Scheme & Syllabus of

Bachelor of Science in Artificial Intelligence and Machine Learning B.Sc. (AI & ML)

Batch 2020 onwards

By

Board of Study Computer Applications

Department of Academics I.K.GujralPunjab Technical University

Page 1 of

Bachelor of Science in Artificial Intelligence and Machine Learning B.Sc.(AI & ML):

It is an Under Graduate (UG) Programme of 3 years duration (6 semesters)

Eligibility: All those candidates who have passed 10+2 in Non-Medical from recognized Board / University / Council with atleast 50% marks (45% marks in case of candidate belonging to Reserved Category) in aggregate.

<u>First Semester</u>

Course Code	Course Type	Course Title	Loa	ad ocatio		Marks Distribut	tion	Total Cr Marks	Credits
			L	T	P	Internal	External	Marks	
UGCA1901	Core Theory	Mathematics	3	1	0	40	60	100	4
UGCA1902	Core Theory	Fundamentalsof	3	1	0	40	60	100	4
		Computer and IT							
UGCA1914	Core Theory	Programming in	3	1	0	40	60	100	4
		Python							
UGCA1958	Core	Workshop on	0	0	4	60	40	100	2
	Practical/Laboratory	Multimedia Tools							
UGCA1917	Core	Programming in	0	0	4	60	40	100	2
	Practical/Laboratory	Python Laboratory							
UGCA1906	Core	Fundamentals of	0	0	4	60	40	100	2
	Practical/Laboratory	Computer and							
		IT Laboratory							
BTHU103/18	Ability Enhancement Compulsory Course (AECC)-I	English	1	0	0	40	60	100	1
BTHU104/18	Ability Enhancement Compulsory Course (AECC)	English Practical/Laboratory	0	0	2	30	20	50	1
HVPE101-18	Ability Enhancement Compulsory Course (AECC)	Human Values, De- addiction and Traffic Rules	3	0	0	40	60	100	3
HVPE102-18	Ability Enhancement Compulsory Course (AECC)	Human Values, De- addiction and Traffic Rules (Lab/ Seminar)*	0	0	1	25	0	25	1
BMPD102-18		Mentoring and Professional Development *#	0	0	1	25	0	25	1
	TOTAL		13	03	16	460	440	900	25

* The Human Values, De-addiction and Traffic Rules (Lab/ Seminar) and Mentoring and Professional Development course will have internal evaluation only.

See guidelines at the last page of this file

Second Semester

Course Code	Course Type	Course Title	Loa Alle	nd ocati	on	Marks Distribut	ion	Total Marks	Credits
			L	Т	Р	Internal	External		
UGCA1907	Core Theory	Fundamentals of Statistics	3	1	0	40	60	100	4
UGCA1923	Core Theory	Operating Systems	3	1	0	40	60	100	4
UGCA1915	Core Theory	Data Structures	3	1	0	40	60	100	4
UGCA1918	Core	Data Structures	0	0	4	60	40	100	2
	Practical/Laboratory	Laboratory							
UGCA1926	Core	Operating Systems	0	0	4	60	40	100	2
	Practical/Laboratory	Laboratory							
UGCA1911	Core	Fundamentals of	0	0	4	60	40	100	2
	Practical/Laboratory	Statistics Laboratory							
EVS102-18	Ability Enhancement	Environmental	2	0	0	40	60	100	2
	Compulsory Course (AECC) -III	Science							
BMPD202-18		Mentoring and	0	0	1	25		25	1
		Professional Development							
	TOTAL		11	3	13	365	360	725	21

Course Code	Course Type	Course Title		Load Allocation		Marks Distribu	tion	Total Marks	Credits
			L	Т	Р	Internal	External		
UGCA1973	Core Theory	Artificial Intelligence	3	1	0	40	60	100	4
UGCA1979	Core Theory	Design and Analysis of Algorithms	3	1	0	40	60	100	4
UGCA1922	Core Theory	Database Management Systems	3	1	0	40	60	100	4
UGCA1982	Core Practical/Laboratory	Design and Analysis of Algorithms Lab	0	0	4	60	40	100	2
UGCA1925	Core Practical/Laboratory	Database Management Systems Lab	0	0	4	60	40	100	2
UGCA1976	Core Practical/Laboratory	Artificial Intelligence Lab	0	0	4	60	40	100	2
UGCA1959	Skill Enhancement Course-I	Internet Tools and Applications	1	0	0	40	60	100	1
UGCA1960	Skill Enhancement Course- Laboratory	Internet Tools and Application Lab	0	0	2	30	20	50	1
		Mentoring and Professional Development *#	0	0	1	25	0	25	1
	TOTAL		10	03	15	395	380	775	21

Semester -Fourth

Course Code	Course Type	Course Title	Load Allocation		Marks Distribut	ion	Total Marks	Credits	
			L	Т	Р	Internal	External		
UGCA1977	Core Theory	Machine Learning	3	1	0	40	60	100	4
UGCA1978	Core Theory	Data Science	3	1	0	40	60	100	4
UGCA1974	Core Theory	Image Processing	3	1	0	40	60	100	4
UGCA1980	Core Practical/Laboratory	Machine Learning Lab	0	0	4	60	40	100	2
UGCA1981	Core Practical/Laboratory	Data Science Lab	0	0	4	60	40	100	2
UGCA1975	Core Practical/Laboratory	Image Processing Lab	0	0	4	60	40	100	2
UGCA1983	Skill Enhancement Course-II	Advance Python Programming	3	0	0	40	60	100	1
UGCA1984	Skill Enhancement Course- Laboratory	Advance Python Programming Lab	0	0	2	30	20	50	1
		Mentoring and Professional Development *#	0	0	1	25	0	25	1
	TOTAL		12	03	15	395	380	775	21

Fifth Semester

Course Code	Allocation		Marks Distribu	tion	Total Marks	Credits			
			L	Т	Р	Internal	External		
UGCA1946	Skill Enhancement Course-III	R Programming	3	0	0	40	60	100	3
UGCA1952	Skill Enhancement Course- Laboratory	R Programming Laboratory	0	0	4	30	20	50	2
	Open Elective-I		3	0	0	40	60	100	3
	Elective-I		3	1	0	40	60	100	4
	Elective-II		3	1	0	40	60	100	4
	Elective-I Laboratory		0	0	4	60	40	100	2
	Elective-II Laboratory		0	0	4	60	40	100	2
UGCA1999	Project	Project 1	0	0	2	60	40	100	1
UGCA2000	Seminar	Seminar	0	0	2	50	-	50	1
BMPD502-18		Mentoring and Professional Development	0	0	1	25	-	25	1
	TOTAL	_	12	02	17	445	380	825	23

In case Open elective is not available, the student can opt for open elective 1 from the give list of elective subjects (theory only):

Course Code

UGCA1994

Elective -I					
Course Code	Course Title				
UGCA1993	Natural Language Processing				
UGCA1991	Web Mining & Recommender System				
UGCA 1936	Cloud Computing				

		Lab			
	UGCA1992	Web Mining & Recommender			
		System Lab			
	UGCA 1942	Cloud Computing Lab			
1	Г				
	E	Elective-II Laboratory			
1	Course Code	Course Title			
I	Course Coue				

Elective-I Laboratory Course Title

Natural Language Processing

	Elective-II						
Course Code	Course Title						
UGCA1995	Modelling and Simulation						
UGCA1997	Deep Learning						
UGCA1989	Neural Network						

Elective-II Laboratory						
Course Code Course Title						
UGCA1996	Modelling and Simulation Lab					
UGCA1998	Deep Learning Lab					
UGCA1990	Neural Network Lab					

Semester –Sixth

Course Code	Course Type	Course Title		Load Allocation		Marks Distribu	tion	Total Marks	Credits
			L	Т	Р	Internal	External		
UGCA2014	Skill Enhancement Course-III	Weka- Open Source Software Tool	3	0	0	40	60	100	3
UGCA2015	Skill Enhancement Course- Laboratory	Weka- Open Source Software Tool Lab	0	0	4	30	20	50	2
	Open Elective-I		3	0	0	40	60	100	3
	Elective-I		3	1	0	40	60	100	4
	Elective-II		3	1	0	40	60	100	4
	Elective-I Laboratory		0	0	4	60	40	100	2
	Elective-II Laboratory		0	0	4	60	40	100	2
UGCA2020	Project	Project 2	0	0	4	60	40	100	2
BMPD502-18		Mentoring and Professional Development	0	0	1	25	-	25	1
	TOTAL		12	02	17	445	380	825	23

In case Open elective is not available, the student can opt for open elective 1 from the give list of elective subjects (theory only):

	Elective –I			Elective-I Laboratory
Course Code	Course Title		Course Code	Course Title
UGCA2016	Business Intelligence		UGCA2017	Business Intelligence Lab
UGCA2010	Intelligent Systems		UGCA2011	Intelligent Systems Lab
UGCA2018	Geographic Information Systems		UGCA2019	Geographic Information Systems Lab

	Elective-II			lective-II Laboratory
Course Code	Course Title		Course Code	Course Title
UGCA2012	Social network Analysis		UGCA2013	Social network Analysis Lab
UGCA2006	Big Data Analytics		UGCA2007	Big Data Analytics Lab
UGCA2008	Computer Vision		UGCA2009	Computer Vision Lab

Course Code: UGCA1901 Course Name: Mathematics

Program: B.Sc. (AI & ML)	L:3 T:1 P:0
Branch: Computer Applications	Credits: 4
Semester: 1 st	Contact hours: 44 hours
Internal max. marks: 40	Theory/Practical: Theory
External max. marks: 60	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: core/elective: Core

Prerequisite: Student must have the knowledge of Basic Mathematics.

Co requisite:NA.

Additional material required in ESE:-NA-

Course Outcomes: After studying this course, students will be able to:

CO#	Course Outcomes
CO1	Represent data using various mathematical notions.
CO2	Explain different terms used in basic mathematics.
CO3	Describe various operations and formulas used to solve mathematical problems.

Detailed contents	Contact hours
<u>Unit-I</u>	
Set Introduction, Objectives, Representation of Sets (Roster Method, Set	
Builder Method), Types of Sets (Null Set, Singleton Set, Finite Set, Infinite Set,	
Equal Set, Equivalent Set, Disjoint Set, Subset, Proper Subset, Power Set,	12 hours
Universal Set) and Operation with Sets (Union of Set, Intersection of Set,	
Difference of Set, Symmetric Difference of Set) Universal Sets, Complement	
of a Set.	
Unit-II	
Logic Statement, Connectives, Basic Logic Operations (Conjunction,	
Disjunction, Negation) Logical Equivalence/Equivalent Statements,	10 hours
Tautologies and Contradictions.	
Unit -III	
Matrices Introduction, Types of Matrix (Row Matrix, Column Matrix,	
Rectangular Matrix, Square Matrix, Diagonal Matrix, Scalar Matrix, Unit	12 hours
Matrix, NullMatrix, ComparableMatrix, EqualMatrix), Scalar	
Multiplication, Negative of Matrix, Addition of Matrix, Difference of two	

Matrix, Multiplication of Matrices, Transpose of a Matrix.	
<u>Unit-IV</u>	
Progressions Introduction, Arithmetic Progression, Sum of Finite number of	
quantities in A.P, Arithmetic Means, Geometric Progression, Geometric	10 hours
Mean.	

Text Books:

- 1. Discrete Mathematics and Its Applications by Kenneth H. Rosen, McGraw Hill, 6th Edition.
- 2. College Mathematics, Schaum's Series, TMH.

Reference Books:

- 1. Elementary Mathematics, Dr. RDSharma
- 2. Comprehensive Mathematics, ParmanandGupta
- 3. Elements of Mathematics, MLBhargava
- E Books/ Online learning material
- 1. www.see.leeds.ac.uk/geo-maths/basic_maths.pdf
- 2. www.britannica.com/science/matrix-mathematics
- $\label{eq:schaums-outline-of-discrete-mathematics-third-edition-schaums-e6841453.html} 3. www.pdfdrive.com/schaums-outline-of-discrete-mathematics-third-edition-schaums-e6841453.html$

Course Code: UGCA1902

Course Name: Fundamentals of Computer and IT

Program: B.Sc. (AI & ML)	L: 3 T: 1 P: 0
Branch: Computer Applications	Credits: 4
Semester: 1 st	Contact hours: 44 hours
Internal max. marks: 40	Theory/Practical: Theory
External max. marks: 60	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: -NA-Co requisite:-NA-Additional material required in ESE: -NA-

CourseOutcomes:

CO#	Course outcomes
CO1	Understanding the concept of input and output devices of Computers
CO2	Learn the functional units and classify types of computers, how they process
	information and how individual computers interact with other computing systems and
	devices.
CO3	Understand an operating system and its working, and solve common problems related
	to operating systems
CO4	Learn basic word processing, Spreadsheet and Presentation Graphics Software skills.
CO5	Study to use the Internet safely, legally, and responsibly

Detailed Contents	Contact hours
Unit-I	
Human Computer Interface	
Concepts of Hardware and Software; Data and Information.	
Functional Units of Computer System: CPU, registers, system bus, main memory unit, cache memory, Inside a computer, SMPS, Motherboard, Ports and Interfaces, expansion cards, ribbon cables, memory chips, processors.	12
Devices: Input and output devices (with connections and practical demo), keyboard, mouse, joystick, scanner, OCR, OMR, bar code reader, web camera, monitor, printer, plotter.	
Memory: Primary, secondary, auxiliary memory, RAM, ROM, cache memory, hard disks, optical disks.	

Data Representation: Bit, Byte, Binary, Decimal, Hexadecimal, and Octal Systems, Conversions and Binary Arithmetic (Addition/ Subtraction/ Multiplication) Applications of IT.	
 Unit-II Concept of Computing, Types of Languages: Machine, assembly and High level Language; Operating system as user interface, utility programs. Word processing: Editing features, formatting features, saving, printing, table handling, page settings, spell-checking, macros, mail-merge, equation editors. 	10
 Unit-III Spreadsheet: Workbook, worksheets, data types, operators, cell formats, freeze panes, editing features, formatting features, creating formulas, using formulas, cell references, replication, sorting, filtering, functions, Charts & Graphs. Presentation Graphics Software: Templates, views, formatting slide, slides with graphs, animation, using special features, presenting slide shows. 	10
 Unit-IV The Impact of Computing and Internet on Society Introduction to Secure Electronic Transaction, Types of Payment System: Digital Cash, Electronic Cheque, Smart Card, Credit/Debit Card E-Money, Bit Coins and Crypto currency, Electronic Fund Transfer (EFT), Unified Payment Interface (UPI), Immediate Payment System (IMPS), Digital Signature and Certification Authority. Concept of Mobile Computing, Cloud Computing, Big Data and Internet of Things (IoT) 	12

Text Books:

- 1. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education
- 2. Fundamentals of Computers, P. K.Sinha& P. Sinha, 2007, BPBPublishers.
- 3. IT Tools, R.K. Jain, Khanna PublishingHouse

4. "Introduction to Information Technology", Satish Jain, AmbrishRai&Shashi Singh, Paperback Edition, BPB Publications, 2014.

Reference Books:

- 1. "Introduction to Computers", Peter Norton
- 2. Computers Today, D. H. Sanders, McGrawHill.
- 3. "Computers", Larry long & Nancy long, Twelfth edition, PrenticeHall.
- 4. Problem Solving Cases in Microsoft Excel, Joseph Brady & Ellen F Monk, ThomsonLearning.
- 5. Computer Fundamentals, A. Goel, 2010, PearsonEducation

E Books/ Online learning material

1. www.sakshat.ac.in

2. https://swayam.gov.in/course/4067-computer-fundamentals

Course Code: UGCA1914 Course Name: Programming in Python

Program: B.Sc. (AI & ML)	L:3 T:1 P:0	
Branch: Computer Applications	Credits: 4	
Semester: 1 st	Contact hours: 44 hours	
Theory/Practical: Theory	Percentage of numerical/design problems: 40%	
Internal max. marks: 40	Duration of end semester exam (ESE):3hrs	
External max. marks: 60	Elective status: Core	
Total marks: 100		

Prerequisite: -NA-Co requisite: -NA-Additional material required in ESE:-NA-

Course Outcomes: Students will be able to:

CO#	Course Outcomes
CO1	Familiar with Python environment, data types, operators used in Python.
CO2	Compare and contrast Python with other programming languages.
CO3	Learn the use of control structures and numerous native data types with their
	methods.
CO4	Design user defined functions, modules, and packages and exception handling
	methods.
CO5	Create and handle files in Python and learn Object Oriented Programming Concepts.

Detailed Contents	Contact hours
Unit-I	
Introduction to Python Programming Language: Programmin	g Language,
History and Origin of Python Language, Features of Python,	Limitations,
Major Applications of Python, Getting, Installing Python, Setting	up Path and
Environment Variables, Running Python, First Python Progr	am, Python
Interactive Help Feature, Python differences from other language	s. 12
	12
Python Data Types & Input/Output: Keywords, Identifi	ers, Python
Statement, Indentation, Documentation, Variables, Multiple	Assignment,
Understanding Data Type, Data Type Conversion, Python Input	and Output
Functions, Import command.	
Operators and Expressions: Operators in Pytho	l,
Expressions, Precedence, Associativity of Operate	ors, Non
AssociativeOperators.	

Unit-II	
 Control Structures: Decision making statements, Python loops, Python control statements. Python Native Data Types: Numbers, Lists, Tuples, Sets, Dictionary, Functions & Methods of Dictionary, Strings (in detail with their methods and operations). 	10
Unit-III	
 Python Functions: Functions, Advantages of Functions, Built-in Functions, User defined functions, Anonymous functions, Pass by value Vs. Pass by Reference, Recursion, Scope and Lifetime of Variables. Python Modules: Module definition, Need of modules, Creating a module, Importing module, Path Searching of a Module, Module Reloading, Standard Modules, PythonPackages. 	12
 Unit-IV Exception Handling: Exceptions, Built-in exceptions, Exception handling, User defined exceptions in Python. File Management in Python: Operations on files (opening, modes, attributes, encoding, closing), read() & write() methods, tell() & seek() methods, renaming & deleting files in Python, directories in Python. Classes and Objects: The concept of OOPS in Python, Designing classes, Creating objects, Accessing attributes, Editing class attributes, Built-in class attributes, Garbage collection, Destroying objects. 	10

Text Books:

- 1. Programming in Python, Pooja Sharma, BPB Publications, 2017.
- 2. Core Python Programming, R. NageswaraRao, 2nd Edition,Dreamtech.

ReferenceBooks:

- 1. Python, The complete Reference, Martin C. Brown, McGraw HillEducation.
- 2. Python in a Nutshell, A. Martelli, A. Ravenscroft, S. Holden, OREILLY.

Course Code: UGCA1958 Course Name: Workshop on Multimedia Tools

Program: B.Sc. (AI & ML)	L:0 T:0 P:4
Branch: Computer Applications	Credits: 2
Semester: 1 st	Contact hours: 2 hours per week
Internal max. marks: 60	Theory/Practical: Practical
External max. marks:40	Duration of end semester exam (ESE): 3hrs
Total marks:100	Elective status: Core

Prerequisite: Basic understanding of computer system and images.

Co requisite: -NA-

Additional material required in ESE: -NA-

Course Outcomes: After completing this course, students will be able to:

CO#	Course outcomes
CO1	Define terms related to multimedia technologies.
CO2	Implement basic image editing.

Detailed contents	Contact hours
Unit-I Introduction: Objectives – History of Multimedia – Its market – Content copyright – Resources for multimedia developers – Types of produces – Evaluation – Hardware Architecture – OS and Software – Multimedia Architecture – Software library – Drivers.	4
 Unit-II Downloading and installing free open source multimedia tool like GIMP, understanding its workspace (toolbox, menus, panels). Paint Tools: Common Features, Dynamics, Brush Tools (Pencil, Paintbrush, Airbrush), Bucket Fill, Blend, Pencil, Paintbrush, Eraser, Airbrush, Ink, Clone, Heal, Perspective Clone, Blur/Sharpen, Smudge, Dodge/Burn, applying fills and outlines – creating default fills and outlines – gradient fill – types – custom fill – copy – clone – mesh – gradient mesh 	8
Unit-III Transform Tools : Common Features, Align, Move, Crop, Rotate, Scale, Shear, Perspective, Flip, The Cage Tool.	5

Color Tools : Overview, Color Balance, Hue-Saturation, Colorize, Brightness-Contrast, Threshold, Levels, Curves, Posterize, Desaturate.	
Unit-IV Animation : Text Animation methods, building an animated GIF, Animating a still image, Morphing, re-synthesizer tool. Designing for a webpage: Web Design tools, Variable and fixed sized designs, Optimizing images for web.	5

* Students can choose multimedia tool of their choice. Recommended tool is GIMP.

Text Book:

- 1. A book of GIMP: A guide to nearly everything, Olivier Lecarme, KarineDelvare Published by no starch press,California.
- 2. Multimedia Technology and Applications David Hillman-GalgotiaPublications pvt. Ltd, 1998.

