B.Sc. (Hons.) Mathematics

Course Structure and Syllabus University Campus (Based on Choice Based Credit System) Batch 2022 & onwards

DEPARTMENT OF APPLIED SCIENCES (Mathematical Sciences)

VISION

To be among the best mathematics departments in the region and to establish a national reputation as a centre for research and teaching in mathematics. Moreover, the department will contribute to the development of students as mathematical thinkers, and to function as productive citizens.

MISSION

- To discover, mentor, and nurture mathematically inclined students, and provide them a supportive environment that fosters intellectual growth.
- To prepare our undergraduate and graduate students to develop the attitude and ability to apply mathematical methods and ideas in a wide variety of careers.
- To perform widely recognized research in focused areas of mathematical and statistical theory, methodology, and education.
- To advocate for mathematical sciences and UTEP in schools and the local community.

B.Sc. (Honours Mathematics) Program

PROGRAM OBJECTIVES

Objective of the program is to catch young and talented students to motivate them to study Mathematics and to nurture them to develop their mathematical reasoning and logics. Other objectives of the program are to inspire students to pursue study in higher mathematics and grow as a skilful mathematician to cater the needs of knowledgeable society.

Duration: B.Sc. (Hons) Mathematics is a graduate level program offered by the Department of Mathematical Sciences. This is a 3-years program, consisting of six semesters with two semesters per year.

Program Code: BSHM (Bachelor of Science (Hons) in Mathematics)

Eligibility: 10+2 in any stream with Mathematics as one of the subjects with at least 50% marks in aggregate.

PROGRAM EDUCATIONAL OBJECTIVES: At the end of the program, the student will be able to:

PEO1	Apply principles of basic science concepts in understanding, analysis and prediction of mathematical systems.
PEO2	Develop human resource with knowledge, abilities and insight in Mathematics
	and related fields required for career in academia and industry.
PEO3	Engage in lifelong learning and adapt to changing professional and societal
	needs.

PROGRAM SPECIFIC OUTCOMES

At the end of the program,

PSO1	Students will be able to understand the nature of Mathematics and shall be ready to study higher 'Abstract Mathematics'.
PSO2	Students will be able to visualize the importance of Mathematics and apply the knowledge of Mathematics in Physical, Chemical and Social Sciences.
PSO3	Students will be able to use latest mathematical tools and software.
PSO4	Students will be able to formulate computer codes to tackle the complex mathematical problems.
PSO5	Students will become more confident due to enhanced level of reasoning, logics, skills and shall be able to understand the needs of the society.

PROGRAM OUTCOMES: At the end of the program, the student will be able to:

PO1	Understand the concepts of different branches of Mathematics.
PO2	Demonstrate expertise to conduct wide range of scientific modelling.
PO3	Apply the concepts of mathematics in areas of mechanics, analysis, calculus, algebra, geometry, mathematical modelling etc., in industry, academia, and day-to-day life.

Scheme of the Program: B.Sc. (Hons.) Mathematics

SEMESTER FIRST

Contact Hrs. 24 Hrs.

S.No.	Course Code	Course Type	Course Title		Loa ocat		_	rks bution	Total Mark s	Cr
				L	Т	Ρ	Intern al	Extern al		
1.	BSHM-101-22		Calculus-I	4	-	-	40	60	100	4
2.	BSHM-102-22	Compulsory	Algebra	5	1	-	40	60	100	6
3.	BSHM-103-22		Programming Lab-I	-	-	4	30	20	50	2
4.	BHHL-115-22		Communicative English	2	-	-	20	30	50	2
5.*	BSHP-111-21		Optics	3	1	-	40	60	100	4
	BSHP-113-21		Physics Lab-I	-	-	4	30	20	50	2
	UGCA-1902	Elective	Fundamentals of Computer and IT	3	1	-	40	60	100	4
	UGCA-1906		Fundamentals of Computer and IT (Laboratory)	-	-	4	30	20	50	2
					<u> </u>		Total			20

L: Lectures T: Tutorial P: Practical Cr: Credits

Note*: Physics (BSHP-111-21 & BSHP-113-21) are compulsory for the Students with Non-Medical background. Students without Non-medical background should opt Fundamentals of Computer and IT (UGCA-1902 & UGCA-1906).

SEMESTER SECOND

Contact Hrs. 24 Hrs.

S.N o.	Course Code	Course Type	Course Title			Load Allocation		Marks Distribution		Cr
				L	Т	Ρ	Interna I	Externa I		
1.	BSHM-201-22		Real Analysis	5	1	-	40	60	100	6
2.	BSHM-202-22		Differential Equations	4	-	-	40	60	100	4
3.	BSHM-203-22	Compulsory	Programming Lab-II	-	-	4	30	20	50	2
4.*	BHHL-116A-22		Punjabi Compulsory							
	Or BHHL-116B-22		Or Mudli Punjabi	2	-	-	20	30	50	2
5.**	BHIC-111-22		Chemistry-I	3	1	-	40	60	100	4
	BHIC-112-22		Chemistry Lab-I	-	-	4	30	20	50	2
	BBA-GE-201-18	Elective	Managerial Economics-II	5	1	0	40	60	100	6
	1		1	Total				20		

L: Lectures T: Tutorial P: Practical Cr: Credits

Note 1*: Students with Punjabi as a passing subject in 10th class will study Punjabi Compulsory (BHHL-116A-22). Students without Punjabi as a subject in 10th class will study Mudli Punjabi (BHHL-116B-22).

Note 2**: Chemistry (BHIC-111-22 & BHIC-112-22) is compulsory for the Students with Non-Medical background. Students without Non-medical background should opt Managerial Economics-I (BBA-GE-201-18)

Examination and Evaluation

Theory	,		
S. No.	Evaluation criteria	Weightage in Marks	Remarks
1	Mid term/sessional Tests	24	Internal evaluation (40 Marks) MSTs, Quizzes, assignments,
2	Attendance	6	attendance, etc., constitute internal
3	Assignments/Seminars/Presentat ions/Continuous Evaluation	10	evaluation. Average of two mid semester test will be considered for evaluation.
4	End semester examination	60	External evaluation
5	Total	100	Marks may be rounded off to nearest integer.
Practic	al		
1	Evaluation of practical record/ Viva Voice/Attendance/Seminar/ Presentation	30	Internal evaluation
2	Final Practical Performance + Viva-Voce	20	External evaluation
3	Total	50	Marks may be rounded off to nearest integer.

Instructions for Paper-Setter in B. Sc (Hons.) Mathematics

A. Scope

- 1. The question papers should be prepared strictly in accordance with syllabus and format as prescribed by the University.
- 2. The question paper should cover the entire syllabus with uniform distribution among each unit and weightage of marks for each question.
- 3. The language of questions should be simple, direct, and documented clearly and unequivocally so that the candidates may have no difficulty in appreciating the scope and purpose of the questions. The length of the expected answer should be specified as far as possible in the question itself.
- 4. The distribution of marks to each question/answer should be indicated in the question paper properly.

B. Type and difficulty level of question papers

- 1. Questions should be framed in such a way as to test the student's intelligence and understanding of the applied aspects of the subject. The weightage of the marks as per the difficulty level of the question paper shall be as follows:
 - i) Easy question 30%
 - ii) Average questions 50%
 - iii) Difficult questions 20%
- 2. The numerical content of the question paper should be up to 40%.

