M.Sc. Mathematics

Course Structure and Syllabus (Based on Choice Based Credit System) 2022 onwards

DEPARTMENT OF APPLIED SCIENCES (MATHEMATICAL SCIENCES)

VISION

To be among the best mathematics departments in the region and to establish a national reputation as a centre for research and teaching in mathematics. Moreover, the department will contribute to the development of students as mathematical thinkers, and to function as productive citizens.

MISSION

- To discover, mentor, and nurture mathematically inclined students, and provide them a supportive environment that fosters intellectual growth.
- To prepare our undergraduate and graduate students to develop the attitude and ability to apply mathematical methods and ideas in a wide variety of careers.
- To perform widely recognized research in focused areas of mathematical and statistical theory, methodology, and education.
- To advocate for mathematical sciences and UTEP in schools and the local community.

M.Sc. Mathematics Program

PROGRAM OBJECTIVES

Objective of the program is to catch young and talented students to motivate them to study Mathematics and to nurture them to develop their mathematical reasoning and logics. Other objectives of the program are to inspire students to pursue study in higher mathematics and grow as a skilful mathematician to cater the needs of knowledgeable society.

Duration: M.Sc. Mathematics is a postgraduate level program offered by the Department of Mathematical Sciences. This is a 2-years program, consisting of four semesters with two semesters per year.

Program Code: MSM (Master of Science in Mathematics)

Eligibility: B.A./B.Sc. or equivalent from a recognized university with Mathematics as one of the major subjects with at least 50% marks (45% in case of candidate belonging to reserved category) in aggregate.

PROGRAM OBJECTIVES: At the end of the program, the student will be able to:

1	To provide comprehensive curriculum to groom the students into qualitative scientific manpower
2	Enable students to enhance mathematical skills and understand the fundamental concepts of pure and applied mathematics.
3	To provide qualitative education through effective teaching learning processes by introducing projects, participative learning, and latest software tools.
4	To inculcate innovative skills, teamwork, ethical practices among students so as to meet societal expectations.
5	To encourage collaborative learning and application of mathematics to real life situations.
6	To inculcate the curiosity for mathematics in students and to prepare them for future research.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Apply the knowledge of mathematical concepts in interdisciplinary fields.
PSO2	Understand the nature of abstract mathematics and explore the concepts in further details.
PSO3	Model the real-world problems into mathematical equations and draw the inferences by finding appropriate solutions.
PSO4	Identify challenging problems in mathematics and find appropriate solutions.
PSO5	Pursue research in challenging areas of pure/applied mathematics.
PSO6	Employ confidently the knowledge of mathematical software and tools for treating the complex mathematical problems and scientific investigations.
PSO7	Continue to acquire mathematical knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in mathematics.
PSO8	Comprehend and write effective reports and design documentation related to mathematical research and literature, make effective presentations.
PSO9	Qualify national level tests like NET/GATE etc.
PSO10	Effectively communicate and explore ideas of mathematics for propagation of knowledge and popularization of mathematics in society.

Contact Hours: 29 Hrs.

Contact Hours: 29 Hrs.

Scheme of the Program: First Semester

Course Code	Course Type	Course Title		Load		Marks	ion	Credits	
			Alle	Allocation					
			L	Т	Р	Internal	External	Total	
MSM-101-22		Algebra-I	4	1	0	40	60	100	4
MSM-102-22]	Real Analysis-I	4	1	0	40	60	100	4
MSM-103-22]	Complex	4	1	0	40	60	100	4
		Analysis							
MSM-104-22]	Ordinary	4	1	0	40	60	100	4
		Differential							
	Compulsory	Equations and							
		Special							
		Functions							
MSM-105-22		Mathematical	4	1	0	40	60	100	4
		Methods							
MSM-106-22		Introduction to	0	0	4	30	20	50	2
		MATLAB (LAB)							
	Total		20	05	04	230	320	550	22

Scheme of the Program:Second Semester

Course Code	Course Type	Course Title		Load ocatio	on	Mark	Credits		
			L	Т	Р	Internal	External	Total	
MSM-201- 22		Algebra-II	4	1	0	40	60	100	4
MSM-202- 22		Real Analysis- II	4	1	0	40	60	100	4
MSM-203- 22		Mechanics-I	4	1	0	40	60	100	4
MSM-204- 22	Compulsory	Partial Differential Equations	4	1	0	40	60	100	4
MSM-205- 22		Numerical Analysis	4	1	0	40	60	100	4
MSM-206- 22		Numerical Analysis (LAB)	0	0	4	30	20	50	2
	Total			05	04	230	320	550	22

Examination and Evaluation

Theory	1		
S. No.	Evaluation criteria	Weightage	Remarks
		in Marks	
1	Mid term/sessional Tests	24	Internal evaluation (40 Marks)
			MSTs, Quizzes, assignments,
2	Attendance	6	attendance, etc., constitute internal
3	Assignments	10	evaluation. Average of two mid
			semester test will be considered for
			evaluation.
4	End semester examination	60	External evaluation
5	Total	100	Marks may be rounded off to nearest
			integer.
Practio	cal		
1	Evaluation of practical record/	30	Internal evaluation
	Viva Voice/Attendance/Seminar/		
	Presentation		
2	Final Practical Performance +	20	External evaluation
	Viva-Voce		
3	Total	50	Marks may be rounded off to nearest
			integer.
Semin	ar		
1	Content	15	
2	Queries	15	-
_	Q 3 1 3 3		Internal evaluation
3	Communication skills	10	The transaction
4	Visual effects	10	1
5	Total	50	Marks may be rounded off to nearest
			integer.

			Diss	ertation		
	Communica presenta		Re	sponse to queries	Maximum Marks	Evaluated by
Departmental Presentation	20			30	50	Committee Member: 1.Head 2.Supervisor 3.One of Faculty Member
6: .:	Plagiarism	Subject	Usage of	Publication/Presentation	150	
Dissertation	25	Matter 70	Language 25	in Conference 30	150	
	23		ternal Asses			
External				Committee Member: 1.Head 2.External		
Examiner			50		50	Expert 3.Supervisor 4. Director (MC) nominee
Viva Voce	Communica Presenta 20		Re	sponse to queries	50	
		To	tal		300	

Evaluation Process:

- 1. The subject matter evaluation can further be defined on the basis of Title, Review of literature/Motivation, Objectives, Methodology, Results and discussions, and Conclusion.
- 2. The usage of language and the subject matter shall be evaluated by the supervisor. Out of 300 marks, 95 marks are to be evaluated by the concerned supervisor.
- 3. Total 15% Plagiarism is admissible for submission of the dissertation. For (0-5)% of plagiarism, candidate should be awarded 25 marks. For >5%-10% candidate should be awarded 15 marks and for the range of > 10% to < 15%, candidate should be awarded 5 marks.