Course Code: UGCA1917

Course Name: Programming in Python Laboratory

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 1 st	Contacthours: 4 hours per week
Theory/Practical: Practical	Percentage of numerical/design problems: 90%
Internal max. marks: 60	Duration of end semester exam (ESE): 3hrs
External max. marks:40	Elective Status :Core
Total marks: 100	

Prerequisite: -NA-

Co requisite: -NA-

Additional material required in ESE: - Maintain practical note book as per the instructions given by the instructor.

Course Outcomes: Students will be able to :

CO#	Course outcomes
CO1	Solve simple to advanced problems using Python language.
CO2	Develop logic of various programming problems using numerous data types and
	control structures of Python.
CO3	Implement different data structures.
CO4	Implement modules and functions.
CO5	Design and implement the concept of object oriented programming structures.
CO6	Implement file handling.

List of assignments:

	8
1.	Compute sum, subtraction, multiplication, division and exponent of given variables
	input by the user.
2.	Compute area of following shapes: circle, rectangle, triangle, square, trapezoid and
	parallelogram.
3.	Compute volume of following 3D shapes: cube, cylinder, cone and sphere.
4.	Compute and print roots of quadratic equation $ax^2+bx+c=0$, where the values of a, b,
	and c are input by the user.
5.	Print numbers up to N which are not divisible by 3, 6, 9,, e.g., 1, 2, 4, 5, 7,
6.	Write a program to determine whether a triangle is isosceles or not?
7.	Print multiplication table of a number input by the user.
8.	Compute sum of natural numbers from one to n number.
9.	Print Fibonacci series up to n numbers e.g. 0 1 1 2 3 5 8 13n
10.	Compute factorial of a given number.
11.	Count occurrence of a digit 5 in a given integer number input by the user.

10	
12.	Print Geometric and Harmonic means of a series input by the user.
13.	Evaluate the following expressions:
	a. $x-x^2/2!+x^3/3!-x^4/4!+x^n/n!$
	b. $x-x^3/3!+x^5/5!-x^7/7!+x^n/n!$
14.	Print all possible combinations of 4, 5, and 6.
15.	Determine prime numbers within a specific range.
16.	Count number of persons of age above 60 and below 90.
17.	Compute transpose of a matrix.
18.	Perform following operations on two matrices.
	1) Addition 2) Subtraction 3) Multiplication
19.	Count occurrence of vowels.
20.	Count total number of vowels in a word.
21.	Determine whether a string is palindrome or not.
22.	Perform following operations on a list of numbers:
	1) Insert an element 2) delete an element 3) sort the list 4) delete entire list
23.	Display word after Sorting in alphabetical order.
24.	Perform sequential search on a list of given numbers.
25.	Perform sequential search on ordered list of given numbers.
26.	Maintain practical note book as per their serial numbers in library using Python
	dictionary.
27.	Perform following operations on dictionary
	1) Insert 2) delete 3) change
28.	Check whether a number is in a given range using functions.
29.	Write a Python function that accepts a string and calculates number of upper case
	letters and lower case letters available in that string.
30.	To find the Max of three numbers using functions.
31.	Multiply all the numbers in a list using functions.
32.	Solve the Fibonacci sequence using recursion.
33.	Get the factorial of a non-negative integer using recursion.
34.	Write a program to create a module of factorial in Python.
35.	Design a Python class named <i>Rectangle</i> , constructed by a length & width, also
	design a method which will compute the area of a rectangle.
36.	Design a Python class named <i>Circle</i> constructed by a radius and two methods which
	will compute the area and the perimeter of a circle.
37.	Design a Python class to reverse a string 'word by word'.
38.	Write a Python program to read an entire <i>text file</i> .
39.	Design a Python program to read first n lines of a <i>text file</i> .
40.	Construct a Python program to write and append text to a file and display the text.

Text Books:

- 1. Programming in Python, Pooja Sharma, BPB Publications, 2017.
- 2. Core Python Programming, R. NageswaraRao, 2ndEdiiton,Dreamtech.

ReferenceBooks:

1. Python, The complete Reference, Martin C. Brown, McGraw HillEducation.

.....

2. Python in a Nutshell, A. Martelli, A. Ravenscroft, S. Holden, OREILLY.

Page 20 of 110

Course Code: UGCA1906

Course Name:Fundamentals of Computer and ITLaboratory

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 1 st	Contact hours: 4 hours per week
Internal max. marks: 60	Theory/Practical: Practical
External max. marks: 40	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: -NA-Co requisite:-NA-Additional material required in ESE: -NA-

CourseOutcomes:

CO#	Course outcomes
CO1	Familiarizing with Open Office (Word processing, Spreadsheets and
	Presentation).
CO2	To acquire knowledge on editor, spread sheet and presentation software.
CO3	The students will be able to perform documentation and accounting operations.
CO4	Students can learn how to perform presentation skills.

Instructions:

Word Ori	Word Orientation:	
The instructor needs to give an overview of word processor.		
Details of t	Details of the four tasks and features that would be covered Using word – Accessing,	
overview o	of toolbars, saving files, Using help and resources, rulers, format painter.	
1. U	Using word to create Resume	
F	Features to be covered: - Formatting Fonts in word, Drop Cap in word,	
A	ApplyingTexteffects,UsingCharacterSpacing,BordersandColors,Inserting	
H	Header and Footer, Using Date and Time option in Word.	
2. 0	Creating an Assignment	
F	Features to be covered: - Formatting Styles, Inserting table, Bullets and	
N	Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink,	
S	Symbols, Spell Check, Track Changes.	
3. 0	Creating a Newsletter	
F	Features to be covered :- Table of Content, Newspaper columns, Images from	
fi	iles and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes	
a	and Paragraphs	
4. C	Creating a Feedback form	
F	Features to be covered :- Forms, Text Fields, Inserting objects, Mail Merge in	
V	Word.	
Page 21 of 110		

Excel Orientation:	
The instructor needs to tell the importance of Excel as a Spreadsheet	t tool give the details
of the four tasks and features that would be covered Excel – Accessi	•
	ing, overview of
coolbars, saving excel files,	
1. Creating a Scheduler	C'11
Features to be covered :- Gridlines, Format Cells, Summat	tion, auto fill,
Formatting Text	
2. Calculations	
Features to be covered: - Cell Referencing, Formulae in ex	•
std.deviation, Charts, Renaming and Inserting worksheets,	Hyper linking, Count
function, LOOKUP/VLOOKUP	
3. Performance Analysis	
Features to be covered :- Split cells, freeze panes, group an	nd outline, Sorting,
Boolean and logical operators, Conditional formatting	
4. Game (like Cricket, badminton) Score Card	
Features to be covered :- Pivot Tables, Interactive Buttons,	, Importing Data,
Data Protection, DataValidation	
Presentation Orientation:	
1. Students will be working on basic power point utilities and	tools which help
them create basic power point presentation.	1
Topic covered includes: - PPT Orientation, Slide Layouts,	Inserting Text. Word
Art, Formatting Text, Bullets and Numbering, Auto Shape	
2. This session helps students in making their presentations in	
Topics covered includes : Hyperlinks, Inserting –Images, G	
Video, Objects, Tables and Charts	
3. Concentrating on the in and out of Microsoft power point.	Helps them learn best
practices in designing and preparing power point presentat	
Topics covered includes: - Master Layouts (slide, template	
views (basic, presentation, slide slotter, notes etc), Inse	
textures, Design Templates, Hidden slides. Auto content w	• •
Transition, Custom Animation, Auto Rehearsing	izaru, snuc
	en model nower noint
4. Power point test would be conducted. Students will be give	en moder power point
presentation which needs to be replicated	
Internet and its Applications:	
The instructor needs to tell the how to configure Web Browser and to	o use search engines
by defining search criteria using Search Engines	'1
1. To learn to setup an e-mail account and send and receive e	
2. To learn to subscribe/post on a blog and to use torrents for	accelerated
downloads	
3. Hands on experience in online banking and Making an onl	line payment for any
domestic bill	

Reference Books:

- 1. IT Tools, R.K. Jain, Khanna PublishingHouse
- 2. Introduction to Information Technology, ITL Education Solutions limited, PearsonEducation
- 3. Introduction to information technology, Turban, Rainer and Potter, John Wiley and Sons
- 4. Problem Solving Cases in Microsoft Excel, Joseph Brady & Ellen F Monk, ThomsonLearning

Course Code: BTHU103/18

Course Name: English (Ability Enhancement Compulsory Course (AECC)-I))

Program: B.Sc. (AI & ML)	L: 1T: 0P: 0
Branch: Computer Applications	Credits:1
Semester: 1 st	Contact hours: 11 hours
Internal max. marks: 40	Theory/Practical: Theory
External max. marks: 60	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: -NA-Co requisite:-NA-Additional material required in ESE: -NA-

CourseOutcomes:

CO#	Course outcomes
CO1	The objective of this course is to introduce students to the theory, fundamentals and
	tools of communication.
CO2	To help the students become the independent users of English language
CO3	To develop in them vital communication skills which are integral to their personal,
	social and professional interactions.
CO4	The syllabus shall address the issues relating to the Language of communication.
CO5	Students will become proficient in professional communicationsuch as interviews,
	group discussions, office environments, important reading skills as well as writing
	skills such as report writing, note taking etc.

The recommended readings given at the end are only suggestive; the students and teachers have the freedom to consult other materials on various units/topics given below. Similarly, the questions in the examination will be aimed towards assessing the skills learnt by the students rather than the textual content of the recommended books.

Detailed Contents:

Unit1-1 (Introduction)

- Theory of Communication
- Types and modes of Communication

Unit- 2 (Language of Communication)

- Verbal and Non-verbal
- (Spoken andWritten)
- Personal, Social andBusiness
- Barriers and Strategies
- Intra-personal, Inter-personal and Groupcommunication

I. K. Gujral Punjab Technical University

Bachelor of Science in Artificial Intelligence & Machine Learning (B.Sc. AI & ML)

Unit-3 (Reading and Understanding)

- CloseReading
- Comprehension
- SummaryParaphrasing
- Analysis and Interpretation
- Translation(from Hindi/Punjabi to English andvice-versa) OR

Precis writing /Paraphrasing (for International Students)

• Literary/KnowledgeTexts

Unit-4 (Writing Skills)

- Documenting
- ReportWriting
- Makingnotes
- Letterwriting

Recommended Readings:

- 1. Fluency in English Part II, Oxford University Press, 2006.
- 2. Business English, Pearson, 2008.
- 3. Language, Literature and Creativity, Orient Blackswan, 2013.
- 4. *Language through Literature* (forthcoming) ed. Dr. Gauri Mishra,DrRanjanaKaul, DrBratiBiswas
- 5. On Writing Well. William Zinsser. Harper Resource Book.2001
- 6. *Study Writing*. Liz Hamp-Lyons and Ben Heasly.Cambridge University Press.2006.

Course Name: English Practical/Laboratory (Ability Enhancement Compulsory Course (AECC))

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:2
Branch: Computer Applications	Credits: 1
Semester: 1 st	Contact hours: 2 hours per week
Internal max. marks:30	Theory/Practical: Practical
External max. marks:20	Duration of end semester exam (ESE): 3hrs
Total marks:50	Elective status: Core

Prerequisite: -NA-Co requisite:-NA-Additional material required in ESE: -NA-

CourseOutcomes:

CO#	Course outcomes
CO1	The objective of this course is to introduce students to the theory, fundamentals
	and tools of communication.
CO2	To help the students become the independent users of English language.
CO3	To develop in them vital communication skills which are integral to personal,
	social and professional interactions.
CO4	The syllabus shall address the issues relating to the Language of communication.
CO5	Students will become proficient in professional communication such as
	interviews, group discussions and business office environments, important
	reading skills as well as writing skills such as report writing, note taking etc.

The recommended readings given at the end are only suggestive; the students and teachers have the freedom to consult other materials on various units/topics given below. Similarly, the questions in the examination will be aimed towards assessing the skills learnt by the students rather than the textual content of the recommended books.

Interactive practice sessions in Language Lab on Oral Communication

- ListeningComprehension
- Self Introduction, Group Discussion and RolePlay
- Common Everyday Situations: Conversations and Dialogues
- Communication atWorkplace
- Interviews
- FormalPresentations
- Monologue
- Effective Communication/ Mis-Communication

• PublicSpeaking

Recommended Readings:

 Fluency in English - Part II, Oxford University Press,2006.
 Business English, Pearson,2008.
 Practical English Usage. Michael Swan. OUP.1995.
 Communication Skills. Sanjay Kumar and PushpLata.Oxford University Press.2011.
 Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford UniversityPress

Course Code: HVPE101-18

Course Name: Human Values, De-addiction and Traffic Rules

Program: B.Sc. (AI & ML)	L: 3 T: 0 P:0
Branch: Computer Applications	Credits: 3
Semester: 1 st	Contact hours: 33 hours
Internal max. marks: 40	Theory/Practical: Theory
External max. marks: 60	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Ability Enhancement

Prerequisite: -NA-Co requisite:-NA-Additional material required in ESE: -NA-

CourseOutcomes:

CO#	Course outcomes
CO1	To help the students appreciate the essential complementarily between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
CO2	To facilitate the development of a Holistic perspective among students towards life, profession and happiness, based on a correct understanding of the Human reality and the rest of Existence. Such a holistic perspective forms the basis of Value based living in a natural way.
CO3	To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually satisfying human behavior and mutually enriching interaction with Nature.

Note: This course is intended to provide a much needed orientational input in Value Education to the young enquiring minds.

Detailed Contents	Contact hours
Unit-I	
Course Introduction - Need, Basic Guidelines, Content and Process for	
Value Education	
1. Understanding the need, basic guidelines, content and process for	
ValueEducation	8
2. Self-Exploration-what is it? - its content and process; 'Natural	0
Acceptance' and Experiential Validation- as the mechanism for self-	
exploration	
3. Continuous Happiness and Prosperity- A look at basic	
HumanAspirations	
4. Right understanding, Relationship and Physical Facilities- thebasic	

	requirements for fulfillment of aspirations of every human being with	
_	their correct priority	
5.	Understanding Happiness and Prosperity correctly- A critical	
6	appraisal of the current scenario	
0.	Method to fulfill the above human aspirations: understanding and	
	living in harmony at variouslevels	
Unit-I	Ι	
Under	standing Harmony in the Human Being - Harmony in Myself!	
1.	Understanding human being as a co-existence of the sentient 'I' and	
	the material'Body'	
2.	Understanding the needs of Self ('I') and 'Body' - SukhandSuvidha	
3.	Understanding the Body as an instrument of 'I' (I being the doer, seer andenjoyer)	
4.	Understanding the characteristics and activities of 'I' and harmony in	8
	ʻI'	
5.	Understanding the harmony of I with the Body: Sanyamand Swasthya;	
	correct appraisal of Physical needs, meaning of Prosperity indetail	
6.	Programs to ensure SanyamandSwasthya	
	- Practice Exercises and Case Studies will be taken up in Practice	
	Sessions.	
Unit-I	П	
Under	standing Hammany in the Family and Casisty Hammany in Haman	
	standing Harmony in the Family and Society- Harmony in Human- In Relationship	
	Understanding harmony in the Family- the basic unit of human	
1.	interaction	
2.	Understandingvaluesinhuman-humanrelationship;meaningof	
	<i>Nyaya</i> and program for its fulfillment to ensure <i>Ubhay-tripti</i> ;	
	Trust (Vishwas) and Respect (Samman) as the foundational values of	
rel	ationship	8
3.	Understanding the meaning of <i>Vishwas</i> ; Difference between intention	
	andcompetence	
4.	Understanding the meaning of <i>Samman</i> , Difference between respect	
	and differentiation; the other salient values inrelationship	
5.	Understanding the harmony in the society (society being an extension	
	of family): Samadhan, Samridhi, Abhay, Sah-astitvaas comprehensive	
	Human Goals	
6.	Visualizing a universal harmonious order in society-Undivided	

	Society (AkhandSamaj), Universal Order (SarvabhaumVyawastha)-	
	from family to world family!	
	- Practice Exercises and Case Studies will be taken up in Practice	
	Sessions.	
	565510115.	
Unit-I	V	
	standing Harmony in the Nature and Existence - Whole existence	
as Co-	existence	
	Understanding the harmony in theNature	
2.	Interconnectedness and mutual fulfillment among the four orders of	
	nature- recyclability and self-regulation innature	4
3.	Understanding Existence as Co-existence (Sah-astitva) of mutually	
	interacting units in all-pervasivespace	
4.	Holistic perception of harmony at all levels of existence	
	- Practice Exercises and Case Studies will be taken up in Practice	
	Sessions.	
Unit-V	7	
Umt-		
Impli		
-	cations of the above Holistic Understanding of Harmony on	
Profes	cations of the above Holistic Understanding of Harmony on sional Ethics	
Profes	cations of the above Holistic Understanding of Harmony on sional Ethics Natural acceptance of humanvalues	
Profes 1. 2.	cations of the above Holistic Understanding of Harmony on sional Ethics Natural acceptance of humanvalues Definitiveness of Ethical HumanConduct	
Profes 1. 2.	eations of the above Holistic Understanding of Harmony on sional Ethics Natural acceptance of humanvalues Definitiveness of Ethical HumanConduct Basis for Humanistic Education, Humanistic Constitution and	
Profes 1. 2. 3.	cations of the above Holistic Understanding of Harmony on sional Ethics Natural acceptance of humanvalues Definitiveness of Ethical HumanConduct Basis for Humanistic Education, Humanistic Constitution and Humanistic UniversalOrder	
Profes 1. 2. 3.	eations of the above Holistic Understanding of Harmony on sional Ethics Natural acceptance of humanvalues Definitiveness of Ethical HumanConduct Basis for Humanistic Education, Humanistic Constitution and Humanistic UniversalOrder Competence in professionalethics:	
Profes 1. 2. 3.	eations of the above Holistic Understanding of Harmony on sional Ethics Natural acceptance of humanvalues Definitiveness of Ethical HumanConduct Basis for Humanistic Education, Humanistic Constitution and Humanistic UniversalOrder Competence in professionalethics: a) Ability to utilize the professional competence for	
Profes 1. 2. 3.	 eations of the above Holistic Understanding of Harmony on sional Ethics Natural acceptance of humanvalues Definitiveness of Ethical HumanConduct Basis for Humanistic Education, Humanistic Constitution and Humanistic UniversalOrder Competence in professionalethics: a) Ability to utilize the professional competence for augmenting universal humanorder, 	5
Profes 1. 2. 3.	 eations of the above Holistic Understanding of Harmony on sional Ethics Natural acceptance of humanvalues Definitiveness of Ethical HumanConduct Basis for Humanistic Education, Humanistic Constitution and Humanistic UniversalOrder Competence in professionalethics: a) Ability to utilize the professional competence for augmenting universal humanorder, b) Ability to identify the scope and characteristics of people- 	5
Profes 1. 2. 3.	 eations of the above Holistic Understanding of Harmony on sional Ethics Natural acceptance of humanvalues Definitiveness of Ethical HumanConduct Basis for Humanistic Education, Humanistic Constitution and Humanistic UniversalOrder Competence in professionalethics: a) Ability to utilize the professional competence for augmenting universal humanorder, b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, 	5
Profes 1. 2. 3.	 eations of the above Holistic Understanding of Harmony on sional Ethics Natural acceptance of humanvalues Definitiveness of Ethical HumanConduct Basis for Humanistic Education, Humanistic Constitution and Humanistic UniversalOrder Competence in professionalethics: a) Ability to utilize the professional competence for augmenting universal humanorder, b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, c) Ability to identify and develop appropriate technologies 	5
Profes 1. 2. 3.	 eations of the above Holistic Understanding of Harmony on sional Ethics Natural acceptance of humanvalues Definitiveness of Ethical HumanConduct Basis for Humanistic Education, Humanistic Constitution and Humanistic UniversalOrder Competence in professionalethics: a) Ability to utilize the professional competence for augmenting universal humanorder, b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, c) Ability to identify and develop appropriate technologies and management patterns for above productionsystems. 	5
Profes 1. 2. 3. 4.	 cations of the above Holistic Understanding of Harmony on sional Ethics Natural acceptance of humanvalues Definitiveness of Ethical HumanConduct Basis for Humanistic Education, Humanistic Constitution and Humanistic UniversalOrder Competence in professionalethics: a) Ability to utilize the professional competence for augmenting universal humanorder, b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, c) Ability to identify and develop appropriate technologies and management patterns for above productionsystems. 	5
Profes 1. 2. 3. 4.	 cations of the above Holistic Understanding of Harmony on sional Ethics Natural acceptance of humanvalues Definitiveness of Ethical HumanConduct Basis for Humanistic Education, Humanistic Constitution and Humanistic UniversalOrder Competence in professionalethics: a) Ability to utilize the professional competence for augmenting universal humanorder, b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, c) Ability to identify and develop appropriate technologies and management patterns for above productionsystems. 	5
Profes 1. 2. 3. 4. 5.	 cations of the above Holistic Understanding of Harmony on sional Ethics Natural acceptance of humanvalues Definitiveness of Ethical HumanConduct Basis for Humanistic Education, Humanistic Constitution and Humanistic UniversalOrder Competence in professionalethics: a) Ability to utilize the professional competence for augmenting universal humanorder, b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, c) Ability to identify and develop appropriate technologies and management patterns for above productionsystems. 	5
Profes 1. 2. 3. 4. 5.	 cations of the above Holistic Understanding of Harmony on sional Ethics Natural acceptance of humanvalues Definitiveness of Ethical HumanConduct Basis for Humanistic Education, Humanistic Constitution and Humanistic UniversalOrder Competence in professionalethics: a) Ability to utilize the professional competence for augmenting universal humanorder, b) Ability to identify the scope and characteristics of peoplefriendly and eco-friendly production systems, c) Ability to identify and develop appropriate technologies and management patterns for above productionsystems. Case studies of typical holistic technologies, management models and productionsystems Strategy for transition from the present state to Universal Human Order: 	5
Profes 1. 2. 3. 4. 5.	 ations of the above Holistic Understanding of Harmony on sional Ethics Natural acceptance of humanvalues Definitiveness of Ethical HumanConduct Basis for Humanistic Education, Humanistic Constitution and Humanistic UniversalOrder Competence in professionalethics: a) Ability to utilize the professional competence for augmenting universal humanorder, b) Ability to identify the scope and characteristics of peoplefriendly and eco-friendly production systems, c) Ability to identify and develop appropriate technologies and management patterns for above productionsystems. Case studies of typical holistic technologies, management models and productionsystems Strategy for transition from the present state to Universal Human Order: a) At the level of individual: as socially and ecologically 	5
Profes 1. 2. 3. 4. 5.	 cations of the above Holistic Understanding of Harmony on sional Ethics Natural acceptance of humanvalues Definitiveness of Ethical HumanConduct Basis for Humanistic Education, Humanistic Constitution and Humanistic UniversalOrder Competence in professionalethics: a) Ability to utilize the professional competence for augmenting universal humanorder, b) Ability to identify the scope and characteristics of peoplefriendly and eco-friendly production systems, c) Ability to identify and develop appropriate technologies and management patterns for above productionsystems. Case studies of typical holistic technologies, management models and productionsystems Strategy for transition from the present state to Universal Human Order: 	5

