B.Sc. (Hons.) Physics

Course Structure and Syllabus (Based on Choice Based Credit System) 2021 onwards

University Main Campus and Constituent Campuses

Department of Academics I.K. Gujral Punjab Technical University

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 1 of 131

PROGRAM EDUCATIONAL OBJECTIVES: At the end of the program, the student will be able to:

PEO1	Apply principles of basic science concepts in understanding, analysis, and prediction of physical systems.
PEO2	Develop human resource with knowledge, abilities and insight in Physics and related fields required for career in academia and industry.
PEO3	Engage in lifelong learning and adapt to changing professional and societal needs.

PROGRAM OUTCOMES: At the end of the program, the student will be able to:

PO1	Apply the knowledge gained to solve the scientific problems.
PO2	Identify, formulate, and analyze scientific problems reaching substantiated conclusions using first principles of mathematical, physical, and chemical sciences.
PO3	Design solutions for physics problems that meet the specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal consideration.
PO4	Use research-based knowledge and methods including design of experiments, analysis, interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Create, select, and apply appropriate techniques, resources, and modern scientific tools to physics problems with an understanding of the limitations.
PO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues, and the consequent responsibilities relevant to the professional scientific practice.
PO7	Understand the impact of the scientific solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Apply ethical principles and commit to the norms of scientific practice.
PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communicate effectively on scientific activities with the Scientific/Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Demonstrate knowledge and understanding of the scientific principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of scientific and technological change.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Understand the concepts of different branches of physics.
PSO2	Demonstrate expertise to conduct wide range of scientific experiments.
PSO3	Apply the concepts of physics in areas of mechanics, electromagnetism, solid state, nuclear, etc., in industry, academia, and day-to-day life.

Course	Course Course Code Course		Load Allocation			Ma	rks	Total Marks	Cr
type			L	T	P	Internal	External	riai K5	
PHYSICS-C-1	BSHP-111-21	Optics	3	1	-	40	60	100	4
PHYSICS-C-2	BSHP-112-21	Mechanics	3	1	-	40	60	100	4
PHYSICS-C	BSHP-113-21	Physics Lab-I	-	-	4	30	20	50	2
GE-1	BSHM-104-21	Calculus	4	1	-	40	60	100	4
GE-2	BHCL-103-21	Inorganic Chemistry	3	1	-	40	60	100	4
	BHCP-109-21	Chemistry Lab-I	-	-	4	30	20	50	2
AEC-1	BHHL-105-21	Communicative English-I	2	-	-	20	30	50	2
AEC-2	BHHL-106A-21	Punjabi Compulsory-I or	2	-	-	20	30	50	2
	BHHL-106B-21	Mudhli Punjabi-I							
		TOTAL	1 7	4	8	260	340	600	24
	DHVSICS_Core	Conoral Elective: CE		۸۱	hility	Enhancen	oont Comr	ulcorv A	FC

First Semester

PHYSICS-C: PHYSICS-Core General Elective: GE L: Lecture T: Tutorial P: Practical Cr: Credit Ability Enhancement Compulsory: AEC

Second Semester

Course type	Course Code	Course Title	Lo Alloo	Load Allocation		Load Marks Allocation Distribution		rks oution	Total Marks	Cr
			L	Т	Ρ	Internal	External			
PHYSICS-C-3	BSHP-121-21	Waves and Vibrations	3	1	-	40	60	100	4	
PHYSICS-C-4	BSHP-122-21	Electricity and Magnetism	3	1	-	40	60	100	4	
PHYSICS-C	BSHP-123-21	Physics Lab-II	-	-	4	30	20	50	2	
GE-3	BSHM-204-21	Vector Algebra & Vector Analysis	4	1	-	40	60	100	4	
GE-4	BHCL-114-21	Organic Chemistry	3	1	-	40	60	100	4	
	BHCP-116-21	Chemistry Lab-II	-	-	4	30	20	50	2	
AEC-3	BHHL-115-21	Communicative English-II	2	-	-	20	30	50	2	
AEC-4	BHHL-116A-21	Punjabi Compulsory- II or	2	-	-	20	30	50	2	
	BHHL-116A-21	Mudhli Punjabi-II								
		TOTAL	17	4	8	260	340	600	24	

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 4 of 131

Course type	Course	Course Title		oad	ł	Ма	Total	Cr	
	Code		Alle	Allocation		Distribution		Marks	
			L	Т	Ρ	Internal	External		
PHYSICS-C-5	BSHP-211-21	1 Mathematical Physics-I		1	-	40	60	100	6
PHYSICS-C-6	BSHP-212-21	Elements of Modern Physics	3	1	-	40	60	100	4
	BSHP-213-21	Physics Lab-III	-	-	4	30	20	50	2
PHYSICS-C-7	BSHP-214-21	Analog Systems and Application	3	1	-	40	60	100	4
	BSHP-215-21	Physics Lab-IV	-	-	4	30	20	50	2
GE-5	BHCL-204-21	Physical Chemistry	3	1	-	40	60	100	4
	BHCP-208-21	Chemistry Lab-III	-	-	4	30	20	50	2
PHYSICS- SEC-1	BSHP-216-21	Workshop Skill Enhancement	-	1	2	30	20	50	2
	BSHP-217-21	Computational Physics							
	BSHP-218-21	Weather Forecasting							
		TOTAL	14	5	14	280	320	600	26

Third Semester

PHYSICS-SEC: PHYSICS-Skill Enhancement Elective Course

Course type	Course	Course Title	L	oac	1	Marks		Total	Cr
	Code	Code		ocat	ion	Distribution		Marks	
			L	Т	Ρ	Internal	External		
PHYSICS-C-8	BSHP-221-21	Mathematical Physics-II	5	1	-	40	60	100	6
PHYSICS-C-9	BSHP-221-21	Thermal Physics	3	1	-	40	60	100	4
	BSHP-223-21	Physics Lab-V	-	-	4	30	20	50	2
PHYSICS-C-10	BSHP-224-21	Digital Electronics	3	1	-	40	60	100	4
	BSHP-225-21	Physics Lab-VI	-	-	4	30	20	50	2
GE-6 BSHM-408- Matrices & Ordinary 21 Differential Equations		4	1	-	40	60	100	4	
AEC-5	EVS-101A	Environmental Studies	2	-	-	20	30	50	2
PHYSICS-SEC- 2	BSHP-226-21	Electrical Circuits and Network Skills	-	1	2	30	20	50	2
	BSHP-227-21	Basic Instrumentation Skills							
	BSHP-228-21	Scientific Word Processing							
		TOTAL	17	5	10	270	330	600	26

Fourth Semester

Course type	Course Code	Course Title	Load Allocation		Load Marks Allocation Distribution		Total Marks	Cr	
			L	Т	Ρ	Internal	External		
PHYSICS-C-11	BSHP-311-21	Quantum Mechanics	5	1	-	40	60	100	6
PHYSICS-C-12	BSHP-312-21	Solid State Physics		1	-	40	60	100	4
PHYSICS-C	BSHP-313-21	Physics Lab-VII	-	-	4	30	20	50	2
PHYSICS-C	BSHP-314-21	Computational Physics Lab-I	-	-	4	30	20	50	2
DSE-1	BSHP-315-21	Department Specific	5	1	-	40	60	100	6
DSE-2	BSHP-316-21	Elective (DSE)-1							
DSE-3	BSHP-317-21	Department Specific	5	1	-	40	60	100	6
DSE-4	BSHP-318-21	Elective (DSE)-2							
DSE-5	BSHP-319-21								
		TOTAL	18	4	8	220	280	500	26

Fifth Semester

Department Specific Electives -1 and 2 (Any two from the following list)

S. No.	Name of the Subject	Code
1	Atomic and Molecular Physics	BSHP-315-21
2	Nuclear Physics	BSHP-316-21
3	Dissertation	BSHP-317-21
4	Communication Electronics	BSHP-318-21
5	Renewable Energy and Energy Harvesting	BSHP-319-21

Course type	Course Code	Course Title	Load Allocation		nd Marks Ition Distribution		Total Marks	Cr	
			L	Т	Ρ	Internal	External		
PHYSICS-C-13	BSHP-321-21	Electromagnetic Theory	5	1	-	40	60	100	6
PHYSICS-C-14	BSHP-322-21	Statistical Mechanics	3	1	-	40	60	100	4
PHYSICS-C	BSHP-323-21	Physics Lab -VIII	-	-	4	30	20	50	2
DSE-6 DSE-7	BSHP-324-21 BSHP-325-21	Department Specific Elective (DSE)-3	5	1	-	40	60	100	6
DSE-8 BSHP-326-21 Department Specific DSE-9 BSHP-327-21 Elective (DSE)-4 DSE-10 BSHP-328-21		5	1	-	40	60	100	6	
		TOTAL	18	4	4	190	260	450	24

Sixth Semester

Department Specific Electives- 3 and 4 (Any two from the following list)

S. No.	Name of the Subject	Code
1	Particle Physics	BSHP-324-21
2	Advanced Mathematical Physics	BSHP-325-21
3	Advanced Condensed Matter Physics	BSHP-326-21
4	Experimental Techniques	BSHP-327-21
5	Radiation Safety	BSHP-328-21

Examination and Evaluation

Th	eory			
S.	No.	Evaluation criteria	Weightage in Marks	Remarks
	1	Mid term/sessional Tests	24	Internal evaluation (40 Marks) MSTs, Quizzes, assignments,
	2	Attendance	6	attendance, etc., constitute internal
	3	Assignments	10	test will be considered for evaluation.
	4	End semester examination	60	External evaluation
	5	Total	100	Marks may be rounded off to nearest integer.
Pr	actic	al		
	1	Evaluation of practical record/ Viva Voice/Attendance/Seminar/ Presentation	30	Internal evaluation
	2	Final Practical Performance + Viva-Voce	20	External evaluation
	3	Total	50	Marks may be rounded off to nearest integer.

