowle	dge in s	solving so	ome fun	damental	problen	ns. To c	lemonstra	ate the			
knowledge	and un	derstandi	ing of the	e fundame	ental con	cepts in t	he dynan	nics of sy	stem of p	articles			
for complic	ngian an catod mu	and mechanical systems using the Lagrangian and Hamiltonian formulation of classical											
mechanics	icated mechanical systems using the Lagrangian and Hamiltonian formulation of classical												
Course Outcomes: At the end of the course, the students will be able to													
CO1	Unde	rstand th	e concep	t of funct	ional and	determi	ne statio	harv path	s of a fu	nctional			
	to de	duce the	different	ial equati	on for sta	ationary p	oaths.	, ,					
CO2	Use E	Euler-Lag	range eq	uation to	find sta	tionary p	aths and	its appl	ications i	n some			
	classi	cal funda	mental p	roblems.									
CO3	Defin	e and un	derstand	basic me	chanical o	concepts	related to	o discrete	e and con	tinuous			
	mech	anical sy	stems.										
CO4	descr	ibe and	understa	nd the	motion o	of a med	chanical	system ı	using La	grange-			
<u> </u>	Hami	iton form	alism.	mathama	tical rigo	to onbo	ncoundo	retandin	~				
CUS						to enna			<u>j</u> .				
	1.10	apping (Uutcon		i ile più	grani o	accomes	•				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	-	\checkmark	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark			
CO2	\checkmark	-	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark			
<u> </u>	-/		-/	-/	-/				-/	-/			
03	V	\checkmark $ \checkmark$ \checkmark \checkmark \checkmark $ \checkmark$ \checkmark \checkmark											
CO4	\checkmark	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
CO5	\checkmark	-	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark			

Course Title: Mechanics-I

Course Code: MSM-203-22

UNIT-I

Functional and its properties, Variation of a functional, Motivating problems: Brachistochrone, isoperimetric, Geodesics. Fundamental lemma of calculus of variation, Euler's equation for one dependent function of one and several variables. Generalization to *n* dependent functions and dependence on several derivatives. Invariance of Euler's equation, Moving end points problem, extremum under constraints.

UNIT-II

Constraints, Generalized coordinates, Generalized velocity, Generalized force, Generalized potential, D'Alembert principle, Lagrange's equation of first kind and second kind, uniqueness of solution, Energy equation for conservative field. Examples based on solving Lagrange's equation.

UNIT-III

Legendre transformation, Hamilton canonical equation, cyclic coordinates, Routhian procedure, Poisson bracket, Poisson's identity, Jacobi-Poisson theorem, Hamilton's principle, Principle of Least action.

UNIT-IV

Canonical transformations, Hamilton-Jacobi equation. Method of Separation of variables, Lagrange's bracket, Hamilton's equations in Poisson bracket, Canonical character of transformation through Poisson bracket. Invariance of Lagrange's bracket and Poisson's bracket.

RECOMMENDED BOOKS:

- 1. Elsegolc, L.D., *Calculus of Variation*, Dover Publication, 2007.
- 2. Gantmacher, F., Lectures in Analytic Mechanics, Moscow: Mir Publisher, 1975.
- 3. Goldstien, H., Poole, C. and Safco, J.L., *Classical Mechanics, 3rd Edition*. Addison Wesely, 2002.
- 4. Landau, L.D. and Lipshitz, E.M., *Mechanics*, Oxford: Pergamon Press, 1976.
- 5. Marsden, J.E., *Lectures on Mechanics*, Cambridge University Press, 1992.
- 6. Biswas, S. N., *Classical Mechanics*, Books and Applied (P) Ltd., 1999.