Text Book

1. R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Value Education.

Reference Books

- 1. Ivan Illich, 1974, *Energy & Equity*, The Trinity Press, Worcester, and Harper Collins, USA.
- 2. E.F. Schumacher, 1973, *Small is Beautiful: a study of economics as if people mattered*, Blond & Briggs,Britain.
- 3. A Nagraj, 1998, *JeevanVidyaekParichay*, Divya Path Sansthan, Amarkantak.
- 4. Sussan George, 1976, How *the Other Half Dies*, Penguin Press. Reprinted 1986, 1991.
- 5. PL Dhar, RR Gaur, 1990, Science and Humanism, Common wealth Publishers.
- 6. A.N. Tripathy, 2003, *Human Values*, New Age InternationalPublishers.
- 7. SubhasPalekar, 2000, *How to practice Natural Farming*, Pracheen (Vaidik) KrishiTantraShodh,Amravati.
- 8. Donella H. Meadows, Dennis L. Meadows, Jorgen Randers, William W. Behrens III, 1972, *Limits to Growth Club of Rome's report*, UniverseBooks.
- 9. E G Seebauer Robert L. Berry, 2000, *Fundamentals of Ethics for Scientists & Engineers*, Oxford UniversityPress
- 10. M Govindrajran, S Natrajan& V.S. Senthil Kumar, *Engineering Ethics (including Human Values)*, Eastern Economy Edition, Prentice Hall of India Ltd.
- 11. B P Banerjee, 2005, Foundations of Ethics and Management, Excel Books.
- 12. B L Bajpai, 2004, *Indian Ethos and Modern Management*, New Royal Book Co., Lucknow. Reprinted2008.

Relevant CDs, Movies, Documentaries & Other Literature:

- 1. Value Education website, http://uhv.ac.in
- 2. Story of Stuff, http://www.storyofstuff.com
- 3. Al Gore, An Inconvenient Truth, Paramount Classics, USA
- 4. Charlie Chaplin, Modern Times, United Artists, USA
- 5. IIT Delhi, Modern Technology the UntoldStory

Course Code: HVPE102-18

Course Name:Human Values, De-addiction and Traffic Rules (Lab/ Seminar)

Program: B.Sc. (AI & ML)	L : 0 T : 0 P :1
Branch: Computer Applications	Credits: 1
Semester: 1 st	Contact hours: 1 hour per week
Internal max. marks: 25	Theory/Practical: Practical
External max. marks: 0	Duration of end semester exam (ESE): 3hrs
Total marks: 25	Elective status: Ability Enhancement

Prerequisite: -NA-Co requisite: -NA-Additional material required in ESE: -NA-

One each seminar will be organized on Drug De-addiction and Traffic Rules. Eminent scholar and experts of the subject will be called for the Seminar at least once during the semester. It will be binding for all the students to attend the seminar.

Course Code:UGCA1907

Course Name: Fundamentals of Statistics

Program:B.Sc. (AI & ML)	L: 3 T: 1 P:0
Branch: Computer Applications	Credits: 4
Semester: 2 nd	Contact hours: 44 hours
Internal max. marks: 40	Theory/Practical: Theory
External max. marks: 60	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: Students must have the basic knowledge of mathematic terms.

Co requisite:NA

Additional material required in ESE:Minimumtwoexercises of each concept will be recorded in the file and the file will be submitted in End Semester Examinations.

Course Outcomes: After studying this course, students will be able to:

CO#	Course Outcomes
CO1	Understand the science of studying & analyzing numbers.
CO2	Identify and use various visualization tools for representing data.
CO3	Describe various statistical formulas.
CO4	Compute various statistical measures.

Detailed Contents	Contact hours
Unit I	
Statistics and Probability: Introduction to Statistics – Origin of	
Statistics, Features of Statistics, Scope of Statistics, Functions of	
Statics, Uses and importance of Statistics, Limitation of Statistics,	
Distrust of Statistics	
Collection of Data: Introduction to Collection of Data, Primary	8 hours
and Secondary Data, Methods of Collecting Primary Data,	
Methods of Secondary Data, Statistical Errors, Rounding off Data	
(Approximation).	
Unit II	
Classification of Data Frequency Distribution: Introduction	
Classification of Data, Objectives of Classification, Methods of	
Classification, Ways to Classify Numerical Data or Raw Data.	12 hours
Tabular, Diagrammatic and Graphic Presentation of Data:	
Introduction to Tabular Presentation of Data, Objectivesof	

	Y
Tabulation, Components of a Statistical Table, General Rules for	
the Construction of a Table, Types of Tables, Introduction to	
Diagrammatic Presentation of Data, Advantage and Disadvantage	
of Diagrammatic Presentation, Types of Diagrams, Introduction to	
Graphic Presentation of Data, Advantage and Disadvantageof	
Graphic Presentation, Types of Graphs.	
Unit III	
Measures of Central tendency: Introduction to Central Tendency,	
Purpose and Functions of Average, Characteristics of a Good	
Average, Types of Averages, Meaning of Arithmetic Mean,	
Calculation of Arithmetic Mean, Merit and Demerits of Arithmetic	
Mean, Meaning of Median, Calculation of Median, Merit and	12 hours
Demerits of Median, Meaning of Mode, Calculation of Mode,	
Merit and Demerits of Mode, Harmonic Mean-Properties-	
Merit and Demerits.	
Unit IV	
Measures of Dispersion: Meaning of Dispersion, Objectives of	
Dispersion, Properties of a good Measure of Dispersion, Methods	
of Measuring Dispersion, Range Introduction, Calculation of	
Range, Merit and Demerits of Range, Mean Deviation, Calculation	
of Mean Deviation, Merit and Demerits of Mean Deviation,	12 hours
Standard Deviation Meaning, Calculation of Standard Deviation,	12 110015
Merit and Demerits of Standard Deviation, Coefficient of	
Variation, Calculation of Coefficient Variance, Merit and	
Demerits of Coefficient of Variation.	

Text Books:

- 1. Statistics and Data Analysis, A.Abebe, J. Daniels, J.W.Mckean, December2000.
- 2. Statistics, Tmt. S. EzhilarasiThiru, 2005, Government of Tamilnadu.
- 3. Introduction to Statistics, David M.Lane.
- 4. Weiss, N.A., Introductory Statistics. Addison Wesley, 1999.
- 5. Clarke, G.M. & Cooke, D., A Basic course in Statistics. Arnold,1998.

Reference Books:

1. Banfield J.(1999), Rweb: Web-based Statistical Analysis, Journal of Statistical Software.

2. Bhattacharya,G.K. and Johnson, R.A.(19977), Statistical Concepts and Methods, New York, John Wiley &Sons.

E-Books/ Online learning material

1. <u>http://onlinestatbook.com/Online_Statistics_Education.pdf</u>

2. https://textbookcorp.tn.gov.in/Books/12/Std12-Stat-EM.pdf

3. <u>https://3lihandam69.files.wordpress.com/2015/10/introductorystatistics.pdf</u>

Course Code: UGCA1923

Course Name: Operating Systems

Program: B.Sc. (AI & ML)	L: 3 T: 1 P: 0
Branch: Computer Applications	Credits: 4
Semester: 2 nd	Contact hours: 44 hours
Internal max. marks: 40	Theory/Practical: Theory
External max. marks: 60	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: Basic understanding of computer system. **Co requisite:** -NA-**Additional material required in ESE:** -NA-

Course Outcomes: After completing this course, students will be able to:

CO#	Course outcomes
CO1	Discuss the evaluation of operating systems.
CO2	Explain different resource managements performed by operating system.
CO3	Describe the architecture in terms of functions performed by different types of operating
	systems.
CO4	Analyze the performance of different algorithms used in design of operating system
	components.

Detailed contents	Contact hours
Unit-I Fundamentals of Operating system: Introduction to Operating system, Functions of an operating system. Operating system as a resource manager. Structure of operating system (Role of kernel and Shell). Views of operating system. Evolution and types of operating systems. Process & Thread Management: Program vs. Process; PCB, State transitiondiagram, Scheduling Queues, Types of schedulers, Concept of Thread, Benefits, Types of threads, synchronization issues.	12
CPU Scheduling : Need of CPU scheduling, CPU I/O Burst Cycle, Pre- emptivevs. Non-pre-emptive scheduling, Different scheduling criteria's, scheduling algorithms (FCSC, SJF, Round-Robin, Multilevel Queue).	
Unit-II Memory Management: Introduction, address binding, relocation, loading,	11
linking, memory sharing and protection; Paging and segmentation; Virtual memory: basic concepts of demand paging, page replacement algorithms.	
---	----
Unit-III	
 I/O Device Management: I/O devices and controllers, device drivers; disk storage. File Management: Basic concepts, file operations, access methods, directory structures and management, remote file systems; file protection. 	10
Unit-IV Advanced Operating systems: Introduction to Distributed Operating system, Characteristics, architecture, Issues, Communication & Synchronization; Introduction Multiprocessor Operating system, Architecture, Structure, Synchronization & Scheduling; Introduction to Real-Time Operating System, Characteristics, Structure& Scheduling.	11

Text Books:

- 1. Operating System Principles by Abraham Silberschatz and Peter BaerGalvin, Seventh Edition, Published byWiley-India.
- 2. Principals of Operating System by NareshChauhan, Published by OXFORD University Press,India.

Reference Books:

- 1. Operating Systems by SibsankarHaldar and Alex A. Aravind, Published by PearsonEducation.
- 2. Operating system by Stalling, W., Sixth Edition, Published by PrenticeHall (India)

Course Code: UGCA1915

Course Name: Data Structures

Program: B.Sc. (AI & ML)	L:3 T:1 P:0
Branch: Computer Applications	Credits:4
Semester: 2 nd	Contact hours: 44 hours
Theory/Practical: Theory	Percentage of numerical/design problems:
Internal max. marks: 40	Duration of end semester exam (ESE): 3hrs
External max. marks:60	Elective status: Core
Total marks:100	

Prerequisite: -NA-Co requisite: -NA-Additional material required in ESE: -NA-

Course Outcomes:Students will be able to

CO#	Course outcomes
CO1	Apply appropriate constructs of Programming language, coding standards for
	application development
CO2	Use appropriate data structures for problem solving and programming
CO3	Use algorithmic foundations for solving problems and programming
CO4	Apply appropriate searching and/or sorting techniques for application development.
CO5	Develop programming logic and skills.

Detailed Contents	Contact hours
Unit-I	
 Introduction to Data Structures: Algorithms and Flowcharts, Basics Analysis on Algorithm, Complexity of Algorithm, Introduction and Definition of Data Structure, Classification of Data, Arrays, Various types of Data Structure, Static and Dynamic Memory Allocation, Function, Recursion. Arrays, Pointers and Strings: Introduction to Arrays, Definition, One Dimensional Array and Multi-Dimensional Arrays, Pointer, Pointer to Structure, various Programs for Array and Pointer. Strings. Introduction to Strings, Definition, Library Functions of Strings. 	10
Unit-II	8
Stacks and Queue	

Introduction to Stack, Definition, Stack Implementation, Operations of Stack, Applications of Stack and Multiple Stacks. Implementation of Multiple Stack Queues, Introduction to Queue, Definition, Queue Implementation, Operations	
of Queue, Circular Queue, De-queue and PriorityQueue.	
Unit-III	
Linked Lists and Trees	
Introduction, Representation and Operations of Linked Lists, Singly Linked	
List, Doubly Linked List, Circular Linked List, And Circular Doubly Linked List.	
	14
Trees	
Introduction to Tree, Tree Terminology Binary Tree, Binary Search Tree,	
Strictly Binary Tree, Complete Binary Tree, Tree Traversal, Threaded Binary	
Tree, AVL Tree B Tree, B+ Tree.	
Unit-IV	
Graphs, Searching, Sorting and Hashing	
Graphs: Introduction, Representation to Graphs, Graph Traversals Shortest	
Path Algorithms.	12
Searching and Sorting: Searching, Types of Searching, Sorting, Types of	12
sorting like quick sort, bubble sort, merge sort, selection sort.	
Hashing: Hash Function, Types of Hash Functions, Collision, Collision	
Resolution Technique (CRT), Perfect Hashing	

Text Books

- 1. BrijeshBakariya. Data Structures and Algorithms Implementation through C, BPB Publications.
- 2. Kruse R.L. Data Structures and Program Design in C;PHI
- 3. Aho Alfred V., Hopperoft John E., Ullman Jeffrey D., "Data Structures and Algorithms", AddisonWesley

Reference books

- 1. Horowitz & Sawhaney: Fundamentals of Data Structures, GalgotiaPublishers.
- 2. YashwantKanetkar, Understanding Pointers in C, BPB Publications.
- 3. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algorithms, Galgotia Pub. Pvt. Ltd., 1998.
 - Page 39 of 110

Course Code: UGCA1918 Course Name: Data Structures Laboratory

Program: B.Sc. (AI & ML)	L:0 T:0 P:4
Branch: Computer Applications	Credits:2
Semester:2 nd	Contact hours: 4 hours per week
Theory/Practical: Practical	Percentage of numerical/design problems:
Internal max. marks: 60	Duration of end semester exam (ESE): 3hrs
External max. marks:40	Elective status: Core
Total marks: 100	

Prerequisite: -NA-

Co requisite: -NA-

Additional material required in ESE: - NA-

Course Outcomes:Student will be able to

CO#	Course outcomes
CO1	Applyappropriate constructs of Programming language, coding standards for application development
CO2	Develop programming skills for solving problems.
CO3	Apply appropriate searching and/or sorting techniques for application development.

Instructions:Programs may be developed in C/C++/Python/Javalanguage.

List of assignments:

Program for using Dynamic Functions
(malloc(), calloc(), realloc() and free()) functions.
Program to insert, delete and traverse an element from an array
Program to merge one dimensional arrays
Program for addition and subtraction of two matrices.
Program for implementing multiplication of two matrices
Implement linear search using one and two dimensional array.
Program for implementing selection sort.
Program for implementing insertion sort.
Program for implementing quick sort.
Program for implementing merge sort.
Program to calculate length of the string using user defined function.
Program to concatenate and compare two strings using user defined function.
Program for using the concept of pointer to string.
Program to reverse a sentence by recursion.
Program to delete all repeated words in string.

16	Program to find the number of vowels, consonants, digits and white space in a string.
17	Program to find the length of the longest repeating sequence in a string.
18	Program to find highest and lowest frequency character in a string.
19	Program for implementing Stack using array.
20	Program for implementing Stack using pointer.
21	Program for implementing multiple stack.
22	Program for converting infix to postfix form.
23	Program for implementing Queue using array.
24	Program for dynamic implementation of queue.
25	Program for implementing circular queue.
26	Program for implementing dequeue.
27	Program for implementing priority queue.
28	Program for implementing Singly Linked list.
29	Program for implementing Doubly Linked list.
30	Program for implementing Binary Search Tree.
31	Program for Breadth First Search (BFS) for graph traversal.
32	Program for Depth First Search (DFS) for graph traversal.

Reference Books:

1. BrijeshBakariya. Data Structures and Algorithms Implementation through C, BPB Publications.

- 2. Aho Alfred V., Hopperoft John E., Ullman Jeffrey D., "Data Structures and Algorithms", AddisonWesley
- 3. Horowitz &Sawhaney: Fundamentals of Data Structures, GalgotiaPublishers.

Course Code: UGCA1926

Course Name: Operating Systems Laboratory

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 2 nd	Contact hours: 4 hours per week
Internal max. marks: 60	Theory/Practical: Practical
External max. marks: 40	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core
Prerequisite: -NA-	

Co requisite: -NA-

Additional material required in ESE: -NA-

Course Outcomes: After going through the practical, student will be able to:

CO#	Course outcomes
CO1	Install & configure different operating systems.
CO2	Write programs/ scripts for different scheduling algorithms.

Instructions:

1	Installation of windows OS.
2	Installation of Linux OS.
3	Dual boot installation of Operating systems.
4	Implementation of FCFS Scheduling algorithm
5	Implementation of SJF Scheduling algorithm
6	Implementation of Round-Robin Scheduling algorithm
7	Vi Editor & its commands
8	Shell Commands
9	Shell Scripting- Using variables
10	Shell Scripting- Input & Output
11	Shell Scripting- Data types
12	Shell Scripting- Use of arithmetic operators
13	Shell Scripting- if control statement programs
14	Shell Scripting- while control statement
15	Shell Scripting- for control statement

• Instructor can select programs of their own for implementing different concepts.

Reference Books:

- 1. Linux: The complete reference by Richard Petersen, Published by Tata McGraw- HillPublication.
- 2. Operating System Principles by Abraham Silberschatz and Peter Baer Galvin, Seventh Edition, Published byWiley-India.

Course Code: UGCA1911

Course Name: Fundamentals of Statistics Laboratory

Program: B.Sc. (AI & ML)	L: 0 T: 0 P: 4
Branch: Computer Applications	Credits: 2
Semester: 2 nd	Contact hours: 4 hours per week
Internal max. marks: 60	Theory/Practical: Practical
External max. marks: 40	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: Students must have the knowledge of Spreadsheet.

Co requisite: The students will develop analytical behavior & will have better understanding of analyzing data and testing hypotheses.

Additional material required in ESE: Minimum twoexercises of each concept will be recorded in the file and the file will be submitted in End Semester Examinations.

Course Outcomes: After studying this course, students will be able to:

CO#	Course Outcomes
CO1	Represent data using various Frequency table and Graphs.
CO2	Apply various operations/ formulas using any software/package to solve
ł	statistical problems.

Instructions: Sample exercises are given below and Instructor can increase or decrease the experiments as per the requirement.