Instructions for Paper-Setter in B. Sc. (Hons.) Physics

A. Scope

- 1. The question papers should be prepared strictly in accordance with the prescribed syllabus and pattern of question paper of the University.
- 2. The question paper should cover the entire syllabus with proper distribution and Weightage of marks for each question.
- 3. The language of questions should be simple, direct, and documented clearly and unequivocally so that the candidates may have no difficulty in appreciating the scope and purpose of the questions. The length of the expected answer should be specified as far as possible in the question itself.
- 4. The distribution of marks to each question/answer should be indicated in the question paper properly.

B. Type and difficulty level of question papers

- 1. Questions should be framed in such a way as to test the students intelligent grasp of broad principles and understanding of the applied aspects of the subject. The Weightage of the marks as per the difficulty level of the question paper shall be as follows:
 - i) Easy question 30%
 - ii) Average questions 50%
 - iii) Difficult questions 20%
- 2. The numerical content of the question paper should be upto 25%.

C. Format of end semester question paper

- 1. Paper code and Paper-ID should be mentioned properly.
- 2. The question paper will consist of three sections: Sections-A, B and C.
- 3. Section-A is COMPULSORY consisting of TEN SHORT questions carrying two marks each (total 20 marks) covering the entire syllabus.
- 4. The Section-B consists of FOUR questions of eight marks each covering the entire PART-A of syllabus (Taking two questions from every unit).
- 5. The Section-C consists of FOUR questions of eight marks each covering the entire PART-B of syllabus (Taking two questions from every unit).
- 6. Attempt any five questions from Section-B and Section-C, selecting at least two questions from each of the two sections.

Question paper pattern for MST:

Roll No:

No of pages:

IK Gujral Punjab Technical University-Jalandhar								
Department of Physical Sciences								
Academic Session:								
Mid-Semester Test: I/II/III (Regular/reappear)	Date:							
Programme: B.Sc. (Hons.) Physics	Semester:							
Course Code: Course:								
Maximum Marks: 24 Time: 1 hour 30 minutes								

Note: Section A is compulsory; Attempt any two questions from Section B and one question from Section C.

Se	ction: A	Marks	COs
1		2	
2		2	
3		2	
4		2	
Se	ction: B		
5		4	
6		4	
7		4	
Se	ction: C		
8		8	
9		8	

Details of Course Objectives

<i>CO1</i>	
<i>CO2</i>	
СО3	
<i>CO4</i>	
CO5	

SEMESTER-I

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 12 of 131

PHYS	ICS-C	-1 B	SHP-11	1-21	Optics	5		L-3, T-1, P-0			4 Cr	edits
Pre-re	equisi	te: Under	rstanding	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics	1	
Course Objectives: The objective of the course is to develop basic understanding of Interference, Diffraction and Polarization among students. They also learn about the LASER and its applications. Students will be equipped with knowledge to measure wavelength, refractive index and other related parameters, which will act as a strong background if he/she chooses to pursue physics as a career.												
Course Outcomes: At the end of the course, the student will be able to												
CO	1	Identify related v	and illus vave phe	trate ph enomena	iysical co a	oncepts	and terr	minolog	y used i	n optics	and oth	ner
СО	2	Analyze and understand coherence and phenomenon of interference and their applications										
СО	3	Acquaint	ed with	Fresnel'	s and F	raunhofe	er's diffr	action a	nd their	applica	tions.	
СО	4	Get thor transmis	ough kr sion anc	nowledg I will lea	e of the Irn to ar	e polari: alyze th	zation o Ie polariz	f light, zation ir	change optical	s upon system	reflections.	on and
СО	5	Describe laser bea	the dif am.	ferent t	types of	lasers,	its prir	nciple, p	propertie	es and a	applicati	ons of
		Мар	ping of	course	outco	mes wi	th the p	orograr	n outco	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2	1	2	1	-	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	1	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
CO5	2	2	2 2 2 1 1 2 1 1 3 1 1									

PART-A

UNIT I Interference: Definition and properties of wave front, Temporal and Spatial Coherence, Young's double slit experiment, Lloyd's single mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films, Fringes of equal inclination (Haidinger Fringes), Newton's Rings: Measurement of wavelength and refractive index, Interferometer: Michelson Interferometer-(1) idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, Fabry-Perot interferometer.

UNIT-II

Diffraction: Huygens Principle, Huygens-Fresnel Diffraction theory, Fraunhofer diffraction: Single slit. Circular aperture, Rayleigh criterion of resolution, Resolving Power of a telescope, Double slit, Multiple slits, Diffraction grating, Resolving power of grating. Fresnel Diffraction: Fresnel's Assumptions, Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light, Theory of a Zone Plate: Multiple Foci of a Zone Plate, Fresnel diffraction pattern of a straight edge and circular aperture. (11 Lectures)

PART-B

UNIT-III

Polarization: Plane polarized light, Representation of Unpolarized and Polarized light, Polarization by Reflection, Brewster's law, Malus Law, Polarization by Selective absorption by Crystals, Polarization by Scattering, Polarization by Double Refraction, Nicol Prism, Huygen's theory of Double Refraction, Polaroid, Elliptically and Circularly polarized lights, Quarter and Half wave plates. (11 Lectures)

UNIT-IV

Laser and Application: Lasers, Spontaneous emission, Stimulated absorption, Stimulated emission, Einstein coefficients, Einstein relations, Conditions for Laser actions, Population inversion, Different types of Laser Pumping mechanism: Optical Pumping, Electric Discharge and Electrical pumping, Resonators, Two, Three and Four level laser systems, Ruby laser, He-Ne gas Laser, Semiconductor laser, CO2 laser, applications of laser: Holography, Principle of Holography.

(11 Lectures)

Text and Reference Books:

- 1. Optics: A.K. Ghatak (Tata-McGraw Hill), 1992.
- 2. Fundamentals of Optics: F.A. Jenkins and H.E. White (McGraw Hill), 1981.
- 3. A Textbook of Optics: Subrahmaniyam N. & et al., S. Chand Publishing, 2006.
- 4. O. Svelto: Principles of Lasers, Springer Science & Business Media, 2010.

PHYS	ICS-C	C-2 B	SHP-112	-21	Mech	nanics		L-3, 1	Г-1, Р-С		4 Cred	its
Pre-requisite: Understanding of senior secondary level Physics and Mathematics												
Course Objectives: The aim and objective of the course on Mechanics is to introduce the students to the formal structure of vector mechanics, harmonic oscillators, and mechanics of solids so that they can use these in Engineering as per their requirement. This will act as a strong background if he/she chooses to pursue higher studies in physics.												
СО	CO1 Understand the fundamentals of vector mechanics for a classical system.											
CO	2	Identii laws.	y various	types o	of forces	s in nat	ure, fra	mes of	referen	ces, and	d conse	rvation
CO	3	Know	the inertia	al and no	n-inerti	al syster	n.					
CO	4	Under	stand the	Gravitati	on force	e as a C	entral Fo	orce Mo	tion	lama		
0	5	Appiy Ma	ne know	eage ob f course		n this co mes wi	th the	day-to-d program	n outco	omes.		
	PO1	PO2	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2	3	-	1	2	1	2	1	2	3	2	2
CO2	2	3	1	2	2	1	1	1	1	3	1	1
CO3	3	3 2 2 2 1 2 1 1 3 1 1							1			
CO4	4 2 2 2 - 2 1 2 1 1 3 1 1					1						
CO5	O5 2 2 - 2 2 1 2 1 1 3 1					1	1					

UNIT I:

Fundamentals of Dynamics: Reference frames. Inertial frames; Review of Newton's Laws of Motion. Galilean transformations; Galilean invariance. Dynamics of a system of particles. Centre of Mass. Principle of conservation of momentum. Impulse. Momentum of variable-mass system: motion of rocket. (12 Lectures)

UNIT II:

Work and Energy: Work and Kinetic Energy Theorem. Conservative and non-conservative forces. Potential Energy. Energy diagram. Stable and unstable equilibrium. Force as gradient of potential energy. Work done by non-conservative forces. Law of conservation of Energy. **Collisions:** Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frame of references. (12 Lectures)

UNIT-III

Non-Inertial Systems: Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications. Components of Velocity and Acceleration in Cylindrical and Spherical Coordinate Systems.