4. For publication candidate should be awarded full 30 marks and for presenting the work related to dissertation, candidate should be awarded 25 marks.

Instructions for Paper-Setter in M. Sc Mathematics

A. Scope

- 1. The question papers should be prepared strictly in accordance with the prescribed syllabus and pattern of question paper of the University.
- 2. The question paper should cover the entire syllabus with uniform distribution among each unit and Weightage of marks for each question.
- 3. The language of questions should be simple, direct, and documented clearly and unequivocally so that the candidates may have no difficulty in appreciating the scope and purpose of the questions. The length of the expected answer should be specified as far as possible in the question itself.
- 4. The distribution of marks to each question/answer should be indicated in the question paper properly.

B. Type and difficulty level of question papers

- 1. Questions should be framed in such a way as to test the students intelligent grasp of broad principles and understanding of the applied aspects of the subject. The Weightage of the marks as per the difficulty level of the question paper shall be as follows:
 - i) Easy question 30%
 - ii) Average questions 50%
 - iii) Difficult questions 20%
- 2. The numerical content of the question paper should be up to 40%.

C. Format of question paper

- 1. Paper code and Paper-ID should be mentioned properly.
- 2. The question paper will consist of three sections: Sections-A, B and C.
- 3. Section-A is COMPULSORY consisting of TEN SHORT questions carrying two marks each (total 20 marks) covering the entire syllabus.
- 4. The Section-B consists of FOUR questions of eight marks each covering Unit I & II of syllabus (Taking two questions from each unit I & II).
- 5. The Section-C consists of FOUR questions of eight marks each covering Unit III & IV of syllabus (Taking two questions from each unit III & IV).
- 6. Sub-parts of the questions in Section B and C should be preferred for numerical/conceptual questions.
- 7. Attempt any five questions from Section-B and Section-C, selecting at least two questions from each of the two sections.

Question paper pattern for MST:

Roll No:	No of pages:
IK Gujral Punjab Technical Universi	ity- Jalandhar
Department of Mathematical S	Sciences
Academic Session:	
Mid-Semester Test: I/II/III (Regular/reappear)	Date:
Programme: M.Sc. Mathematics	Semester:
Course Code:	Course:
Maximum Marks: 24	Time: 1 hour 30 minutes

❖ Note: Section A is compulsory; Attempt any two questions from Section B and one question from Section C.

Sec	ction: A	Marks	Cos
1		2	
2		2	
3		2	
4		2	
Sec	ction: B		
5		4	
6		4	
7		4	
Sec	ction: C		
8		8	
9		8	

Details of Course Objectives

CO1	
CO2	
СО3	
CO4	
CO5	

SEMESTER-I

MSM-10:	1-22		Alg	ebra-I		L	-4, T-1,	P-0	4 Cred	dits
Pre-requis	ite: Disc	rete Stru	ctures			·				
Course Ob courses. I foundation course als mathemat Course Ou	The fund ns of Alg so fulfill ics in re	damentals gebraic s is the ol al world p	s of alge tructures ojective oroblems	braic pro , Groups to make	oblem-so , Rings, student	lving are Ideals, I s aware	explaine Fields, Ho of the	ed. Stude omomorp applicab	ents will hisms, e	explore tc. The
CO1	to bu	the knovill	ematical t	hinking a	nd skill.					
CO2		e the clas							•	
CO3		tify and a le groups ora.	•	•	•	_				
CO4	betw	n, analyz een grou orphism t	ps and r	ings for	solving	different	types of	-		•
CO5		e, select, an groups			_				nitely ge	nerated
CO6	Ident soluti	ify the ch	allenging	problem	s in mod	lern math	ematics a	and find t	heir app	ropriate
		Mappin	g of cour	se outcor	mes with	the prog	ram outc	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	√	√	-	√	√	-	√	-	√	√
CO2	√	√	-	√	-	-	√	-	√	√
CO3	√	√	-	√	√	-	√	-	√	√
CO4	√	√	-	√	√	-	√	-	√	√
CO5	√	√	-	√	-	-	√	-	√	√
CO6	√	√	-	√	-	-	√	-	√	√

Course Title: Algebra-I
Course Code: MSM-101-22

UNIT-I

Groups, Subgroups & Homomorphisms: Groups, homomorphisms, Subgroups and Cosets, Cyclic groups, Permutation groups, Normal subgroups and quotient groups, Isomorphism theorems, Automorphisms, Symmetric groups, Conjugacy. [Ref 2: Unit 1]

UNIT-II

Solvability & Simplicity: Normal series, Derived Series, Composition Series, Solvable Groups, Simple groups and their examples, Alternating group A_n , Simplicity of A_n . [Ref 2: Unit 1]

UNIT-III

Finite Abelian Groups: Direct products, Finite Abelian Groups, Fundamental Theorem on Finitely generated Abelian Groups, Invariants of a finite abelian groups, Sylow's Theorems and their applications, Groups of order p^2 , pq. [Ref 2: Unit 1]

UNIT-IV

Rings & Ideals: Ring, Subring, Ideals, Homomorphism and Algebra of Ideals, Maximal and prime ideals, Ideals in quotient rings, Nilpotent and nil ideals. [Ref 2: Unit 2]

- 1. Bhattacharya, P. B., Jain, S.K. and Nagpaul, S.R., *Basic Abstract Algebra*, 2nd *Edition*. U.K.: Cambridge University Press, 2004.
- 2. Dummit, David. S., and Foote, Richard M., *Abstract Algebra, 3rd Edition*. New Delhi: Wiley, 2011.
- 3. Herstein, I.N., *Topics in Algebra, 2nd Edition*. New Delhi: Wiley, 2006.
- 4. Singh, Surjeet, and Zameeruddin, Q., *Modern Algebra, 7th Edition*. New Delhi: Vikas Publishing House, 1993.
- 5. Artin, M., *Algebra, 2nd Edition*. Pearson Publications, 2010.