MSM-204	1-22	Parti	al Differ	ential E	quations	5 L	4, T-1,	P-0	4 Cree	lits		
Pre-requi	i site: C	alculus of	several v	/ariables	and ODE							
Course O	hiactiv	oci Tha	Objectiv	o of thic	courco ic	to intro	duco firct	and hig	hor ordo	nortial		
differentia		es: me	boir clas				laine vari	. anu myi aua anab	utic moth	partial		
computing	tequal	olis anu i olutione	of variou	silication.	. THIS CO	uise exp	idillis vali	ous analy	yuc meu	Narious		
computing	applications of partial differential equations in real physical phenomenon like wave equation of											
applications of partial differential equations in real physical phenomenon like wave equation of string, diffusion equations and heat flow equations to students												
string, diffusion equations and heat flow equations to students.												
Course Outcomes: At the end of the course, the students will be able to												
CO1	Unde	erstand pa	rtial diffe	erential e	quations	of first o	der (linea	ar and no	onlinear),	second		
	and I	nigher or	ler.		-		-		-			
CO2	Apply	/ various	analytic r	nethods f	for comp	uting solu	utions of	various P	DEs.			
CO3	Dete	rmine inte	egral surf	aces pass	sing throu	igh a cur	ve, chara	cteristic o	curves of	second		
	orde	PDE and	l compati	ble syste	ms.							
CO4	Unde	Understand the formation and solution of some significant PDEs like wave equation,										
	heat	equation	and diffu	ision equa	ation.							
CO5	Apply	/ the know	vledge of	PDEs an	d their so	lutions to	o underst	and phys	ical phen	omena.		
	М	apping o	of course	e outcon	nes with	the pro	ogram o	utcomes	5			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
C01	\checkmark	-	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark		
CO2	\checkmark	-	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark		
CO3	\checkmark	-	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark		
CO4		\checkmark - \checkmark \checkmark \checkmark \checkmark \checkmark										
CO5	\checkmark	-	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark		

Course Title: Partial Differential Equations

Course Code: MSM-204-22

UNIT-I

First Order PDE: Partial differential equations; its order and degree; origin of first-order PDE; determination of integral surfaces of linear first order partial differential equations passing through a given curve; surfaces orthogonal to given system of surfaces; non-linear PDE of first order, Cauchy's method of characteristic; compatible system of first order PDE; Charpit's method of solution, solutions satisfying given conditions, Jacobi's method of solution.

UNIT-II

Second Order PDE: Origin of second order PDE; linear second order PDE with constant and variable coefficients; characteristic curves of the second order PDE; Monge's method of solution of non-linear PDE of second order.

UNIT-III

Separation of Variable Method and Derivation of Heat, wave and Laplace equations: Derivation of one-dimensional wave equation, Derivation of two-dimensional wave equation, Laplace's equation, Laplace's equation in plane polar coordinates, Laplace's equation in cylindrical coordinates, Laplace's equation in spherical coordinates, Derivation of one-dimensional heat equation.

UNIT-IV

Boundary value problems using separation of Variable Method: Boundary value problems in cartesian co-ordinates on Heat (or Diffusion) equation, wave equation and Laplace equation (1-D, 2-D and 3-D), Boundary value problems in polar co-ordinates, Boundary value problems in cylindrical co-ordinates, Boundary value problems in spherical co-ordinates.

RECOMMENDED BOOKS:

- 1. Sneddon, I.N., *Elements of Partial Differential Equation, 3rd Edition.* McGraw Hill Book Company, 1998.
- 2. Copson, E.T., *Partial Differential Equations, 2nd Edition.* Cambridge University Press, 1995.
- 3. Strauss, W.A., *Partial Differential Equations: An Introduction*, 2nd Edition. 2007.
- 4. Sharma, J.N. and Singh, K., *Partial differential equations for engineers and scientists*, 2nd *Edition*. New Delhi: Narosa Publication House, 2009.

MSM-20	5-22		Numerio	cal Analy	ysis	L	4, T-1,	P-0	4 Crea	lits			
Dro-rogu	icito	Basic Calc	ulus ana	lysis and	linear alc	lehra							
Course ()biect	ives: This	course	is desiar	ned to in	troduce	the basi	concen	ts of Nu	merical			
Mathemat	ics to s	solve the p	roblems a	arisina in	various f	ields of a		n, for exa	mple in s	science,			
engineerir	ng and	economics	s etc. tha	t do not	possess	analytica	l solution	s or diffi	cult to de	eal with			
analyticall	y. This	course ac	ldresses (developm	nent, anal	, lysis and	applicati	on of dif	ferent nu	merical			
methods t	:o solve	e the proble	ems, viz.	system of	of linear 8	& nonline	ear equati	ons, nun	nerical ini	tial and			
boundary	value p	problems o	f ordinar	y differen	tial equa	tions etc.							
Course 0	outcon	nes: At the	e end of t	he course	e, the stu	dents wi	ll be able	to					
CO1	Ide	ntity and a	nalyze dr	fferent ty	pes of er	rors enco	buntered	in numer		outing.			
CO2	App	ly the kno	wledge o	f Numeric	cal Mathe	ematics to	o solve pi	oblems e	efficiently	arising			
<u> </u>	1115	ize the too			al Mathor	uc. Natice in	ordor to	formulat	o tha ra	al_world			
05	pro	hlems from	n the view	vpoint of	numerica	ll mather	natics	Tormula					
CO4	Des	ian analy:	ze and in	nlement	of nume	rical met	hods for	solvina d	lifferent t	vnes of			
	pro	blems. viz.	initial an	d bounda	arv value	problem	s of ordin	arv diffe	rential eq				
	etc.	problems, viz. initial and boundary value problems of ordinary differential equations etc.											
CO5	Cre	ate, select	, and app	oly appro	priate nu	merical t	echnique	s with th	e unders	tanding			
	of t	heir limita	tions so t	that any	possible	modifica	tion in th	lese tech	niques c	ould be			
	carr	ried out in	further re	esearch.									
CO6	Ide	ntify the cl	nallenging	g problen	ns in cont	tinuous r	nathemat	ics (whic	h are dif	ficult to			
	dea	l with anal	ytically) a	and find t	heir appr	opriate s	olutions a	accurately	y and effi	ciently.			
	I	Mapping of	of course	e outcon	nes with	the pro	ogram o	utcomes	5				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	-	-	-	\checkmark	-	-	-	-	\checkmark	\checkmark			
CO2	\checkmark	-	-	-	-	-	-	-	\checkmark	\checkmark			
	/												
CO3	V	-	-	-	-	-	-	-	V	V			
C04	√		_	_	_	_	_	_	√	√			
	v	\mathbf{v}											
CO5	\checkmark	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
										,			
CO6	-	-	-	\checkmark	-	-	-	-	\checkmark	\checkmark			