(12 Lectures)

UNIT-IV

Gravitation and Central Force Motion: Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and fields due to spherical shell and solid sphere. Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS). (12 Lectures)

Text and Reference Books:

- 1. Mechanics, Berkeley Physics, Vol.1, C. Kittel, W. Knight, et.al. 2007, Tata McGraw-Hill.
- 2. Physics, Resnick, Halliday and Walker 8/e. 2008, Wiley.
- 3. Feynman Lectures, Vol. I, R.P.Feynman, R.B.Leighton, M. Sands, 2008, Pearson Education
- 4. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons
- 5. University Physics. F.W Sears, M.W Zemansky, H.D Young 13/e, 1986, Addison Wesley
- 6. Physics for scientists and Engineers with Modern Phys., J.W.Jewett, R.A.Serway, 2010, Cengage Learning
- 7. Theoretical Mechanics, M.R. Spiegel, 2006, Tata McGraw Hill.

PHYS	ICS-	BSHP-113- Physics Lab-I L-0, T-0, P-4 2 Credits										
С		21										
Pre-re	equisit	e (If a	ny): Hi	gh-schoo	ol educa	ation						
Cours	e Obje	ectives	: The a	im and o	objectiv	e of the	e lab co	urse is t	o intro	duce the	e student	s to the
formal structure of electromagnetism and phenomenon of wave optics so that they can use these												
as per their requirement.												
Course Outcomes: At the end of the course, the student will be able to												
CO1 Able to verify the theoretical concepts/laws learnt in theory courses.												
CO2		Traine	Frained in carrying out precise measurements and handling sensitive equipment.									
CO3		Under	stand t	he met	hods u	ised fo	r estim	ating a	nd de	aling wi	th expe	rimental
		uncertainties and systematic "errors".										
CO4		Learn	to draw	conclus	ions fro	om data	and de	velop sk	ills in e	experime	ntal desig	gn.
CO5		Docun	nent a t	echnical	report	which c	commun	icates s	cientific	: informa	ition in a	clear
		and co	oncise n	nanner.								
		Maj	pping o	of cours	e outco	omes v	vith the	e progr	am ou	tcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	2	1	2	3	2	3
CO2	3	3	1	-	2	2	1	1	1	3	2	3
CO3	3	3	3 2 - 2 1 2 1 1 3 2 3									
CO4	3	2	2	2	-	2	2	1	1	3	2	3
CO5	2	2	2	2	-	2	2	1	1	3	2	3

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses.
- 2. To study the laser beam characteristics like; wavelength, aperture, spot size, etc. using diffraction grating.
- 3. To study the diffraction using laser beam and thus to determine the grating element.
- 4. To study wavelength and laser interference using Michelson's Interferometer.
- 5. To find the refractive index of a material/glass using spectrometer.
- 6. To find the refractive index of a liquid using spectrometer.
- 7. To determine the angle of prism and resolving power of a prism.
- 8. To study the magnetic field of a circular coil carrying current using a Steward and Gees Tangent Galvanometer.
- 9. Determine the radius of circular coil using the Circular coil.
- 10. To study B-H curve using CRO.
- 11. To find out polarizability of a dielectric substance.
- 12. To find out the horizontal component of earth's magnetic field (B_h) .

Text and Reference Books:

- 1. A Textbook of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 2. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 3. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 4. Practical Physics, C L Arora. S. Chand & Company Ltd.
- 5. http://www.vlab.co.in

Gene	ral	B	SHM-10	4-21	CALCULUS-I			L-4, T-1, P-0 4 Credits				
Electi	ive (G	E)-										
1	! . !		ام برماده مرازيم	- of con:			Nal Mat	h a wa a ti a	-			
Pre-re	equis	te: Und	ierstandin	g or seni	or seco	ndary ie	ever mat	nematic	S			
Cours	se Ob	jective	s: The o	bjectives	of this	s course	e are to	make	the stu	idents u	Indersta	nd the
followi	ing:											
1.	The f	fundam	ental conc	epts of c	lifferen	tial and	integral	calculus	S			
2.	I he	geometi	rical mear	ing of fu	nctions	, limits,	continu	ity, deri	vatives,	mean v	alue the	orems.
3. _⊿	Appli	Cations	of derivat	ives and	Integra	IIS. nd thair	applicat	ione in f		vtromo	values	
- 1 . 5	5. The utility of double and triple integrals in finding area and volume bounded by surfaces											
5.	5. The during of double and triple integrals in finding area and volume bounded by sulfaces.											
Cours	se Out	comes	: At the e	nd of the	course	e, the st	udent w	ill be ab	le to			
	1	Unders		basic cor	icepts (of Differ	ential ar	nd Integ	ral Calc	ulus.		
	2			ledge of	doriva	dily. tivoc in	finding	ovtrom		c of the	- functio	on ond
	definite integrals to find area under the curve.											
CO	CO4 Explain the concept of Limit, Continuity, partial derivatives of functions of severable											
	variables and their applications.											
CO	CO5 Utilize the concept of multiple integrals in finding areas and volumes of different											
	geometrical shapes.											
		Ma	pping of	f course	outco	mes wi	th the	progra	m outco	omes		
	PO1	. PO2	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2	1	2	2	2	3	2	3	2	2	2	3
CO2	2	1	1	-	2	2	1	3	2	2	2	3
CO3	2	2	2	-	2	1	2	1	2	3	2	3
CO4	1	2	2	2	-	2	2	2	1	3	2	3
CO5	2	2	2	2	-	2	2	1	1	3	2	3
		_,										
(B.Sc.)	Hons. I	Physics)	Batch 202	1 & Onwa	ards					Pa	age 19 oi	f 131

UNIT-I

Functions of single variable, Simple examples of limit, continuity, differentiability, Derivative of elementary functions (t-ratios, logarithmic functions, exponential functions), Higher order derivatives, Statement of Mean value theorems and simple applications, Applications of derivative: increasing decreasing functions, extreme values of functions. **(Ref. 1)**

UNIT-II

Integration as an inverse process of differentiation, Finding integrals by partial fractions, by parts, Statement of fundamental theorem of calculus, Finding definite integrals by method of substitution, Applications of definite integral in finding length of an arc, area under simple curves, area enclosed between two curves. **(Ref. 1)**

UNIT-III

Introduction of Limit, continuity of functions of two variables with simple examples, partial derivatives, Total derivatives, Homogeneous functions, Statement of Euler's theorem, Simple examples of maxima-minima of functions of several variables, Lagrange's method of multipliers.

UNIT-IV

Double integrals, Change of order of integration, Jacobian, Double integral in polar coordinates, Triple integrals, Simple applications in finding area and volumes.

RECOMMENDED BOOKS:

- Mathematics, A Text book for Class XII (Parts I & II), New Delhi: NCERT, 2003. (Unit I & II)
- R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Pub., 4th Edition, 2015.
- James Stewart, Calculus, 5th Edition, Brooks/Cole (Thomson), 2003.

Gener Electiv (GE)-2	al ve 2	BHCL	-103-2	1 IN CH	INORGANIC CHEMISTRY				Г-1, Р-()	4 Cred	its	
Pre-re	Pre-requisite: Understanding of senior secondary level Physics and Mathematics												
Cours applica	Course Objectives: To teach the fundamental concepts of Inorganic chemistry and their applications.												
Course Outcomes: At the end of the course, the student will be able to													
СО	1	Understathe struct	Inderstand the fundamental concepts and postulates of various theories regarding he structure of atom.										
CO	2	Learn the periodicity of the s & p block elements											
CO	3	Understand the various types of bonding present in the different inorganic										organic	
CO	4	Learn ab	out the	various	theories	s pertair	nina to t	he differ	ent type	es of bo	dina		
CO	5						J •• •				- J		
		Мар	ping of	course	outco	mes wi	th the I	prograi	n outco	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	3	2	2	2	1	2	2	2	3	2	3	
CO2	2	3	1	-	2	2	1	2	2	3	2	3	
CO3	2	3	2	-	2	1	2	1	2	3	2	3	
CO4	3	2	2	2	-	2	2	1	2	3	2	3	
CO5	2	2	2	2	-	2	2	1	1	3	2	3	

PART-A

UNIT-I

Atomic Structure:

Bohr's theory, its limitations and atomic spectrum of hydrogen atom. Wave mechanics: deBroglie equation, Heisenberg's Uncertainty Principle and its significance, Schrödinger's wave equation, significance of ψ and ψ^2 . Quantum numbers and their significance. Normalized and orthogonal wave functions. Sign of wave functions. Radial and angular wave functions for hydrogen atom. Radial and angular distribution curves. Shapes of *s*, *p*, *d* and *f* orbitals. Contour boundary and probability diagrams. Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations, Variation of orbital energy with atomic number

UNIT-II

Chemical Bonding-I: lonic bond: General characteristics, types of ions, size effects, radius ratio rule and its limitations. Packing of ions in crystals. Born-Landé equation with derivation and importance of Kapustinskii expression for lattice energy. Madelung constant, Born-Haber cycle and its application, Solvation energy.

Metallic Bond: Qualitative idea of valence bond and band theories. Semiconductors and insulators, defects in solids.

Weak Chemical Forces: van der Waals forces, ion-dipole forces, dipole-dipole interactions, induced dipole interactions, Instantaneous dipole-induced dipole interactions. Repulsive forces, Hydrogen bonding (theories of hydrogen bonding, valence bond treatment) Effects of chemical force, melting and boiling points, solubility energetics of dissolution process.