C. Format of question paper

- 1. Paper code and Paper-ID should be mentioned properly.
- 2. The question paper will consist of three sections: Sections-A, B and C.
- 3. Section-A is COMPULSORY consisting of TEN SHORT questions carrying two marks each (total 20 marks) covering the entire syllabus.
- 4. The Section-B consists of FOUR questions of eight marks each covering Unit I & II of syllabus (Taking two questions from each Unit I & II).
- 5. The Section-C consists of FOUR questions of eight marks each covering Unit III & IV of syllabus (Taking two questions from each Unit III & IV).
- 6. Sub-parts of the questions in Section B and C should be preferred for numerical/conceptual questions.
- 7. Attempt any five questions in all, selecting at least two questions from each of the two sections.

Question paper pattern for MST:

Roll No:	No of pages:					
IK Gujral Punjab Technical University- Jalandhar						
Department of Mathematical Sciences						
Academic Session:						
Mid-Semester Test: I/II (Regular/reappear)	Date:					
Programmse: B.Sc. (Hons.) Mathematics	Semester:					
Course Code: Course:						
Maximum Marks: 24	Time: 1 hour 30 minutes					

Note: Section A is compulsory; Attempt any two questions from Section B and one question from Section C.

See	Section: A Ma				
1		2			
2		2			
3		2			
4		2			
Sec	ction: B				
5		4			
6		4			
7		4			
Sec	ction: C				
8		8			
9		8			

Details of Course Objectives

CO1	
<i>CO2</i>	
СО3	
<i>CO4</i>	
<i>CO5</i>	

SEMESTER-I

BSHM-10 22	1-	Ca	lculus-I	L-4	, T-0, P-0	4 Credits
	ite: E	lementary calculu	is of senior seco	ondary level.		
Course Ob	jectiv	ves: The objectiv	ves of this cour	se are to mak	e the studer	nts understand the
following:	-	-				
1. The	funda	mental concepts	of differential ca	alculus.		
	geon rems.	-	of functions,	limits, contir	uity, derivat	tives, mean value
3. Appl	icatior	ns of derivatives.				
4. The	definit	tion of Higher ord	ler derivatives a	nd its basic ap	plications.	
		lity of Higher ord urin theorem.	er derivatives t	o establish Tay	lor's theoren	n, Leibnitz theorem
Course Outo	comes	: At the end of th	e course, the st	udents will be	able to	
CO1	Unde	erstand the basic	concepts of Diff	ferential and Ir	tegral Calcul	us.
CO2	Visua	alize all concepts	geometrically.			
CO3	Sket	ch curves of the t	functions intuitiv	ely with the he	elp of Differer	ntial Calculus.
CO4	Appl	y the knowledge	of Differential a	nd Integral Cal	culus.	
CO5	Unde	erstand the funda	mental relation	between differ	ential and In	tegral Calculus.
	M	lapping of cour	se outcomes v	with the prog	ram outcom	ies
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
C01		3	3	2	2	3
CO2		3	2	2	2	3
CO3		3	2	2	2	3
CO4		2	3	2	2	3
CO5 3 2 2 2						3

Course Title: Calculus-I Course Code: BSHM-101-22

UNIT-I

Functions, their limits and continuity: Real line, intervals, order properties of real numbers, the least upper bound and the greatest lower bound properties, Archimedean property. Functions, Graphs of functions, Exponential functions, Inverse functions and Logarithmic functions, implicitly defined functions, some special functions, one-one functions, onto functions, composition of functions, limit of a function, calculating limits through limit laws, limits using L' Hospital's rule, The precise definition of limit and continuity (ϵ - δ definition), continuous functions and classification of discontinuities, uniform continuity.

UNIT-II

Differentiation: Derivative of a function, the derivative as a function, derivatives of polynomials and exponential functions, the product and quotient rules, rates of change in natural and social sciences, derivatives of trigonometric, inverse trigonometric, logarithmic, and hyperbolic functions, the chain rule, implicit differentiation, differentiation of determinants.

UNIT-III

Applications of derivative: maximum and minimum values, increasing and decreasing functions, Intermediate value theorems: Rolle's theorem, Lagrange's theorem, Cauchy's mean value theorem, how derivatives affect the shape of graph, concavity, convexity, the second derivative test, points of inflexion.

UNIT-IV

Higher order derivatives, calculation to the nth derivative, determination of nth derivative of rational functions. The nth derivative of the products of power of sines and cosines, Leibnitz's theorem, the nth derivative of the product of two functions, Maclaurin's theorem, Taylor's theorem.

TEXT BOOKS

1. Shanti Narayan and P. K. Mittal, Differential Calculus, S. Chand, 2015

- 2. James Stewart, Calculus, 5th Edition, Brooks/Cole(Thomson), 2003.
- 3. Robert Wrede and Murray R. Spiegel, Advanced Calculus, 3rd Edition, Schaum's Outline Series (McGraw Hill), 2010.
- 4. Maurice D Weir, <u>Frank R. Giordano</u> and Joel Hass, Thomas' Calculus, 11th Edition, Pearson, 2008.
- 5. N. Piskunov, Differential and Integral Calculus, Mir Publishers, Moscow (CBS Publishers & Distributors, India), 1996.

BSHM-102	2-		Algebra	L-	•5, T-1, P-0	6 Credits				
22										
Pre-requisite: - Complex numbers, Sets, Relation and Functions										
Course Obj	ecti	ves: This course i	s designed to in	troduce the ba	asic notions of	algebra. The major				
focus of the	cour	se will be on: De	Moivre's theorer	n & its applica	ations, matrice	s and their use in				
system of eq	Juati	ons; theoretical fo	oundation of the	ory of equatic	ons and their so	olutions.				
Course Out	com	1es: At the end of	f the course, the	students will	be able to					
CO1	Use	the De Moivre's t	heorem for solv	ing problems	concerning po	wers of complex				
	nun	nbers and complex	x roots of polyne	omials etc.						
CO2	Use	matrices in solvir	ng system of equ	uations.						
CO3	Den	nonstrate linear in	dependence and	d dependence	e of a set of ve	ctors.				
CO4	Find	l inverse of a mat	rix using Gauss-	Jordan metho	od.					
CO5	Den	nonstrate the natu	ure of solutions	of polynomial	equations and	use Cardano's				
	met	hod, Ferrari meth	od and Descarte	e's method foi	r finding solution	ons of equations.				
	ľ	Mapping of cour								
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5				
C01		1	3	2	2	3				
C02		1	3	2	2	3				
CO3		2	3	2	2	3				
CO4 3 3 2 2 3										

1

2

2

3

1

CO5

Course Title: Algebra Course Code: BSHM-102-22

Unit I

Polynomials and Complex Numbers: Polynomials, The remainder and factor theorem, Synthetic division, Factored form of a polynomial, Fundamental theorem of algebra, Polar representation of complex numbers, De Moivre's theorem for integer and rational indices and their applications. The nth roots of unity.

Unit II

Roots of a Polynomial: Relations between the roots and the coefficients of polynomial equations, Theorems on imaginary, integral and rational roots Fundamental theorem of symmetric polynomials (without proof). Evaluation of symmetric functions of roots, Rational roots of polynomials with integral coefficients. Descartes rule of sign.