Course Title: Numerical Analysis Course Code: MSM-205-22

UNIT-I

Numerical computation and Error analysis: Numbers and their accuracy, Floating point arithmetic, Errors in numbers, Error estimation, General error formulae, Error propagation in computation. Inverse problem of error analysis and Numerical instability. Algebraic and transcendental equations: Bisection method, Iteration method, Regula-Falsi method, Secant method, Newton-Raphson's method. Convergence of these methods. Solution of system of nonlinear equations: Newton-Raphson's method.

UNIT-II

System of linear algebraic equations: Gauss elimination method without pivoting and with pivoting, Gauss-Jordon method, LU-factorization method, Jacobi and Gauss-Seidal methods, Convergence of iteration methods, Round-off errors and refinement, ill-conditioning, Inverse of matrices: Partition method. Eigen values and eigen vectors: Rayleigh Power method, Given's method.

UNIT-III

Interpolation: Finite differences, Newton's interpolation formulae, Gauss, Stirling's and Bessel's formulae, Lagrange's, Hermite's and Newton's divided difference formulae. Numerical differentiation and integration: differentiation at tabulated and non-tabulated points, Maximum and minimum values of tabulated function, Newton-Cotes Formulae-Trapezoidal, Simpson's, Boole's and Weddle' rules of integration with errors, Romberg integration. Double integration: Trapezoidal method and Simpson's method.

UNIT-IV

Ordinary differential equations: Taylor series and Picard's methods, Euler's and modified Euler methods, Runge-Kutta methods, Predictor-Corrector methods: Adams-Bashforth's and Milne's methods. Error analysis and accuracy of these methods. Solution of simultaneous and higher order equations, Boundary value problems of Ordinary differential equations: Finite difference methods.

RECOMMENDED BOOKS:

- 1. Sharma, J.N., *Numerical Methods for Engineers and Scientists, 2nd Edition*. Narosa Publ. House New Delhi/Alpha Science International Ltd., Oxford UK, 2007, Reprint 2010.
- 2. Jain, M.K., Iyengar, S.R.K. and Jain, R.K., *Numerical Methods for Scientific and Engineering Computation, 5th Edition. New Age International Publ.* New Delhi, 2010
- 3. Bradie, B., *A Friendly Introduction to Numerical Analysis*. Pearson Prentice Hall, 2006.
- 4. Atkinson, K.E., Introduction to Numerical Analysis, 2nd Edition. John Wiley, 1989.
- 5. Scarborough, J.B., *Numerical Mathematical Analysis.* Oxford & IBH Publishing Co., 2001.