MSM-10	2-22		Real A	Analysis	-I	L	-4, T-1,	P-0	4 Cred	lits
Pre-requ	isite: B	asic Calc	ulus							
Course 0	bjectiv	es: This	course is	designed	to provi	de a dee	per and r	igorous ι	ınderstar	nding of
fundamen	tal conc	epts viz.	metric sp	aces, co	ntinuous	functions	s, sequen	ces, seri	es: powe	r series
and the R		-	_							
of the abo	ove said	concepts	and it w	ill cultiva	te the rig	orous m	athematio	cal logics	and skill	s in the
students.		A	1 61							
Course 0	utcome	es: At the	end of t	ne course	e, the stu	dents wil	i be able	to		
CO1	Apply	the kno	wledge o	f concep	ts of real	analysis	to study	theoreti	cal devel	opment
		ferent ma			•					
CO2		rstand th	e nature	of abstra	act mathe	ematics a	nd explor	e the co	ncepts in	further
	detai									
CO3	Ident	ify challe ions.	enging pi	roblems	in real v	ariable t	heory ar	id find t	neir app	ropriate
CO4	Deal	with axi	omatic s	tructure	of metri	c spaces	and gei	neralize	the conc	epts of
	seque	ences and	d continu	ous funct	ions in m	etric spa	ces.			
CO5		heory of	Riemann	-Stieltjes	integral	which is	a modifie	cation of	Riemann	theory
		egration.								
CO6		nd their k	_		variable t	heory for	further 6	exploration	on of the	subject
		ore advar apping o			noc with	the pre		ıtsamas	1	
	141	арріну с	or course	e outcom	iies witi	i tile pro	grain o	accomes	•	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	√	-	-	-	-	-	√	-	√	√
CO2	-	√	-	-	-	-	√	-	√	√
CO3	-	-	-	√	-	-	√	-	√	√
CO4	-	√	-	-	-	-	√	-	√	√
CO5	√	-	-	-	-	-	√	-	√	√
CO6	-	-	_	-	√	-	√	-	√	√

Course Title: Real Analysis-I Course Code: MSM-102-22

UNIT-I

Finite, Countable and Uncountable sets, Metric spaces, Open sets, closed sets, Compact sets, Perfect sets, Connected sets.

UNIT-II

Sequences, Convergent sequences, Subsequences, Cauchy sequences, Complete metric spaces. Cantor's intersection theorem, power series, absolute convergence.

UNIT-III

Continuity: Limits of functions, Continuous functions, Continuity and Compactness, Continuity and Connectedness, Discontinuities, Monotonic functions, Uniform continuity.

UNIT-IV

The Riemann-Stieltjes integral: Definition and existence of the Riemann-Stieltjes integral, Condition of integrability, The Riemann-Stieltjes integral as a limit of sum, Properties of the integral, Relation between Riemann integral and Riemann-Stieltjes integral, First and second mean value theorems of Riemann-Stieltjes integral.

- 1. Rudin, W., *Principles of Mathematical Analysis*, 3rd Edition. New Delhi: McGraw-Hill Inc., 2013.
- 2. Royden, H.L. and Fitzpatrick, P.M., *Real Analysis, 4th Edition.* New Delhi: Pearson, 2010.
- 3. Carothers, N. L., *Real Analysis*, Cambridge University Press, 2000.
- 4. Apostol, T.M., *Mathematical Analysis –A modern approach to Advanced Calculus*. New Delhi: Narosa Publishing House, 1957.
- 5. Abbott, S., *Understanding Analysis, 2nd Edition.* Springer, 2016.
- 6. Malik S. C., Arora Savita, *Mathematical Analysis*, *5th Edition*, New Age International Publishers, 2017.

MSM-103	3-22		Comple	x Analy	sis	L	-4, T-1,	P-0	4 Cred	lits	
Pre-requ	isite: Ca	alculus of	several v	/ariables	and com	olex num	ber syste	m.			
Course)hiosti:	tos. The	_ objectiv	o of th	ic courc	o is to	introduc	o and o	dovolon	a cloar	
	Course Objectives: The objective of this course is to introduce and develop a clear understanding of the fundamental concepts of Complex Analysis such as analytic functions,										
Cauchy-Riemann relations and harmonic functions and to make students equipped with the											
understan								-			
students to	-			-	-			-	-		
calculus.	o acquii	e sian or	correcti	incegracio	ii to cva	date con	присасса	rear mice	grais via	residue	
Course O	utcome	es: At the	end of t	he course	e, the stu	dents wil	l be able	to			
CO1		the fund		-		•					
CO2		ate comp				-					
CO3		ate limits		_		•	iplex fund	ction & a	pply the	concept	
		alyticity a				•					
CO4		the prob					ques app	lied to dif	ferent sit	uations	
		gineering									
CO5		lish the					g throug	n analysi	ng, prov	ing and	
CO6		ining con nd their kı	-	-			fiold				
COB		apping o						utcomos	•		
	1710	арріну с	or course	e outcon	iles with	i tile pit	grain o	uccomes	•		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	√	√	-	-	√	-	√	-	√	√	
CO2	√	√	-	√	√	-	√	-	√	√	
CO3	√	√	-	√	√	-	√	-	√	√	
CO4	√	√	√	√	√	-	√	-	√	√	
CO5	√	√	√	√	√	-	√	-	√	√	
CO6	√	√	√	√	√	-	√	-	√	√	

Course Title: Complex Analysis

Course Code: MSM-103-22

UNIT-I

Function of complex variable, continuity and differentiability, Analytic functions, Cauchy Riemann equation (Cartesian and polar form). Harmonic functions, Harmonic conjugate, Construction of analytic functions. Stereographic projection and the spherical representation of the extended complex plane.

Unit-II

Complex line integral, Cauchy-Goursat theorem, independence of path; Cauchy's integral formulas and their consequences, Cauchy inequality, Liouville's theorem, Fundamental theorem of algebra, Morera's theorem.

Unit-III

Power series: Zeros and singularities of complex functions, classification of singularities: removable singularity, poles, essential singularities, Residue at a pole and at infinity, Circle of convergence, radius of convergence. Taylor's series and Taylor's theorem, Laurent'z series and Laurent theorem, Cauchy's Residue theorem and its applications in evaluation of real integrals: integration around unit circle, integration over semi-circular contours (with and without real poles), integration around rectangular contours.

Unit-IV

Conformal transformations, Bilinear transformations, Critical points, Fixed points, Problems on crossratio and bilinear transformation.

- 1. Ahlfors, L.V., *Complex Analysis, 2nd Edition*. McGraw-Hill International Student Edition, 1990.
- 2. Kumar, R.R., Complex Analysis, Pearson Education, 2015.
- 3. Churchill, R. and Brown, J.W., *Complex Variables and Applications, 6th Edition*. New- York: McGraw-Hill, 1996.