1: Display the Maximum and Minimum market data. 2: Display year wise strength of the students of a college in Tabular form & Graphical form. 3: Calculate the average marks of the students of your College. 4: Print measure of Central Tendency using grouped and ungrouped data. 5: Construct & print frequency distribution using data with the following Techniques: a)Histogram b) Frequency Polygon c)FrequencyCurve c) Ogive curves. 6: Find out & display the Median and Mode from the following series by using suitable method: Class 156-158 158-160 160-162 162-164 164-166 Frequency 4 8 28 51 89 7: Calculate an appropriate measure of dispersion using grouped and ungrouped data			
Graphical form. 3: Calculate the average marks of the students of your College. 4: Print measure of Central Tendency using grouped and ungrouped data. 5: Construct & print frequency distribution using data with the following Techniques: a)Histogram b) Frequency Polygon c)FrequencyCurve c) Ogive curves. 6: Find out & display the Median and Mode from the following series by using suitable method: Class 156-158 158-160 160-162 162-164 164-166 Frequency 4 8 28 51 89	1:	Display the Maximum and Minimum market data.	
Graphical form. 3: Calculate the average marks of the students of your College. 4: Print measure of Central Tendency using grouped and ungrouped data. 5: Construct & print frequency distribution using data with the following Techniques: a)Histogram b) Frequency Polygon c)FrequencyCurve c) Ogive curves. 6: Find out & display the Median and Mode from the following series by using suitable method: Class 156-158 158-160 160-162 162-164 164-166 Frequency 4 8 28 51 89			
3: Calculate the average marks of the students of your College. 4: Print measure of Central Tendency using grouped and ungrouped data. 5: Construct & print frequency distribution using data with the following Techniques: a)Histogram b) Frequency Polygon c)FrequencyCurve c) Ogive curves. 6: Find out & display the Median and Mode from the following series by using suitable method: Class 156-158 158-160 160-162 162-164 164-166 Frequency 4 8 28 51 89	2:	Display year wise strength of the students of a college in Tabular form &	
4: Print measure of Central Tendency using grouped and ungrouped data. 5: Construct & print frequency distribution using data with the following Techniques: a)Histogram b) Frequency Polygon c)FrequencyCurve c) Ogive curves. 6: Find out & display the Median and Mode from the following series by using suitable method: Class 156-158 158-160 160-162 162-164 164-166 Frequency 4 8 28 51		Graphical form.	
5: Construct & print frequency distribution using data with the following Techniques: a)Histogram b) Frequency Polygon c)FrequencyCurve c) Ogive curves. 6: Find out & display the Median and Mode from the following series by using suitable method: Class 156-158 Frequency 4 8 28 51 89	3:	Calculate the average marks of the students of your College.	
Techniques: a)Histogram b) Frequency Polygon c)FrequencyCurve c) Ogive curves. 6: Find out & display the Median and Mode from the following series by using suitable method: Class 156-158 158-160 160-162 162-164 164-166 Frequency 4 8 28 51 89	4:	Print measure of Central Tendency using grouped and ungrouped data.	
a)Histogramb) Frequency Polygonc)FrequencyCurvec) Ogive curves.6:Find out & display the Median and Mode from the following series by using suitable method:Class156-158156-158158-160160-162162-164Frequency48285189	5:	Construct & print frequency distribution using data with the following	
 c)FrequencyCurve c) Ogive curves. 6: Find out & display the Median and Mode from the following series by using suitable method: Class 156-158 158-160 160-162 162-164 164-166 Frequency 4 8 28 51 89 		Techniques:	
6: Find out & display the Median and Mode from the following series by using suitable method: Class 156-158 158-160 160-162 162-164 164-166 Frequency 4 8 28 51 89		a)Histogram b) Frequency Polygon	
suitable method: Class 156-158 158-160 160-162 162-164 164-166 Frequency 4 8 28 51 89		c)FrequencyCurve c) Ogive curves.	
Class 156-158 158-160 160-162 162-164 164-166 Frequency 4 8 28 51 89	6:	Find out & display the Median and Mode from the following series by using	
Frequency 4 8 28 51 89			
Frequency 4 8 28 51 89		Class 156-158 158-160 160-162 162-164 164-166	
7: Calculate an appropriate measure of dispersion using grouped and ungrouped data			
	7:	Calculate an appropriate measure of dispersion using grouped and ungrouped data.	

8:	Make an array and calculate range of the data.	
9:	Represent the placement record of the students of your college.	
10:	Calculate & display Letter Grade using spreadsheet.	
11:	Represent the following data by suitable graphs, determine therefrom the number of children having IQ (i) Below 105 (ii) Above 124.	
	IQ 75-84 85-94 95-104 105-114 115-124 125-134 No.ofChildren 8 20 45 54 28 16	

ReferenceBooks:

- 1. Statistics for Economics, TR Jain, VKOhri.
- **2.** Statistics and Data Analysis, A.Abebe, J. Daniels, J.W.Mckean, December 2000.

E-Books/ Online learningmaterial

- 1. https://www.meritnation.com/cbse-class-11commerce/economics/class_13_tr_jain.
- 2. http://college.cengage.com/mathematics/brase/understandable_statistics/9780618 949922_ch03.pdf
- 3. http://www.rockcreekschools.org/pages/uploaded_files/Excel%201%20Lab%20Ex ercises.pdf

Course Code: EVS102-18

Course Name: Environmental Science

Program:B.Sc. (AI & ML)	L: 2 T: 0 P:0
Branch: Computer Applications	Credits: 2
Semester: 2 nd	Contact hours: 22 hours
Internal max. marks: 40	Theory/Practical: Theory
External max. marks:60	Duration of end semester exam (ESE): 3hrs
Total marks:100	Elective status: Ability Enhancement

Prerequisite: -NA-Co requisite:-NA-Additional material required in ESE: -NA-

CourseOutcomes:

CO#	Course outcomes
CO1	Students will enable to understand environmental problems at local and national
	level through literature and general awareness.
CO2	The students will gain practical knowledge by visiting wildlife areas, environmental
	institutes and various personalities who have done practical work on various
	environmental Issues.
CO3	The students will apply interdisciplinary approach to understand key
	environmental issues and critically analyze them to explore the possibilities to
	mitigate these problems.
CO4	Reflect critically about heir roles and identities as citizens, consumers and
	environmental actors in a complex, interconnected world

Detailed Contents	Contact hours
Unit-I	
Introduction to Environmental Studies Multidisciplinary nature of Environmental Studies: Scope & Importance	2
Need for Public Awareness.	
Unit-II	
Ecosystems	
Concept of an Ecosystem: Structure & functions of an ecosystem	4
(Producers, Consumers & Decomposers)	4
Energy Flow in an ecosystem: Food Chain, Food web and Ecological	
Pyramids	
Characteristic features, structure & functions of following Ecosystems:	

• Aquatic Ecosystem (Ponds, Lakes, River &Ocean)	
• Aquate Leosystem (Fonds, Lakes, River &Ocean)	
Unit-III	
Natural Resources	
Renewable & Non-renewable resources	
Forest Resources: Their uses, functions & values (Biodiversity conservation, role in climate change, medicines) & threats (Overexploitation, Deforestation, Timber extraction, Agriculture Pressure), Forest Conservation Act Water Resources: Their uses (Agriculture, Domestic & Industrial), functions	
& values, Overexploitation and Pollution of Ground & Surface water resources (Case study of Punjab), Water Conservation, Rainwater Harvesting, Land Resources: Land as a resource; Land degradation, soil erosion and desertification	4
Energy Resources: Renewable & non-renewable energy resources, use of alternate energy resources (Solar, Wind, Biomass, Thermal), Urban problems related toEnergy	
Unit-IV	
Biodiversity & its conservation	
Types of Biodiversity: Species, Genetic & Ecosystem	4
Types of Biodiversity: Species, Genetic & Ecosystem India as a mega biodiversity nation, Biodiversity hot spots and	4
Types of Biodiversity: Species, Genetic & Ecosystem	4
Types of Biodiversity: Species, Genetic & Ecosystem India as a mega biodiversity nation, Biodiversity hot spots and biogeographic regions of India	4
Types of Biodiversity: Species, Genetic & Ecosystem India as a mega biodiversity nation, Biodiversity hot spots and biogeographic regions of India Examples of Endangered & Endemic species of India, Red data book Unit-V	4
Types of Biodiversity: Species, Genetic & Ecosystem India as a mega biodiversity nation, Biodiversity hot spots and biogeographic regions of India Examples of Endangered & Endemic species of India, Red data book Unit-V Environmental Pollution & Social Issues	4
Types of Biodiversity: Species, Genetic & Ecosystem India as a mega biodiversity nation, Biodiversity hot spots and biogeographic regions of India Examples of Endangered & Endemic species of India, Red data book Unit-V	4
Types of Biodiversity: Species, Genetic & Ecosystem India as a mega biodiversity nation, Biodiversity hot spots and biogeographic regions of India Examples of Endangered & Endemic species of India, Red data book Unit-V Environmental Pollution & Social Issues Types, Causes, Effects & Control of Air, Water, Soil & Noise Pollution	
Types of Biodiversity: Species, Genetic & Ecosystem India as a mega biodiversity nation, Biodiversity hot spots and biogeographic regions of India Examples of Endangered & Endemic species of India, Red data book Unit-V Environmental Pollution & Social Issues Types, Causes, Effects & Control of Air, Water, Soil & Noise Pollution Nuclear hazards and accidents & Health risks	
Types of Biodiversity: Species, Genetic & Ecosystem India as a mega biodiversity nation, Biodiversity hot spots and biogeographic regions of India Examples of Endangered & Endemic species of India, Red data book Unit-V Environmental Pollution & Social Issues Types, Causes, Effects & Control of Air, Water, Soil & Noise Pollution Nuclear hazards and accidents & Health risks Global Climate Change: Global warming, Ozone depletion, Acid rain,	

Field Work	
Visit to a National Park, Biosphere Reserve, Wildlife Sanctuary	
Documentation & preparation of a Biodiversity (flora & fauna) register of	
campus/river/forest	
Visit to a local polluted site: Urban/Rural/Industrial/Agricultural	
Identification & Photography of resident or migratory birds, insects	
(butterflies)	
Public hearing on environmental issues in a village	

Text Books:

- 1. Bharucha, E. Text Book for Environmental Studies. University Grants Commission, NewDelhi.
- 2. Agarwal, K.C. 2001 Environmental Biology, Nidi Publ. Ltd.Bikaner.
- 3. BharuchaErach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad – 380 013, India, Email:mapin@icenet.net(R)
- 4. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc.480p
- 5. Clark R.S., Marine Pollution, Clanderson Press Oxford(TB)
- 6. Cunningham, W.P. Cooper, T.H. Gorhani, E & Hepworth, M.T. 2001, Environmental Encyclopedia, Jaico Publ. House, Mumbai,1196p
- 7. De A.K., Environmental Chemistry, Wiley EasternLtd.
- 8. Down to Earth, Centre for Science and Environment(R)
- 9. Gleick, H.P. 1993. Water in crisis, Pacific Institute for Studies in Dev., Environment & Security. Stockholm Env. Institute Oxford Univ. Press. 473p
- 10. Hawkins R.E., Encyclopedia of Indian Natural History, Bombay Natural History Society, Bombay(R)
- 11. Heywood, V.H &Waston, R.T. 1995. Global Biodiversity Assessment. Cambridge Univ. Press1140p.
- 12. Jadhav, H &Bhosale, V.M. 1995. Environmental Protection and Laws. Himalaya Pub. House, Delhi 284p.
- 13. Mckinney, M.L. & School, R.M. 1996. Environmental Science systems & Solutions, Web enhanced edition.639p.
- 14. Mhaskar A.K., Matter Hazardous, Techno-Science Publication(TB)
- 15. Miller T.G. Jr. Environmental Science, Wadsworth Publishing Co.(TB)
- 16. Odum, E.P. 1971. Fundamentals of Ecology. W.B. Saunders Co. USA, 574p
- Rao M N. &Datta, A.K. 1987. Waste Water treatment. Oxford & IBH Publ. Co. Pvt. Ltd. 345p.
- 18. Sharma B.K., 2001. Environmental Chemistry. Geol Publ. House, Meerut
- 19. Survey of the Environment, The Hindu(M)

- 20. Townsend C., Harper J, and Michael Begon, Essentials of Ecology, Blackwell Science (TB)
- 21. Trivedi R. K. and P.K. Goel, Introduction to air pollution, Techno-Science Publication(TB)

22. Wanger K.D., 1998 Environmental Management. W.B. Saunders Co. Philadelphia, USA499p

Guidelines regarding Mentoring and Professional Development

The objective of mentoring will be development of:

- Overall Personality
- Aptitude (Technical andGeneral)
- General Awareness (Current Affairs andGK)
- CommunicationSkills
- PresentationSkills

The course shall be split in two sections i.e. outdoor activities and class activities. For achieving the above, suggestive list of activities to be conducted are:

Part – A (Class Activities)

- 1. Expert and videolectures
- 2. AptitudeTest
- 3. GroupDiscussion
- 4. Quiz(General/Technical)
- 5. Presentations by the students
- 6. Team buildingExercises

Part – B (Outdoor Activities)

- 1. Sports/NSS/NCC
- 2. Society Activities of various students chapter i.e. ISTE, SCIE, SAE, CSI, Cultural Club,etc.

Evaluation shall be based on rubrics for Part – A & B

Mentors/Faculty incharges shall maintain proper record student wise of each activity conducted and the same shall be submitted to the department.

Third Semester

Course Code: UGCA1973

Course Name: Artificial Intelligence

eourse maine. In thickar hitengenee	
Program: B.Sc. (AI & ML)	L: 3 T: 1 P:0
Branch: Computer Applications	Credits: 4
Semester: 3 rd	Contact hours: 44 hours
Internal max. marks: 40	Theory/Practical: Theory
External max. marks: 60	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: Operating System, data structures.

Co requisite: -NA-

Additional material required in ESE: -NA-.

Course Outcomes: After studying this course, students will be able to:

CO#	Course outcomes
CO1	Discuss the need of Artificial Intelligence.
CO2	Explain the knowledge representation in field of AI.
CO3	List various fields of AI.

Detailed contents	Contact hours
Unit-I Overview: foundations, scope, problems, and approaches of AI. Intelligent agents: reactive, deliberative, goal-driven, utility-driven, and learning agents	12 hours
Unit-II Problem-solving through Search: forward and backward, state-space, blind, heuristic, problem reduction, A, A*, AO*, minimax, constraint propagation, neural, stochastic, and evolutionary search algorithms, sample applications.	12 hours
Unit-IIIKnowledge Representation and Reasoning: ontologies, foundations of knowledge representation and reasoning, representing and reasoning about objects, relations, events, actions, time, and space; predicate logic, situation calculus, description logics, reasoning with defaults, reasoning about 	10 hours

<u>Unit-IV</u>	
Expert Systems: Overview of expert system architecture, existing expert systems.	10 hours
Languages for AI problem solving: Introduction to PROLOG syntax and data structures, representing objects and relationships, built-in predicates. Introduction to LISP- Basic and intermediate LISP programming	To nours

TextBooks:

Rich E., Knight K. and Nair B. S., Artificial Intelligence, Tata McGraw Hills(2009).
 Luger F. G., Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Pearson Education Asia(2009).

Reference Books:

1. Patterson W. D., Introduction to Artificial Intelligence and Expert Systems, Pearson (2015) 1sted.

2. Russel S., Norvig P., Artificial Intelligence: A Modern Approach, Prentice Hall (2014) 3rded.

Course Code: UGCA1979

Course Name: Design and Analysis of Algorithms

Program: B.Sc. (AI & ML)	L: 3 T: 1 P:0
Branch: Computer Applications	Credits: 4
Semester: 4 th	Contact hours: 44 hours
Internal max. marks: 40	Theory/Practical: Theory
External max. marks: 60	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: -NA-Co requisite: -NA-Additional material required in ESE: -NA-.

Course Outcomes: After studying this course, students will be able to:

CO#	Course outcomes	
CO1	Justify the correctness of algorithms;	
CO2	Identify which design paradigm (greedy/ divide and conquer/backtrack etc.) should be used for different problems.	
CO3	Demonstrate the ways to analyze approximation/randomized algorithms (expected running time, probability of error);	
CO4	Explain the necessity for NP class based problems and explain the use of heuristic techniques.	

Detailed contents	Contact hours
Unit-I Characteristics of algorithm. Analysis of algorithm: Asymptotic analysis of complexity bounds – best, average and worst-case behavior; Performance measurementsofAlgorithm,Timeandspacetrade-offs,Analysisofrecursive algorithms through recurrence relations: Substitution method, Recursion tree method.	12 hours
Unit-II Fundamental Algorithmic Strategies Brute-Force, Greedy, Dynamic Programming,Branch-and-BoundandBacktrackingmethodologiesforthe design of algorithms; Illustrations of these techniques for Problem-Solving: Bin Packing, Knap Sack, TSP.	12 hours
Unit-IIITraversal algorithms: Depth First Search (DFS) and Breadth First Search (BFS);Shortestpathalgorithms,Transitiveclosure,MinimumSpanningTree, Topological sorting, Network FlowAlgorithm.	10 hours
Unit-IVTractable and Intractable Problems Computability of Algorithms, Computability classes – P, NP, NP-complete andNP-hard. Advanced Topics: Heuristic Algorithms, Random Algorithms.	10 hours

Text Books:

1. Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill.

2. Data Structures and Algorithms in C++, Weiss, 4th edition, Pearson.

3. Fundamentals of Computer Algorithms - E. Horowitz, Sartaj Saini, GalgotaPublications

Reference Books

1. Algorithm Design, 1stEdition, Jon Kleinberg and ÉvaTardos, Pearson.

2. Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition, Michael T Goodrich and Roberto Tamassia, Wiley.

3. Algorithms -- A Creative Approach, 3RD Edition, UdiManber, Addison-Wesley, Reading, MA.

Course Code: UGCA1922

Course Name: Database Management Systems

Program: B.Sc. (AI & ML)	L: 3 T: 1 P:0
Branch: Computer Applications	Credits: 4
Semester: 3 rd	Contact hours: 44 hours
Internal max. marks: 40	Theory/Practical: Theory
External max. marks: 60	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: -NA-

Co requisite: -NA-

Additional material required in ESE: -NA-.

Course Outcomes: After studying this course, students will be able to:

CO#	Course outcomes	
CO1	Understand the basic concepts of DBMS.	
CO2	Formulate, using SQL, solutions to a broad range of query and data update problems.	
CO3	Demonstrate an understanding of normalization theory and apply such knowledge to	
	the normalization of a database.	
CO4	Understand the concept of Transaction and Query processing in DBMS.	

Detailed contents	Contact hours
Unit-I Introduction of DBMS, Data Modeling for a Database, Three level Architecture of DBMS, Components of a DBMS. Introduction to Data Models, Hierarchical, Network and Relational Model, Comparison of Network, Hierarchical and Relational Model, Entity Relationship Model.	10 hours

Unit-II Relational Database, Relational Algebra and Calculus, SQL Fundamentals, DDL, DML, DCL, PL/SQL Concepts, Cursors, Stored Procedures, Stored Functions, Database Triggers.	12 hours
Unit-III Introduction to Normalization, First, Second, Third Normal Forms, Dependency Preservation, Boyce-Codd Normal Form, Multi-valued DependenciesandFourthNormalForm,JoinDependenciesandFifthNormal Form, Domain-key normal form(DKNF).	12 hours
Unit-IV Database Recovery, Concurrency Management, Database Security, Integrity and Control. Structure of a Distributed Database, Design of Distributed Databases.	10 hours

Text Books:

- 1. "An Introduction to Database System", Bipin C. Desai, Galgotia Publications Pvt Ltd-New Delhi, Revised Edition,(2012).
- 2. "Database System Concepts", Abraham Silberschatz, Henry F. Korth, S. Sudharshan, Tata McGraw Hill, 6th Edition,(2013).

Reference Books:

- 1. "SQL,PL/SQLTheProgrammingLanguageofOracle",IvanBayross,BPBPublications,4thRevised Edition (2009)
- 2. "AnIntroductiontoDatabaseSystems", C.J.Date, A.Kannan, S.Swamynathan, 8thEdition, Pearson Education, (2006).

3. Database Management Systems, Raghu Ramakrishnan, McGraw-Hill, Third Edition, 2014.

I. K. Gujral Punjab Technical University Bachelor of Science in Artificial Intelligence & Machine Learning (B.Sc. AI & ML) Course Code: UGCA1982 Course Name: Design and Analysis of Algorithms Laboratory

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 4 th	Contact hours: 4 hours per week
Internal max. marks: 60	Theory/Practical: Practical
External max. marks: 40	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: -NA-

Co requisite: -NA-

Additional material required in ESE: -NA-.

Course Outcomes: After studying this course, students will be able to:

CO#	Course outcomes	
CO1	Write programs for various problems using different algorithm designs.	
CO2	CO2 Compute the complexity of the algorithm.	

Assignments:

1.	Code and analyze solutions to following problem with given strategies: i. Knap Sack using greedy approach ii. Knap Sack using dynamic approach	
2.	Code and analyze to find an optimal solution to matrix chain multiplication using dynamic programming.	
3.	Code and analyze to find an optimal solution to TSP using dynamic programming.	
4.	Implementing an application of DFS such as: i. to find the topological sort of a directed acyclic graph ii. to find a path from source to goal in a maze.	
5.	Implement an application of BFS such as: i. to find connected components of an undirected graph ii. to check whether a given graph is bipartite.	
6.	Code and analyze to find shortest paths in a graph with positive edge weights using Dijkstra's algorithm.	
7.	Code and analyze to find shortest paths in a graph with arbitrary edge weights using Bellman-Ford algorithm.	
8.	Code and analyze to find shortest paths in a graph with arbitrary edge weights using Flyods' algorithm.	
9.	Code and analyze to find the minimum spanning tree in a weighted, undirected graph using Prims' algorithm	
10.	Code and analyze to find the minimum spanning tree in a weighted, undirected graph using Kruskals' algorithm.	
11.	Coding any real world problem or TSP algorithm using any heuristic technique.	

Course Code: UGCA1925

Course Name: Database Management Systems Laboratory

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 3 rd	Contact hours: 4 hours per week
Internal max. marks: 60	Theory/Practical: Practical
External max. marks: 40	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: -NA-

Co requisite:-NA-

Additional material required in ESE: -NA-.