MSM-20	6-22	Nu	merical	Analysis	s (Lab)	L	-0, T-0,	P-4	2 Crea	lits			
Pre-requ	iisite: E	Basic know	vledge of	Compute	er and M	ATLAB Pr	ogrammi	ng					
Course C)bjectiv	es: This c	course is	designed	to provid	e unders	tanding c	f implem	entation	of basic			
numerical	l metho	ds for so	lving diff	erent pr	oblems v	iz. nonli	near equ	ations, s	system o	f linear			
equations	, interpo	plation an	d extrap	olation, r	numerical	differen	tiation a	nd integr	ation, nu	imerical			
initial and	bounda	ry value p	roblems	of ordina	ry differe	ntial equ	ations etc	c. Further	, this cou	urse will			
develop p	program	ning skills	in the s	tudents i	n order to	o write a	nd impler	ment the	ir own co	mputer			
programs	for solv	ing proble	ems arisir	ig in sciei	nce, engi	neering a	and econo	omics.		·			
Course C	Dutcom	es: At the	end of t	he course	e, the stu	dents wi	ll be able	to					
CO1	Appl	y their kr	owledge	of comp	uter prog	gramming	g to deve	elop and	impleme	nt their			
	own	compute	r codes c	of numeri	cal meth	ods for s	solving di	fferent t	ypes of c	omplex			
	prob	lems viz.	nonlinea	ir equatio	ons, syst	em of lii	near equ	ations, ii	nterpolati	on and			
	extra	polation,	numerio	cal differ	rentiation	and ir	ntegratior	, nume	rical initi	al and			
	bour	idary valu	e probler	ns of ord	inary diff	erential e	equations	etc.					
CO2	Unde	erstand di	fferent in	plement	ation mod	des of a r	numerical	method	in order t	to solve			
	a giv	en proble	m efficie	ntly.									
CO3	Analy	ze and m	nodify cor	nputer co	odes avai	lable in t	he scient	ific literat	ure.				
CO4	Utiliz	Utilize the symbolic tools of MATLAB independently and in their computer codes for											
	solvi	solving a given problem.											
CO5	Deve	Develop, select and apply numerical methods as a computer code with the											
	unde	erstanding	of their	limitatior	ns so that	t they ca	n be imp	lemented	d in orde	r to get			
	acce	ptable res	ults.										
CO6	Iden	tify the cl	nallenging	g problen	ns in cont	tinuous r	nathemat	ics (whic	h are dif	ficult to			
	deal	with anal	ytically) a	and find t	their app	ropriate s	solutions	accurate	ly and eff	ficiently			
	using	g compute	er codes.										
	M	apping o	of course	e outcon	nes with	the pro	ogram o	utcomes	5				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	\checkmark	-	-	-	-	-	-	-	\checkmark	\checkmark			
CO2	-	\checkmark	-	-	-	-	-	-	\checkmark	\checkmark			
CO3	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	\checkmark			
CO4	\checkmark	$\overline{\checkmark}$											
C05	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	\checkmark			
CO6	-	-	-	\checkmark	-	-	-	-	\checkmark	\checkmark			

Course Title: Numerical Analysis (LAB)

Course Code: MSM-206-22

The following programs of following methods are to be practiced:

- 1. To find a real root of an algebraic/ transcendental equation by using Bisection method.
- 2. To find a real root of an algebraic/ transcendental equation by using Regula-Falsi method.
- 3. To find a real root of an algebraic/ transcendental equation by using Newton-Raphson method.
- 4. To find a real root of an algebraic/ transcendental equation by using Iteration method.
- 5. Implementation of Gauss- Elimination method to solve a system of linear algebraic equations.
- 6. Implementation of Jacobi's method to solve a system of linear algebraic equations.
- 7. Implementation of Gauss-Seidel method to solve a system of linear algebraic equations.
- 8. To find differential coefficients of 1st and 2nd orders using interpolation formulae.
- 9. To evaluate definite integrals by using Newton Cotes integral formulae.
- 10. To evaluate double integrals by using Trapezoidal and Simpson method.
- 11. To compute the solution of ordinary differential equations with Taylor's series method.
- 12. To compute the solution of ordinary differential equations by using Euler's method.
- 13. To compute the solution of ordinary differential equations by using Runge -Kutta methods.
- 14. To compute the solution of ordinary differential equations by using Milne-Simpson method.
- 15. To compute the solution of Boundary value problems of Ordinary Differential Equations by using Finite Difference method.

- 1. Fausett, L.V., *Applied Numerical Analysis using MATLAB, 2nd Edition.* Pearson Prentice Hall, 2007.
- 2. Mathews, J.H. and Fink, K.D., *Numerical Methods using MATLAB, 4th Edition.* Pearson Prentice Hall, 2004.
- 3. Conte, S.D. and Boor, C.D., Numerical Analysis. New York: McGraw Hill, 1990.