MSM-10	4-22	Ordinary		ntial Eq		and L	4, T-1,	P-0	4 Cred	lits			
Pre-requ	i isite: Di	ifferential				and son	ne introdi	uction to	linear alg	jebra.			
and fundatechnique various fie	mental t s in con	heorems	for existe he soluti	ence and ons of v	uniquene	ss. This	course fu	ther exp	lains the	analytic			
Course C	outcome	es: At the	end of t	he course	e, the stu	dents wi	ll be able	to					
CO1		rstand o					arious ty	pes, thei	r solutio	ns, and			
CO2	Unde	rstand th	e concep	t and app	olications	of eigen	value pro	oblems.					
CO3	Unde	Understand differential equations of Strum Liouville type.											
CO4		Apply various power series methods to obtain series solutions of differential equations.											
CO5	Discuss various kinds of special functions in detail, their properties, and relations.												
CO6	Solve	problem	s of ordir	nary diffe	rential ec	uations	arising in	various f	ields.				
	М	apping o	of course	e outcon	nes with	the pro	ogram o	utcomes	3				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	\	1	\checkmark	√		-	\checkmark	-	√	√			
CO2	√	-	√	√	√	-	√	-	√	√			
CO3	√	-	√	√	√	-	√	-	√	√			
CO4	√	-	√	√	√	-	√	-	√	√			
CO5	√	-	√	√	√	-	√	-	√	√			
CO6	√	_	√	√	√	-	√	_	√	√			

Course Title: Ordinary Differential Equations and Special Functions

Course Code: MSM-104-22

UNIT-I

Review of linear differential equations with constant & variable coefficients, Fundamental existence and uniqueness theorem for system and higher order equations (Picard's and Piano theorems), System of linear differential equations, an operator method for linear system with constant coefficients, Phase plane method.

UNIT-II

Homogeneous linear system with constant coefficients, Eigenvalues and eigen functions, orthogonality of eigen functions, Complex eigenvalues, repeated eigenvalues, Ordinary differential equations of the Sturm-Liouville problems, Expansion theorem, Extrema properties of the eigen values of linear differential operators, Formulation of the eigen value problem of a differential operator as a problem of integral equation, Linear homogeneous boundary value problems

UNIT-III

Power series solution of differential equations: about an ordinary point, solution about regular singular points, the method of Frobenius, Bessel equation and Bessel functions, Recurrence relations and orthogonal properties., Series expansion of Bessel Coefficients, Integral expression, Integral involving Bessel functions, Modified Bessel function, Ber and Bei functions, Asymptotic expansion of Bessel Functions, Legendre's differential equations, Legendre Polynomials, Rodrigue's formula, Recurrence relations and orthogonal properties.

UNIT-IV

The Hermite polynomials, Chebyshev's polynomial, Laugrre's polynomial: Recurrence relations, generating functions and orthogonal properties.

- 1. Ross, S.L., *Differential Equations, 3rd Edition.* John Wiley & Sons, 2004.
- 2. Boyce, W.E. and Diprima, R.C., *Elementary Differential Equations and Boundary Value problems, 4th Edition*. John Wiley and Sons, 1986.
- 3. Sneddon, I.N., *Special Functions of Mathematical Physics and Chemistry.* Edinburg: Oliver & Boyd, 1956.
- 4. Bell, W.W., Special Functions for Scientists and Engineers. Dover, 1986.

MSM-1	05-	M	athemat	tical Met	thods	L	4, T-1,	P-0	4 Cred	dits			
Pre-requ	isite: B	asic Calcu	lus and L	inear Alg	ebra								
Course O	-		-			•				_			
Also, one backgroun	of the	objective	es of thi	s course	is to e	quip the		_	_				
Course O	utcom	es: At the	end of t	he course	e, the stu	dents wi	ll be able	to					
CO1	Unde	erstand th	e theory	and appl	ications c	of integra	l transfor	ms.					
CO2	-	Explain how integral transforms can be used to solve a variety of differential equations.											
CO3	Solve	Solve integro-differential equations of Fredholm and Volterra type.											
CO4	Unde	Understand the properties of various kinds of integral equations.											
CO5	CO5 Develop their attitude towards problem solving.												
	M	apping o	of course	e outcon	nes with	the pro	ogram o	utcomes	•				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	\checkmark	-	√	√	√	1	1	1	√	√			
CO2	\checkmark	-	√	√	√	-	-	-	√	√			
CO3	√	-	√	√	√	-	-	-	√	√			
CO4	√	√	-	√	√	-	-	-	√	√			
CO5	√	-	√	√	√	-	-	-	√	√			

Course Title: Mathematical Methods Course Code: MSM-105-22

UNITI

Laplace Transforms: Laplace Transform, Properties of Laplace Transform, Inverse Laplace Transform, Convolution theorem, Laplace transform of periodic functions, unit step function and impulsive function, Application of Laplace Transform in solving ordinary and partial differential equations and Simultaneous linear equations.

UNIT II

Fourier Transforms: Fourier transform, properties of Fourier transform, inversion formula, convolution, Parseval's equality, Fourier transform of generalized functions, application of Fourier transforms in solving heat, wave and Laplace equation. Fast Fourier transform.

UNIT III

Integral Equations: Relations between differential and integral equations, Integral equations of Fredholm and Volterra type, solution by successive substitution and successive approximation, integral equations with degenerate kernels.

UNIT IV

Integral equations of convolution type and their solutions by Laplace transform, Fredholm's theorems, integral equations with symmetric kernel, Solutions with separable kernels, Characteristic numbers, Resolvent kernel, Eigen values and Eigen functions of integral equations and their simple properties.

Text and Reference Books:

- 1. Sneddon, I.N., *The Use of Integral Transforms*. McGraw Hill, 1985.
- 2. Goldberg, R.R., Fourier Transforms. Cambridge University Press, 1970.
- 3. Smith, M.G., Laplace Transform Theory. Van Nostrand Inc., 2000.
- 4. Elsegolc, L., Calculus of Variation. Dover Publications, 2010.
- 5. Kenwal, R.P., *Linear Integral Equation; Theory and Techniques*. Academic Press, 1971.
- 6. Hildebrand, F.B., *Methods of Applied Mathematics* (*Latest Reprint*). Dover Publications.
- 7. Pal, S. and Bhunia, S.C., *Engineering Mathematics*. Oxford University Press, 2015.