CourseOutcomes:

CO#	Course outcomes
CO1	Able to understand various queries and their execution
CO2	Populate and query a database using SQL DML/DDL commands.
CO3	Declare and enforce integrity constraints on a database
CO4	Programming PL/SQL including stored procedures, stored functions, cursors, packages
CO5	Able to design new database and modify existing ones for new applications and reason
	about the efficiency of the result

Instructions:

1.	Used of CREATE, ALTER, RENAME and DROP statement in the database tables
	(relations)
2.	Used of INSERT INTO, DELETE and UPDATE statement in the database tables
	(relations)
3.	Use of simple select statement.
4.	Use of select query on two relations
5.	Use of nesting of queries.
6.	Use of aggregate functions.
7.	Use of substring comparison.
8.	Use of order by statement.
9.	Consider the following schema for a Library Database:
	BOOK (Book_id, Title, Publisher_Name, Pub_Year)
	BOOK_AUTHORS (Book_id, Author_Name)
	PUBLISHER (Name, Address, Phone)
	BOOK_COPIES (Book_id, Branch_id, No-of_Copies)
	BOOK_LENDING (Book_id, Branch_id, Card_No, Date_Out, Due_Date)
	LIBRARY_BRANCH (Branch_id, Branch_Name, Address)
	Write SQL queries to
	1. Retrieve details of all books in the library_id, title, name of publisher, authors, number
	of copies in each branch, etc.
	2. Get the particulars of borrowers who have borrowed more than 3 books betweenJan

Dathe	for of Science in Artificial Intelligence & Machine Learning (d.Sc. AI & ML)	
	2018 to Jun 2018	
	3. Delete a book in BOOK table. Update the contents of other tables to reflect thisdata	
	manipulation operation.	
	4. Partition the BOOK table based on year of publication. Demonstrate its working with a	
	simplequery.	
	5. Create a view of all books and its number of copies that are currently available in he	
	Library.	
10.	Consider the following schema for Order Database:	
	SALESMAN (Salesman_id, Name, City, Commission)	
	CUSTOMER (Customer_id, Cust_Name, City, Grade, Salesman_id)	
	ORDERS (Ord_No, Purchase_Amt, Ord_Date, Customer_id, Salesman_id)	
	Write SQL queries to	
	1. Count the customers with grades above Amritsar'saverage.	
	2. Find the name and numbers of all salesmen who had more than onecustomer.	
	3. List all salesmen and indicate those who have and don't have customers in their cities	
	(Use UNIONoperation.)	
	4. Create a view that finds the salesman who has the customer with the highest order of a	
	day.	
	5. Demonstrate the DELETE operation by removing sales man within 1000. All his orders must	
	also bedeleted.	
11.		
10		
	Write a PL/SQL code to find sum of first 10 natural numbers using while and for loop.	
13.	Write a program to create a trigger which will convert the name of a student to upper case	
14	before inserting or updating the name column of student table.	
14.	Write a PL/SQL block to count the number of rows affected by an update statement using SQL%ROWCOUNT	
15.	Write a PL/SQL block to increase the salary of all doctors by 1000.	
13.	while a r L/SQL block to increase the satary of all doctors by 1000.	

Reference Books:

1. "SQL, PL/SQL The Programming Language of Oracle", 4th Revised Edition, Ivan Bayross(2009).

2. "Oracle PL/SQL Programming", 5th Edition, Steven Feuerstein and Bill Pribyl(2009).

I. K. Gujral Punjab Technical University Bachelor of Science in Artificial Intelligence & Machine Learning (B.Sc. AI & ML) Course Code: UGCA1976 Course Name: Artificial Intelligence Laboratory

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 3 rd	Contact hours: 4 hours per week
Internal max. marks: 60	Theory/Practical: Practical
External max. marks: 40	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: C (in case implementing using C) **Co requisite:-NA-**

Additional material required in ESE: -NA-.

CourseOutcomes:

CO#	Course outcomes
CO1	Design solutions to basic problems in AI.
CO2	Implement solution to different AI problems

Instructions:

Use an	Use any language such as C/C++/LISP/PROLOG	
1.	Write a program to solve 8 queens' problem	
2.	Solve any problem using depth first search.	
3.	Solve any problem using best first search.	
4.	Solve 8-puzzle problem using best first search	
5.	Write A Program to Generate the output for A* Algorithm	
6.	Write a program to implement tower of Hanoi	
7.	Write a program to solve Hill climbing.	

Course Code: UGCA1959 Course Name: Internet Tools and Applications

Program: B.Sc. (AI & ML)	L: 1 T: 0 P:0
Branch: Computer Applications	Credits: 1
Semester: 3 rd	Contact hours: 11 hours
Internal max. marks: 60	Theory/Practical: Theory
External max. marks: 40	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: -NA-Co requisite: -NA-Additional material required in ESE: -NA-

Course Outcomes: Students will be able to

CO#	Course outcomes	
CO1	Understand basic concepts of Internet.	
CO2	Design a web page.	
CO3	Understand various applications of Internet .	

Detailed contents	Contact hours
Unit-I Internet: Internet, its advantages, disadvantages, internet facilities through WWW and HTML, Internet Protocols, TCP/IP, FTP, newsgroups, remote logins, chat groups etc.	2 hours
 Unit-II WWW: Client side, Server side, web browsers, web pages, locating information on the web. E-Mail: Architecture, various aspects, the user agent, message format, message transfer, e-mail privacy. Domain Name Server and its working 	3 hours
 Unit-III HTML: Introduction to HTML, Web structure of HTML document. Starting an HTML document: Head element, body element, style element, Script element, Text formatting, using lists to organize information. Organizing Data with Table: Basic table Structures, individual cells and headings, vertical controls, database considerations, displaying real data with a table. Table Layout and Presentation: Table Syntax, two column layout, 	3 hours

0	0 .	<i>,</i>
staggered body with an index, traditional newspaper layout.		
Unit-IV		
Uniform Resource Locators (URLs): Absolute URLs, fragment URLs, Types of URL Schemes- HTTP, mailto, new Fileetc.	,	
Using Hyper Links and Anchors: Uses to Hyper Links, Str Links, Links to specialized contents.	ructure of Hyper	3 hours
Images: Adding Images to web page, using images as links, with image maps, image formats-GIF, JPEG etc.	creating menus	

Text Books:

- 1. Corner, Internetworking with TCP-IP: Principles, Protocols and Architecture, PHI.
- 2. Stephan Mack, Janan Platt, HTML 4.0 No Experience Required, BPBPublication.

3. Rick Darnell et al, HTML 4 Unleashed, Tech mediaPublications.

I. K. Gujral Punjab Technical University

Bachelor of Science in Artificial Intelligence & Machine Learning (B.Sc. AI & ML)

Course Code: UGCA1960 Course Name: Internet Tools and Applications Laboratory

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:2
Branch: Computer Applications	Credits: 1
Semester: 3 rd	Contact hours: 2 hours per week
Internal max. marks: 30	Theory/Practical: Practical
External max. marks: 20	Duration of end semester exam (ESE): 3hrs
Total marks: 50	Elective status: Core

Prerequisite: No pre-requisite **Co requisite: -NA-Additional material required in ESE: -NA-**

Course Outcomes: Students will be able to

CO#	Course outcomes	
CO1	Understand basic concepts of Internet.	
CO2	Design a web page.	
CO3	Understand various applications of Internet.	

Instructions:

1	Create a web page to show the structure of HTML	
2	Show the use of formatting tags in HTML	
3	Write HTML code to show the use of absolute and relative URL with Anchor Tag	
4	Create a table in which colspan and rowspan elements are used.	
5	Create a webpage to show the use of different lists available in HTML	
6	Create a webpage to show the use of frame tag in HTML.	
7	Create a webpage to show the use of different types of CSS	
8	Create admission form for a college	
9	Show the use of image tag and show images as buttons	
10	Create a web page to show the use of image maps.	

Text Books:

- 1. Corner, Internetworking with TCP-IP: Principles, Protocols and Architecture, PHI.
- 2. Stephan Mack, Janan Platt, HTML 4.0 No Experience Required, BPBPublication.
- 3. Rick Darnell et al, HTML 4 Unleashed, Tech mediaPublications.

Fourth Semester

Course Code: UGCA1977

Course Name: MachineLearning

Program: B.Sc. (AI & ML)	L: 3 T: 1 P:0
Branch: Computer Applications	Credits: 4
Semester: 4 th	Contact hours: 44 hours
Internal max. marks: 40	Theory/Practical: Theory
External max. marks: 60	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: - Artificial Intelligence

Co requisite: -NA-

Additional material required in ESE: -NA-.

Course Outcomes: After studying this course, students will be able to:

CO#	Course outcomes
CO1	Analyze methods and theories in the field of machine learning.
CO2	Discuss the role of decision tree learning, Bayesian learning, Genetic Algorithm and
	artificial neural network in real world problems.
CO3	Compare different learning models and algorithms and utilize existing machine
	learning algorithms

Detailed contents	Contact hours
Unit-I Basic concepts, Designing a learning system, Issues in machine learning. Overview of types of machine learning : Learning associations, Supervised learning (Classification and Regression Trees, Support vector machines), Unsupervised learning (Clustering), Instance-based learning (K- nearest Neighbor, Locally weighted regression, Radial Basis Function), Reinforcement learning (Learning Task, Q-learning, Value function approximation, Temporal difference learning).	12 hours
Unit-IIDecision Tree Learning: Decision tree representation, appropriate problems for decision tree learning, Univariate Trees (Classification and Regression), Multivariate Trees, Basic Decision Tree Learning algorithms.Bayesian Learning: Overview of Bayes theorem and concept learning, Naive Bayes Classifier, Bayesian belief networks.	12 hours
Unit-III Artificial Neural Network: Neural network representation, Neural Networks as a paradigm for parallel processing, Linear discrimination, Pairwise separation, Logistic discrimination, Perceptron, Training a perceptron, Multilayer perceptron, Back propagation Algorithm. Recurrent Networks, Dynamically modifying network structure.	10 hours

Unit-IV	
Genetic Algorithms: Basic concepts, Hypothesis space search, Genetic	10 hours
programming, Models of evolution and learning, Parallelizing Genetic	10 hours
Algorithms.	

Text Books:

- 1. Mitchell M., T., Machine Learning, McGraw Hill (1997)1stEdition.
- 2. Alpaydin E., Introduction to Machine Learning, MIT Press (2014)3rdEdition.

References Books:

Bishop M., C., Pattern Recognition and Machine Learning, Springer-Verlag (2011)2ndEdition.
 Michie D., Spiegelhalter J. D., Taylor C. C., Campbell, J., Machine Learning, Neural and Statistical Classification. Overseas Press(1994)

Course Code: UGCA1978

Course Name: Data Science

Program: B.Sc. (AI & ML)	L: 3 T: 1 P:0
Branch: Computer Applications	Credits: 4
Semester: 4 th	Contact hours: 44 hours
Internal max. marks: 40	Theory/Practical: Theory
External max. marks: 60	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: -NA- DBMS Co requisite: -NA-

Additional material required in ESE: -NA-.

Course Outcomes: After studying this course, students will be able to:

CO#	Course outcomes	
CO1	Explain how data is collected, managed and stored for data science;	
CO2	Understand the key concepts in data science, including their real-world applications	
	and the toolkit used by data scientists;	
CO3	Implement data collection and management scripts.	

Detailed contents	Contact hours
Unit-I Introduction to Data Science – Evolution of Data Science – Data Science Roles – Stages in a Data Science Project – Applications of Data Science in various fields – Data Security Issues.	12 hours
 Unit-II Data collection and management: Introduction, Sources of data, Data storage and management, Using multiple data sources. Data Preparation: Data formats, parsing and transformation, Scalability and real-time issues. DataCleaning:Consistencychecking,Heterogeneousandmissingdata,Data Transformation and segmentation. 	12 hours
Unit-III Data visualization: Introduction, Types of data visualization, Data for visualization: Data types, Data encodings, Retinal variables, Mapping variables to encodings, Visual encodings.	10 hours
Unit-IV Model Development Simple and Multiple Regression Model Evaluation using Visualization – Residual Plot – Distribution Plot – Polynomial Regression and Pipelines — Prediction and Decision Making. Model Evaluation	10 hours

Generalization Error – Out-of-Sample Evaluation Metrics – Cross Validation – Overfitting – Under Fitting and Model Selection.	
	l

Text Books:

1. Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk from the Frontline.O'Reilly. 2. JureLeskovek,AnnandRajaramanandJeffreyUllman.MiningofMassiveDatasets.v2.1,Cambridge UniversityPress

I. K. Gujral Punjab Technical University

Bachelor of Science in Artificial Intelligence & Machine Learning (B.Sc. AI & ML)

Course Code: UGCA1974

Course Name: Image Processing

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 4 th	Contact hours: 4 hours per week
Internal max. marks: 60	Theory/Practical: Practical
External max. marks: 40	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: -NA-

Co requisite: -NA-

Additional material required in ESE: -NA-.

Course Outcomes: After studying this course, students will be able to:

CO#	Course outcomes	
CO1	Discuss the fundamental concepts of computer graphics	
CO2	Explain the need of image processing	
CO3	State the various filtering and transformations that can be applied on an image.	

Detailed contents	Contact hours
<u>Unit-I</u> Basics of computer graphics, Overview of 2D transformations, projection, color models, rendering and shading.	12 hours
<u>Unit-II</u> Introduction of Image Processing, Image Processing areas and applications; Components of Image Processing; Elements of Visual Perception; Image Sensing and Acquisition; Image Sampling and Quantization; Relationships between pixels; color models.	12 hours
<u>Unit-III</u> Spatial Domain: Gray level transformations; Histogram processing; Basics of Spatial Filtering; Smoothing and Sharpening Spatial Filtering Frequency Domain: Introduction to Fourier Transform; Smoothing and Sharpening frequency domain filters; Ideal, Butterworth and Gaussian filters.	10 hours
Unit-IV Overview of Image Restoration Noise models and filters. Overview of Feature Extraction and Image Segmentation: Contour and shape dependent feature extraction, Detection of Discontinuities; Edge Linking and Boundary detection; Region based segmentation.	10 hours

Reference Books:

_ _ _ _ _ _

- 1. A. Plastock, Gordon Kalley, Computer Graphics, Schaum's Outline Series, 1986.
- 2. Rafael C. Gonzales, Richard E. Woods, "Digital Image Processing", Third Edition, Pearson Education, 2010.
- 3. Anil Jain K. "Fundamentals of Digital Image Processing", PHI Learning Pvt. Ltd., 2011.
- 4. Willliam K Pratt, "Digital Image Processing", John Willey,2002.

Course Code: UGCA1980

Course Name: Machine Learning Laboratory

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 4 th	Contact hours: 4 hours per week
Internal max. marks: 60	Theory/Practical: Practical
External max. marks: 40	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: -NA-

Co requisite: -NA-

Additional material required in ESE: -NA-.

Course Outcomes: After studying this course, students will be able to:

CO#	Course outcomes	
CO1	I Identify various tools for machine learning.	
CO2	Implementation of various machine learning algorithms .	

Instructions:

Exact choice of experiments to be decided by instructor.		
1.	Installation of any open source machine learning tool.	
2.	Searching of data sets on the web.	
3.	Implementation of various machine learning algorithms based on syllabus of core	
	subject.	

Course Code: UGCA1981

Course Name: Data Science Laboratory

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 4 th	Contact hours: 4 hours per week
Internal max. marks: 60	Theory/Practical: Practical
External max. marks: 40	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: -NA-

Co requisite: -NA-

Additional material required in ESE: -NA-.

Course Outcomes: After studying this course, students will be able to:

CO#	# Course outcomes	
CO1	Perform different preprocessing on data.	
CO2	O2 Identify the need of different visualization tools	

Assignments: Exact choice of experiments can be decided by the lab instructor.

1. Select any data set from web and implement each type of data pre processing on it. Like data cleaning, various transformations and summarizations.	
2.	Implement different visualization tools
3. Search for any regression based data set on web and implement the prediction model on it.	

.....

Course Code: UGCA1975

Course Name: Image Processing Laboratory

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:2
Branch: Computer Applications	Credits: 1
Semester: 4 th	Contact hours: 2 hours per week
Internal max. marks: 30	Theory/Practical: Practical
External max. marks: 20	Duration of end semester exam (ESE): 3hrs
Total marks: 50	Elective status: Core

Prerequisite: -NA-

Co requisite: -NA-

Additional material required in ESE: -NA-.

Course Outcomes: After studying this course, students will be able to:

CO#	Course outcomes	
CO1	Implement fundamental transformations on objects.	
CO2	Implement transformations and enhancements on image	

Assignments:

1.	Download any tool for image processing/ install C programming language.
2.	Implement Translation on an object in C/ C++.
3.	Implement scaling on a object in C/ C++.
4.	WAP to draw Histogram of digital Image
5.	WAP to enhance the quality of digital image.
6.	WAP to convert digital image from spatial domain to frequency domain.
7.	Implement low pass filters in frequency domain for image enhancement.
8.	WAP to segment digital image using thresholding approach.

٦

Course Code: UGCA1983

Course Name: Advance Python Programming

Program: B.Sc. (AI & ML)	L: 3 T: 0 P:0
Branch: Computer Applications	Credits: 1
Semester: 4 th	Contact hours: 33 hours
Internal max. marks: 40	Theory/Practical: Theory
External max. marks: 60	Duration of end semester exam (ESE): 3hrs
Total marks: 100	Elective status: Core

Prerequisite: -NA-

Co requisite: -NA-

Additional material required in ESE: -NA-.

Course Outcomes: After studying this course, students will be able to:

CO#	Course outcomes	
CO1	Implement database connection using python	
CO2	Use appropriate python libraries for various array, machine learning and data frames	
	related problems.	

Detailed contents	Contact hours
<u>Unit-I</u>	
DATABASE: Introduction to MySQL, Database connections, Executing queries, Handling error.	7 hours
<u>Unit-II</u>	
Pandas Library: Introduction, Environment Setup	
Introduction to Data Structures: Series, DataFrame, Panel, Basic Functionality, Descriptive Statistics, Function Application, Reindexing, Iteration, Sorting	10 hours
Working with Text Data, Options & Customization, Indexing & Selecting Data	
Statistical Functions: Window Functions, Aggregations, Missing Data, GroupBy, Merging/Joining, Concatenation, Date FunctionalityTimedelta, Categorical Data, Visualization	
<u>Unit-III</u>	
NumPy Library, Introduction, Environment, Ndarray Object, Data Types, Array Attributes, Array Creation Routines, Array from Existing Data, Array From Numerical Ranges, Indexing & Slicing, Iterating Over Array, Array Manipulation, String Functions, Mathematical Functions, Arithmetic Operations, NumPy - Statistical Functions, Sort, Search & Counting Functions, NumPy - Matrix Library, NumPy - Linear Algebra, NumPy - Matplotlib, NumPy - Histogram Using Matplotlib, NumPy - I/O with NumPy	10 hours
<u>Unit-IV</u>	
--	---------
Basic Introduction to Scipy, Seaborn, Scikit-learn Libraries	6 hours

Text Books:

- 1. Michael Urban and Joel Murach, Python Programming, Shroff/Murach, 2016
- 2. Python Training guide (BPBPublications)

Reference Book:

1. Mark Lutz, Programming Python, O'Reilly, 4th Edition, 2010

_____ -----

Course Code: UGCA1984

Course Name: Advance Python Programming Laboratory

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:2
Branch: Computer Applications	Credits: 1
Semester: 4 th	Contact hours: 2 hours per week
Internal max. marks: 30	Theory/Practical: Practical
External max. marks: 20	Duration of end semester exam (ESE): 3hrs
Total marks: 50	Elective status: Core

Prerequisite: -NA-

Co requisite: -NA-

Additional material required in ESE: -NA-.

Course Outcomes: After studying this course, students will be able to:

CO#	f Course outcomes	
CO1	Write programs to implement basic database functions using python.	
CO2	Implement various machine learning algorithms using python.	

Assignments: Exact

1.	WAP to connect with MySQL
2.	WAP to implement various queries
3.	Implement various methods of NumPy Library
4.	Implement various methods of Pandas Library
5.	Implement various methods of Scipy Library
6.	Implement various methods of Seaborn Library
7.	Implement various methods of Scikit-learn Libraries

Course Code: UGCA1946 Course Name: R Programming

Program: B.Sc. (AI & ML)	L: 3 T: 0P: 0
Branch: Computer Applications	Credits: 3
Semester: 5 th	Contact Hours: 33 hours
Theory/Practical: Theory	Percentage of numerical/design problems : 40%
Internal max. marks: 40	Duration of end semester exam (ESE): 3hrs
External max. marks: 60	Elective status: Skill Enhancement
Total marks:100	

Prerequisite: Logics of basic programming terminologies.

Co requisite: Simulation study.

Additional material required in ESE: -NA-

Course Outcomes:

CO#	Course Outcomes
CO1	Identify the key components of R programming Language.
CO2	Define the concept of data Science.
CO3	Differentiate between vectors and arrays.
CO4	Outline the usage of data frames, lists, factors, tables and R structures.
CO5	Explain the need and utilization of various visualization tools.