Semester III

Scheme & Syllabus (M.Sc. Mathematics) Batch 2022 & Onwards

Page 36 of 46

UC-MS	5M-	Topology L-4, T-1, P-0 4 Credits												
Pre-requi	z site: R	eal Analys	is-I											
Course Obje	ectives:	The objective	e of the co	urse on To	pology is to	o provide t	he knowle	dge of Top	ological Sp	aces and				
their import	their importance. To acquaint students with the concept of Homeomorphism and the topological properties and													
important mathematical concepts which can be generalized in topological spaces, so that students may learn and														
appreciate the nature of abstract Mathematics.														
Course O	utcom	es: At the	end of the	e course,	the stude	nts will b	e able to							
001		1 . 1.1		C .	1 • 1			1 (* * * *	<u> </u>					
COI	Uno	lerstand the	e concept	ts of topo	logical sp	baces and	the basic	c definiti	ons of op	en sets,				
	spa	21100u111000	I, IIIterio	I, exterio	r, closure		II axioins	s for defi	ning topo	Jiogical				
CO2	Und	erstand the o	oncept of	Bases and S	Subbases, o	reate new	topologica	al spaces b	y using sub	space.				
CO3	Und	erstand cont	inuity, com	ipactness, d	connected	iess, home	omorphisn	n and topo	logical pro	perties.				
CO4	Und	erstand how	points of s	pace are se	parated by	open sets	, Housdrof	f spaces an	d their imp	oortance.				
CO5	Und	erstand regu	lar and nor	mal spaces	and some	important	theorems	in these sp	baces.					
		Mapping	g of cour	se outcoi	nes with	the prog	gram out	comes						
	DO1	PO3	DO3	PO4	POF	POG	PO7	POS	POQ	PO10				
CO1	V	+02	-	F04 √	F03 √	-	-	-	F09 √	V				
CO1 CO2	۷	V	V	v	V	-	-	-	v v	V				
001														
CO3	٧	V	-	V	v	-	-	-	V	V				
CO4	٧	V V - V - - - V V												
CO5	٧	√ √ - √ √ - - √												

Course Title: Topology

Course Code: MSM301-22

L	Т	Р
4	1	0

UNIT-I

Introduction to topological spaces, open and closed sets, Neighbourhoods, interior, exterior, boundary, Accumulation points, and limit points. Derived sets, Interior and Closure of a set, Dense sets. Bases and subbases, Subspaces and relative Topology, Alternative methods of defining a Topology in terms of Kuratowski closure operator and neighbourhood systems.

UNIT-II

Open and closed mappings, Continuous mapping and homomorphism. Topological properties, Compactness, local Compactness. One-point compactification.

UNIT-III

Connected and arc-wise connected spaces and connected sets [Basic theorems of connected and disconnected sets; connectedness in terms of open and closed sets, connectedness uder continuous map; closure of connected set and connectedness in usual topological space.], Components and Locally connected spaces. Separation Axioms: T0, T1, T2 (or Hausdorff) spaces and sequences. Axioms of Countability and Seperability, Second Axiom and Lindeloff spaces.

UNIT-IV

Regular and completely regular, Normal and completely normal spaces. Metric spaces as T2, completely normal and first axiom spaces, Urysohn's Lemma, Tietze Extension Theorem.

BOOKS RECOMMENDED

- 1. Munkres, J. R., Topology, a first course, Prentice-Hall of India Ltd., New Delhi, 2000.
- 2. Joshi, K. D., *An introduction to general topology, 2nd edition,* Wiley Eastern Ltd., New Delhi, 2002.
- 3. Simmons, G.F., *Introduction to topology and Modern Analysis*, McGraw Hill Publications, 2017.
- 4. Kelley, J. L., General Topology, Springer Verlag, New York, 1990.
- 5. Armstrong, M.A., Basic Topology, Springer International Ed., 2005.

UC-MS 302-2	2 M-	Number Theory and Cryptography						Cryptography L-4, T-1, P-0		lits
Pre-requi	uisite: Congruences, Number System									
Course Obje them to stu cryptograph	e ctives: Th dy higher iy.	iis course is courses in i	designed t number the	o provide s eory, and to	students an o apply the	introducti learnt cor	ion to class ncepts of n	ical numbe umber theo	r theory an ory using p	d enable ublic-key
Course O	Course Outcomes: At the end of the course, the students will be able to									
CO1	Appl math	y the kr ematical	nowledge maturity	of Nur and enab	nber the les to bui	ory and ld mathe	Cryptog matical th	raphy to anking a	o attain and skill.	a good
CO2	Utilize congr	e the GCD, uences, Chi	LCM, Fur nese rema	idamental inder theoi	Theorem of the the theorem of the theorem etc. to	of Arithme solve diffe	etic, Produ erent relate	ct of r co d problem	nsecutive s.	integers,
CO3	Apply invers	different ty ion formula	pes of divis to formul	sibility tests ate and so	s, Euler's th lve various	eorem, Wi related pr	ilson theore oblems.	em, Fermat	s theorem?	, Mobius
CO4	Design, analyze and implement the concepts of Diophantine equations for solving different types of problems. Understand and apply the concept of Power residue, order of $a(mod m)$, Primitive root, Reduced residue system, Euler's solvability criterion, Lagrange's theorem for the number of incongruent solutions of a polynomial									
CO5	Create prime quadr	e, select and s, greatest atic recipro fy the chal	d apply app integer f city law to lenging pr	propriate n unctions, i use in real	umber the indices, re life proble modern m	oretic tech sidue clas ms. pathematic	niques suc ses, Legen	h as Merse dre symbo	ne primes, ols, Gauss	Fermats Lemma,
00	appro	priate solut	tions.		inouclin in		.s, such us,	cryptogrt		
		Mapping	g of cour	se outco	mes with	the prog	gram out	comes	T	I
001	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
	v	v	-	N	V	-	-	-	Ň	N
CO2	V	V	-	V	V	-	-	-	V	V
CO3	V	V	V	V	V	-	-	-	V	V
CO4	٧	V	-	V	V	-	-	-	V	V
CO5	٧	V	-	V	V	-	-	-	V	V
CO6	٧	-	٧	٧	-	-	-	-	V	V