UNIT-III

Chemical Bonding-II: Covalent bond: Lewis structure, Valence Bond theory (Heitler-London approach). Energetics of hybridization, equivalent and non-equivalent hybrid orbitals. Bent's rule, Resonance and resonance energy, Molecular orbital theory. Molecular orbital diagrams of diatomic and simple polyatomic molecules N₂, O₂, C₂, B₂, F₂, CO, NO, and their ions; HCl, BeF₂, CO₂, (idea of s-p mixing and orbital interaction to be given). Formal charge, Valence shell electron pair repulsion theory (VSEPR), shapes of simple molecules and ions containing lone pairs and bond pairs of electrons, multiple bonding (σ and π bond approach) and bond lengths. Covalent character in ionic compounds, polarizing power and polarizability. Fajan's rules and consequences of polarization. Ionic character in covalent compounds: Bond moment and dipole moment. Percentage ionic character from dipole moment and electronegativity difference.

UNIT-IV

Chemistry of s and p Block Elements:

Inert pair effect, Relative stability of different oxidation states, diagonal relationship and anomalous behaviour of first member of each group. Allotropy and catenation. Complex formation tendency of s and p block elements. Hydrides and their classification ionic, covalent and interstitial. Basic beryllium acetate and nitrate. Study of the following compounds with emphasis on structure, bonding, preparation, properties and uses. Boric acid and borates, boron nitrides, borohydrides (diborane) carboranes and graphitic compounds, silanes, Oxides and oxoacids of nitrogen, Phosphorus and chlorine. Peroxo acids of sulphur, interhalogen compounds, polyhalide ions, pseudohalogens and basic properties of halogens.

Reference Books :-

1. Lee, J.D. *Concise Inorganic Chemistry*, ELBS, 1991.

2. Douglas, B.E; Mc Daniel, D.H. & Alexander, J.J. *Concepts & Models of Inorganic Chemistry 3rd Ed.*, John Wiley Sons, N.Y. 1994.

- 3. Greenwood, N.N. & Earnshaw. *Chemistry of the Elements*, Butterworth-Heinemann. 1997.
- 4. Cotton, F.A. & Wilkinson, G. Advanced Inorganic Chemistry, Wiley, VCH, 1999.
- 5. Miessler, G. L. & Donald, A. Tarr. *Inorganic Chemistry 4th Ed.*, Pearson, 2010.
- 6. Shriver & Atkins, Inorganic Chemistry 5th Ed.

Gener (GE)-2	al Ele 2	ective	ctive BHCP-109- CHEMISTRY LAB- L-0, T-0, P-4 2 Credits 21 I										
Pre-requisite: Understanding of senior secondary level Chemistry													
Course Objectives: The objective of this course is to provide practical knowledge and illustrative experiments about various types of inorganic titrations and preparation of simple inorganic compounds.													
Course Outcomes: At the end of the course, the student will be able to													
CO	1	Unders	and to ca	alibrate	and run	the inst	ruments	s for ana	alysis.				
CO	2	Learn t	Learn to the quantitative analysis of various metal ions/cations and anions.										
CO	3	Understand the various principles of different techniques involved in the quantitative											
		analysis	5.										
CO4	4	Learn t	o prepare	various	inorgar	nic comp	oounds						
		Ма	pping of	course	outco	mes wi	th the I	program	n outco	omes			
	PO1	. PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	3	2	2	2	1	2	1	2	3	2	3	
CO2	2	3	1	3	2	2	1	1		2	2	3	
CO3	2	3	2	3	2	1	2	1	1	2	2	3	
CO4	2	2	2 2 2 1 2 2 1 1 3 2 3										

List of Experiments:

(A) Titrimetric Analysis

(i) Calibration and use of apparatus

(ii) Preparation of solutions of different Molarity/Normality of titrants

(B) Acid-Base Titrations

(i) Estimation of carbonate and hydroxide present together in mixture.

(ii) Estimation of carbonate and bicarbonate present together in a mixture.

(iii) Estimation of free alkali present in different soaps/detergents

(C) Oxidation-Reduction Titrimetry

(i) Estimation of Fe(II) and oxalic acid using standardized KMnO4 solution.

(ii) Estimation of oxalic acid and sodium oxalate in a given mixture.

(iii) Estimation of Fe(II) with $K_2Cr_2O_7$ using internal (diphenylamine, anthranilic acid) and external indicator.

Reference text:

1. Vogel, A.I. A Textbook of Quantitative Inorganic Analysis, ELBS.

Abilit Enhai Comp (AEC)	y nceme oulsor)-1	nent 105-21 English -I Communicative L-2, T-0, P-0 2 Credits										
Pre-re	equisi	i te: Basio	c proficie	ncy in C	ommuni	ication S	Skills					
 Course Objectives: The main objective of this course is: To help the students become proficient in LSRW-Listening, Speaking, Reading & Writing skills To help the students become the independent users of English language To develop in them vital communication skills, integral to their personal, social and professional interactions To teach them the appropriate language of professional communication To prepare them for job market 												
Cours	se Out	comes:	comes: At the end of the course, the student will									
CO)1	acquire basic proficiency in reading &listening, writing and speaking skills										
CO	2	be able languag	to under e of thei	stand sj r choser	poken a n technic	nd writte cal field.	en Engli	sh langu	uage, pa	rticularl	y the	
CO	3	be able	to conve	rse flue	ntly.							
CO	94	be able	to produ	ce on th	neir own	clear a	nd cohe	rent tex	ts.			
CO)1	become discussi thereby	proficier ons, offic will have	nt in pro ce enviro e better	ofessiona onments job pros	al comm s, import spects.	unicatio ant read	n, such ding skil	as, inte Is as we	rviews, e Il as wri	group iting skil	ls and
		Мај	oping of	course	e outco	mes wi	th the	prograi	m outco	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2 2 2 2 2 2 2 3 2 3 2							2	2			
CO2	2	2	2	1	1	2	2	3	2	3	2	2
CO3	1	-	2	1	2	2	2	3	2	3	2	2
CO4	1	-	-	1	1	2	2	3	2	3	2	2
CO5	2	2 1 1 2 2 3 2 3 2 2										

Part –A

UNIT I-(Literature)

The Poetic Palette (Orient Black Swan, Second Edition, 2016)

- The following poems from this anthology are prescribed:
 - 1. Pippa's Song: Robert Browning
 - 2. Apparently With No Surprise: Emily Dickinson
 - 3. Fool and Flea: Jeet Thayil

(B) *Prose Parables* (Orient Black Swan, 2013)

The following stories from the above volume are prescribed:

- a. The Kabuliwallah: Rabindranath Tagore
- b. The Eyes Are Not Here: Ruskin Bond
- c. Grief: Anton Chekov

UNIT-II

(A)

Vocabulary: Word Formation Processes; Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives; Synonyms, antonyms

Grammar: Subject-verb agreement; Noun-pronoun agreement; Misplaced modifiers; Articles Determiners; Modals; Prepositions;

PART-B

UNIT-III

Reading and Understanding: Close Reading; Comprehension;

UNIT-IV

Mechanics of Writing & Speaking Skills

Essay Writing (Descriptive/Narrative/Argumentative); Business letters; Précis Writing; Self Introductions; Group Discussion

TEXT AND REFERENCE BOOK

- 1. John Eastwood, Oxford Practice Grammar, Oxford University Press, 2014
- 2. Michael Swan, Practical English Usage, OUP. 1995.
- 3. F.T. Wood, Remedial English Grammar, Macmillan. 2007.
- 4. William Zinsser, On Writing Well, Harper Resource Book 2001.
- 5. Sanjay Kumar and Pushp Lata, Oxford University Press. 2011.
- 6. Communication Skills, Oxford University Press. 2011.
- 7. Liz Hamp-Lyons and Ben Heasly, Study Writing, Cambridge University Press. 2006.

Ability Enhar Comp (AEC)	/ nceme ulsor -2	ent : Y	3HHL- 106A-21	۲. ۲	ਮੰਜਾਬੀ ਲਾ Compuls	ਸ਼ਮੀ (P sory) -]	Punjabi [L-2, ⁻	Г-0, Р-(0 2	2 Credit	ts	
Pre-re	Pre-requisite: Understanding of senior secondary level Punjabi												
Cours	Course Objectives: The objective of the course is: 1.To enhance the language ability of students.												
2.To enhance the ability of Learning science and developing science literacy through loca										local			
langua	ige tea	aching w	ith science	ce subje	ects.								
Cours	e Out	Outcomes: At the end of the course, the student will be able to											
СО	1	Transla	ranslate and transfer/broadcast the western scientific knowledge in the local										
language.													
СО	2	Transla local kr	te and ti lowledge	ransfer into Fn	the indig	genous/ 1 other (traditiona global lan	l scient quages	tific kno	wledge	availa	ible in	
CO	3	Unders	tand the	society	through	Punjabi	language	e, litera	ture and	l culture	9		
CO	4	Learnin	g science	and in	develop	ing scie	nce literad	cy.					
CO	5	Improv	e the inte	ernal co	mmunica	ation.							
		Ма	pping of	course	e outco	mes wi	th the pi	rogran	1 outco	mes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	2	2	2	2	2	3	2	3	2	2	
CO2	2	2	2	1	1	2	2	3	2	2	2	2	
CO3	3	1	2	1	2	2	2	3	2	2	2	2	
CO4	3	1	-	1	1	2	2	3	2	3	2	2	
C05	3	1 - 1 1 2 2 3 2 3 2 2								2			