Unit III

Cubic and Biquadratic Equations: Strum's theorem (statement only), Solution of cubic equation using Cardano's method, and biquadratic equation by Descartes method and Ferrari's method.

Unit IV

System of Equations: Systems of linear equations (homogeneous and non-homogeneous), Row reduction and echelon forms, Row rank, column rank and their equivalence, Vector equations, The matrix equation Ax = b, Solution sets of linear systems, Gauss elimination method, Consistency of Linear System of equations, Augmented matrices, The inverse of a matrix, Gauss Jordon method.

- Andreescu, Titu & Andrica Dorin, Complex Numbers from A to...Z. (2nd ed.). Birkhäuser (2014).
- Dickson, Leonard Eugene First Course in the Theory of Equations. The Project Gutenberg E-Book (<u>http://www.gutenberg.org/ebooks/29785</u>), (2009)
- Kolman, Bernard, & Hill, David R., Introductory Linear Algebra with Applications (7th ed.). Pearson Education, Delhi. First Indian Reprint 2003.

BSHM-103	3-	Progra	mming Lab-I		L-0, T-0, P-2		2 Credits		
22									
Pre-requisi	ite: 🕴	Knowledge of bas	ic concepts in M	athematic	s, such as, graph	ns, fund	ctions, conics,		
matrices etc									
Course Ob	jecti	ves: This course	e is designed to	introduc	e the basic kno	wledge	of computer		
programmin	gts	imple algebraic o	perations on ma	atrices and	d to visualize the	geom	etry of curves		
and conics. t	two c	limensions. The n	najor focus of th	is course	will be on geome	tric def	inition of two-		
dimensional	shap	es and a rigorous	s discussion on t	heir prope	erties and use.				
Course Out	tcom	es: At the end of	f the course, the	students	will be able to				
CO1	Exp	lain the basic con	cepts of prograr	nming.					
CO2	Арр	ly the knowledge	of programming	g in differe	ent Matrix Operat	ions.			
CO3	Use	programming in	plotting and visu	alization	of graphs of alge	braic a	nd		
	tran	scendental functi	ons.						
CO4	Obta	ain Surface of rev	olution of curve	s.					
CO5	Stud	ly further the trac	cing of conics.						
Mapping of course outcomes with the program outcomes									
		DSO 1		DCO	2 050	a			
<u> </u>		PSO 1	PSO 2 3	PSO 3	3 PSO - 3	+	PSO 5		
CO1							3		

CO2

CO3

CO4

CO5

Course Title: Programming Lab-I

Course Code: BSHM-103-22

The following topics to be practiced using MATLAB:

- i) Introduce the programming through MATLAB
- ii) Perform Matrix Operations, such as, Addition, Multiplication, inverse, Transpose etc.
- iii) Plot the graphs of algebraic and transcendental functions (For example, e^{ax+b} , $\log(ax+b)$, $\frac{1}{ax+b}$, with constants a, b, etc.)
- iv) Obtain the surface of revolution of curves.
- v) Trace of conics in Cartesian Coordinates /Polar Coordinates.
- vi) Applications of derivative.

- 1. Higham, D.J. and Higham, N.J., MATLAB Guide, 2nd Edition. Society for Industrial and Applied Mathematics (SIAM), 2005.
- 2. Gilat, A., MATLAB: An Introduction with Applications, 5th Edition. John Wiley & Sons, 2014.

BHHL-115-22		22		nicative Ilish	L-2, T	-0, P-0	2 C	redits		
Pre-rec	uisite:	Basic p	proficiency	in Communi	cation Skills	5				
Course	object	ives:								
	•	To hel	p the stuc	lents becor	ne proficie	nt in LSRW	/-Listening,	, Speaking,		
		Reading	g & Writing	skills						
		•		nts become	-		-			
			•			skills, inte	gral to the	ir personal,		
		•	•	sional intera						
				appropriate		•				
		-	-	for the j	ob market	in their re	espective (domains of		
		speciali		<u></u>	<u> </u>					
Course	Outco	mes: A	t the end	of the cou	rse, the st	udents wil	I			
CO1 acquire basic proficiency in reading &listening,							ng and spea	aking skills		
CO2		be able	e to underst	and spoken	and writter	n English lan	guage, par	ticularly the		
		langua	ge of their	chosen tech	nical field.					
CO3	be able to converse fluently.									
CO4		be able	e to produc	e their own	clear and c	oherent tex	ts.			
CO5		becom	e proficient	: in professio	onal commu	inication suc	ch as interv	iews, group		
		discussions, office environments, important reading skills as well as writing								
		skills a	nd thereby	will have be	etter job pro	ospects.				
	Mappin	ng of C	ourse Out	comes wit	h the Prog	ram Speci	fic Outcor	nes		
	PSC	01	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7		
C01	2		2	2	3	2	2	2		
CO2	3		2	2	3	2	3	3		
CO3	2		3	3	2	2	3	3		
CO4	2		2	3	3	3	2	3		
C05	5 2 1 1 3 1 1 3						3			

Course Title: Communicative English

Course Code: BHHL-115-22

UNIT I-(Literature)

(A) The Poetic Palette (Orient Black Swan, Second Edition, 2016)

The following poems from this anthology are prescribed:

- 1. Pippa's Song: Robert Browning
- 2. I Sit and Look Out: Walt Whitman
- 3. Women's Rights: Annie Louise Walker

(B) *Prose Parables* (Orient Black Swan, 2013)

The following stories from the above volume are prescribed:

- 1. Grief: Anton Chekov
- 2. The Doctor's Word: R.K. Narayan
- 3. The Doll's House: Katherine Mansfield

UNIT-II

Vocabulary: Synonyms, Antonyms; Standard Abbreviations; One-word substitution **Grammar:** Subject-Verb Agreement; Noun- Pronoun Agreement; Use of phrases and clauses in sentences; Sentence Structures; Transformation of Sentences

UNIT-III

Reading and Understanding: Comprehension; Summarizing; Paraphrasing; Translation

(from Hindi/Punjabi to English and vice-versa); Précis Writing

UNIT-IV

Mechanics of Writing & Speaking Skills: Business letters; Report writing; Career Documents- Job applications, Resume/CV writing, Conversations & Dialogues, Formal Presentations; Dynamics of Group Discussion.

Text & Reference Books:

- 1. John Eastwood, Oxford Practice Grammar, Oxford University Press, 2014.
- 2. Michael Swan, Practical English Usage, OUP, 1995
- 3. F.T. Wood, *Remedial English Grammar*, Macmillan, 2007.
- 4. William Zinsser, On Writing Well, Harper Resource Book, 2001.
- 5. Sanjay Kumar and Pushp Lata, *Communication Skills*, Oxford University Press, 2011.
- 6. Liz Hamp-Lyons and Ben Heasly, *Study Writing*, Cambridge University Press, 2006.