Course Title: Number Theory and Cryptography Course Code: UC-MSM-302-22

L	Т	Р
4	1	0

UNIT-I

Divisibility, Greatest common divisor, Euclidean Algorithm, Least Common Multiplier, divisibility of product of *r* consecutive integers, The Fundamental Theorem of arithmetic, congruences and its properties, Special divisibility tests, Solvability of linear diophantine equations (ax + by = c) and congruence equations $(an \equiv b \pmod{c})$, Chinese remainder theorem.

UNIT-II

Arithmetic functions $\phi(n)$, d(n), $\sigma(n)$, $\mu(n)$, Multiplicative functions, Mobius inversion Formula, Complete residue system, Fermat's little theorem, Wilson's theorem, Euler's theorem, Power residue, order of $a(mod \ m)$, Primitive root, Reduced residue system, Euler's solvability criterion, Lagrange's theorem for the number of incongruent solutions of a polynomial.

UNIT-III

Indices and its properties, The greatest integer function, Legendre's formula, Quadratic residues, Legendre symbol, Gauss's Lemma, Quadratic reciprocity law, perfect numbers, Mersenne primes and Fermat prime numbers. [Ref. 2]

UNIT-IV

Cryptography: some simple cryptosystems, need of the cryptosystems, the idea of public key cryptography, RSA cryptosystem. [Ref. 4]

- 1. Burton, D.M., *Elementary Number Theory*, 7th Edition. McGraw-Hill Education, 2010.
- 2. Hardy, G.H. and Wright, E.M., *An introduction to the Theory of Numbers, 4th Edition*. Oxford University Press, 1975.
- 3. Niven, I., Zuckerman, H.S. and Montgomery, H.L., *Introduction to Theory of Numbers*, 5th *Edition*. John Wiley & Sons, 1991.
- 4. Koblitz N., A Course in Number Theory and Cryptography, Graduate Texts in Mathematics, No.114. New-York: Springer-Verlag, 1987.
- 5. Stallings, W., Cryptography and Network Security, 5th Edition. Pearson, 2010.

UC-MSI 303-22	UC-MSM- 303-22		- Mathematical Statistics						4 Crea	lits
Pre-requis	Pre-requisite: Basic Statistics and Calculus of several variables									
Course Objectives: The aim of the course is to enable the students with understanding of various types of probability distributions and testing of hypothesis problems. It aims to equip the students with standard concepts of statistical techniques and their utilization.										
Course O	utcom	es: At the	end of the	e course,	the stude	nts will t	be able to			
CO1	Und	erstand and	utilize the o	concept of	probability	•				
CO2	Exp	lain the co	ncept of	random v	ariable a	nd its ap	plications	•		
CO3	Exp	Explore the different types of discrete and continuous distributions and their								
CO4	Deal	Deal with formulation of hypotheses as per situations and their testing								
CO5	Appl	y the knowle	edge of stat	tistical tech	iniques in v	arious exp	perimental a	and indus	trial require	ments.
Mapping of course outcomes with the program outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	٧	-	V	V	V	-	-	-	٧	٧
CO2	٧	-	V	V	V	-	-	-	V	V
CO3	v	-	V	V	V	-	-	-	V	V
CO4	٧	-	V	V	V	-	-	-	V	V
CO5	٧	-	V	V	V	-	-	-	V	V

Course Title: Mathematical Statistics

Course Code: MSM303-22

L	Т	Р
4	1	0

Unit I

Classical and axiomatic approaches to the theory of probability, Additive and multiplicative law of probability, Conditional probability, Independent events, Bayes theorem. Random variable, Distribution function and its properties, Discrete random variable, Probability mass function, Discrete distribution function, Continuous random variable, Probability density function, Continuous distribution function.