Detailed Syllabus:	
UNIT I : ਕਵਿਤਾ ਭਾਗ: ਭਾਈ ਵੀਰ ਸਿੰਘ:	
ਸਮਾਂ, ਚਸ਼ਮਾ	
ਪ੍ਰੋ. ਪੂਰਨ ਸਿੰਘ :	
ਪੰਜਾਬ ਨੂੰ ਕੂਕਾਂ ਮੈਂ, ਹੱਲ ਵਾਹੁਣ ਵਾਲੇ	
ਪ੍ਰੋ.ਮੋਹਨ ਸਿੰਘ :	
ਮਾਂ, ਕੋਈ ਆਇਆ ਸਾਡੇ ਵਿਹੜੇ, ਪਿਆਰ ਪੰਧ	
ਅੰਮ੍ਰਿਤਾ ਪ੍ਰੀਤਮ:	
ਆਖਾਂ ਵਾਰਿਸ ਸ਼ਾਹ ਨੂੰ, ਅੰਨਦਾਤਾ	(Lecture 11)
ਸੰਤ ਸਿੰਘ ਸੇਖੋਂ : ਪੇਮੀ ਦੇ ਨਿਆਣੇ ਸੁਜਾਨ ਸਿੰਘ : ਕੁਲਫੀ ਕੁਲਵੰਤ ਸਿੰਘ ਵਿਰਕ : ਤੂੜੀ ਦੀ ਪੰਡ ਗੁਰਦਿਆਲ ਸਿੰਘ : ਸਾਂਝ	(Lecture 12)
PART-B	
UNIT-III ਭਾਸ਼ਾ ਦਾ ਟਕਸਾਲੀ ਰੂਪ, ਭਾਸ਼ਾ ਤੇ ਉਪ-ਭਾਸ਼ਾ ਵਿਚ ਅੰਤਰ, ਪੰਜਾਬੀ ਦੀਆਂ ਉਪ-ਭਾਸ਼ ਭਾਸ਼ਾ ਤੇ ਲਿਪੀ, ਗੁਰਮੁਖੀ ਲਿਪੀ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ, ਗੁਰਮੁਖੀ ਲਿਪੀ: ਨਿਕਾਸ ਤੇ ਵਿ	ਸਾਵਾਂ,ਪੰਜਾਬੀ ਭਾਸ਼ਾ:ਨਿਕਾਸ ਤੇ ਵਿਕਾਸ। ਕਾਸ। <i>(Lecture 11)</i>
UNIT-IV	
ਸੰਖੇਪ ਰਚਨਾ (ਪ੍ਰੈਸੀ) ਪੈਰ੍ਹਾ ਰਚਨਾ ਸਰਲ ਅੰਗਰੇਜ਼ੀ ਪੈਰ੍ਹੇ ਦਾ ਪੰਜਾਬੀ ਅਨੁਵਾਦ	(Lecture 11)
TEXT AND REFERENCE BOOK: 1. ਸੰਪ.ਡਾ.ਮਹਿਲ ਸਿੰਘ, ਸਾਹਿਤ ਦੇ ਰੰਗ, ਰਵੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ, 20	16.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Ability Enhancement Compulsory (AEC)-2			BHH 1068	IL- 5-21	ਮੁਢਲੀ ਪੰ Punjab	ਜਾਬੀ (M i)-I	udhli	L-2, 1	Г-0, Р-C)	2 Credi	its
Pre-requisite: Understanding of senior secondary level Physics and Mathematics												
Course Objectives: The objective of the course is to:1. enhance the language ability of students.2. enhance the ability of Learning science and developing science literacy through local language teaching with science subjects.												
Course Outcomes: At the end of the course, the student will be able to												
CO1 Translate and transfer/broadcast the western scie language.							n scien	tific kn	owledge	e in the	e local	
CO	2	Translate local kno	e and tr wledge	ansfer into En	the indig glish and	genous/ 1 other g	tradition global la	ial scien nguages	itific kno 5.	owledge	availa	able in
CO	3	Understa	and the s	society	through	Punjabi	languag	ge, litera	ature an	d culture	е.	
CO	4	Learning	rning science and in developing science literacy.									
CO	5	Improve	the inte	rnal cor	mmunica	ation.						
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	2	2	3	2	3	2	2
CO2	2	2	2	1	1	2	2	3	2	2	2	2
CO3	3	1	2	1	2	2	2	3	2	2	2	2
CO4	3	1	-	1	1	2	2	3	2	3	2	2
CO5	3	1	-	1	1	2	2	3	2	3	2	2

UNIT I

PART-A

ਪੈਂਤੀ ਅੱਖਰੀ (ਵਰਣਮਾਲਾ), ਅੱਖਰ ਕ੍ਰਮ ਮਾਤਰਾਵਾਂ : ਮੁਢਲੀ ਜਾਣ-ਪਛਾਣ ਲਗਾਖਰ :ਬਿੰਦੀ, ਟਿੱਪੀ, ਅੱਧਕ

UNIT-II

ਪੰਜਾਬੀ ਸ਼ਬਦ ਬਣਤਰ: ਮੁਢਲੀ ਜਾਣ-ਪਛਾਣ ਮੂਲ ਸ਼ਬਦ , ਅਗੇਤਰ, ਪਿਛੇਤਰ ਸਮਾਨਾਰਥਕ ਸ਼ਬਦ, ਵਿਰੋਧਾਰਥਕ ਸ਼ਬਦ

(B.Sc. Hons. Physics) Batch 2021 & Onwards

ਸ਼ੁੱਧ- ਅਸ਼ੁੱਧ: ਦਿੱਤੇ ਪੈਰ੍ਹੇ ਵਿੱਚੋਂ ਅਸ਼ੁੱਧ ਸ਼ਬਦ ਨੂੰ ਸ਼ੁੱਧ ਕਰਨਾ (11 Lectures)

PART-B

UNIT-III

ਹਫਤੇ ਦੇ ਸੱਤ ਦਿਨਾਂ ਦੇ ਨਾਂ ਬਾਰ੍ਹਾਂ ਮਹੀਨਿਆਂ ਦੇ ਨਾਂ ਰੁੱਤਾਂ ਦੇ ਨਾਂ ਇਕ ਸੌ ਤੱਕ ਗਿਣਤੀ ਸ਼ਬਦਾਂ ਵਿਚ

UNIT-IV

ਸਧਾਰਣ ਸ਼ਬਦਾਂ ਦਾ ਅੰਗਰੇਜ਼ੀ ਤੋਂ ਪੰਜਾਬੀ ਅਨੁਵਾਦ ਸਧਾਰਣ ਸ਼ਬਦਾਂ ਦਾ ਪੰਜਾਬੀ ਤੋਂ ਅੰਗਰੇਜ਼ੀ ਅਨੁਵਾਦ

TEXT AND REFERENCE BOOK

1.ਸੰਪ.ਡਾ.ਮਹਿਲ ਸਿੰਘ, ਸਾਹਿਤ ਦੇ ਰੰਗ, ਰਵੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ, 2016.

SEMESTER -II

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 30 of 131

PHYSICS-C-3			BSPH- 121-21	W	aves ar	nd Vibra	ations	L-3, ⁻	Г-1, Р-()	4 Cred	its	
Pre-requisite: Understanding of senior secondary level physics and Mathematics													
Course Objectives: The objective of the course provides an exposure about simple harmonic motions, damped harmonic motions and forced oscillations. Students learns about the different waves, propagation of waves in various mediums and reflection/transmission of waves at the interface of mediums.													
	1	Unders	and the	simple a	and dam	ped har			r an osci	illator.			
	2				ations an	ho rool-	life prob	OF Rest	Difance				
	Apply the Coupled oscillator to the real-life problems.												
CO	4	Unders	and the	transmis	ssion of	signals	and Elec	tromagi	netic Wa	ives			
CO	5	Apply t	ne knowle	edge ob	tained ir	n this co	urse to	day-to-o	day prob	lems.			
Mapping of course outcomes with the program outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	-	1	-	1	2	-	2	3	2	3	
CO2	2	2	1	2	1	1	1	-	1	3	2	3	
CO3	3	2	-	2	1	1	2	-	1	3	2	3	
CO4	2	2	-	2	1	1	2	1	1	3	3	1	
CO5	2	2	-	2	1	1	2	1	1	3	3	3	

PART-A

Simple and Damped Harmonic Motion: Simple harmonic motion, energy of a SHO, Compound pendulum, Torsional pendulum, Electrical Oscillations, Lattice Vibrations, Transverse Vibrations of a mass on a string, Anharmonic Oscillations. Damped simple harmonic motion, Decay of free Vibrations due to damping, types of damping, Determination of damping coefficients: Logarithmic decrement, relaxation time and Q-factor. Electromagnetic damping.