Detailed Contents	Contact hours
 Unit-I R Programming Fundamentals: Introduction to R, Installing R, Windows/Linux/Mac Installation, Setting up Path, Using Packages, and Running R: Interactive Mode, Batch Mode, Getting Help, Startup and Shut Down.[CO1] Vectors: Scalars, Vectors, Arrays and Matrices, Declarations, Recycling, Common Vector Operations, Using all() and any(), Na and Null Values, Filtering, ifelse() Function.[CO3] Matrices and Arrays: Creating Matrices, General Matrix Operations, Applying Functions to Matrix Rows and Columns, Adding & Deleting Matrix Rows and Columns, Difference Between Matrix and Vector.[CO3] 	8
 Unit-II Lists: Creating Lists, General List Operations, Accessing List Components and Values, Applying Functions to Lists, Recursive Lists. Data Frames: Creating Data Frames, Merging Data Frames, Applying Functions to Data Frames. [CO4] Factors and Tables: Introduction, Common Functions use with Factors, Working with Tables.[CO4] 	8

R Programming Structures: Control Statements, Arithmetic and Boolean Operators, Default Values for Arguments, Return Values, Recursion.[CO4]	
Unit-III	
Object Oriented Programming: Concept of Classes, S3 Classes, S4 Classes, S3 Versus S4 Classes, Managing Objects.[CO1]	
Input/Output: Accessing Keyboard and Monitor, Reading and Writing Files, Accessing the Internet.	8
String Manipulation: Overview of String Manipulation Functions [grep(), nchar(), paste(), sprintf(), substr(), strsplit(), regexpr(), gregexpr(), Regular expression].[CO5]	
Unit-IV	
Graphics: Creating Graphs, Customizing Graphs, Saving Graphs to Files, Creating 3D Plots.	
Debugging: Principles of Debugging, Use of Debugging Tool, Using R Programming Debugging Facilities. [CO3]	9
Simulation: Generating Random Numbers, Setting the Random Number Seed, Simulating a Linear Model, Random Sampling.[CO5]	

Text Books:

- 1. The ART of R Programming, Norman Matloff, No Starch Press.
- 2. R Programming for Data Science, Roger D. Peng, Lean Publishing.
- 3. R Programming for Beginners, S. Rakshit, TMH.

Reference Books:

1. Data Analytics using R, Seema Acharya, TMH.

Course Code: UGCA1952

Course Name: R Programming Laboratory

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 5 th	Contact hours: 4 hours per week
Theory/Practical: Practical	Percentage of numerical/design problems:
Internal max. marks: 60	Duration of End Semester Exam(ESE): 3hrs
External max. marks: 40	Elective Status: Skill Enhancement
Total marks: 100	

Prerequisite: - Logics of basic programming terminologies.

Co requisite: - Simulation study. **Additional material required in ESE**: - Record the *Simulation Results* on practical file. **Course Outcomes**: Students will be able to

CO#	Course Outcomes
CO1	Write programs for arrays and matrices.
CO2	Execute data frames and lists.
CO3	Differentiate between arrays from vectors.
CO4	Implement factors in R
CO5	Execute minor projects using R.

Instructions: All programs are to be developed in R Programming Language.

1.	Design a program to take input from the user (name and age) and display the values
	through R Programming.
2.	Write a program to get the details of the objects in memory using R Programming.
3.	Create a sequence of numbers from 20 to 50 and find the mean of numbers from 20 to
	60 and sum of numbers from 51 to 91 using R Programming.
4.	Create a vector which contains 10 random integer values between -50 and +50 using
	R Programming.
5.	Demonstrate through a program to display the details of the objects in memory.
6.	Write a R program to get the first 10 Fibonacci numbers.
7.	Show all prime numbers up to a given number usingh R rogramming
8.	Design a R program to find the factors of a given number.
9.	Write a R program to find the maximum and the minimum value of a given vector.
10.	Write a program to get the unique elements of a given string and unique numbers of
	vector.
11.	Convert a given matrix to a 1 dimensional array through R programming.
12.	Write a R program to create an array of two 3x3 matrices each with 3 rows and 3
	columns from the given two vectors.
13.	Create a 3 dimensional array of 24 elements using dim() function.
14.	Write a R program to create an array using four given columns, three given rows and
	two given tables, also display the contents of the array.
15.	To convert a given matrix to 1 dimensional array design a R program.
16.	Write a R program to concatenate two given factor in a single factor.
17.	Write a R program to create an 3 dimensional array of 24 elements using the dim()
	function.
18.	Construct a R program to create an array of two 3x3 matrices each with 3 rows and 3
	columns from the given two vectors. Print the second row of the second matrix of the
	array and the element in the 3rd row and 3rd column of the 1st matrix.
19.	Write a R program to create a data frame from four given vectors.
20.	Write a program to get the structure of a given data frame.

21.	Design a R program to get the statistical summary and nature of the data of a given
	data frame.
22.	Write a R program to extract specific column from a data frame using column name.
23.	Design a R program to create a data frame from four given vectors.
24.	Demonstrate a R program to get the structure of a given data frame.
25.	Write a R program to get the statistical summary and nature of the data of a given data
	frame.
26.	Design a R program to extract specific column from a data frame using column name.
27.	Demonstrate a R program to create a data frame from four given vectors.
28.	Write a R program to create a matrix taking a given vector of numbers as input.
	Display the matrix.
29.	Construct a R program to create a matrix taking a given vector of numbers as input
	and define the column and row names. Display the matrix.
30.	Write a R program to access the element at 3 rd column and 2 nd row, only the 3 rd row
	and only the 4 th column of a given matrix.
31.	Develop a R program to create a vector of a specified type and length. Create vector
	of numeric, complex, logical and character types of length 6.
32.	Write a R program to add two vectors of integers type and length.
33.	Design a R program to append value to a given empty vector
34.	Write a R program to multiply two vectors of integers type and length.
35.	Design a R program to create a list containing strings, numbers, vectors and a logical
	values.
36.	Write a R program to list containing a vector, a matrix and a list and give names to the
	elements in the list.
37.	Demonstrate a R program to find the levels of factor of a given vector.
38.	Write a R program to change the first level of a factor with another level of a given
	factor.
39.	Design a R program to create an ordered factor from data consisting of the names of
	months.
40.	Construct graphical output & display the results of any five tasks using simulator.

Text Books:

- 1. The ART of R Programming, Norman Matloff, No Starch Press.
- 2. R Programming for Data Science, Roger D. Peng, Lean Publishing.
- 3. R Programming for Beginners, S. Rakshit, TMH.

Reference Books:

1. Data Analytics using R, Seema Acharya, TMH.

Course Code: UGCA1936 Course Name: Cloud Computing

Program: B.Sc. (AI & ML)	L: 3 T: 1 P: 0
Branch: Computer Applications	Credits: 4
Semester: 5 th	Contact hours: 44 hours
Theory/Practical: Theory	Percentage of numerical/design problems:
Internal max. marks: 40	Duration of end semester exam (ESE): 3hrs
External max. marks: 60	Elective status: Elective
Total marks: 100	

Prerequisite: -NA-Co requisite: -NA-Additional material required in ESE: -NA-Course Outcomes:

CO#	Course outcomes
CO1	Define the concept of cloud computing.
CO2	Outline the benefits if migrating to a cloud solution for different applications.
CO3	Compare different virtualization technologies.
CO4	Identify various resources needed to build cloud.
CO5	Explain various security threats to cloud.

Detailed contents	Contact hours
Unit-I	
Overview of Computing Paradigm: Recent trends in Computing -Grid Computing, Cluster Computing, Distributed Computing, Utility Computing, Cloud Computing. [CO1]	
Introduction to Cloud Computing: Vision of Cloud Computing, Defining a Cloud, Cloud delivery Model, Deployment Model, Characteristics, Benefits of Cloud Computing, Challenges ahead. Cloud computing vs. Cluster computing vs. Grid computing.[CO1]	12
Migrating into a Cloud: Introduction, Broad approaches to Migrating into the Cloud, The Seven-Step Model of Migration Into a Cloud. [CO2]	
Unit-II	
Virtualization: Introduction, Characteristics of Virtualized environment, Taxonomy of Virtualization techniques, Virtualization and Cloud Computing, Pros and Cons of Virtualization, Hypervisor Technology Examples- Xen, VMware, Microsoft Hyper-V. [CO3]	12
Capacity Planning: Elasticity vs Scalability, Introduction, Defining Baseline	

and Metrics-Baseline Measurements, System Metrics, Load Testing, Resource Ceilings, Server and Instance types; Network Capacity, Scaling. [C04]	
Unit-III SLA Management in Cloud Computing: Inspiration, Traditional Approaches to SLO Management, Types of SLA, Life Cycle of SLA, SLA management in Cloud. Automated Policy-based management.[CO4] Securing Cloud services: Cloud Security, Securing Data- Brokered Cloud Storage Access, Storage location and tenancy, Encryption, Auditing and compliance. Steps to ensure security over cloud.[CO5]	10
Unit-IV Cloud Platforms in Industry: Amazon Web Services-Compute Services, Storage Services, Communication Services, Additional Services. Google AppEngine-Architecture and Core Concepts, Application Life Cycle. Cost Model. Microsoft Azure-Azure Core Concepts, SQL Azure, Windows Azure Platform Appliance. [CO4]	10

Text Books:

- 1. 1.Mastering Cloud Computing, Rajkumar Buyya, Christian Vecchiola, and ThamaraiSelvi, Tata McGraw Hill, ISBN-13: 978-1-25-902995-0, New Delhi, India, Feb 2013.
- 2. Cloud Computing Bible, Barrie Sosinsky, Wiley India Pvt. Ltd, ISBN-13: 978-81-265-2980-3, New Delhi, India, 2011.
- 3. Cloud Computing: Principles and paradigms, Raj Kumar Buyya, JamesBroberg, AndrezeiM.Goscinski, Wiley India Pvt. Ltd, ISBN-13: 978-81-265-4125-6, New Delhi, India, 2011

Reference Books:

- 1. 1.Cloud Computing for Dummies, Fern Halper, Hurwitz, Robin Bloor, Marcia Kaufman, WileyIndia Pvt. Ltd, ISBN-13: 978-0-47-0597422, New Delhi, India, 2011.
- 2. Dr. Saurabh Kumar, Cloud Computing: Insights into New-Era Infrastructure, Wiley India Pvt.Ltd, ISBN-13: 978-8-12-6528837, New Delhi, India, 2011.

E Books/ Online learning material

- 1. P.D. Kaur, I. Chana, Unfolding the distributed computing paradigm, in:Proceedings of the IEEE International Conference on Advances in ComputerEngineering, ACE, Bangalore, Karnataka, India, 2010, pp. 339–342.
- 2. P. Mell and T. Grance, "The NIST definition of cloud computing (draft), NIST Spec. Publ. 800 (2011) 7.

Course Code: UGCA1942 Course Name: Cloud Computing Laboratory

Course Name: Cloud Computing Laboratory

Program: BCA

L : 0	T : 0	P : 4	
1.0	.	.	

Page 80 of 110

Branch: Computer Applications	Credits: 2
Semester: 5 th	Contact hours: 4 hours per week
Theory/Practical: Practical	Percentage of numerical/design problems:
Internal max. marks: 60	Duration of end semester exam (ESE): 3hrs
External max. marks: 40	Elective status: Elective
Total marks: 100	

Prerequisite: Working Knowledge of Operating system **Co requisite:** -NA-**Additional material required in ESE:** -NA-

CO#	Course outcomes
CO1	Identify major commercial projects in the field of cloud computing
CO2	Design basic cloud applications
CO3	Execute basic functionalities of open source tools like Open Stack.
CO4	Implement virtualization
CO5	Define major services provided by cloud service provider.

Instructions:

1.	Enlist various companies in cloud business and the corresponding services provided
	by them and tag them under SaaS, PaaS & IaaS.
2.	Create a warehouse application using tools supplied by any SaaS provider.
3.	Implementation of Para-Virtualization using VM Ware's Workstation/ Oracle's Virtual Box and Guest O.S. Learn creation, migration, cloning and managing of virtual machines.
4.	Using public cloud service providers tools for exploring the usage of IaaS, PaaS and SaaS cloud services.
5.	Setting up a private cloud using open source tools (Eucalyptus/Open Stack etc.).

Course Code: UGCA 1989 Course Name: Neural Networks

Program: B.Sc. (AI & ML)	L: 3 T: 1 P: 0	
Branch: Computer Applications	Credits: 4	
Semester: 5 th	Contact Hours: 33 hours	
Theory/Practical: Theory	Percentage of numerical/design problems: 40%	
Internal max. marks: 40	Duration of end semester exam (ESE): 3hrs	
External max. marks: 60	Elective status: Elective	
Total marks:100		

Prerequisite: Computer Networks. Co requisite: Machine Learning Additional material required in ESE: -NA-Course Outcomes: CO# Co

Course Outcomes

CO1	Understand basic concepts of neural networks.
CO2	Use neural networks to perform classification for single class and multiclass problems.
CO3	Learn and apply the concept of self-organizing maps.
CO4	To be able to formalize the problem, to solve it by using a neural network.

Detailed Contents	Contact hours
Unit-I NEURAL NETWORK BASICS- Classical AI and Neural Networks, Characteristics of Neural Networks, Historical perspective, Models of Artificial Neuron & activation functions, Artificial Neuron Model and Linear Regression, Nonlinear Activation Units and Training of Artificial Neural Networks, Learning Mechanisms: Gradient Descent Algorithm, Learning Mechanisms-Hebbian, Competitive, Boltzmann , Universal function approximation. [CO 1]	8
Unit-II SINGLE LAYER AND MULTI LAYER PERCEPTRONS- Representation of perceptron, Linear separability, Perceptron Learning, Single-Layer Perceptrons, Unconstrained Optimization, Gauss-Newton's Method, Linear Least Squares Filters, Least Mean Squares Algorithm, Perceptron Convergence Theorem, Back Propagation Algorithm, Practical Consideration in Back Propagation Algorithm, Training of single layer and multilayer perceptron, Solution of Non-Linearly Separable Problems Using MLP, Heuristics For Back-Propagation [CO 2]	8
Unit-III Multi- Class Classification Using Multi-layered Perceptrons, Associative Memory Networks- Associative Memory Model, Conditions for perfect Recall in Associative memory, Radial basis function Networks, Separability and Interpolation, Learning Mechanisms in RBF, Comparison Between MLP and RBF, Introduction to Principal Components and Analysis, Dimensionality reduction Using PCA Hebbian- based Principal Component Analysis [CO 4]	8
Unit-IV Self OrganizingMaps :Introduction to Self Organizing Maps, Cooperative and Adaptive Processes in SOM, Vector-Quantization Using SOM, Competitive learning, Mexican Hat networks [CO 3]	9

Text Books:

- 1) Neural Networks, fuzzy Logic, and Genetic Algorithms, Rajasekaran&Vijayalakhmi Pai, Pearson 2011
- 2) Principles of Soft Computing, Sivanandam, Deepa, Wiley, 2014

Reference Books:

1) Neural Networks – A Classroom Approach, Satish Kumar, Tata McGraw Hill, 2010

Course Code: UGCA 1990 Course Name: Neural Networks Lab

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 5 th	Contact hours : 4 hours per week
Theory/Practical: Practical	Percentage of numerical/design problems:
Internal max. marks: 60	Duration of End Semester Exam(ESE): 3hrs
External max. marks: 40	Elective Status: Elective
Total marks: 100	

Prerequisite: Computer Networks. **Co requisite**: Machine Learning **Additional material required in ESE**: -NA-**Course Outcomes**:

CO#	Course Outcomes
CO1	Xreate environment for implementing neural network applications.
CO2	Use neural networks to perform classification for single class and multiclass problems.
CO3	To be able to formalize the problem, to solve it by using a neural network.

	LIST OF PRACTICALS	
1.	Study and installation of Matlab or any other open tool for implementing neural network- based exercises.	
2.	Implement basic programs for understanding data types, operators, control statements and writing scripts.	
3.	Write a program to plot straight line and sine curve.	
4.	Write a program in Matlab for plotting multiple curves in single figure	
5.	Write a program in Matlab to plot Activation function used in neural network	
6.	Write a program in Matlab to plot piecewise continuous activation function	
7.	Write a program to create the Perceptron.	
8.	Write a program in Matlab for Pattern Classification using Perceptron network	
9.	Write a program for creating a Back Propagation Feed-forward neural network	
10.	Write a program to illustrate how the perception learning rule works for non-linearly	
	separable problems	
11.	Write a program to illustrate Linearly non-separable vectors	

Text Books:

- 1) Neural Networks, fuzzy Logic, and Genetic Algorithms, Rajasekaran&Vijayalakhmi Pai, Pearson 2011
- 2) Principles of Soft Computing, Sivanandam, Deepa, Wiley, 2014

Reference Books:

1) Neural Networks - A Classroom Approach, Satish Kumar, Tata McGraw Hill, 2010

Course Code: UGCA1991 Course Name: Web Mining & Recommender System

Program: B.Sc. (AI & ML)	L: 3 T: 1P: 0
Branch: Computer Applications	Credits: 4
Semester: 5 th	Contact Hours: 33 hours
Theory/Practical: Theory	Percentage of numerical/design problems: 40%
Internal max. marks: 40	Duration of end semester exam (ESE): 3hrs
External max. marks: 60	Elective status: Elective
Total marks:100	

Prerequisite: Fundamental concepts of internet.

Co requisite: Simulation study.

Additional material required in ESE: -NA-

Course Outcomes:

CO#	Course Outcomes	
CO1	To explaint echniques to mine the Weband other information networks,	
CO2	Toimplement mining onSocialnetworks andSocialmedia	
CO3	Toapplytheappropriate technique for dataanalysis	
CO4	Toextractknowledgefromwebscaledatasetsbyvarioustechniques.	
CO5	TobefamiliarwithclassicandrecentdevelopmentsinWebsearchandwebdata	

Detailed Contents	Contac t hours
Unit-I INTRODUCTION TO WEBDATAMINING Need, Importance, Applications of Web Data mining. Capturing-users web activities, Client side v/smiddleware v/s server side-dataand usage logging. Web Mining and its types, Web Usage Mining,WebStructure Mining, Web ContentMining [CO1]	8
Unit-IIWEBUSAGEMININGLearningfromBrowser,ServerLogs,Identifyingfrequentitemsets,patternidentification,representing patterns in form of relations/Graphs.Understandingwebapplicationorwebsite- Usage,Heatmaps.Usingstatisticaltoolsforusageanalysisandmachinelearningforprospectiveimprovements.[CO2, CO3]	8
Unit-III WEBSTRUCTUREMINING Understandinglinkstructureoftheweb,Staticv/sdynamic	8

linking,representingthelinkstructureasgraphs,identifyingmost/leastusedlinks,paths,Categorizinglinksbasedonrequired attributes, Clustering links based on required attributes. Web as a graph, identifying nodes, edges, in-degree, out-degree,HITS AlgorithmPageRankalgorithm. [CO4]	
Unit-IV WEBCONTENT MINING Storing web content as text, database, various document types, generating meta-information of webdocuments, labelling, tagging, identifying feature sets. Representing web documents, Vector SpaceModel.TF-IDF, web-page summarization, tokenization, n-gram analysis, categorizingwebpagesbasedon requiredattributes, Clusteringweb pagesbased onrequiredattributes. [CO5]	9

Text Books:

- 1. SoumenChakrabarti, Mining the Web, Morgan-Kaufmann, first edition, 2002
- 2. Jannach D., Zanker M. and FelFering A., Recommender Systems: An Introduction, Cambridge University Press(2011).
- 3. Bing Liu, Web Data Mining: Exploring Hyperlinks, Content, and Usage Data, 2nd Edition, Springer, 2011

Course Code: UGCA1992 Course Name: Web Mining & Recommender System Lab

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 5 th	Contact hours: 4 hours per week
Theory/Practical: Practical	Percentage of numerical/design problems:
Internal max. marks: 60	Duration of End Semester Exam(ESE): 3hrs
External max. marks: 40	Elective Status: Elective
Total marks: 100	

Prerequisite: - fundamental concepts of internet and programming.

Co requisite: - Simulation study.

Additional material required in ESE: - Record the *Simulation Results* on practical file. **Course Outcomes**: Students will be able to

CO#	Course Outcomes	
CO1	Prepare the data for web mining	
CO2	Apply training to data.	
CO3	Analyze text mining techniques	

Practicals

12.	To List applications for mining.

13.	Study of File format for data mining.
14.	To convert various data files.
15.	Training the given dataset for an application.
16.	Testing the given dataset for an application.
17.	Study of Data pre-processing techniques.
18.	Study and analysis of Text mining techniques.
19.	Use of Jupyter notebook.
20.	Application of Python NLTK.
21.	Use of NLTK Tagging and Chunking.