Unit II

Two dimensional random variables, joint, marginal and conditional distributions, Independence of random variables, Expectation of a random variable and its properties, Moments, Conditional expectation, Moment generating function and its properties, Cumulants, Characteristic function and its elementary properties.

Unit III

Study of various discrete and continuous distributions: Binomial, Poisson, Geometric, Hypergeometric, Normal distributions, Rectangular (uniform), Exponential. Central limit theorem (Only particular cases: De-Moivre's Laplace theorem and Lindeberg-Levy theorem subsection 9.13.1 and 9.13.2 of [2]).

Unit IV

Concept of sampling distribution and its standard error, Testing of hypotheses and its fundamental notions, Tests based on Normal distribution (subsections 14.7.1, 14.7.2, 14.8.3 and 14.8.4 of [2]), χ^2

-distribution (χ^2 -test for hypothetical value of population variance as in subsection 15.6 (i) and to test the `goodness of fit' as in subsection 15.6 (ii) of [2]), *t*-distribution (*t*-test for single mean and difference of means as in subsections 16.3.1 & 16.3.2 of [2]) and *F*-distribution (*F*-test for equality of two population variances as in subsection 16.6.1 of [2]).

BOOKS RECOMMENDED:

- 1. Hogg R. V., McKean J. W. and Craig A. T., *Introduction to Mathematical Statistics*, Pearson, 2005, Sixth Edition.
- 2. Gupta S. C. and Kapoor V. K., *Fundamentals of Mathematical Statistics*, 11th Edition. Sultan Chand & Sons, 2014.
- 3. Fisz M., *Probability Theory and Mathematical Statistics*, 3rd Edition. John Wiley & Sons, 1967.
- 4. Gun A.M., Gupta, M.K. and Dasgupta B., *Fundamentals of Statistics (Vol-I)*, World Press, 2013.
- 5. Feller W., An Introduction to Probability Theory and Its Applications (Vol-I), 3rd Edition. John Wiley & Sons, 2003.

UC-MS 304-2	UC-MSM- 304-22			Functional Analysis						lits
Pre-requi	Pre-requisite: Real analysis and Linear Algebra									
Course O	Course Objectives: This course will develop a deeper and rigorous understanding of fundamental									
concepts o	concepts of functional analysis, their properties and related theorems.									
Course O	Course Outcomes: At the end of the course, the students will be able to									
CO1	Explai	in the funda	imental co	ncepts of f	unctional a	nalysis aı	nd their role	e in mode	rn mathem	atics.
CO2	Utili	ze the co	ncepts of	function	al analys	sis, for	example	continuo	ous and b	ounded
	opera math	ators, nor ematical	med space expressio	ces, Hilb ns arising	ert space g in scien	es and t ce and e	o study t engineerir	he beha [.] 1g.	vior of d	ifferent
CO3	Unde	erstand an	d apply f	undamen	tal theore	ms from	n the theo	ry of nor	med and	Banach
	space grapl	es includi h theorem	ng the Ha and unif	ahn-Bana orm bour	ch theore ndedness	em, the theorem	open map 1.	ping the	orem, the	e closed
CO4	Unde	rstand the r	nature of al	ostract mai	thematics a	and explo	ore the conc	epts in fu	rther detai	s.
CO5	Explai	in the conce	ept of proje	ection on H	ilbert and	Banach si	baces.			
		Mapping	of cours	e outcon	nes with	the pro	gram out	tcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	V	V	-	V	V	-	-	-	V	V
CO2	V	V	V	V	V	-	-	-	V	V
CO3	٧	V	V	٧	V	-	-	-	V	V
CO4	٧	V	-	٧	V	-	-	-	V	V
CO5	٧	V		V	V	-	-	-	V	V

Course Title: Functional Analysis

Course Code: MSM304-22

L	Т	Р
4	1	0

UNIT-I

Normed linear spaces, Banach spaces, properties of normed spaces, finite dimensional normed spaces and subspaces, linear operators, bounded and continuous linear operators, linear functionals, normed spaces of operators

UNIT-II

Equivalent norms, conjugate spaces, Reflexivity. Hahn-Banach theorems for real/complex vector spaces and normed spaces, Applications to bounded linear functionals on C [a,b].

UNIT-III

Uniform boundedness theorem, open mapping theorem, closed graph theorem, Projections on Banach spaces.

UNIT-IV

Inner product spaces, Hilbert spaces, properties of inner product spaces, orthogonal complements, orthonormal sets, Hilbert – adjoint operator, self-ad joint, unitary and normal operators, projections on Hilbert spaces.