(12 Lectures)

UNIT-II

UNIT-I

Forced Vibrations and Resonance: Forced mechanical and electrical oscillator, Transient and Steady State Oscillations, Displacement and velocity variation with driving force frequency, Variation of phase with frequency resonance, Power supplied to forced oscillator by the driving force. Q-factor and band width of a forced oscillator, Electrical and nuclear magnetic resonances. (12 lectures)

PART-B

UNIT-III

Coupled Oscillations: Stiffness coupled oscillators, Normal coordinates, and modes of vibrations. Inductance coupling of electrical oscillators, Normal frequencies, forced vibrations and resonance for coupled oscillators, Masses on string-coupled oscillators.

Waves in Physical Media: Types of waves, wave equation (transverse) and its solution characteristics impedance of a string, Impedance matching, Reflection and Transmission of waves at boundary, Energy of vibrating string, wave, and group velocity. (12 Lectures)

UNIT-IV

Transmission of signals and Electromagnetic Waves: Transmission of a non-monochromatic wave, Frequency range and Signal duration, Bandwidth theorem, Group and phase velocities, Electromagnetic theory of dispersion, Doppler effect, Electromagnetic (EM) Waves: Maxwell Equations, Wave equation, EM waves in a medium of finite ε , μ and σ . Energy flow due to a plane EM wave, EM waves in a conducting medium, Skin depth. (12 Lectures)

Text and Reference Books:

1. Text Book of Vibrations and Waves: S.P. Puri (Macmillan India), 2004.

- 2. The Physics of Vibrations and Waves: H.J. Pain (Wiley and ELBS), 2013.
- 3. N.K. Bajaj, The Physics of Waves and Oscillations, Tata McGraw Hill, 1998.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

PHYSICS-C-4		-4	BSHP- 122-21	Ĺ	Electi Mag	icity ar Inetism	nd I	L-3, 1	Г-1, Р-С)	4 Cred	its
Pre-requisite: Basic knowledge of Electricity and Magnetism at high school level.												
Course Objectives: The objective of the course is to expose the students to the formal structure of electricity and magnetism so that they can use these as per their requirement.												
Course Outcomes: At the end of the course, the student will be able to												
CO1 Understand and describe the different concepts of electrostatics and magnetostatics												
CO	2	Apply the knowledge of Maxwell's equation and flow of electromagnetic waves in real problems.										
СО	3	Analyz	e the wav	e propa	gation ir	n differe	nt media	а				
CO	4	Compa	re the dif	ferent ty	/pes of p	oolarizat	ion					
CO	5	have problei	a solid f ms	oundati	on in	electron	nagnetis	m func	lamenta	ls requ	iired to	solve
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	1 2 2 2 1 2 1 2 3 2 2								2		
CO2	02 3 2 1 - 2		2	2	1	1	1	3	1	1		
CO3	CO3 3		3	-	2	1	2	1	1	3	1	1
CO4	3	2	3	2	-	2	2	1	1	3	1	1
CO5	2	2	3	2	-	2	2	1	1	3	1	1

PART-A

UNIT I

Review of Vector Analysis and Electrostatics: scalar and vector product; gradient, divergence and curl and their significance; Gauss-divergence theorem and Stoke's theorem (statement only); Electrostatic field; electric flux; Gauss's law of electrostatics; Applications of Gauss law-Electric filed due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charge sheet; Electric potential as line integral of electric field, potential due to point charge and electric dipole; calculation of electric field from potential; Poisson's equation and Laplace's equation(Cartesian coordinate); Capacitance; capacitance of a spherical conductor and cylindrical capacitor, Energy per unit volume in electrostatic field, Dielectric medium, dielectric polarization and its types, Displacement vector, Boundary conditions (*11 Lectures*)

UNIT-II

Magnetostatics: Magnetic flux; magnetic flux density; Faraday's law; magnetomotive force; Biot-Savart's law and its applications-straight conductor, circular coil, divergence and curl of magnetic field; Ampere's work law in differential form; Magnetic vector potential; ampere's force law; magnetic vector potential; Energy stored in a magnetic field, boundary conditions on magnetic fields. (10)

Lectures)

PART-B

UNIT-III

Maxwell's Equations and Poynting Vector: Equation of continuity for time varying fields; Inconsistency of ampere's law; concept of sinusoidal time variations (Phasor notation); Maxwell's equations with physical significance; Maxwell equations in free space, static field and in Phasor notation; Difference between displacement current and conduction current; Concept of Poynting vector; Poynting Theorem. (11 Lectures)

UNIT-IV

Electromagnetic Waves: Wave equation in free space or non-conducting or lossless medium; wave equation for conducting medium; wave propagation in lossless and conducting medium (phasor form); Propagation characteristics of EM waves in free space, lossless and in conducting medium; Uniform plane waves and solution; relation between electric and magnetic fields of an electromagnetic wave; Linear, circular and elliptical polarization; depth of penetration, Reflection of waves by a perfect conductor: normal incidence and oblique incidence; Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence. *(12 Lectures)*

Reference Books:

- 1. David Griffiths, Introduction to Electrodynamics, Pearson Education India Learning Private Limited; 4th edition.
- 2. Edward C Jordan and Keith G Balmain, Electromagnetic waves and radiating systems, Prentice Hall
- 3. Kraus John D, Electromagnetics, McGraw-Hill Publisher
- 4. W. Saslow, Electricity, magnetism and light, Academic Press

5. A Textbook of Electricity and Magnetism, S K Sharma, Shalini Sharma, Publisher: S Dinesh & Co.												sh	
PHYSI -C	CS	BSHP-1	23-21	Physic	cs Lab-I	II	L-0, T-0	, P-4	2 Credits				
Pre-re	Pre-requisites (if any): High-school education with Physics lab as one of the subjects.												
Course Objectives: The aim and objective of the Physics Lab course is to introduce the students of B.													
Sc. (Hons.) Physics to the formal structure of wave and vibrations and mechanics so that they can use													
these as per their requirement.													
Course Outcomes: At the end of the course, the student will be													
CO1		Able to understand the theoretical concepts learned in the theory course.											
CO2		Trained in carrying out precise measurements and handling equipment.											
CO3		Learn to draw conclusions from data and develop skills in experimental design.											
CO4		Able to understand the principles of error analysis and develop skills in experimental											
		design.											
CO5		Able to d	ocument	a techni	cal repoi	rt whicl	h commur	nicates s	scientific	informat	ion in a	clear	
		and conc	ise mann	er.									
Mapping of course outcomes with the program outcomes													
	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	2	2	1	2	1	2	3	2	3	
CO2	3	3	1	-	2	2	1	1	1	3	2	3	
CO3	3	3	2	-	2	1	2	1	1	3	2	3	
CO4	3	2	2	2	-	2	2	1	1	3	2	3	
CO5	2	2	2	2	-	2	2	1	1	3	2	3	

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. Measurements of length (or diameter) using vernier caliper and screw gauge.
- 2. Measurement of volume using travelling microscope. Use of Plumb line and Spirit level.
- 3. To determine the frequency of an electrically maintained tuning fork in a) Transverse mode of vibration b) Longitudinal mode of vibration.
- 4. To verify the law of vibrating string Using Melde's experiment.
- 5. To compare mass per unit length of two strings by Melde's experiment.
- 6. To find out the frequency of AC mains using electric-vibrator/sonometer.
- 7. To determine the horizontal and vertical distance between two points using a Sextant.
- 8. To determine the height of an inaccessible object using a Sextant.
- 9. To determine the angular diameter of the sun using the sextant.
- 10. To determine the angular acceleration a, torque τ , and Moment of Inertia of flywheel.
- 11. To study the Motion of a Spring and calculate (a) Spring Constant (b) Value of **g** and (c) Modulus of rigidity.
- 12. To determine the time-period of a simple pendulum for different length and acceleration due to gravity.
- 13. To study the variation of time-period with distance between centre of suspension and centre of gravity for a compound pendulum and to determine: (i) Radius of gyration of the bar about an axis through its C.G. and perpendicular to its length. (ii) The value of g in the laboratory.
- 14. To find the moment of inertia of an irregular body about an axis through its C.G with the torsional pendulum.