MSM-10	6-22	Introduc	tion to I	MATLAB	(LAB)	L	0, T-0,	P-4	2 Cre	dits			
Pre-requ	i site: B	asic know	ledge of	compute	 r								
Course (Objectiv	ves: This	course	is design	ed to int	roduce	a powerfi	ul langua	age MAT	LAB for			
technical	_			_			•	_	_				
MATLAB a	MATLAB and their applications using simple examples. This course will also develop programming												
skills for s	skills for solving real world problems more efficiently and accurately												
Course Outcomes: At the end of the course, the students will be able to													
CO1	Annl	y the kno	wledge	of mathe	matical	oftware	viz MAT	IAR to	solve rea	l world			
CO1	1	lems effic	_	or madic	matical	Sortware	VIZ. IIIAI	LAD to .	SOIVE TEE	ii wond			
CO2		Utilize the symbolic tools of MATLAB for handling different mathematical problems											
		for example, solution of equations, differentiation, and integration etc.											
CO3	Desi	Design and analyze their own computer codes of mathematical methods.											
CO4	Unde	Understand and modify existing codes in scientific computing based on the use of											
	diffe	rent loops	and con	ditional s	tructures								
CO5	Use	MATLAB s	oftware (effectively	y for plot	ting in 20	and 3D.	ı					
	M	lapping o	of course	e outcon	nes with	the pro	ogram ou	utcomes	3				
		T		T = = .	T = = =	T = = =	T = ==		T = = =	T = = - =			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	√	-	-	-	-	√ /	-	-		√			
CO2	\checkmark	_	_	_	_	√	_	_		V			
CO3	√	 	_	_	_	√	_	_		3/			
	V	v - - - v - - v											
CO4	-	-	-	-	-	√	-	-		√			
CO5	\checkmark	-	-	-	-	√	-	-		√			

Course Title: Introduction to MATLAB (LAB) Course Code: MSM-106-22

UNIT-I

The MATLAB environment, scalars, variables, arrays, mathematical operations with arrays, built-in and user defined functions, script file, input to a script file, output commands: disp and fprintf, function files, comparison between script file and function file.

Plotting: Two-dimensional plots and three-dimensional plots.

UNIT-II

Programming: Relational and logical operators, Conditional statements: if-end structure; if-else-end structure; if-elseif-else-end structure, loops: for-end loop and while-end loop, Nested loops and nested conditional statements, the break and continue command.

Symbolic math: symbolic objects and symbolic expressions; commands: collect, expand, factor, simplify, simple, solve, diff and int.

Text and Reference Books:

- 1. Higham, D.J. and Higham, N.J., MATLAB Guide, 2nd Edition. Society for Industrial and Applied Mathematics (SIAM), 2005.
- 2. Gilat, A., MATLAB: An Introduction with Applications, 5th Edition. John Wiley & Sons, 2014.

SEMESTER-II

MSM-201	L-22		Alg	ebra-II		L	-4, T-1,	P-0	4 Cred	dits		
Pre-requi	site: G	roups, rir	ngs, idea	ls and oth	ner conce	epts studi	ed in Alg	ebra-I co	urse.			
as Polynon	nial rings	s, Field th	eory, Alg	jebraic cl	osures, s	plitting fi	elds and (Galois the	eory. It h	elps the		
students to solvability theory in o	of a pol	ynomial.	It makes	the stud	-		-	-		•		
Course O	utcome	s: At the	end of t	he course	e, the stu	dents wil	I be able	to				
CO1	Apply	the know	wledge of	f concept	s of Poly	nomial rir	ngs, Eucli	dean Dor	nain, UF	D etc.		
CO2	Unde detail		e nature	of abstra	act mathe	ematics a	nd explor	e the cor	ncepts in	further		
CO3		Utilize the concepts of Einstein irreducibility criteria to check the factorization of polynomials, extension of fields etc.										
CO4		Recognize the need of concept of fundamental theorem of algebra from a practical viewpoint.										
CO5		Understand Galios extensions from theoretical point of view and apply its tools in different fields of applications.										
CO6			_		-	-	tomorphi h in this a			-		
	M	apping o	of course	e outcon	nes with	the pro	gram ou	ıtcomes	1			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	√	-	-	√	√	-	-	-	√	√		
CO2	-	√	-	√	√	-	-	-	√	√		
CO3	√	-	-	√	√	-	-	-	√	√		
CO4	-	√	-	√	√	-	-	-	√	√		
CO5	-	√	-	√	√	-	-	-	√	√		
CO6	-	-	-	√	√	-	-	-	√	√		

Course Title: Algebra-II

Course Code: MSM-201-22

UNIT-I

Polynomial rings, factorization Domain and divisibility, Principal Ideal Domain (PID), Euclidean Domain (ED), factorization of polynomials in one variable over a field. Unique factorization domains, unique factorization in R[x], where R is a Unique Factorization Domain. Euclidean and Principal ideal domain. [Ref 2: Unit 2]

UNIT-II

Gauss Lemma, irreducible polynomials and Eisenstein's Irreducibility Criterion, Fields, Adjunction of roots, Algebraic extensions of field. [Ref 2: Unit 2,4]

UNIT-III

Algebraically closed fields, Splitting fields, normal extensions, finite fields, separable extensions. [Ref 2: Unit 4]

UNIT-IV

Automorphism of groups and fixed fields, Galois extensions. The fundamental theorem of Galois Theory, Fundamental theorem of algebra. [Ref 2: Unit 4]

- 1. Bhattacharya, P.B., Jain, S.K. and Nagpaul, S.R., *Basic Abstract Algebra, 2nd Edition.* U. K.: Cambridge University Press, 2004.
- 2. Dummit, David. S., and Foote, Richard M., *Abstract Algebra, 3rd Edition*. New Delhi: Wiley, 2011.
- 3. Herstein, I.N., *Topics in Algebra, 2nd Edition*. New Delhi: Wiley, 2006.
- 4. Singh, Surjeet, and Q. Zameeruddin. *Modern Algebra, 7th Edition*. New Delhi: Vikas Publishing House, 1993.
- 5. Ash, R., Abstract Algebra: The Basic Graduate Year, Dover Publications Inc, 2006.