Text Books:

- 1. SoumenChakrabarti, Mining the Web, Morgan-Kaufmann, first edition, 2002
- 2. Jannach D., Zanker M. and FelFering A., Recommender Systems: An Introduction, Cambridge University Press(2011).
- 3. Bing Liu, Web Data Mining: Exploring Hyperlinks, Content, and Usage Data, 2nd Edition, Springer, 2011

Course Code: UGCA1993 Course Name: Natural Language Processing

Program: B.Sc. (AI & ML)	L: 3 T: 1P: 0
Branch: Computer Applications	Credits: 4
Semester: 5 th	Contact Hours: 33 hours
Theory/Practical: Theory	Percentage of numerical/design problems: 40%
Internal max. marks: 40	Duration of end semester exam (ESE): 3hrs
External max. marks: 60	Elective status: Elective
Total marks:100	

Prerequisite: Logics of basic programming terminologies.

Co requisite: Simulation study.

Additional material required in ESE: -NA-

Course Outcomes:

CO#	Course Outcomes
CO1	Toexplain the concept of naturallanguageprocessing
CO2	Toexplorethelinguisticfeaturesrelevantto each NLPtask.
CO3	To discuss the phases of Natural language Generation.
CO4	To applybasicalgorithmsin thisfield.

Detailed Contents

Contact hours

Unit-I OVERVIEW AND LANGUAGE MODELING	
Overview - Origins and challenges of NLP-Language and Grammar-Processing Indian Languages - NLP Applications-Information Retrieval - Language Modeling: Various Grammar - based Language Models - Statistical Language Model. [CO1]	8
Unit-IIWORD LEVEL AND SYNTACTIC ANALYSISWord Level Analysis - Regular Expressions - Finite-State Automata - Morphological Parsing - Spelling Error Detection and correction - Words and Word classes - Part-of Speech Tagging. Syntactic Analysis - Context - free Grammar - Constituency - Parsing - Probabilistic Parsing. [C02]	8
Unit-III SEMANTIC ANALYSIS AND DISCOURSE PROCESSING Semantic Analysis - Meaning Representation - Lexical Semantics – Ambiguity - Word Sense Disambiguation - Discourse Processing – cohesion - Reference Resolution - Discourse Coherence and Structure. [CO2]	8
Unit-IV NATURAL LANGUAGE GENERATION AND MACHINE TRANSLATION Natural Language Generation - Architecture of NLG Systems - Generation Tasks and Representations - Application of NLG. Machine Translation - Problems in Machine Translation - Characteristics of Indian Languages - Machine Translation Approaches - Translation involving Indian Languages. [CO3][CO4]	9

TextBooks:

1. TanveerSiddiqui,U.S.Tiwary, "NaturalLanguageProcessingandInformationRetrieval", OxfordUniversityPress, 2012.

Reference Books:

- 1. Daniel Jurafsky and James H Martin, "Speech and Language Processing: An introduction toNaturalLanguageProcessing,ComputationalLinguisticsandSpeechRecognition",2ndEdition,PrenticeHall,2008.
- 2. JamesAllen, "NaturalLanguageUnderstanding", 2ndedition, Benjamin/Cummingspublishingcompany, 1995.

Course Code: UGCA1994

Course Name: Natural Language Processing Lab

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2

Semester: 5 th	Contact hours: 4 hours per week
Theory/Practical: Practical	Percentage of numerical/design problems:
Internal max. marks: 60	Duration of End Semester Exam(ESE): 3hrs
External max. marks: 40	Elective Status: Elective
Total marks: 100	

Prerequisite: - Logics of basic programming terminologies.

Co requisite: - Simulation study.

Additional material required in ESE: - Record the Simulation Results on practical file.

Course Outcomes: Students will be able to

CO#	Course Outcomes
CO1	Apply preprocessing to text.
CO2	Implement different linguistic features and phases of NLP.
CO3	Create basic NLP applications

Practicals

Write pr	Write programs to implement the following:			
1	Preprocessing of text (Tokenization, Filtration, Script Validation, Stop Word			
	Removal, Stemming)			
2	Morphological Analysis			
3	N-gram model			
4	POS tagging			
5	Chucking			
6	Named Entity Recognition			
7	Mini Project based on NLP Application			

Text Books:

TextBooks:

2. TanveerSiddiqui,U.S.Tiwary,"NaturalLanguageProcessingandInformationRetrieval", OxfordUniversityPress, 2012.

Reference Books:

- 3. Daniel Jurafsky and James H Martin, "Speech and Language Processing: An introduction toNaturalLanguageProcessing,ComputationalLinguisticsandSpeechRecognition",2ndEdition,PrenticeHall,2008.
- 4. JamesAllen, "NaturalLanguageUnderstanding", 2ndedition, Benjamin/Cummingspublishingcompany, 1995.

Course Code: UGCA1995

Course Name: Simulation and Modelling

Program: B.Sc. (AI & ML)	L: 3 T: 1 P: 0
Branch: Computer Applications	Credits: 4
Semester: 5 th	Contact Hours: 33 hours
Theory/Practical: Theory	Percentage of numerical/design problems: 40%

Internal max. marks: 40	Duration of end semester exam (ESE): 3hrs
External max. marks: 60	Elective status: Elective
Total marks:100	

Prerequisite: --

Co requisite: --

Additional material required in ESE: -NA-

Course Outcomes:

CO#	Course Outcomes	
CO1	Understand the fundamental elements of simulation system models and its phases.	
CO2	Analyze a real-world problem and apply modelling methodologies to develop a discrete-event	
002	simulation model	
CO3	Learn the discrete and continuous system, generation of random variables, analysis of	
	simulation output and simulation languages.	
CO4	Compare and evaluate the operation of simulated system and make improvement according to	
	the simulation results.	

Detailed Contents	Contact hours
Unit-I	
Introduction to Simulation: System Models: System Concept, Boundary Environment,	
Continuous and discrete systems, Real Time Simulation; Types of simulation model (Static	8
Physical, Dynamic Physical, Static Mathematical); Phases and Steps in Simulation Study;	
Advantages & Disadvantages of Simulations; Areas of Applications. [CO 1]	
Unit-II	
Simulation of Continuous Systems: Simulation of Queuing system, Simulation of single and	
two server queues; Markov Chains: Introduction, Application and examples; Network Model	
of a project.	8
Probability concepts in simulation: Stochastic variables and probability functions; Discrete	
system simulation; fixed time step vs event-to-event model, Generation of Random numbers,	
Monte Carlo Computation vs Stochastic simulation. [CO 2]	
Unit-III	
Random Numbers: Introduction, Table, Pseudo Random Numbers; Generation of Random	
Numbers - Uniform (Linear Congruential Method) and Non-Uniform (Inverse	8
Transformation, Rejection); Testing for Randomness: Uniformity (frequency) test	0
(Kolmogorov-Smirnov Test; Chi-Square Test); Testing for auto correlation; Poker test; Gap	
test. [CO 3]	
Unit-IV	
Verification and Validation of Simulation Model: Modeling Building; Verification of	
Simulation Model; Calibration and Validation of Models	9
Analysis of Simulation Output: Nature of problem; Estimation methods; Simulation run	7
statistics; Replication of runs; Elimination of internal bias	
Comparison and Evaluation of Alternative System Designs. [CO 4]	

Text Books:

- 1. Jerry Banks, John S. Carson II, Barry L.Nelson and David M.Nicol, "Discrete- event system and simulation", Prentice Hall of India.
- 2. Averill M.Law, "Simulation Modeling and Analysis", Tata McGraw Hill India.
- 3. David Cloud, Larry Rainey, "Applied Modeling and Simulation", Tata McGraw Hill.
- 4. Lawrence M. Leemis, Stephen K. Park, "Discrete Event Simulation: A First Course", Pearson Education.

Reference Books:

- 1. Narsingh Deo "System Simulation with Digital Computers" PHI
- 2. G.Gordon "System Simulation" PHI
- 3. Gabriel A. Wainer, "Discrete-event modeling and simulation: a practitioner's approach", CRC Press.
- 4. Bernard P. Zeiger, Herbert Praehofer, Tag Gon Kim, "Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems", Academic Press.
- 5. Walter J. Karplus, George A. Bekey, Boris YakobKogan, "Modeling and simulation: theory and practice", Springer.

Course Code: UGCA1996 Course Name: Simulation and Modelling Laboratory

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 5 th	Contact hours: 4 hours per week
Theory/Practical: Practical	Percentage of numerical/design problems:
Internal max. marks: 60	Duration of End Semester Exam(ESE): 3hrs
External max. marks: 40	Elective Status: Elective
Total marks: 100	

Prerequisite: --

Co requisite: --

Additional material required in ESE: Record the Simulation Results on practical file.

Course Outcomes: Students will be able to

CO#	Course Outcomes	
CO1	Basic concept of simulation tools	
CO2	Understand Discrete systems modeling and simulation ie General Purpose Simulation System (GPSS)	
CO3	Learn about Continuous system modeling and simulation (CSMP)	
CO4	Compare and evaluate the operation of simulated system and make improvement accordingly.	

Suggested Tools - Scilab, Tortuga and Extend. Introduction to network simulators - NS2, CloudSim, Wireshark.

— Production system; etc.

Text Books:

- 1. Jerry Banks, John S. Carson II, Barry L.Nelson and David M.Nicol, "Discrete- event system and simulation", Prentice Hall of India.
- 2. Averill M.Law, "Simulation Modeling and Analysis", Tata McGraw Hill India.
- 3. David Cloud, Larry Rainey, "Applied Modeling and Simulation", Tata McGraw Hill.
- 4. Lawrence M. Leemis, Stephen K. Park, "Discrete Event Simulation: A First Course", Pearson Education.

Course Code: UGCA1997 Course Name: Deep Learning

Program: B.Sc. (AI & ML)	L: 3 T: 1P: 0
Branch: Computer Applications	Credits: 4
Semester: 5 th	Contact Hours: 33 hours
Theory/Practical: Theory	Percentage of numerical/design problems: 40%
Internal max. marks: 40	Duration of end semester exam (ESE): 3hrs
External max. marks: 60	Elective status: Elective
Total marks:100	

Prerequisite: -

Co requisite: -Additional material required in ESE: -NA-Course Outcomes:

CO#	Course Outcomes
CO1	Comprehend the advancements in learning techniques
CO2	Compare and explain various deep learning architectures and algorithms.
CO3	Demonstrate the applications of Convolution Networks
CO4	Apply Recurrent Network for Sequence Modelling

Detailed Contents	Contact hours
Unit-IMachine Learning Basics: Learning, Under-fitting, Overfitting, Estimators, Bias, Variance, Maximum Likelihood Estimation, Bayesian Statistics, Supervised Learning, Unsupervised Learning and Stochastic Gradient Decent. (CO1)	8
Unit-IIDeep Feedforward Network: Feed-forward Networks, Gradient-based Learning, Hidden Units, Architecture Design, Computational Graphs, Back-Propagation, Regularization, Parameter Penalties, Data Augmentation, Multi-task Learning, Bagging, Dropout and Adversarial Training and Optimization. (CO2)	8
Unit-IIIConvolution Networks: Convolution Operation, Pooling, Basic Convolution Function, Convolution Algorithm, Unsupervised Features and Neuroscientific for convolution Network. (CO 3)	8
Unit-IVSequence Modelling: Recurrent Neural Networks (RNNs), Bidirectional RNNs, Encoder- Decoder Sequence-to-Sequence Architectures, Deep Recurrent	9

Network, Recursive Neural Networks and Echo State networks. (CO4)	

Text Books:

- 1. Goodfellow L., Bengio Y. and Courville A., Deep Learning, MIT Press (2016).
- 2. Patterson J. and Gibson A., Deep Learning: A Practitioner's Approach, O'Reilly (2017), 1st ed.

Reference Books:

- 1. Haykin S., Neural Network and Machine Learning, Prentice Hall Pearson (2009), 3rd ed.
- 2. Geron A., Hands-on Machine Learning with Sci-kit and TensorFlow, O'Reilly Media (2017)

Course Code: UGCA1998 Course Name: Deep Learning Lab

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 5 th	Contact hours: 4 hours per week
Theory/Practical: Practical	Percentage of numerical/design problems:
Internal max. marks: 60	Duration of End Semester Exam(ESE): 3hrs
External max. marks: 40	Elective Status: Elective
Total marks: 100	

Prerequisite: - Logics of basic programming terminologies.

Co requisite: - Simulation study.

Additional material required in ESE: - Record the Simulation Results on practical file.

Course Outcomes: Students will be able to

CO#	Course Outcomes
CO1	Create basic networks for deep learning.
CO2	Implement applications like classification and object detection using CNN
CO3	Implement mining problems using CNN.

	Instructor can implement the exercises using any tool	
1.	Implement Simple Programs like vector addition.	
2.	Implement a simple problem like regression model.	
3.	Implement a perceptron model.	
4.	Implement a Feed-Forward Network.	
5.	Implement an Object Detection using CNN.	
6.	Implement an Image Classifier using CNN.	
7.	Implement Text Classification using CNN.	
8.	Implement 2 differing mining problems in Recurrent Neural network.	
	Page 92 of 110	

Text Books:

- 3. Goodfellow L., Bengio Y. and Courville A., Deep Learning, MIT Press (2016).
- 4. Patterson J. and Gibson A., Deep Learning: A Practitioner's Approach, O'Reilly (2017), 1st ed.

Reference Books:

- 3. Haykin S., Neural Network and Machine Learning, Prentice Hall Pearson (2009), 3rd ed.
- 4. Geron A., Hands-on Machine Learning with Sci-kit and TensorFlow, O'Reilly Media (2017)

Sixth Semester

Course Code: UGCA2006 **Course Name: Big Data Analytics**

Program: B.Sc. (AI & ML)	L: 3 T: 1P: 0
Branch: Computer Applications	Credits: 4
Semester: 6 th	Contact Hours: 33 hours
Theory/Practical: Theory	Percentage of numerical/design problems: 40%
Internal max. marks: 40	Duration of end semester exam (ESE): 3hrs
External max. marks: 60	Elective status: Elective
Total marks:100	

Prerequisite:-NA-Corequisite:-NA-Additional material required in ESE: -NA-

Course Outcomes: Students will be able to:

CO#	Course Outcomes
CO1	Explain the need of Big Data.
CO2	Discuss the architecture of Big Data
CO3	Setup environment for creating Big Data Applications
CO4	Implement basic applications of Big Data.

Unit 1	11
An Overview of Big Data and Big Data Analytics, Big Data sources, Application areas of Big Data. Understanding Hadoop and its Ecosystem. Brief intro to Hadoop Ecosystem components: Hadoop Distributed File System, MapReduce, YARN, HBase, Hive, Pig, Sqoop, ZooKeeper, Flume, Oozie, Ambari. Understanding a Hadoop cluster. [co1]	
Unit 2 Overview of HDFS. Architecture of HDFS, Advantages and disadvantages of HDFS, HDFS	11
Daemons, HDFS Blocks, HDFS file write and read, NameNode as SPOF, Hadoop HA, heartbeats, block reports and rereplication, Safemode of Namenode, Hadoop fs commands: cat, ls, put, get, rm, df, count, fsck, balancer, mkdir, du, copyfromlocal, copytolocal. [co2]	
Unit 3	10
Hadoop fs commands: expunge, chmod, chown, chgrp, setrep, stat. Hadoop dfsadmin commands. Introduction to Apache Pig, Need of Pig, Installation of Pig, Execution modes of Pig, Pig – Architecture, Grunt shell and basic utility commands, Data types and Operators	

in Pig, Analysing data stored in HDFS using Pig, Pig operators for Data analysis: Dump,	
Describe, Explanation, Illustration, Store. [co2, co3]	
Unit 4	10
Group, cogroup, join, split, filter, distinct, foreach, order by, limit operators. Functions in	
Group, cogroup, join, spin, mer, distinct, foreach, order by, mint operators. Functions m	
Pig: Eval functions, Load and store functions, Bag and tuple functions, String functions,	
Date time functions, Math functions, Case Studies: Analyzing various datasets with Pig.	
[co3, co4]	

Suggested Books.

- 1. Big Data, Black Book by DT Editorial Services, Dreamtech Press.
- 2. Hadoop The Definitive Guide 3rd Edition, Tom White/ OReilly-Yahoo press
- 3. Hadoop in Action, Chuck Lam/Manning
- 4. Hadoop Beginner's Guide, Garry Turkington/Packt Publishing

Course Code: UGCA2007 Course Name: Big Data Analytics Lab

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 6 th	Contact hours : 4 hours per week
Theory/Practical: Practical	Percentage of numerical/design problems:
Internal max. marks: 60	Duration of End Semester Exam (ESE) : 3hrs
External max. marks: 40	Elective Status: Elective
Total marks: 100	

Prerequisite: -Co requisite: - NA-Additional material required in ESE: - NA-Course Outcomes: Students will be able to

CO#	Course Outcomes
CO1	Installation of Big Data Tools.
CO2	Execute various HDFS commands
CO3	Data analytics using Pig.

- 1. Installation of Hadoop
- 2. Installation of HDFS, Pig, Hive etc
- 3. Running HDFS Daemons
- 4. Safemode and other Hadoop DFS Admin commands
- 5. Hadoopfs commands

- 6. Pig operators and functions
- 7. Accessing files in HDFS using Pig
- 8. Storing the processed files back to HDFS
- 9. Analysing datasets using Pig
- 1. Big Data, Black Book by DT Editorial Services, Dreamtech Press.
- 2. Hadoop The Definitive Guide 3rd Edition, Tom White/ OReilly-Yahoo press
- 3. Hadoop in Action, Chuck Lam/Manning
- 4. Hadoop Beginner's Guide, Garry Turkington/Packt Publishing

Course Code: UGCA2008 Course Name: Computer Vision

Course Mane: Computer Vision	
Program: B.Sc. (AI & ML)	L: 3 T: 1P: 0
Branch: Computer Applications	Credits: 4
Semester: 6 th	Contact Hours: 44 hours
Theory/Practical: Theory	Percentage of numerical/design problems : 40%
Internal max. marks: 40	Duration of end semester exam (ESE) : 3hrs
External max. marks: 60	Elective status: Elective
Total marks:100	

Prerequisite: -

Co requisite: - NA-Additional material required in ESE: -NA-Course Outcomes:

CO#	Course Outcomes	
CO1	Identify basic concepts, terminology, theories, models and methods in the field of computer	
COI	vision.	
CO2	Describe basic methods of computer vision related to multi-scale representation, edge	
02	detection.	
CO3	Develop to build computer vision applications.	
CO4	Implement object and scene recognition and categorization from images.	

Detailed Contents	Contact hours
UNIT-I	
Overview, computer imaging systems, lenses, Image formation and sensing, Image analysis, pre-	10
processing and Binary image analysis, Edge detection, Edge detection performance, Hough	10
transform, corner detection. [CO1]	
UNIT-II	10
Segmentation, Morphological filtering, Fourier transform. Feature extraction, shape, histogram,	
color, spectral, texture, using CV IP tools, Feature analysis, feature vectors, distance /similarity	
measures, data pre- processing. [CO2]	

UNIT-III	11
Pattern Analysis: Clustering: K-Means, K-Medoids, Mixture of Gaussians Classification:	
Discriminant Function, Supervised, Un-supervised, Semi-supervised. Classifiers: Bayes, KNN,	
ANN models; Dimensionality Reduction: PCA, LDA, ICA, and Non- parametric methods.	
[CO3]	
UNIT-IV	11
Recent trends in Activity Recognition, computational photography, Biometrics.	
Implementation in python for activity recognition. [CO4]	

References:

- 1. Computer Vision: Algorithms and Applications by Richard Szeliski.
- 2. Deep Learning, by Goodfellow, Bengio, and Courville.
- 3. Dictionary of Computer Vision and Image Processing, by Fisheretal.

Course Code: UGCA2009 Course Name: Computer Vision Lab

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 6 th	Contact hours: 4 hours per week
Theory/Practical: Practical	Percentage of numerical/design problems:
Internal max. marks: 60	Duration of End Semester Exam(ESE) : 3hrs
External max. marks: 40	Elective Status: Elective
Total marks: 100	

Prerequisite: - NA
Co requisite: - NA-
Additional material required in ESE: - NA-
Course Outcomes : Students will be able to

CO#	Course Outcomes
CO1	Implement basic filtering on images.
CO2	Develop basic computer vision applications.
CO3	Implement object and scene recognition and categorization from images.

Name of Experiment

1. To perform variants of linear filter on an image.

- **2.** To perform median filter on an image.
- **3.** To perform all morphological filter operations on the image.
- **4.** To perform edge detection on an image using Sobel, Prewitt, Roberts and Canny Method.
- **5.** To perform Hough transform on an image.

- 6. Generate histogram and perform histogram equalization of an image.
- 7. To perform clustering using any technique on the image.
- 8. To perform various pattern classification and analysis techniques on images.
- 9. To perform various pattern clustering and analysis techniques on images.

References:

- 1. Computer Vision: Algorithms and Applications by Richard Szeliski.
- 2. Deep Learning, by Goodfellow, Bengio, and Courville.
- 3. Dictionary of Computer Vision and ImageProcessing, by Fisheretal.