Reference book and suggested readings:

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practical's, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 6. Practical Physics, C L Arora. S. Chand & Company Ltd.
- 7. http://www.vlab.co.in
| Gen
Elec | eral
tive | BSH
204 | iM-
-21 | Vector
Analys | Algebr
sis | a & Ve | ctor | L-4, 1 | Г-1, Р-С | | 4 Cred | its | | |
|-------------|--------------|---|---|------------------|---------------|-----------|-----------|---------------|----------|----------|-----------|----------|--|--|
| (GE | E)-3 | | | | | | | | | | | | | |
| Pre-re | equisi | te: Eleme | entary ca | alculus c | of matric | : level. | | | | | | | | |
| Cours | e Ob | jectives: | The ob | ojectives | s of this | s course | e are to | make | the stu | dents u | Indersta | nd the | | |
| followi | ng: | | | | | | | | | | | | | |
| 1. | The f | undamen | tal conc | epts of S | Scalars a | and Vec | tor algel | bra. | | | | | | |
| 2. | The g | geometric | al mean | ing of p | rojectior | ns and c | orthogon | ality. | | | | | | |
| 3. | Appli | cations of | gradier | nt, diver | gence ai | nd curl. | | | | | | | | |
| 4. | Geon | netric mea | aning of | scalar a | nd vect | or value | d functi | ons, gra | dient of | scalar p | point fur | nction. | | |
| 5. | The u | utility of G | iauss, G | reen and | d Stokes | 5 Theore | em. | | | | | | | |
| Cours | e Out | comes: A | At the er | nd of the | e course | e, the st | udent w | ill be ab | le to | | | | | |
| | _ | | | | | | | | - | | | | | |
| CO | 1 | Understa | ind the l | | ncepts c | of Scalar | s and v | ector alg | gebra. | | | | | |
| CO | 2 | Visualize | sualize all concepts geometrically. | | | | | | | | | | | |
| СО | 3 | Apply th | Apply the knowledge of dot product and cross product in finding projections, area | | | | | | | | | | | |
| | _ | and orth | ogonalit | y. | | | | | _ | | | | | |
| СО | 4 | Utilize th | ie conce | ept of s | calar ar | nd vecto | or value | ed funct | ions, gr | adient (| of scala | r point | | |
| | | function, | diverg | jence a | and cu | rl of | vector | point | function | s, thei | r geon | netrical | | |
| | _ | interpret | ation. | | <u> </u> | | <u> </u> | | | | | | | |
| СО | 5 | Acquire 1 | the know | wledge | of the c | oncept | of relati | on betw | veen car | tesian, | cylindric | cal and | | |
| - | | spherical | polar c | oordinat | es, Gau | ss, Gree | en and S | tokes th | eorem. | | | | | |
| | | Мар | ping of | course | outco | mes wi | th the l | prograr | n outco | omes | | | | |
| | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | | |
| C01 | 2 | 2 2 2 2 2 2 3 2 3 2 2 | | | | | | | | | | | | |
| CO2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 3 | 2 | 3 | 2 | 2 | | |
| CO3 | 3 | 2 | 2 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 2 | 2 | | |
| CO4 | 3 | 2 | - | 1 | 1 | 2 | 2 | 3 | 2 | 3 | 2 | 2 | | |
| CO5 | 3 | 1 - 1 1 2 2 3 2 3 2 2 1 - 1 1 2 2 3 2 3 2 2 | | | | | | | | | | | | |

PART-A

Definitions of Scalars, vectors, position vector, unit vector, types of vectors, Addition of vectors, direction ratios, direction cosines, multiplication by a scalar, dot product, cross product of vectors, projection of vectors on a line.

UNIT-II

UNIT I

Vector joining two points, section formula, angle between two vectors, Cauchy-Schwartz inequality, Solenoidal vectors, orthogonality, Area of triangle, area of parallelogram, Scalar and vector product of three vectors

PART-B

UNIT-III

Scalar valued point functions, vector valued point functions, Derivative along a curve, directional derivatives, Differentiation and partial differentiation of a vector function. Derivative of sum, dot product and cross product of two vectors, Gradient, divergence and curl Gradient of a scalar point function. Geometrical interpretation of gradient of a scalar point function (grad φ).

UNIT-IV

Divergence and curl of a vector point function, Character of divergence and curl of a vector point function, relation between Cartesian and cylindrical or spherical coordinates, Statements of Theorems of Gauss, Green and Stokes (without proof).

TEXT AND REFERENCE BOOK

- 1. Mathematics, A Text-book for Class XII (Parts I & II), New Delhi: NCERT, 2003. (Unit I & II)
- 2. G.B. Thomas and R.L. Finney, Calculus, 9th Ed., Pearson Education, Delhi, 2005.
- 3. H. Anton, I. Bivens and S. Davis, Calculus, John Wiley and Sons (Asia) P. Ltd. 2002.
- 4. P.C. Matthew's, Vector Calculus, Springer Verlag London Limited, 1998.

Gei Ele (G	neral ctive E)-4	BHC	L-114-:	21 OR CH	GANIC EMIST	C RY		L-3, 1	Г-1, Р-С		4 Cred	its		
Pre-re	equisi	te: Under	rstanding	g of sen	ior seco	ndary le	evel cher	mistry						
Cours 1. 2. 3.	e Obj To t comp To ir alker To p (subs	ectives: each the pounds. mpart kno es, dienes predict ar stitution, a	basic bwledge s, alkyne nd acco addition,	principle regard es, aren unt for and elin	es, read ing phy es, alkyl the n minatior	ction m sical prol and ary nost co n) in org	echanisi operties /l halide mmonly anic che	ms and and cl s etc. encou emistry.	stereo	chemist reaction reactior	ry of o ns of a n mech	organic Ikanes, anisms		
Cours	e Out	comes: /	At the er	nd of the	e course	e, the sti	udent w	ill be ab	le to					
CO	1	Understa and vario	nd the fous effect	undame	ental con ganic co	ncepts o mpound	f organi ds.	ic chemi	stry i.e.	structu	re, bond	ling		
CO	2	learn the isomeris	earn the stereochemistry viz. optical isomerism, stereoisomerism and conformational somerism of organic compounds.											
CO	3	study the	e various	s known	reactiv	e interm	ediate i	n organi	ic synthe	esis.				
CO	4	learn the the study elimination	e fundam y of reac on react	nental a tion me ions.	nd adva chanism	nced co ns in var	ncepts c ious typ	of reaction of su	on mech Ibstitutio	anisms on addit	along w ion and	vith		
CO	5	predict t	<u>he relati</u>	onships	betwee	n organ	ic chemi	ical stru	ctures a	nd their	reactivi	ty.		
			PO3			PO6		program		PO10	PO11	PO12		
001									2	2				
CO1	2	2	2	2	2	3	2	3	2	3	2	2		
CO2	2	2	2	1	1	3	2	3	2	2	2	2		
CO3	3	1	2	1	2	2	2	3	2	2	2	2		
CO4	3	2	2	1	1	2	2	3	2	3	2	2		
CO5	3	1	1	1	1	2	2	3	2	3	2	2		

PART-A

Unit-I

Basics of Organic Chemistry

Organic Compounds: Classification, and Nomenclature, Hybridization, Shapes of molecules, Influence of hybridization on bond properties. *Electronic Displacements:* Inductive, electromeric, resonance and mesomeric effects, hyperconjugation and their applications; Dipole moment; Organic acids and bases; their relative strength. Homolytic and Heterolytic fission with suitable examples. Curly arrow rules, formal charges; Electrophiles and Nucleophiles; Nucleo phlicity and basicity; Types, shape and their relative stability of Carbocations, Carbanions, Free radicals and Carbenes. Introduction to types of organic reactions and their mechanism: Addition, Elimination

(B.Sc. Hons. Physics) Batch 2021 & Onwards

and Substitution reactions.

Unit-II

Stereochemistry:

Fischer Projection, Newmann and Sawhorse Projection formulae and their interconversions; Geometrical isomerism: cis-trans and, syn-anti isomerism E/Z notations with C.I.P rules.

Optical Isomerism: Optical Activity, Specific Rotation, Chirality/Asymmetry, Enantiomers, Molecules with two or more chiral-centres, Distereoisomers, meso structures, Racemicmixture and resolution. Relative and absolute configuration: D/L and R/S designations.

A. Carbon-Carbon sigma bonds formation:-

Chemistry of alkanes: Formation of alkanes, Wurtz Reaction, Wurtz-Fittig Reactions, Free radical substitutions: Halogenation -relative reactivity and selectivity.

PART-B

Unit-III

Carbon-Carbon pi bonds:

Formation of alkenes and alkynes by elimination reactions, Mechanism of E1, E2, E1cb reactions. Saytzeff and Hofmann eliminations.

Reactions of alkenes: Electrophilic additions their mechanisms (Markownikoff/ AntiMarkownikoff addition), mechanism of oxymercuration-demercuration, hydroboration oxidation, ozonolysis, reduction (catalytic and chemical), syn and anti-hydroxylation(oxidation). 1,2-and 1,4-addition reactions in conjugated dienes and, Diels-Alder reaction; Allylic and benzylic bromination and mechanism, e.g. propene, 1-butene, toluene, ethyl benzene. *Reactions of alkynes:* Acidity, Electrophilic and Nucleophilic additions. Hydration to form carbonyl compounds, Alkylation of terminal alkynes.

Unit-IV

Cycloalkanes and Conformational Analysis

Types of cycloalkanes and their relative stability, Baeyer strain theory, Conformation analysis of alkanes: Relative stability: Energy diagrams of cyclohexane: Chair, Boat and Twist boat forms; Relative stability with energy diagrams.

Aromatic Hydrocarbons

Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions and heterocyclic compounds with suitable examples. Electrophilic aromatic substitution: halogenation, nitration, sulphonation and Friedel-Craft's alkylation/acylation with their mechanism. Directing effects of the groups.

Text and Reference Books:

- 1. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 2. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 3. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 4. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds; Wiley: London, 1994.
- 5. Kalsi, P. S. Stereochemistry Conformation and Mechanism; New Age International, 2005.