MSM-20	2-22		Real A	nalysis-	II	L	4, T-1, I	P-0	4 Cred	lits		
Pre-requ	isite: C	alculus of	f several	variables	and Rea	l Analysis	5-I					
mathemat have man this course	cical anal y importa	ysis, viz. : ant applic	sequence ations in	e and seri different	es of fun branches	ctions, m s of pure	easure the	eory and ed mathe	l integrat	ion that		
Course O	utcome	es: At the	end of t	he course	e, the stu	dents wil	ll be able	to				
CO1		the know	_	-		-	to study cations.	theoreti	cal devel	opment		
CO2		Understand the nature of abstract mathematics and explore the concepts in further details.										
CO3	Apply	Apply the concepts of real analysis in solving and analyzing real world problems.										
CO4	Reco	Recognize and elaborate the need of concept of measure from a practical viewpoint.										
CO5		Understand measure theory and integration from theoretical point of view and apply its tools in different fields of applications.										
CO6			_		_	•	egration b ted areas	y selecti	ing and a	pplying		
	M	apping o	of course	e outcon	nes with	the pro	ogram ou	itcomes	3			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	√	-	-	√	√	-	-	-	√	√		
CO2	-	√	-	√	√	-	-	-	√	√		
CO3	√	-	-	√	√	-	-	-	√	√		
CO4	-	√	-	√	√	-	-	-	√	√		
CO5	-	√	-	√	√	-	-	-	√	√		
CO6	-	-	-	√	√	-	-	-	√	√		

Course Title: Real Analysis-II

Course Code: MSM-202-22

UNIT-I

Sequences and series of functions, Uniform convergence, Uniform convergence and continuity, Uniform convergence and integration, Uniform convergence and differentiation, Equicontinuous families of functions, Weierstrass approximation theorem.

UNIT-II

Lebesgue Measure: Introduction, Lebesgue outer measure, Measurable sets and Lebesgue measure, non-measurable set, Measurable functions, Borel and Lebesgue measurability, Littlewood's three principles.

UNIT-III

Lebesgue Integral: The Lebesgue integral of a bounded function over a set of finite measure, the Comparison of Riemann and Lebesgue integral, the integral of a nonnegative function, The general Lebesgue integral, Convergence in measure.

UNIT-IV

Differentiation and Integration: The Four derivatives, Differentiation of monotone functions, differentiation of an integral. Absolute continuity.

- 1. Royden, H.L. and Fitzpatrick, P.M., *Real Analysis, 4th Edition.* New Delhi: Pearson, 2010.
- 2. Barra, G. de., *Measure Theory and Integration*, New Delhi: Woodhead Publishing, 2011.
- 3. Rudin, W., *Principles of Mathematical Analysis*, 3rd *Edition*. New Delhi: McGraw-Hill Inc., 2013.
- 4. Carothers, N. L., *Real Analysis*, Cambridge University Press, 2000.
- 5. Apostol, T.M., *Mathematical Analysis –A modern approach to Advanced Calculus*. New Delhi: Narosa Publishing House, 1957.
- 6. Malik S. C., Arora Savita, *Mathematical Analysis*, *5th Edition*, New Age International Publishers, 2017.

MSM-203	3-22		Mecl	nanics-I		L	-4, T-1,	P-0	4 Cred	dits		
Pre-requ	isite: Ba	asic Mech	anics and	d Calculus	s of seve	ral variab	les					
Course C application knowledge and Lagra for complie mechanics Course O	of the and un argian ar area me	e knowle derstandi nd Hamilto echanical	dge in s ng of the onian for systems	solving so fundame mulation using the	ome fundental cond of mechal Lagrang	damental cepts in t anics. To ian and H	problen he dynan represen Iamiltonia	ns. To donics of synthesis of the equal and formulations.	lemonstra stem of pations of	ate the particles motion		
CO1		rstand th duce the	-					nary path	s of a fu	nctional		
CO2	Use I	Use Euler-Lagrange equation to find stationary paths and its applications in some classical fundamental problems.										
CO3		Define and understand basic mechanical concepts related to discrete and continuous mechanical systems.										
CO4	describe and understand the motion of a mechanical system using Lagrange- Hamilton formalism.											
CO5		ect conce	•									
	M	apping o	of course	e outcon	nes with	the pro	gram ou	utcomes	3			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	-	√	-	√	√	-	-	-	√	√		
CO2	\checkmark	-	\checkmark	√	√	-	-	-	√	√		
CO3	√	-	√	√	√	-	-	-	√	√		
CO4	√	√	-	√	√	-	-	-	√	√		
CO5	√	-	√	√	√	-	-	-	√	√		

Course Title: Mechanics-I

Course Code: MSM-203-22

UNIT-I

Functional and its properties, Variation of a functional, Motivating problems: Brachistochrone, isoperimetric, Geodesics. Fundamental lemma of calculus of variation, Euler's equation for one dependent function of one and several variables. Generalization to *n* dependent functions and dependence on several derivatives. Invariance of Euler's equation, Moving end points problem, extremum under constraints.

UNIT-II

Constraints, generalized coordinates, Generalized velocity, Generalized force, Generalized potential, D'Alembert principle, Lagrange's equation of first kind and second kind, uniqueness of solution, Energy equation for conservative field. Examples based on solving Lagrange's equation.

UNIT-III

Legendre transformation, Hamilton canonical equation, cyclic coordinates, Routhian procedure, Poisson bracket, Poisson's identity, Jacobi-Poisson theorem, Hamilton's principle, Principle of Least action.

UNIT-IV

Canonical transformations, Hamilton-Jacobi equation. Method of Separation of variables, Lagrange's bracket, Hamilton's equations in Poisson bracket, Canonical character of transformation through Poisson bracket. Invariance of Lagrange's bracket and Poisson's bracket.

- 1. Elsegolc, L.D., *Calculus of Variation*, Dover Publication, 2007.
- 2. Gantmacher, F., Lectures in Analytic Mechanics, Moscow: Mir Publisher, 1975.
- 3. Goldstien, H., Poole, C. and Safco, J.L., *Classical Mechanics, 3rd Edition*. Addison Wesely, 2002.
- 4. Landau, L.D. and Lipshitz, E.M., *Mechanics*, Oxford: Pergamon Press, 1976.
- 5. Marsden, J.E., *Lectures on Mechanics*, Cambridge University Press, 1992.
- 6. Biswas, S. N., *Classical Mechanics*, Books and Applied (P) Ltd., 1999.