BSHP	-111-	21			Optics	5		L-3	3, T-1, ∣	P-0	4 Cr	edits
Pre-re	equisi	te: Unde	rstandin	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics		
Diffrac Studer related career	tion a nts wil 1 parai	ectives: nd Polariz I be equi meters, w	ation ar ipped w hich wil	nong stu ith knov I act as a	udents. vledge a strong	They als to meas backgr	so learn sure way ound if h	about t velength ne/she c	he LASE n, refrac chooses	R and it	s applic lex, and	ations. I other
CO	1	Identify related w		-	-	oncepts	and teri	minolog	y used i	n optics	and oth	ier
CO	2	Analyze applicati		lerstand	coherer	nce and	phenom	ienon of	f interfe	rence ar	nd their	
CO	3	Acquaint	ed with	Fresnel'	s and Fi	raunhofe	er's diffr	action a	nd their	applica	tions.	
CO	4	Get thor transmis	-	-		•			-	•		on and
CO	5	Describe beam.	the diff	erent ty	pes of la	asers, its	s princip	le, prop	erties ar	nd applie	cations o	of laser
		Мар	ping of	course	outco	mes wi	th the p	orogran	n outco	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	-	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	1	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
CO5	2	2	2	2	1	1	2	1	1	3	1	1

Course Title: Optics

Course Code: BSHP-111-21

PART-A

UNIT I

Interference: Definition and properties of wave front, Temporal and Spatial Coherence, Young's double slit experiment, Lloyd's single mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films, Fringes of equal inclination (Haidinger Fringes), Newton's Rings: Measurement of wavelength and refractive index, Interferometer: Michelson Interferometer-(1) idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, Fabry-Perot interferometer.

UNIT-II

Diffraction: Huygens Principle, Huygens-Fresnel Diffraction theory, Fraunhofer diffraction: Single slit. Circular aperture, Rayleigh criterion of resolution, Resolving Power of a telescope, Double slit, Multiple slits, Diffraction grating, Resolving power of grating. Fresnel Diffraction: Fresnel's Assumptions, Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light, Theory of a Zone Plate: Multiple Foci of a Zone Plate, Fresnel diffraction pattern of a straight edge and circular aperture.

PART-B

UNIT-III

Polarization: Plane polarized light, Representation of Unpolarized and Polarized light, Polarization by Reflection, Brewster's law, Malus Law, Polarization by Selective absorption by Crystals, Polarization by Scattering, Polarization by Double Refraction, Nicol Prism, Huygen's theory of Double Refraction, Polaroid, Elliptically and Circularly polarized lights, Quarter and Half wave plates.

UNIT-IV

Laser and Application: Lasers, Spontaneous emission, Stimulated absorption, Stimulated emission, Einstein coefficients, Einstein relations, Conditions for Laser actions, Population inversion, Different types of Laser Pumping mechanism: Optical Pumping, Electric Discharge and Electrical pumping, Resonators, Two, Three and Four level laser systems, Ruby laser, He-Ne gas Laser, Semiconductor laser, CO2 laser, applications of laser: Holography, Principle of Holography.

Text and Reference Books:

- 1. Optics: A.K. Ghatak (Tata-McGraw Hill), 1992.
- 2. Fundamentals of Optics: F.A. Jenkins and H.E. White (McGraw Hill), 1981.
- 3. A Textbook of Optics: Subrahmaniyam N. & et al., S. Chand Publishing, 2006.
- 4. O. Svelto: Principles of Lasers, Springer Science & Business Media, 2010.

BSHP	-113-2	3-21			sics La	b-I	L-0, T	-0, P-4	•	2 Ci	redits	
Pre-re	Pre-requisite (If any): High-school education											
Cours	se Obje	ectives:	The air	m and o	objectiv	e of the	lab co	urse is t	o intro	duce th	e stude	nts to
		ucture o			tism an	d pheno	omenon	of wave	e optics	so that	they ca	an use
		their req										
	e Outo	comes:										
CO1		Able to	verify t	he theo	pretical	concept	s/laws l	learnt in	theory	' course	s.	
CO2		Trained	l in carr	ying ou	t precise	e measi	irement	s and ha	andling	sensitiv	e equip	ment.
CO3		Unders	tand th	e meth	ods us	ed for	estimati	ing and	dealin	g with	experin	nental
		uncerta	ainties a	nd syst	ematic	"errors'	′ .					
CO4		Learn t	o draw	conclus	ions fro	om data	and de	velop sł	kills in e	experim	ental de	esign.
CO5		Docum	ent a te	chnical	report	which c	ommun	icates s	cientific	: inform	ation in	а
		clear a	nd conc	ise mar	nner.							
		Маррі	ng of c	ourse	outcon	nes wit	th the p	orogran	n outc	omes		
	DO 1	000	002	DO 4	DOF	DOC	007	DOD	DOO	DO1	DO1	DO1
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO1	3	3	2	2	2	1	2	1	2	3	2	3
CO2	3	3	1	-	2	2	1	1	1	3	2	3
CO3	3	3	2	-	2	1	2	1	1	3	2	3
CO4	3	2	2	2	-	2	2	1	1	3	2	3
CO5	2	2	2	2	-	2	2	1	1	3	2	3

Course Title: Physics Lab-I

Course Code: BSHP-113-21

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses.
- 2. To study the laser beam characteristics like; wavelength, aperture, spot size, etc. using diffraction grating.
- 3. To study the diffraction using laser beam and thus to determine the grating element.
- 4. To study wavelength and laser interference using Michelson's Interferometer.
- 5. To find the refractive index of a material/glass using spectrometer.
- 6. To find the refractive index of a liquid using spectrometer.
- 7. To determine the angle of prism and resolving power of a prism.
- 8. To study the magnetic field of a circular coil carrying current using a Steward and Gees Tangent Galvanometer.
- 9. Determine the radius of circular coil using the Circular coil.
- 10. To study B-H curve using CRO.
- 11. To find out polarizability of a dielectric substance.
- 12. To find out the horizontal component of earth's magnetic field (B_h).

Text and Reference Books:

- 1. A Textbook of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 2. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 3. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 4. Practical Physics, C L Arora. S. Chand & Company Ltd.
- 5. http://www.vlab.co.in

UGCA-19	02 Fundamentals of Comp	uter and IT	L-3, T-1, P-0	4 Credits		
Pre-requis	te: NA	I				
Course Ou	tcomes: At the end of the course	, the student will	be able to			
CO1	Understanding the concept of input a	and output devices	of Computers			
CO2	Learn the functional units and	classify types of	f computers, how	they process		
	information and how individu	al computers inte	eract with other co	omputing systems and		
	devices.					
CO3	Understand an operating syste	m and its workir	ng, and solve com	mon problems related		
	to operating systems		-	-		
CO4	Learn basic word processing, S	preadsheet and H	Presentation Grapl	nics Software skills.		
CO5	Study to use the Internet safely, legally, and responsibly					

Course Title: Fundamentals of Computer and IT Course Code: UGCA-1902

UNIT-I

Human Computer Interface: Concepts of Hardware and Software; Data and Information. **Functional Units of Computer System:** CPU, registers, system bus, main memory unit, cache memory, Inside a computer, SMPS, Motherboard, Ports and Interfaces, expansion cards, ribbon cables, memory chips, processors.

Devices: Input and output devices (with connections and practical demo), keyboard, mouse, joystick, scanner, OCR, OMR, bar code reader, web camera, monitor, printer, plotter. **Memory:** Primary, secondary, auxiliary memory, RAM, ROM, cache memory, hard disks, optical disks.

Data Representation: Bit, Byte, Binary, Decimal, Hexadecimal, and Octal Systems, Conversions and Binary Arithmetic (Addition/ Subtraction/ Multiplication) Applications of IT.