Course Code: UGCA2010

Course Name: Intelligent System

Program: B.Sc. (AI & ML)	L: 3 T: 1P: 0
Branch: Computer Applications	Credits: 4
Semester: 6 th	Contact Hours: 44 hours
Theory/Practical: Theory	Percentage of numerical/design problems: 40%
Internal max. marks: 40	Duration of end semester exam (ESE): 3hrs
External max. marks: 60	Elective status: Elective
Total marks:100	

Prerequisite: -

Co requisite: - NA-

Additional material required in ESE: -NA-

Course Outcomes:

CO#	Course Outcomes	
CO1	Explain fundamental principles of intelligent systems.	
CO2	Analyze the relative merits of a variety of AI problem solving techniques.	
CO3	3 Represent knowledge using structured representations.	
CO4	Implement different evolutionary algorithms in the field of intelligent systems.	

Detailed Contents	Contact hours
UNIT-I	
Foundations to intelligent systems: Artificial neural networks, Back- propagation networks, Radial basis function networks, and recurrent networks, Fuzzy logic, knowledge Representation	10
and inference mechanism, genetic algorithm, and fuzzy neural networks. [CO1]	10
UNIT-II	10
Search Methods Basic concepts of graph and tree search. Three simple search methods: breadth- first search, depth-first search, iterative deepening search. Heuristic search methods: best-first	
search, admissible evaluation functions, hill- climbing search. Optimization and search such as stochastic annealing and genetic algorithm. [CO2]	
UNIT-III	11

Knowledge representation and logical inference Issues in knowledge representation. Structured representation, such as frames, and scripts, semantic networks and conceptual graphs. Formal logic and logical inference. Knowledge-based systems structures, its basic components. Ideas of Blackboard architectures. [CO3]	
UNIT-IV	11
Reasoning under uncertainty and Learning Techniques on uncertainty reasoning such as Bayesian reasoning, Certainty factors and Dempster-Shafer Theory of Evidential reasoning, A study of different learning and evolutionary algorithms, such as statistical learning and induction learning. [CO4]	

References:

1. Luger G.F. and Stubblefield W.A. (2008). Artificial Intelligence: Structures and strategies for Complex Problem Solving. Addison Wesley, 6th edition.

2. Russell S. and Norvig P. (2009). Artificial Intelligence: A Modern Approach. Prentice-Hall, 3rdedition

Course Code: UGCA2011 Course Name: Intelligent System Lab

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 6 th	Contact hours: 4 hours per week
Theory/Practical: Practical	Percentage of numerical/design problems:
Internal max. marks: 60	Duration of End Semester Exam(ESE): 3hrs
External max. marks: 40	Elective Status: Elective
Total marks: 100	

Prerequisite: - -Co requisite: - NA-Additional material required in ESE: - NA-Course Outcomes: Students will be able to

CO#	Course Outcomes
CO1	Able to demonstrate knowledge of the fundamental principles of intelligent systems and would be able to
COI	analyses and compare the relative merits of a variety of AI problem solving techniques.

Sr. No	Name of Experiment
1.	Implementation of simple artificial neural network
2.	Implementation of neural network with back propagation.
3.	Implementation of radial basis function network.
4.	Implementation of recurrent neural network.
5.	Implementation of fuzzy neural network.
6.	Implementation of iterative deepening search.

7.	Implementation of Hill climbing Search algorithm.
8.	Implementation of optimization genetic algorithm.
9.	Implementation of induction based learning method such as decision tree.
10.	Implementation of statistical learning methods such as naive Bayes.

References:-

1. Luger G.F. and Stubblefield W.A. (2008). Artificial Intelligence: Structures and strategies for Complex Problem Solving. Addison Wesley, 6th edition.

2. Russell S. and Norvig P. (2009). Artificial Intelligence: A Modern Approach. Prentice-Hall, 3rdedition.

Course Code: UGCA2012

Course Name: Social Network Analysis

Program: B.Sc. (AI & ML)	L: 3 T: 1P: 0
Branch: Computer Applications	Credits: 4
Semester: 6 th	Contact Hours: 44 hours
Theory/Practical: Theory	Percentage of numerical/design problems: 40%
Internal max. marks: 40	Duration of end semester exam (ESE): 3hrs
External max. marks: 60	Elective status: Elective
Total marks:100	

Prerequisite: - NA Co requisite: - NA-Additional material required in ESE: -NA-Course Outcomes:

CO#	Course Outcomes
CO1	Explain the concept of semantic web and related applications.
CO2	Discuss knowledge representation using ontology.
CO3	Analyze link prediction.
CO4	Implement sentiment analysis

Detailed Contents	Contact hours
UNIT-I Preliminaries: Graphs, Types of graphs, Representation, Bipartite graphs, Planar networks, The graph Laplacian, Random Walks, Maximum Flow and Minimum Cut Problem, Introduction to Approximation Algorithms.	11
Introduction to Social Networks: Types of Networks: General Random Networks, Small World Networks, Scale-Free Networks; Examples of Information Networks; Static Unweighted and weighted Graphs, Dynamic Unweighted and weighted Graphs.	

UNIT-II	
Walks: Random walk-based proximity measures, Other graph-based proximity measures. Clustering with random-walk based measures, Algorithms for Hitting and Commute, Algorithms for Computing Personalized Pagerank and Sim- rank. Community Detection: Basic concepts, Overview of Algorithms for Community Detection: Quality Functions, The Kernighan-Lin algorithm, Agglomerative/Divisive algorithms, Spectral Algorithms, Multi-level Graph partitioning, Markov Clustering; Community Discovery in Directed Networks , Community Discovery in Dynamic Networks, Community Discovery in Heterogeneous Networks, Evolution of Community.	10
UNIT-III	11
Link Prediction: Feature based Link Prediction, Bayesian Probabilistic Models, Probabilistic Relational Models, Linear models.	
Event Detection: Classification of Text Streams, Event Detection and Tracking: Bag of Words, Temporal, location, ontology based algorithms.	
UNIT-IV	10
Evolution Analysis in Text Streams, Sentiment analysis.	
Social Influence Analysis: Influence measures, Social Similarity - Measuring Influence, Influencing actions and interactions. Homophily, Influence maximization.	
* Implementation using Python.	

TEXT BOOKS:

1. Peter Mika, —Social Networks and the Semantic Webl, First Edition, Springer 2007.

2. Borko Furht, -Handbook of Social Network Technologies and Applications, 1st Edition, Springer, 2010.

REFERENCES

1. Guandong Xu, Yanchun Zhang and Lin Li, —Web Mining and Social Networking – Techniques and applications, First Edition, Springer, 2011.

2. Dion Goh and Schubert Foo, —Social information Retrieval Systems: Emerging Technologies and Applications for Searching the Web Effectivelyl, IGI Global Snippet, 2008.

3. Max Chevalier, Christine Julien and Chantal Soulé-Dupuy, —Collaborative and Social Information Retrieval and Access: Techniques for Improved user Modellingl, IGI Global Snippet, 2009.

4. John G. Breslin, Alexander Passant and Stefan Decker, -The Social Semantic Webl, Springer, 2009.

Course Code: UGCA2013 Course Name: Social Network Analysis Lab

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 6 th	Contact hours: 4 hours per week
Theory/Practical: Practical	Percentage of numerical/design problems:
Internal max. marks: 60	Duration of End Semester Exam(ESE): 3hrs
External max. marks: 40	Elective Status: Elective
Total marks: 100	

Prerequisite: - -

Co requisite: - NA-**Additional material required in ESE:** - NA-**Course Outcomes:** Students will be able to

CO#	Course Outcomes
CO1	Create basic graphs
CO2	Analyze link prediction.
CO3	Implement sentiment analysis

Sr. No	Name of Experiment
1.	Implement basic concepts of network creation and graphs.
2.	Implementation of neural network with back propagation.
3.	Implement basis programs for pagerank and sim-rank.
4.	Implementation algorithms for community detection.
5.	Implementation algorithms for link detection
6.	Implementation algorithms for event detection
7.	Perform social influence analysis.

TEXT BOOKS:

1. Peter Mika, —Social Networks and the Semantic Webl, First Edition, Springer 2007.

2. Borko Furht, -Handbook of Social Network Technologies and Applications, 1st Edition, Springer, 2010.

REFERENCES

1. Guandong Xu, Yanchun Zhang and Lin Li, —Web Mining and Social Networking – Techniques and applications, First Edition, Springer, 2011.

2. Dion Goh and Schubert Foo, —Social information Retrieval Systems: Emerging Technologies and Applications for Searching the Web Effectively|, IGI Global Snippet, 2008.

3. Max Chevalier, Christine Julien and Chantal Soulé-Dupuy, —Collaborative and Social Information Retrieval and Access: Techniques for Improved user Modellingl, IGI Global Snippet, 2009.

4. John G. Breslin, Alexander Passant and Stefan Decker, -The Social Semantic Webl, Springer, 2009.

Course Code: UGCA2014

Course Name:	Weka-	Open	Source	Software	Tool
course i tume.	" Cisu	open	bource	Soltmare	1001

Course Maine. Weka- Open Source Software 1001		
Program: B.Sc. (AI & ML)	L: 3 T: 1P: 0	
Branch: Computer Applications	Credits: 4	
Semester: 6 th	Contact Hours: 44 hours	
Theory/Practical: Theory	Percentage of numerical/design problems: 40%	
Internal max. marks: 40	Duration of end semester exam (ESE): 3hrs	
External max. marks: 60	Elective status: Core	
Total marks:100		

Prerequisite: - NA Co requisite: - NA-Additional material required in ESE: -NA-Course Outcomes:

CO#	Course Outcomes	
CO1	Describe the need of WEKA	
CO2	Import data in WEKA	
CO3	Work with different file formats in WEKA	
CO4	Implement data mining algorithms using WEKA.	

Detailed contents	Contact hours
Overview of Data mining, steps in data mining, classification of data mining, overview of - classification, clustering, prediction, virtualization. WEKA — Introduction, characteristics, features, applications, WEKA — Installation, ,Launching Explorer. [CO1]	12 hours
Loading Data, Loading Data from Local File System, Loading Data from Web, Loading Data from DB, Creating datasets in memory, Generating artificial data , WEKA — File Formats. WEKA — Preprocessing the Data(Understanding Data, working with attributes, Applying Filters). [CO2]	10 hours
Arff Format, The ARFF Header Section, The ARFF Data Section, Generate ARFF file, Sparse ARFF files, Instance weights in ARFF files, Other Formats. Classification, Selecting a Classifier, Test Options, The Class Attribute, Training a Classifier, The Classifier Output. Associating, Learning Associations, Selecting Attributes, Searching and Evaluating, Performing Selection. [CO3, CO4]	12 hours
Clustering, Selecting a Cluster, Cluster Modes, Ignoring Attributes, Working with Filters, Learning Clusters Implementing various Regression techniques using WEKA, Creating Decison tree using WEKA, Visualizing, The scatter plot matrix, Selecting an individual 2D scatter plot, Selecting Instances. CO4]	10 hours

Text Books:

- 1. 1. Practical Machine Learning: A Beginner's Guide to Data Mining with WEKA, by Andrew H. Johnston, No Starch Press, ISBN-10 : 1593278764, ISBN-13 : 978-1593278762.
- 2. <u>https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjit</u> _rsjZn8AhVBFLcAHSHJD_EQFnoECBIQAQ&url=http%3A%2F%2Finfochim.u-strasbg.fr%2Fcgibin%2Fweka-3-9-1%2FWekaManual.pdf&usg=AOvVaw0W-0GltQc2a4vk2ZwdeEkr, "Weka Manual".

Course Code: UGCA2015

Course Name: Weka- Open Source Software Tool Lab

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 6 th	Contact hours : 4 hours per week
Theory/Practical: Practical	Percentage of numerical/design problems:
Internal max. marks: 60	Duration of End Semester Exam(ESE): 3hrs
External max. marks: 40	Elective Status: Elective
Total marks: 100	

Prerequisite: - -

Co requisite: - NA-

Additional material required in ESE: - NA-

Course Outcomes: Students will be able to

CO#	Course Outcomes	
CO1	Import data in WEKA	
CO2	Work with different file formats in WEKA	
CO3	Implement data mining algorithms using WEKA.	

Name of Experiment

- 1. Install Weka.
- 2. Work with explorer
- 3. Load data from local folder.
- 4. Load data from web
- 5. Creating datatset.
- 6. Implementing various pre-processing.
- 7. Implementing various classification algorithms.
- 8. Implementing various clustering algorithms.
- 9. Implementing various prediction algorithms.

Text Books:

1. 1. Practical Machine Learning: A Beginner's Guide to Data Mining with WEKA, by Andrew H. Johnston, No Starch Press, ISBN-10 : 1593278764, ISBN-13 : 978-1593278762.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjit _rsjZn8AhVBFLcAHSHJD_EQFnoECBIQAQ&url=http%3A%2F%2Finfochim.u-strasbg.fr%2Fcgibin%2Fweka-3-9-1%2FWekaManual.pdf&usg=AOvVaw0W-0GltQc2a4vk2ZwdeEkr

Course Code: UGCA2016

Course Name: Business Intelligence	
Program: B.Sc. (AI & ML)	L: 3 T: 1 P : 0
Branch: Computer Applications	Credits: 4
Semester: 6 th	Contact Hours: 44 hours
Theory/Practical: Theory	Percentage of numerical/design problems: 40%
Internal max. marks: 40	Duration of end semester exam (ESE): 3hrs
External max. marks: 60	Elective status: Core
Total marks:100	

Prerequisite: - NA Co requisite: - NA-Additional material required in ESE: -NA-Course Outcomes:

CO#	Course Outcomes
CO1	Describe the need of business intelligence system.
CO2	Discuss models of business intelligence
CO3	Explain data mining and its classifications
CO4	Illustrate various business intelligence applications.
CO5	Define knowledge management.

Detailed contents	Contact hours
Unit I	
Business intelligence: Effective and timely decisions, Data, information and knowledge, The role of mathematical models, Business intelligence architectures, Ethics and business intelligence Decision support systems: Definition of system, Representation of the	12 hours
decision-making process, Evolution of information systems, Definition	
of decision support system, Development of a decision support system. [co1]	
UNIT II	
Mathematical models for decision making: Structure of mathematical	
models, Development of a model, Classes of models	10 hours
Data mining: Definition of data mining, Representation of input data,	
Data mining process, Analysis methodologies	
Data preparation: Data validation, Data transformation, Data reduction	
Overview of Classification problems, Evaluation of classification	
models, Overview of Clustering: Clustering methods. [co2]	
UNIT III	
Business intelligence applications:	
Marketing models: Relational marketing, Sales force management,	
Logistic and production models: Supply chain optimization,	10 hours
Optimization models for logistics planning, Revenue management	

systems.	
Data envelopment analysis: Efficiency measures, Efficient frontier,	
The CCR model, Identification of good operating practices [co3, co4]	
UNIT IV	
Knowledge Management: Introduction to Knowledge Management,	
Organizational Learning and Transformation, Knowledge Management	10 hours
Activities, Approaches to Knowledge Management, Information	
Technology (IT) In Knowledge Management, Knowledge Management	
Systems Implementation, Roles of People in Knowledge Management	
Expert Systems:	
Basic Concepts of Expert	
Systems, Applications of Expert Systems, Structure of Expert Systems,	
Knowledge Engineering, Development of Expert Systems [co5]	

Books and References:

 Business Intelligence: Data Mining and Optimization for Decision Making Carlo Vercellis Wiley First 2009.
 Decision support and Business Intelligence Systems Efraim Turban, Ramesh Sharda, Dursun Delen Pearson Ninth 2011.

3. Fundamental of Business Intelligence Grossmann W, Rinderle-MaSpringer First 2015

Course Code: UGCA2017 Course Name: Business Intelligence Lab

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 6 th	Contact hours: 4 hours per week
Theory/Practical: Practical	Percentage of numerical/design problems:
Internal max. marks: 60	Duration of End Semester Exam(ESE): 3hrs
External max. marks: 40	Elective Status: Elective
Total marks: 100	

Prerequisite: - -

Co requisite: - NA-

Additional material required in ESE: - NA-

Course Outcomes: Students will be able to

CO#	Course Outcomes
CO1	Implement data mining concepts.
CO2	Create fundamental business intelligence applications.
CO3	Perform various operations on data warehouse.

Name of Experiment

1 Import the legacy data from different sources such as (Excel , SqlServer, Oracle etc.) and load in the target system.

2 Perform the Extraction Transformation and Loading (ETL) process to construct the

database in the Sqlserver.
3 a. Create the Data staging area for the selected database.
b. Create the cube with suitable dimension and fact tables based on ROLAP, MOLAP and
HOLAP model.
4 a.Create the ETL map and setup the schedule for execution.
b. Execute the MDX queries to extract the data from the datawarehouse.
5 a. Import the datawarehouse data in Microsoft Excel and create the Pivot table and Pivot
Chart.
b. Import the cube in Microsoft Excel and create the Pivot table and Pivot Chart to perform
data analysis.
6 Design and generate necessary reports based on the data warehouse data.
7 Perform the data classification using classification algorithm.
8 Perform the data clustering using clustering algorithm.
9 Perform the Linear regression on the given data warehouse data.
10 Perform the logistic regression on the given data warehouse data

Course Code: UGCA2018

Course Name: Geographic Information Systems

ovurse i tumet deographie information systems		
Program: B.Sc. (AI & ML)	L : 3 T : 1 P : 0	
Branch: Computer Applications	Credits: 4	
Semester: 6 th	Contact Hours: 44 hours	
Theory/Practical: Theory	Percentage of numerical/design problems : 40%	
Internal max. marks: 40	Duration of end semester exam (ESE): 3hrs	
External max. marks: 60	Elective status: Core	
Total marks:100		

Prerequisite: - NA Co requisite: - NA-Additional material required in ESE: -NA-Course Outcomes:

CO#	Course Outcomes
CO1	Describe the features of GIS.
CO2	Describe the data representation for GIS.
CO3	Illustrate the spatial positioning system.
CO4	Implement mapping of various types of fields.

Detailed contents	Contact hours
-------------------	---------------

Unit I Introduction to GIS The nature of GIS: Some fundamental observations, Defining GIS, GI Systems, GI Science and GI Applications, Spatial data and Geoinformation.	12 hours
Geographic Information and Spatial Database Computer Representations of Geographic Information: Regular tessellations, irregular tessellations, Vector representations, Topology and Spatial relationships, Scale and Resolution, Representation of Geographic fields, Representation of Geographic objects [co1]	
UNIT II Data Management and Processing Systems Stages of Spatial Data handling: Spatial data handling and preparation, Spatial Data Storage and maintenance, Spatial Query and Analysis, Spatial Data Presentation. GIS and Spatial Databases: Linking GIS and DBMS, Spatial database functionality [co2]	10 hours
UNIT III Spatial Referencing and Positioning Spatial Referencing: Reference surfaces for mapping, Coordinate Systems, Map Projections, Coordinate Transformations Satellite-based Positioning: Absolute positioning, Errors in absolute positioning, Relative positioning, Network positioning, code versus phase measurements, Positioning technology.	10 hours
 Data Entry and Preparation Spatial Data Input: Direct spatial data capture, Indirect spatial data capture, Obtaining spatial data elsewhere Data Quality: Accuracy and Positioning, Positional accuracy, Attribute accuracy, Temporal accuracy, Lineage, Completeness, Logical consistency. Data Preparation: Data checks and repairs, Combining data from multiple sources Point Data Transformation: Interpolating discrete data, Interpolating continuous data [co3] 	
UNIT IV GIS and Maps, The Visualization Process, Visualization Strategies, The cartographic toolbox: Mapping qualitative data, quantitative data, terrain elevation, time series, Map Cosmetics, Map Dissemination [co4]	10 hours

Books and References:

1. Introduction to Geographic Information Systems by Chang Kang-tsung (Karl), McGrawHill Any

Edition above 3rd Edition 2013

2. GIS Fundamentals: A First Text on Geographic Information Systems Paul Bolsatd XanEdu Publishing Inc 5th Edition.

Course Code: UGCA2019

Course Name: Geographic Information Systems Lab

Program: B.Sc. (AI & ML)	L: 0 T: 0 P:4
Branch: Computer Applications	Credits: 2
Semester: 6 th	Contact hours: 4 hours per week
Theory/Practical: Practical	Percentage of numerical/design problems:
Internal max. marks: 60	Duration of End Semester Exam(ESE): 3hrs
External max. marks: 40	Elective Status: Elective
Total marks: 100	

Prerequisite: - -Co requisite: - NA-Additional material required in ESE: - NA-Course Outcomes: Students will be able to

CO#	Course Outcomes
CO1	Link GIS and DBMS
CO2	Prepare Spatial data
CO3	Mapping of fields.

Name of Experiment

Implement various practical's based on theory subject like

- 1. Linking GIS and DBMS
- 2. Loading spatial data.
- 3. Preparing and transforming data.
- 4. Creating spatial data
- 5. Mapping of fields.

Books and References:

 $1. \ Introduction \ to \ Geographic \ Information \ Systems \ by \ Chang \ Kang-tsung \ (Karl), \ McGrawHill \ Any$

Edition above 3rd Edition 2013

2. GIS Fundamentals: A First Text on Geographic Information Systems Paul Bolsatd XanEdu Publishing Inc 5th Edition.