and	cives: The ations and solutions partial difference at the derstand partial digher or apply various	Objective their class of various rential ecand heat end of the artial difference.	e of this sification us partia quations if flow equations if the course	course is This coll different in real phations to e, the stu	to introdurse exploitial equinysical phastudents will	ains varions. In the commend of the	ous analy It also e on like w	tic methexplains	ods for various				
differential equal computing the applications of partial string, diffusion Course Outcor CO1 United and	ations and solutions partial difference equations are mes: At the derstand partial difference equations are mes: At the derstand partial difference equations are many are man	their clas of variou rential ec and heat e end of to artial differder.	sification us partia quations i flow equa he course	. This condition that the conditions to be conditions to be, the stu	urse expl ntial equ nysical ph students dents wil	ains varions. In the commend of the	ous analy It also e on like w	tic methexplains	ods for various				
differential equal computing the applications of partial string, diffusion Course Outcor CO1 United and	ations and solutions partial difference equations are mes: At the derstand partial difference equations are mes: At the derstand partial difference equations are many are man	their clas of variou rential ec and heat e end of to artial differder.	sification us partia quations i flow equa he course	. This condition that the conditions to be conditions to be, the stu	urse expl ntial equ nysical ph students dents wil	ains varions. In the commend of the	ous analy It also e on like w	tic methexplains	ods for various				
computing the applications of partial string, diffusion Course Outcor CO1 Una	solutions partial difference and partial derstand partial higher or ply various	of various rential ectand heat end of the artial difference.	us partia quations i flow equa he course	I different in real phations to e, the stu	ntial equ nysical ph students dents wil	nations. Inenomeno. I be able	it also e on like w	explains	various				
applications of pstring, diffusion Course Outcor CO1 Undance	partial difference of the derstand partial display the derstand display the de	rential ed and heat e end of t artial diffed der.	quations iflow equations if	in real phations to e, the stu	nysical ph students dents wil	nenomeno I be able	on like w	-					
string, diffusion Course Outcor CO1 Unana	equations and the derstand padd higher orderstand padd higher orders orders are the desired to t	and heat e end of to artial diffed der.	flow equa	ations to e, the stu	students. dents wil	l be able							
Course Outcor CO1 Unance	mes: At the derstand pa d higher ord ply various	e end of to artial differder.	he course	e, the stu	dents wil	l be able	to						
and	d higher ord ply various	der.	erential ed	quations	of first s								
and	d higher ord ply various	der.	erential ed	quations	of first so								
	ply various				or first or	der (linea	ar and no	nlinear),	second				
	•	Apply various analytic methods for computing solutions of various PDEs.											
	termine into	1 2											
	Determine integral surfaces passing through a curve, characteristic curves of second												
	order PDE and compatible systems.												
	Understand the formation and solution of some significant PDEs like wave equation, heat equation and Laplace equation.												
	ply the kno	-	•		lutions to	undorct	and phys	ical phon	omona				
	Mapping							-	ornena.				
	-парріпід (or course	c outcon	iles With	r the pro	grain o	accomes	,					
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10				
CO1 √	-	\checkmark	\checkmark	\checkmark	1	-	-	\checkmark	√				
CO2 √	-	√	√	√	-	-	1	√	√				
CO3 √	-	√	√	√	-	-	-	√	√				
CO4 √	-	√	√	√	-	-	-	√	√				
CO5 √	-	√	√	√	-	-	-	√	√				

Course Title: Partial Differential Equations

Course Code: MSM-204-22

UNIT-I

First Order PDE: Partial differential equations; its order and degree; origin of first order PDE; determination of integral surfaces of linear first order partial differential equations passing through a given curve; surfaces orthogonal to given system of surfaces; non-linear PDE of first order, Cauchy's method of characteristic; compatible system of first order PDE; Charpit's method of solution, solutions satisfying given conditions, Jacobi's method of solution.

UNIT-II

Second Order PDE: Origin of second order PDE; linear second order PDE with constant and variable coefficients; characteristic curves of the second order PDE; Monge's method of solution of non-linear PDE of second order.

UNIT-III

Separation of Variable Method and Derivation of Heat, wave and Laplace equations: Derivation of one-dimensional wave equation, Derivation of two-dimensional wave equation, Laplace's equation, Laplace's equation in plane polar coordinates, Laplace's equation in cylindrical coordinates, Laplace's equation in spherical coordinates, Derivation of one-dimensional heat equation.

UNIT-IV

Boundary value problems using separation of Variable Method: Boundary value problems in cartesian co-ordinates on Heat equation, wave equation and Laplace equation (1-D, 2-D and 3-D), Boundary value problems in polar co-ordinates, Boundary value problems in cylindrical co-ordinates, Boundary value problems in spherical co-ordinates.

- 1. Sneddon, I.N., *Elements of Partial Differential Equation, 3rd Edition.* McGraw Hill Book Company, 1998.
- 2. Copson, E.T., *Partial Differential Equations*, 2nd Edition. Cambridge University Press, 1995.
- 3. Strauss, W.A., *Partial Differential Equations: An Introduction, 2nd Edition*. 2007.
- 4. Sharma, J.N. and Singh, K., *Partial differential equations for engineers and scientists*, 2nd *Edition*. New Delhi: Narosa Publication House, 2009.

MSM-205	-22		Numerio	cal Analy	ysis	L	4, T-1,	P-0	4 Cred	dits			
Pre-requis	site: B	asic Calcu	ulus, ana	lysis and	linear ald	jebra							
Course O				-			the basic	c concep	ts of Nu	ımerical			
Mathematic	cs to so	lve the pr	oblems a	arising in	various f	ields of a	pplication	n, for exa	mple in s	science,			
engineering	g and e	conomics	etc. tha	t do not	possess	analytica	I solution	s or diffi	cult to de	eal with			
analytically	. This o	course ad	dresses (developm	nent, ana	lysis and	applicati	on of dif	ferent nu	ımerical			
methods to	solve t	the proble	ems, viz.	system (of linear	& nonline	ear equati	ons, num	nerical ini	tial and			
boundary v	alue pr	oblems o	f ordinary	y differen	itial equa	tions etc	•						
Course Ou	ıtcome	es: At the	end of t	he course	e, the stu	dents wi	ll be able	to					
CO1	Ident	ity and a	nalyze di	fferent ty	pes of er	rors enco	ountered	in numer	ical comp	outing.			
CO2	Apply	the know	wledge o	f Numerio	cal Mathe	ematics to	o solve pr	oblems e	efficiently	arising			
	in sci	ence, eng	gineering	, and eco	nomics e	tc.							
CO3	Utilize	e the too	ls of the	Numerica	al Mather	matics in	order to	formulat	e the rea	al-world			
	probl	ems from	the viev	vpoint of	numerica	l mather	natics.						
CO4	Desig	ın, analyz	e and im	plement	of nume	rical met	hods for	solving d	ifferent t	ypes of			
	1 -	problems, viz. initial and boundary value problems of ordinary differential equations											
	etc.	etc.											
CO5	Create, select, and apply appropriate numerical techniques with the understanding												
		eir limitat			possible	modifica	tion in th	iese tech	niques c	ould be			
		ed out in t											
CO6		ify the ch											
		with analy								iciently.			
	M	apping o	of course	e outcon	nes with	the pro	ogram ou	utcomes	3				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	-	-	ı	√	-	-	-	-	√	√			
CO2	√	-	-	-	-	-	-	-	√	√			
CO3	$\sqrt{}$	-	-	-	-	-	-	-	√	√			
									-				
CO4	\checkmark	-	-	-	-	-	-	-	√	√			
						,			,				
CO5	√	√	-	-	-	√	-	-	√	√			
CO6	-	-	-	√	-	-	-	-	√	√			

Course Title: Numerical Analysis
Course Code: MSM-205-22

UNIT-I

Numerical computation and Error analysis: Numbers and their accuracy, Floating point arithmetic, Errors in numbers, Error estimation, General error formulae, Error propagation in computation. Inverse problem of error analysis and Numerical instability. Algebraic and transcendental equations: Bisection method, Iteration method, Regula-Falsi method, Secant method, Newton-Raphson's method. Convergence of these methods. Solution of system of nonlinear equations: Newton-Raphson's method.