UNIT II

Concept of Computing, Types of Languages: Machine, assembly and High-level Language; Operating system as user interface, utility programs.

Word processing: Editing features, formatting features, saving, printing, table handling, page settings, spell-checking, macros, mail-merge, equation editors.

UNIT-III

Spreadsheet: Workbook, worksheets, data types, operators, cell formats, freeze panes, editing features, formatting features, creating formulas, using formulas, cell references, replication, sorting, filtering, functions, Charts & Graphs.

Presentation Graphics Software: Templates, views, formatting slide, slides with graphs, animation, using special features, presenting slide shows.

UNIT-IV

Electronic Payment System: Secure Electronic Transaction, Types of Payment System: Digital Cash, Electronic Cheque, Smart Card, Credit/Debit Card E-Money, Bit Coins and Crypto currency, Electronic Fund Transfer (EFT), Unified Payment Interface (UPI), Immediate Payment System (IMPS), Digital Signature and Certification Authority. Introduction to Bluetooth, Cloud Computing, Big Data, Data Mining, Mobile Computing and Embedded Systems and Internet of Things (IoT)

- 1. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 2. A. Goel, Computer Fundamentals, Pearson Education, 2010.
- 3. P. K. Sinha & P. Sinha, Fundamentals of Computers, BPB Publishers, 2007.
- 4. R.K. Jain, IT Tools, Khanna Publishing House.
- 5. Satish Jain, Ambrish Rai & Shashi Singh, Introduction to Information Technology, Paperback Edition, BPB Publications, 2014.
- 6. <u>www.sakshat.ac.in</u>
- 7. https://swayam.gov.in/course/4067-computer-fundamentals

UGCA-1906	Fundamentals of Computer and IT Laboratory	L-0, T-0, P-4	2 Credits				
Pre-requisite	(If any): NA						
CO1	Familiarizing with Open Office (Word processing, Spreadsheets and Presentation).						
CO2	To acquire knowledge on editor, spread she	eet and presentatic	n software.				
CO3	The students will be able to perform docum	nentation and acco	unting operations.				
CO4	Students can learn how to perform present	ation skills.					

Course Title: Fundamentals of Computer and IT (Laboratory)

Course Code: UGCA-1906

List of experiments:

- Word Orientation: The instructor needs to give an overview of word processor. Details of the four tasks and features that would be covered Using word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter.
 - Using word to create Resume: Features to be covered: Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in Word.
 - Creating an Assignment Features to be covered: Formatting Styles, inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.
 - 3) Creating a Newsletter

Features to be covered: Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes and Paragraphs

- Creating a Feedback form Features to be covered: Forms, Text Fields, Inserting objects, Mail Merge in Word.
- Excel Orientation: The instructor needs to tell the importance of Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered Excel - Accessing, overview of toolbars, saving excel files.
 - 1) Creating a Scheduler Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text
 - 2) Creating an Assignment

Features to be covered: Formatting Styles, inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.

- Creating a Newsletter Features to be covered: Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes and Paragraphs
- Creating a Feedback form Features to be covered: Forms, Text Fields, Inserting objects, Mail Merge in Word.

> Presentation Orientation:

1) Students will be working on basic power point utilities and tools which help

them create basic power point presentation.

Topic covered includes: PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows

- This session helps students in making their presentations interactive. Topics covered include: Hyperlinks, Inserting–Images, ClipArt, Audio, Video, Objects, Tables and Charts
- Concentrating on the in and out of Microsoft power point. Helps them learn best practices in designing and preparing power point presentation. Topics covered includes: Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes, etc), Inserting – Background, textures, Design Templates, Hidden slides, Auto content wizard, Slide Transition, Custom
- 4) Animation, Auto Rehearsing
- 5) Power point test would be conducted. Students will be given model power point presentation which needs to be replicated
- Internet and its Applications: The instructor needs to tell the how to configure Web Browser and to use search engines by defining search criteria using Search Engines
 - 1) To learn to setup an e-mail account and send and receive e-mails.
 - 2) Tolearntosubscribe/postonablogandtousetorrentsforaccelerateddownloads.
 - 3) Hands on experience in online banking and making an online payment for any domestic bill.

- 1. R.K. Jain, IT Tools, Khanna Publishing House.
- 2. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 3. Turban, Rainer and Potter, Introduction to information technology, John Wiley and Sons.
- 4. Joseph Brady & Ellen F Monk, Problem Solving Cases in Microsoft Excel, Thomson Learning.

SEMESTER-II

BSHM-201	-22	Rea	al Analysis		L-5, T-1, P-0	6 Credits
Pre-requisi	te: Ele	mentary calculu	S			
fundamenta unbounded calculation various tests	l conc and lir of squa	epts of Real lin nit suprema and	ne and its prop infima. They w bserve theconve nce or divergenc	perty. Stude vill use more ergent and one of sequent	ents will unders notone convergen livergent sequen- ices and series.	nts understand the stand the bounded, nce theorem for the ces.They can apply
CO1		rstand the basic	-			
CO2					prema and infim	
CO3	Use of	of monotone con	vergence theore	m for the ca	alculation of squa	are roots.
CO4	Chec	k the convergend	ce and divergend	ce sequence	s and infinite ser	ies.
CO5		y the knowledge ences and infinite		t to establi	sh the converger	nce and divergence
		Mapping of co	urse outcomes v	with the pr	ogram outcome	5
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1		3	3	2	2	3
CO2 3 2 2 2 3					3	
CO3	CO3 3 2 2 2 3					
CO4		2	3	2	2	3
CO5		3	2	2	2	3

Course Title: Real Analysis Course Code: BSHM-201-22

UNIT-I

Real Numbers: Field and order structure of R, Bounded above sets, Bounded below sets, Bounded Sets, Unbounded sets, Supremum and Infimum.

UNIT-II

Completeness of \mathbb{R} : Completeness Property of R, The Archimedean Property, Density of Rational (and Irrational) numbers in R, Intervals. Limit points of a set, Isolated points, Closed sets, Countable and Uncountable sets.

UNIT-III

Sequences: Sequences, Limit points of a sequence, Limit Inferior and Superior, Convergent Sequences, Non convergent sequences (Definitions), Cauchy's sequence, Cauchy's General Principle of Convergence, Algebra of sequences, Some Important Theorem, [Ref. Text Book 1], Monotonic sequences.

UNIT-IV

Infinite Series: Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, D'Alembert's Ratio Test, Rabb's. Gauss and Logrithmic test (Statement of these three tests only). Cauchy's Root test, Integral test, Alternating series, Leibniz test, Absolute and Conditional convergence.

TEXT BOOKS:

1. S. C. Malik and Savita Arora, Mathematical Analysis, New Age International (P) Ltd., New Delhi, 2017.

- 1. R.G. Bartle and D. R. Sherbert, Introduction to Real Analysis, 3rd Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2002.
- 2. Gerald G. Bilodeau , Paul R. Thie, G.E. Keough, An Introduction to Analysis, 2nd Ed., Jones & Bartlett, 2010.
- 3. Brian S. Thomson, Andrew. M. Bruckner and Judith B. Bruckner, Elementary Real Analysis, Prentice Hall, 2001.
- 4. S.K. Berberian, A First Course in Real Analysis, Springer Verlag, New York, 1994.