- 1. Simmons, G.F., Introduction to Topology and Modern Analysis, 2008.
- 2. Rudin, W., Functional Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill inc.,1991.
- 3. Kreyszig, E., *Introductory Functional Analysis with Applications*, John Wiley and Sons (Asia) Pvt. Ltd., 2006.
- 4. Bachman, G. and Narici, L., Functional Analysis, Dover, 2000.
- 5. Conway, J.B., A Course in Functional Analysis, 2nd Edition. Springer-Verlag, 2006.

UC-MS	SM-	Tensor Calculus and ApplicationsL-4, T-1, P-04 C						4 Cree	dits	
Pre-requi	. <i>2</i> isites•	se Linear Algebra Vector Calculus and Basic Mechanics								
The requisitest Enfour rigoriu, vootor Culculus und Busic micenanies										
Course Obi	Course Objectives: The objective of the course on Mechanics-II is to equip the students with the knowledge of									
Tensors and	d their a	nnlications 1	o make st	tudents un	derstand t	he notion	of continu	um and th	he hasic cou	ncents of
strain strat	ch and r	otation and t	ho opplicat	tions of ton		lorstandir		conte On	of the obj	
							ig these con			
to make st	tudents	understand	the applic	cations of	Mathemat	ical conc	epts in rea	l world p	roblems re	elated to
Mechanics.			1 0 1							
Course O	outcom	es: At the e	end of the	e course,	the stude	nts will	be able to			
CO1	Un	derstand the	concent	t of Tenso	or and the	ir prope	ortios			
$\frac{CO1}{CO2}$	Un	derstand th	e effect	$\frac{1}{2}$ of co-ord	linate tra	nsforma	tions and	visualiz	a the ten	or as a
02	line	linear transformation								
CO3	Unc	erstand the o	convention	is like sumi	mation con	vention a	nd comma	notations.	Also, stude	ents shall
005	lear	n the concept	s of tenso	r calculus.					,	
CO4	Unc	erstand conti	nuum hyp	othesis, sp	atial and m	aterial co	-ordinates a	ind their a	pplications	
CO5	Unc	erstand the	concepts o	of strain, st	tretch, rota	ation and	shall be ab	le to appl	y the knov	vledge in
	solv	ing real world	l problems	related to	continuum	n mechani	ics.			
		Mapping	g of cour	se outco	mes with	the pro	ogram out	comes		
	DO1	0.00	000	DO 4	DOL	DOC	0.07	DOR	DOD	DO10
<u> </u>	201	P02	P03	P04	PU5	P06	P07	PU8	P09	P010
	V	-	V	V	V	-	-	-	V	V
02	v	-	v	v	v	-	-	-	v	v
CO3	V	-	V	V	V	-	-	-	v	V
005	•									
CO4	V	-	V	V	V	-	-	-	V	V
CO5	٧	-	V	V	V	-	-	-	V	V

Course Title: Tensor Calculus and Applications

Course Code: MSM305-22

L	Т	Р
4	1	0

Unit I

Tensors: Introduction, Range and Summation Conventions, Free and dummy suffixes, results in vector algebra and matrix, the symbol $\delta_{ij} \& \varepsilon_{ijk}$, Coordinate transformations, cartesian tensors, Properties of tensors, Isotropic tensors, Isotropic tensor of order four, Tensors as linear operators, Transpose of a tensor.

Unit II

Symmetric and skew tensors, Dual vector of a skew tensor, Invariants of a tensor, Deviatoric tensors, Eigenvalues and eigenvectors, Polar decomposition, Scalar, vector and tensor functions, Comma notation,

Unit III

Gradient of a scalar, divergence and curl of a vector, Gradient of a vector, divergence and curl of a tensor, Integral theorems for vectors and tensors.

Unit IV

Applications of Tensors in Continuum Mechanics: Notation of a continuum, Configuration of a continuum, Mass and density, Descriptions of motion, Deformation: Material and special coordinates, Deformation gradient tensor, Stretch and rotation, Strain tensors, Strain-displacement relations, Infinitesimal strain tensor, Infinitesimal stretch and rotation, Compatibility conditions., Principal strains, Strain-deviator.

BOOKS RECOMMENDED:

- 1. Jog, C.S., Foundations and Applications of Mechanics: Volume-I Continuum Mechanics. Narosa Publishing House, New delhi.
- 2. Chandrasekharaiah, D.S. and Lokenath, D., *Continuum Mechanics*, Academic Press, London (Prism Books Pvt. Ltd., Bangalore-India).