UNIT-II

System of linear algebraic equations: Gauss elimination method without pivoting and with pivoting, Gauss-Jordon method, LU-factorization method, Jacobi and Gauss-Seidal methods, Convergence of iteration methods, Round-off errors and refinement, ill-conditioning, Inverse of matrices: Partition method. Eigen values and eigen vectors: Rayleigh Power method, Given's method.

UNIT-III

Interpolation: Finite differences, Newton's interpolation formulae, Gauss, Stirling's and Bessel's formulae, Lagrange's, Hermite's and Newton's divided difference formulae. Numerical differentiation and integration: differentiation at tabulated and non-tabulated points, Maximum and minimum values of tabulated function, Newton-Cotes Formulae-Trapezoidal, Simpson's, Boole's and Weddle' rules of integration with errors, Romberg integration. Double integration: Trapezoidal method and Simpson's method.

UNIT-IV

Ordinary differential equations: Taylor series and Picard's methods, Euler's and modified Euler methods, Runge-Kutta methods, Predictor-Corrector methods: Adams-Bashforth's and Milne's methods. Error analysis and accuracy of these methods. Solution of simultaneous and higher order equations, Boundary value problems of Ordinary differential equations: Finite difference methods.

- 1. Sharma, J.N., *Numerical Methods for Engineers and Scientists, 2nd Edition*. Narosa Publ. House New Delhi/Alpha Science International Ltd., Oxford UK, 2007, Reprint 2010.
- 2. Jain, M.K., Iyengar, S.R.K. and Jain, R.K., *Numerical Methods for Scientific and Engineering Computation, 5th Edition. New Age International Publ.* New Delhi, 2010
- 3. Bradie, B., A Friendly Introduction to Numerical Analysis. Pearson Prentice Hall, 2006.
- 4. Atkinson, K.E., *Introduction to Numerical Analysis*, 2nd Edition. John Wiley, 1989.
- 5. Scarborough, J.B., Numerical Mathematical Analysis. Oxford & IBH Publishing Co., 2001.

MSM-206	5-22	Nui	merical .	Analysis	(LAB)	L	-0, T-0,	P-4	2 Cred	lits		
Pre-requi	site: E	Basic knov	ledge of	Compute	er and MA	ATLAB Pr	ogrammi	ng				
Course Ol numerical equations, initial and I develop pro for solving	method interpo bounda ogramr proble	ds for so plation an ry value p ning skills ms arising	ving diff d extraperoblems in the st in science	erent proposed propos	oblems volumerical ry differe on write an eering an	riz. nonli differen ntial equ d implen d econor	near equitiation are ations etconstitutions ations etconstitutions.	ations, sond integrate. Further own con	system o ation, nu , this cou	f linear merical ırse will		
CO1	own prob extra bour	Apply their knowledge of computer programming to develop and implement their own computer codes of numerical methods for solving different types of complex problems viz. nonlinear equations, system of linear equations, interpolation and extrapolation, numerical differentiation and integration, numerical initial and boundary value problems of ordinary differential equations etc. Understand different implementation modes of a numerical method to solve a given										
CO2		lem efficie		репен	ation mo	ues or a	lumenca	metriou	to soive	a giveri		
CO3	Analy	Analyze and modify computer codes available in the scientific literature.										
CO4		Utilize the symbolic tools of MATLAB independently and in their computer codes for solving a given problem.										
CO5	unde	Develop, select and apply numerical methods as a computer code with the understanding of their limitations so that they can be implemented in order to get acceptable results.										
CO6	Identify the challenging problems in continuous mathematics (which are difficult to deal with analytically) and find their appropriate solutions accurately and efficiently using computer codes. Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	$\sqrt{}$	-	-	-	-	-	-	-	√	√		
CO2	-	√	-	-	-	-	-	-		√		
CO3	√	√	-	-	-	-	-	-	√	√		
CO4	√ √ √											
CO5	√	√	-	-	-	-	-	-	√	√		
CO6	-	-	-	√	-	-	-	-	√	√		

Course Title: Numerical Analysis (LAB)

Course Code: MSM-206-22

The following programs of following methods are to be practiced:

- 1. To find a real root of an algebraic/ transcendental equation by using Bisection method.
- 2. To find a real root of an algebraic/ transcendental equation by using Regula-Falsi method.
- 3. To find a real root of an algebraic/ transcendental equation by using Newton-Raphson method.
- 4. To find a real root of an algebraic/ transcendental equation by using Iteration method.
- 5. Implementation of Gauss- Elimination method to solve a system of linear algebraic equations.
- 6. Implementation of Jacobi's method to solve a system of linear algebraic equations.
- 7. Implementation of Gauss-Seidel method to solve a system of linear algebraic equations.
- 8. To find differential coefficients of 1st and 2nd orders using interpolation formulae.
- 9. To evaluate definite integrals by using Newton Cotes integral formulae.
- 10. To evaluate double integrals by using Trapezoidal and Simpson method.
- 11. To compute the solution of ordinary differential equations with Taylor's series method.
- 12. To compute the solution of ordinary differential equations by using Euler's method.
- 13. To compute the solution of ordinary differential equations by using Runge -Kutta methods.
- 14. To compute the solution of ordinary differential equations by using Milne-Simpson method.
- 15. To compute the solution of Boundary value problems of Ordinary Differential Equations by using Finite Difference method.

- 1. Fausett, L.V., *Applied Numerical Analysis using MATLAB, 2nd Edition.* Pearson Prentice Hall, 2007.
- 2. Mathews, J.H. and Fink, K.D., *Numerical Methods using MATLAB, 4th Edition.* Pearson Prentice Hall, 2004.
- 3. Conte, S.D. and Boor, C.D., *Numerical Analysis*. New York: McGraw Hill, 1990.