BSHM-202	2-22	Differe	ntial Equations	L-4	, T-0, P-0	4 Credits		
Pre-requis	ite: - F	unctions, Differe	entiation, Integra	tion.				
Course Ob	jective	s: The Objective	of this course is	to introduce or	linary differen	tial equations and		
	-				-	ains the analytic		
-				s ordinary diffe	rential equation	ons appearing in		
		ience and techno						
Course Ou	tcome	s: At the end of t	he course, the st	udents will be a	ble to			
CO1		erstand the basic ous types and the		now about ordination	ary differential	equations, its		
CO2	Visu	alize the geomet	rical meaning of	first order diffe	rential equatio	n.		
CO3		Understand the fundamental concepts about existence and uniqueness of solution of initial value problem.						
CO4		-		ential equations	in different tyr	be of		
	Understand the applications of differential equations in different type of Phenomenon.							
CO5	Appl	y power series n	nethod to obtain	series solutions	of differential	equations.		
		Mapping of co	urse outcomes v	with the progra	m outcomes			
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5		
CO1		1	3	2	2	3		
CO2		1	3	2	2	3		
CO3	CO3 2 3 2 2							
CO4		3	3	2	2	3		
CO5		1	1	2	2	3		

Course Title: Differential Equations Course Code: BSHM-202-22

Unit I

Differential equations: General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, Cauchy's linear equation and Bernoulli equations.

Unit II

Mathematical models (Linear Models): Introduction to compartmental model, exponential decay model, lake pollution model (case study of Lake Burley Griffin), drug assimilation into the blood (case of a single cold pill, case of a course of cold pills), exponential growth of population, limited growth of population, limited growth with harvesting.

Unit III

Higher Order Linear Differential Equations: General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneous equations of higher order with constant coefficients, Euler's equation, method of undetermined coefficients, method of variation of parameters.

Unit IV

Mathematical Models (Non-linear Models): Equilibrium points, Interpretation of the phase plane, predatory-prey model and its analysis, epidemic model of influenza and its analysis, battle model and its analysis.

TEXT BOOKS:

- 1. J. N. Kapur, Mathematical Modelling, 1st Ed., New Age International (P) Ltd., New Delhi, 2021.
- 2. Shanti Narayan, Differential Equations and it's Applications,

- 1. Belinda Barnes and Glenn R. Fulford, Mathematical Modeling with Case Studies, A Differential Equation Approach using Maple and MATLAB, 2nd Ed., Taylor and Francis group, London and New York, 2009.
- 2. C.H. Edwards and D.E. Penny, Differential Equations and Boundary Value problems Computing and Modeling, Pearson Education India, 2005.
- 3. S.L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, India, 2004.

BSHM-203	-22	Progra	mming Lab-II		L-0, T-0, P-2	2 Credits		
Pre-requisi	te: Kn	owledge of basic	c concepts in Dif	fferential eq	uations and Real	analysis, such as,		
ODE, Order	, Degr	ee, Linear Differ	rential Equations	s, sequence,	series, limit poir	nt, convergence,		
divergence,								
Course Ob	jectiv	es: This course	is designed to	introduce t	the basic knowl	edge of computer		
	-	-	-		-	and divergence of		
				rse will be	on understanding	g the mathematical		
models behi	nd a re	eal-life situation.						
Course Out	come	s: At the end of t	he course, the st	udents will	be able to			
CO1	Expla	ain the basic con	cepts of MATL	AB and Mat	hematica.			
CO2	Appl	y the knowledge	of programming	g in differen	t Differential equ	lations.		
CO3	Use p	programming in	plotting the solu	tion and vis	ualization of grov	wth and decay		
	mathematical models.							
CO4	Plotti	ing the recursive	sequences and s	study the con	nvergence of seq	uences through		
	plotti	ng.						
CO5	Study	y the convergence	e/divergence of	infinite serie	es			
		Mapping of cou	urse outcomes v	with the pro	gram outcomes			
				_	-			
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5		
CO1		1	3	3	3	3		
CO2		1	3	3	3	3		
CO3		2	2	3	3	3		
CO4		3	3	2	2	3		
CO5		2	3	2	2	3		

Course Title: Programming Lab-II

Course Code: BSHM-203-22

The following topics to be practiced using MATLAB/MATHEMATICA:

- vii) Introduce the programming through MATLAB and MATHEMATICA
- viii) Plotting of second order solution family of differential equation.
- ix) Plotting of third order solution family of differential equation.
- x) Growth model (exponential case only).
- xi) Decay model (exponential case only).
- xii) Plotting of recursive sequences.
- xiii) Study the convergence of sequences through plotting.
- xiv) Verify Bolzano-Weierstrass theorem through plotting of sequences and hence identify convergent subsequences from the plot.
- xv) Study the convergence/divergence of infinite series by plotting their sequences of partial sum.
- xvi) Cauchy's root test by plotting nth roots.
- xvii) Ratio test by plotting the ratio of nth and (n+1)th term.

- 1. Gilat, A., MATLAB: An Introduction with Applications, 5th Edition. John Wiley & Sons, 2014.
- 2. Martha L Abell, James P Braselton, Differential Equations with MATHEMATICA, 3rd Ed., Elsevier Academic Press, 2004.
- 3.

ਪੰਜਾਬੀ ਲਾਜ਼ਮੀ BHHL-116A-22 ਬੈਚੂਲਰ ਆਫ ਸਾਇੰਸ (ਸਲੇਬਸ) ਸਮੈਸਟਰ -ਦੁਜਾ

Credit-2-0-0

ਯੂਨਿਟ-1

ਕਵਿਤਾ ਭਾਗ:

ਭਾਈ ਵੀਰ ਸਿੰਘ: ਚਸ਼ਮਾ ਪ੍ਰੋ.ਪੂਰਨ ਸਿੰਘ : ਹੱਲ ਵਾਹੁਣ ਵਾਲੇ ਪ੍ਰੋ.ਮੋਹਨ ਸਿੰਘ : ਕੋਈ ਆਇਆ ਸਾਡੇ ਵਿਹੜੇ ਅੰਮ੍ਰਿਤਾ ਪ੍ਰੀਤਮ: ਅੰਨਦਾਤਾ ਡਾ.ਹਰਿਭਜਨ ਸਿੰਘ: ਤੇਰੇ ਹਜ਼ੂਰ ਮੇਰੀ ਹਾਜ਼ਰੀ ਦੀ ਦਾਸਤਾਨ ਸ਼ਿਵ ਕੁਮਾਰ ਬਟਾਲਵੀ: ਕੰਡਿਆਲੀ ਥੋਰ੍ਹ ਪਾਸ਼: ਇਨਕਾਰ ਸੁਰਜੀਤ ਪਾਤਰ: ਹੁਣ ਘਰਾਂ ਨੂੰ ਪਰਤਣਾ **ਕਹਾਣੀ ਭਾਗ:** ਸੁਜਾਨ ਸਿੰਘ :ਕੁਲਫੀ ਕੁਲਵੰਤ ਸਿੰਘ ਵਿਰਕ : ਤੂੜੀ ਦੀ ਪੰਡ ਗੁਰਦਿਆਲ ਸਿੰਘ : ਸਾਂਝ ਸੰਤੋਖ ਸਿੰਘ ਧੀਰ: ਕੋਈ ਇਕ ਸਵਾਰ ਮੋਹਨ ਭੰਡਾਰੀ :ਘੋਟਣਾ ਵਰਿਆਮ ਸਿੰਘ ਸੰਧੁ : ਆਪਣਾ ਆਪਣਾ ਹਿੱਸਾ

ਯੂਨਿਟ-2 (ਭਾਸ਼ਾ ਤੇ ਲਿਪੀ)

ਭਾਸ਼ਾ ਦਾ ਟਕਸਾਲੀ ਰੂਪ, ਭਾਸ਼ਾ ਤੇ ਉਪ-ਭਾਸ਼ਾ ਵਿਚ ਅੰਤਰ, ਪੰਜਾਬੀ ਦੀਆਂ ਉਪ-ਭਾਸ਼ਾਵਾਂ ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਉਪਰ ਪਏ ਪ੍ਰਭਾਵ ਭਾਸ਼ਾ ਤੇ ਲਿਪੀ, ਗੁਰਮੁਖੀ ਲਿਪੀ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ

ਯੂਨਿਟ-3 (ਲੇਖਣੀ-ਕਲਾ)

ਪੈਰ੍ਹਾ ਰਚਨਾ ਅਨੁਵਾਦ: ਅੰਗਰੇਜ਼ੀ ਤੋਂ ਪੰਜਾਬੀ, ਪੰਜਾਬੀ ਤੋਂ ਅੰਗਰੇਜ਼ੀ ਦਫਤਰੀ ਚਿੱਠੀ ਪੱਤਰ

ਸਾਹਿਤ ਦੇ ਰੰਗ (ਸੰਪ.ਡਾ.ਮਹਿਲ ਸਿੰਘ),ਰਵੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ,ਪਹਿਲੀ ਵਾਰ, 2016.

ਮੁਢਲੀ ਪੰਜਾਬੀ BHHL-116B-22 ਬੈਚੂਲਰ ਆਫ ਸਾਇੰਸ (ਸਲੇਬਸ) ਸਮੈਸਟਰ -ਦੂਜਾ

Credit-2-0-0

ਯੂਨਿਟ-1

ਪੈਂਤੀ ਅੱਖਰੀ (ਵਰਣਮਾਲਾ), ਅੱਖਰ ਕ੍ਰਮ ਮਾਤਰਾਵਾਂ : ਮੁਢਲੀ ਜਾਣ-ਪਛਾਣ

ਲਗਾਖਰ :ਬਿੰਦੀ, ਟਿੱਪੀ, ਅੱਧਕ

ਪੰਜਾਬੀ ਸ਼ਬਦ ਬਣਤਰ: ਮੁਢਲੀ ਜਾਣ-ਪਛਾਣ

ਮੁਲ ਸ਼ਬਦ , ਅਗੇਤਰ, ਪਿਛੇਤਰ

ਸਮਾਨਾਰਥਕ ਸ਼ਬਦ, ਵਿਰੋਧਾਰਥਕ ਸ਼ਬਦ

ਸ਼ੁੱਧ- ਅਸ਼ੁੱਧ: ਦਿੱਤੇ ਪੈਰ੍ਹੇ ਵਿੱਚੋਂ ਅਸ਼ੁੱਧ ਸ਼ਬਦ ਨੂੰ ਸ਼ੁੱਧ ਕਰਨਾ

ਯੂਨਿਟ-2

ਹਫਤੇ ਦੇ ਸੱਤ ਦਿਨਾਂ ਦੇ ਨਾਂ ਬਾਰ੍ਹਾਂ ਮਹੀਨਿਆਂ ਦੇ ਨਾਂ ਰੁੱਤਾਂ ਦੇ ਨਾਂ ਇਕ ਸੈ ਤੱਕ ਗਿਣਤੀ ਸ਼ਬਦਾਂ ਵਿਚ ਰੋਜ਼ਾਨਾ ਵਰਤੋਂ ਦੀ ਪੰਜਾਬੀ ਸ਼ਬਦਾਵਲੀ: ਬਾਜ਼ਾਰ, ਵਪਾਰ,ਰਿਸ਼ਤੇ-ਨਾਤੇ ਤੇ ਕਿੱਤਿਆਂ ਸਬੰਧੀ।

ਯੂਨਿਟ-3

ਸ਼ਬਦ ਸ਼੍ਰੇਣੀਆਂ : ਪਛਾਣ ਤੇ ਵਰਤੋਂ-ਨਾਂਵ, ਪੜਨਾਂਵ, ਵਿਸ਼ੇਸ਼ਣ, ਕਿਰਿਆ, ਕਿਰਿਆ ਵਿਸ਼ੇਸ਼ਣ ਪੰਜਾਬੀ ਵਾਕ ਬਣਤਰ : ਸਧਾਰਣ ਵਾਕ ਸੰਯੁਕਤ ਵਾਕ ਮਿਸ਼ਰਤ ਵਾਕ

BHIC-111-22	CHEMI	STRY-I	L-3, T-1, P-0	Cr	edits:4
Prerequisite: Subj	ect knowledge of s	enior secondary le	evel		
Objective(s):	1. To teach	the fundamenta	concepts of In	organic Ch	emistry and
	chemical b	oonding.			
			ciples, chemical	reaction a	and reaction
	mechanism	ns of organic con	npounds.		
At the end of the					
	derstand the fund		ts and postulates	of various	theories
	arding the struct				
	arn about the var	-	-	• •	-
	derstand the fu				
	ucture, bonding				
	study the vario			0	•
	learn the funda		-		
	chanisms along				various
tyı	pes of substitution	on addition and	elimination rea	ctions	
M	apping of cours	e outcomes with	the program o	utcomes	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	1	-	-	2	2
CO2	2	1	1	2	1
CO3	1	2	2	2	2
CO4	-	2	1	1	2
CO5	-	2	1	1	2

Course Title: Chemistry-I Course Code: BHIC-111-22

Unit-I

Atomic Structure: Bohr's theory and its limitations and atomic spectrum of hydrogen atom. Wave mechanics: deBroglie equation, Heisenberg's Uncertainty Principle and its significance, Schrödinger's wave equation, significance of ψ and ψ_2 . Quantum numbers and their significance. Radial and angular wave functions for hydrogen atom. Radial and angular distribution curves. Shapes of *s*, *p*, *d* and *f* orbitals. Contour boundary and probability diagrams. Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations.

Chemical Bonding-I: Ionic bond: General characteristics, types of ions, size effects, radius ratio rule and its limitations, Packing of ions in crystals, Born-Landé equation with derivation and importance of Kapustinskii expression for lattice energy. Madelung constant, Born-Haber cycle and its application.

Unit-II

Chemical Bonding-II: Covalent bond: Lewis structure, Valence Bond theory (Heitler London approach), Valence shell electron pair repulsion theory (VSEPR), shapes of simple molecules and ions containing lone pairs and bond pairs of electrons, Covalent character in ionic compounds, polarizing power and polarizability. Fajan's rules and consequences of polarization. Molecular orbital theory. Molecular orbital diagrams of diatomic and simple polyatomic molecules N₂, O₂, C₂, B₂, F₂, CO NO, and their ions.

Unit-III

Basics of Organic Chemistry Organic Compounds:

Classification, and Nomenclature, Hybridization, Influence of hybridization on bond properties. Electronic Displacements: Inductive, electromeric, resonance and mesomeric effects, hyper conjugation and their applications; Dipole moment; Homolytic and Heterolytic fission with suitable examples. Curly arrow rules, Electrophiles and Nucleophiles; Nucleophilicity and basicity; Types, shape and their relative stability of Carbocations, Carbanions, Free radicals and Carbenes.

Chemistry of Aliphatic Hydrocarbons-I:

Formation of alkanes, Wurtz Reaction, Wurtz-Fittig Reactions, Free radical substitutions: Halogenation -relative reactivity and selectivity.

Unit-IV

Chemistry of Aliphatic Hydrocarbons-II:

Formation of alkenes and alkynes by elimination reactions, Mechanism of E1, E2, E1cb reactions. Saytzeff and Hofmann eliminations. Reactions of alkenes: Electrophilic additions their mechanisms (Markownikoff/ Anti Markownikoff addition), mechanism of oxymercuration-demercuration, hydroborationoxidation, ozonolysis, reduction (catalytic and chemical).

Aromatic Hydrocarbons Aromaticity:

Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions and heterocyclic compounds with suitable examples. Electrophilic aromatic substitution: halogenation, nitration, sulphonation and Friedel-Craft's alkylation/acylation with their mechanism.

Reference Books

1 Lee, J.D. Concise Inorganic Chemistry, ELBS, 1991.

2 Cotton, F.A. & Wilkinson, G. Advanced Inorganic Chemistry, Wiley, VCH, 1999

3 Douglas, B.E; Mc Daniel, D.H. & Alexander, J.J. Concepts & Models of Inorganic

Chemistry 3rd Ed., John Wiley Sons, N.Y. 1994

4 Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

5 Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education)

BHIC-112	2-22	Chem	istry Lab-I	L-0, T-0, F	P-4 Credi	ts: 02			
Pre-requi	Pre-requisite: Understanding of senior secondary level Chemistry								
Course Objectives: The objective of this course is to provide practical knowledge and									
illustrative experiments about various types of inorganic titrations and general organic									
techniques									
Course O	utcor	nes: At the end	d of the course,	the students will	be able to				
CO1	Lea	Learn the quantitative analysis of various metal ions/cations and anions.							
CO2	Uno	derstand the va	rious principles	of different tech	nniques involve	ed in the			
	quantitative analysis.								
CO3	Learn the basic qualitative techniques								
CO4	Lea	rn chromatogr	aphic technique	s for the identifi	cation and sepa	aration of			
	con	npounds							
CO5	Lea	rn about the ap	oplications of ba	sic techniques					
		Mapping of c	ourse outcomes	with the prog	ram outcomes				
		PSO1	PSO2	PSO3	PSO4	PSO5			
CO1		1	2	2	1	2			
CO2		2	1	2	2	2			
CO3		1	2	2	2	2			
CO4		2	2	1	2	2			
CO5		1	1	1	2	2			

Course Title: Chemistry Lab-I Course Code: BHIC-112-22

Part-I

(A) Acid-Base Titrations

- (i) Estimation of carbonate and hydroxide present together in mixture.
- (ii) Estimation of carbonate and bicarbonate present together in a mixture.
- (iii) Estimation of free alkali present in different soaps/detergents

(B) Oxidation-Reduction Titrations

- (i) Estimation of Fe(II) and oxalic acid using standardized KMnO₄ solution.
- (ii) Estimation of oxalic acid and sodium oxalate in a given mixture.
- (iii) Estimation of Fe(II) with K₂Cr₂O₇ using internal (diphenylamine, anthranilic acid) and external indicator.

Part-II

- (i) Checking the calibration of the thermometer
- (ii) Purification of organic compounds by crystallization using the following solvents:a) Water b) Alcohol, and c) Alcohol-Water.
- (iii) Determination of the melting points of above compounds and unknown organic compounds (Kjeldahl method and electrically heated melting point apparatus)
- (iv) Effect of impurities on the melting point mixed melting point of two unknown organic compounds
- (v) Determination of boiling point of liquid compounds. (boiling point lower than and more than 100°C by distillation and capillary method)
- (vi) Chromatography a) Separation of a mixture of two amino acids by ascending and horizontal paper chromatography b) Separation of a mixture of two sugars by ascending paper chromatography, c) Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC)

Reference Books:

1. Vogel, A.I. A Textbook of Quantitative Inorganic Analysis, ELBS.

2. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009).

3. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson (2012).

BBA-GE 18	201-	Managerial Economics II			L-5, T-1,	, P-0	6 Credits
Pre-requi	site: Unde	erstanding of	basic knowle	dge of Man	agerial Econo	omics	
income, infla	ation and ur		hich an objecti		-	-	urement of nationa nomic environmen [.]
	1	After comple					
CO1		the concept of n					aches.
CO2		e the underlying				•	
CO3		se of employment nomy in quantita		income statist	ics students will	l be able to d	escribe and analyze
CO4	Interpre	t macroeconom	ic issues like m	oney, inflation	and unemployn	nent.	
CO5	Identify econom	•	e business cycl	e and the probl	ems caused by c	cyclical fluctu	ations in the marke
	Ν	Aapping of c	ourse outcoi	mes with the	e program ou	itcomes	
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	2	2	2	3	2	2	-
CO2	3	2	2	3	2	3	
CO3	2	3	3	2	2	3	3
<u> </u>	2	2	3	3	3	2	3
CO4							

Course Title: Managerial Economics II

Course Code: BBAGE 201-18

UNIT-I

National Income: Measuring National Income. Problems in the measurement of National Income. Theories of Money: Nature and functions of money – Types of money: Near money, inside money and outside money. Theories of demand for money – defining demand for money – Classical theories of demand for money – Friedman's re-statement of Quantity Theory of Money; Liquidity preference theory and Keynesian Liquidity Trap. Theories of Supply of money; Defining supply of money; Measuring supply of money.

UNIT-II

Theories of Inflation and Unemployment: Meaning, Types and Theories of Inflation. - Cost of inflation and sacrifice ratio. - Measurement of Inflation in India - Policies to control inflation Meaning and types of unemployment. - Cost of unemployment and Oakun's Law Measurement of unemployment in India. - Concept of Stagflation - Concept of Philips Curve.

Unit-III

Business cycle: Meaning, types and phases. Monetary, Fiscal and Income policy – Meaning and instruments. Multiplier: Concept, Features and Leakages. Foreign trade multiplier.

Unit-IV

Macro-economic Framework in Indian Economy–Public Finance–Tax system in India– Financial Administration: Finance Commission.

RECOMMENDED BOOKS:

1. Ahuja, H.L.(2015) Macroeconomics-Theory and Policy. New Delhi: Sultan Chand.

2. Jhingan, M.L. (2016) Macro Economic Theory. Delhi: Vrinda Publications Pvt. Ltd

3. Dwivedi, D.N.(2017)Macroeconomics: Theory and Practice: Theory & Practice. New Delhi: McGraw Hill.

4. Jain, T.R., Khanna, O.P.(2014) Managerial Economics: V.K. Publications

5. Dewett, K.K., Navalur, M.H., (2006) Modern Economic Theory: New Delhi: Sultan Chand.