G Electi	enera ive (G	iE)-4	BHCP- 116-21	CH	IEMIST	RY LAE	B-II	L-0, '	Т-0, Р-2	2	2 Cred	its
Pre-re	equisi	i te: Und	lerstandin	g of ser	nior seco	ondary le	evel Che	mistry				
Cours a care	e Obj er.	ective	s: which w	vill act a	s a stroi	ng back	ground i	f he/she	e choose	s to pur	sue phy	sics as
Cours	e Out	comes	: At the e	nd of th	e course	e, the st	udent w	ill be ab	le to			
CO	1	check points.	the purity	of orga	nic com	pounds	by deter	mining	the meli	ing or b	oiling	
CO	2	develo metho	p prepara d.	tive skill	ls for pu	rification	n of orga	anic con	npounds	by crys	tallizatio	on
CO	3	detern qualita	nine the el tive analy	ement o sis.	or functi	onal gro	oups pres	sent in o	organic	compou	nd by oi	rganic
СО	4	presen proced	t their wo ures.	rk with	practica	l skills a	nd the a	warene	ss of he	alth and	safety	
CO	5	apply i	elated ex	perimen	ts for th	eir rese	arch wo	rk.				
		Ma	pping of	course	e outco	mes wi	th the p	prograi	n outco	omes		
	PO1	. PO2	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2	2 2 2 2 2 2 3 2 3 2 2										
CO2	2	2	2	1	1	2	2	3	2	2	2	2
CO3	3	3	2	1	2	2	2	3	2	2	2	2
CO4	2	3	-	1	1	2	2	3	2	3	2	2
CO5	2	1 1 1 2 2 3 2 3 2 2										

List of Experiments:

- 1. Checking the calibration of the thermometer
- 2. Purification of organic compounds by crystallization using the following solvents: a) Water b) Alcohol, and c) Alcohol-Water.
- 3. Determination of the melting points of above compounds and unknown organic compounds (Kjeldahl method and electrically heated melting point apparatus)
- 4. Effect of impurities on the melting point mixed melting point of two unknown organic compounds
- 5. Determination of boiling point of liquid compounds. (boiling point lower than and more than 100°C by distillation and capillary method)
- 6. Chromatography a) Separation of a mixture of two amino acids by ascending and horizontal paper chromatography b) Separation of a mixture of two sugars by ascending paper chromatography, c) Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC)

Reference Books

- 1. Mann, F.G. & Saunders, B.C. *Practical Organic Chemistry*, Pearson Education (2009).
- 2. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. *Practical Organic Chemistry, 5th Ed.,* Pearson (2012).

Abilit Enhai Comp (AEC)	y nceme oulsor)-3	ent y	BHHL- 115-21	Con Eng	nmunic lish-II	ative		L-2,	T-0, P-(D	2 Cred	its			
Pre-re	equisi	te: Basic	: proficie	ncy in co	ommuni	cative E	nglish								
Cours • • •	se Obj help help devel profe teach prepa	ectives: the stude the stude op in t essional them th are them	This cou ents becc ents becc hem vit nteractione approp for job r	Irse is d ome pro- ome the al com ns oriate lan narket	esigned ficient ir indeper municat nguage	to LSRW- Ident us ion ski of profe	Listening ers of E Ils, inte ssional o	g, Speal nglish la gral to commur	king, Re anguage their hication	ading &	Writing	skills al and			
Cours	se Out	comes:	At the ei	na or the	e course	e, the st	udent w	iii de ad	ie to						
СО)1	Student skills.	s will ac	quire b	asic pro	ficiency	in read	ling &lis	stening,	writing	and sp	eaking			
CO	2	Student	udents will be able to understand spoken and written English language, particularly												
		the lang	he language of their chosen technical field.												
CO	3	They wi	ll be able	to conv	verse flu	ently.									
CO	94	They wi	ll be able	to proc	duce on	their ov	n clear	and cor	nerent te	exts.					
СО	95	Student group d skills an	s will bed iscussion d thereb	come pros s, office y will ha	oficient e enviror ave bette	in profe nments, er job pr	ssional c importa ospects	commur nt readi	ng skills	such as as well	intervie as writi	ws, ng			
		мај	oping of	course		mes wi	th the p	prograi		omes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	1	-	-	1	1	2	2	3	2	3	2	2			
CO2	1	-	-	1	1	2	2	3	2	3	2	2			
CO3	1	-	-	1	1	2	2	3	2	3	2	2			
CO4	1	<u>1</u> <u>1</u> <u>2</u> <u>2</u> <u>3</u> <u>2</u> <u>3</u> <u>2</u> <u>2</u>													
CO5	2	-	-	1	1	2	2	3	2	3	2	2			

<u>Part – A</u>

UNIT I-(Literature)

(A) The Poetic Palette (Orient Black Swan, Second Edition, 2016)

The following poems from this anthology are prescribed:

- 1. The Soul's Prayer: Sarojini Naidu
- 2. I Sit and Look Out: Walt Whitman
- 3. Women's Rights: Annie Louise Walker

(B) *Prose Parables* (Orient Black Swan, 2013)

The following stories from the above volume are prescribed:

- 1. The Doctor's Word: R.K. Narayan
- 2. The Doll's House: Katherine Mansfield
- 3. Dusk: H.H. Munroe (Saki)

UNIT-II

Vocabulary: Standard abbreviations; One word substitution; Word Pairs (Homophones/ Homonyms)

Grammar: Sentence Structures; Use of phrases and clauses in sentences; Transformation of Sentences; Importance of proper punctuation

PART-B

UNIT-III

Reading and Understanding: Summary Paraphrasing; Analysis and Interpretation; Translation (from Hindi/Punjabi to English and vice-versa)

UNIT-IV

Mechanics of Writing & Speaking Skills: Report writing, Career Documents- Job applications, Resume/CV writing, Common Everyday Situations: Conversations & Dialogues, Formal Presentations

TEXT AND REFERENCE BOOK

- 1. John Eastwood, Oxford Practice Grammar, Oxford University Press, 2014
- 2. Michael Swan, Practical English Usage, OUP. 1995.
- 3. F.T. Wood, Remedial English Grammar, Macmillan. 2007.
- 4. William Zinsser, On Writing Well, Harper Resource Book 2001.
- 5. Sanjay Kumar and Pushp Lata, Oxford University Press. 2011.
- 6. Communication Skills, Oxford University Press. 2011.
- 7. Liz Hamp-Lyons and Ben Heasly, Study Writing, Cambridge University Press. 2006.

Ability Enhar Comp (AEC)	/ nceme ulsor -4	ent y	HL-116	A-21	ਪੰਜਾਬ (Pun Com	ੀ ਲਾਜ਼ਮੀ jabi pulsory	/)-II	L-2, 1	Г-0, Р-()	2 Cred	its
Pre-re	equisi	te: Unde	rstandin	g of sen	ior seco	ndary le	evel Pung	jabi				
Cours and de	e Obj evelopi	ectives: ing science	The obj æ literac	ective o y throug	f the co gh local	ourse is languag	to enha je teachi	nce the ing with	ability o science	of via Le subject	earning s cs.	science
Cours	e Out	comes:	At the er	nd of the	e course	e, the st	udent w	ill be ab	le to			
СО	1	Translate language	e and t e.	transfer/	'broadca	ast the	wester	n scien	tific kn	owledge	e in the	e local
СО	CO2 Translate and transfer the indigenous/traditional scientific knowledge available in local knowledge into English and other global languages.											
CO	3	Understa	and the s	society t	hrough	Punjabi	languag	ge, litera	ature an	d cultur	e	
CO	4	Learning	science	and in	develop	ing scie	nce liter	acy.				
CO	5	Improve	the inte	rnal con	nmunica	ation.						
		Мар	ping of	course	outco	mes wi	th the I	prograr	n outco	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1 2 2 2 2 2 2 3 2 2 2										2		
CO2	2	2	2	1	1	2	2	3	2	2	2	2
CO3	3	3	2	1	2	2	2	3	2	2	2	2
CO4	2	3	-	1	1	2	2	3	2	3	2	2
COT 2 3 1 1 2 2 3 2 3 2 2 CO5 2 1 1 1 2 2 3 2 3 2 2										3	2	

Detailed Syllabus:	
PART-A	
UNIT I	
ਡਾ.ਹਰਿਭਜਨ ਸਿੰਘ:	
ਅਪ੍ਰਮਾਣਿਕ, ਤੇਰੇ ਹਜ਼ੂਰ ਮੇਰੀ ਹਾਜ਼ਰੀ ਦੀ ਦਾਸਤਾਨ	
ਸ਼ਿਵ ਕੁਮਾਰ ਬਟਾਲਵੀ:	
ਕੰਡਿਆਲੀ ਥੋਰ੍ਹ, ਧਰਮੀ ਬਾਬਲ ਪਾਪ ਕਮਾਇਆ, ਰੁੱਖ	
यग्न:	
ਇਨਕਾਰ,ਸਭ ਤੋਂ ਖਤਰਨਾਕ,ਦਹਿਕਦੇ ਅੰਗਿਆਰਾਂ `ਤੇ	
ਸੁਰਜੀਤ ਪਾਤਰ:	
ਹੁਣ ਘਰਾਂ ਨੂੰ ਪਰਤਣਾ, ਕੁਝ ਕਿਹਾ ਤਾਂ, ਪੁਲ	(Lecture 12)
UNIT-II	
ਕਹਾਣੀ ਭਾਗ:	
ਸੰਤੋਖ ਸਿੰਘ ਧੀਰ:	
ਕੋਈ ਇਕ ਸਵਾਰ	
ਪ੍ਰਮ ਪ੍ਰਕਾਸ਼:	
ਲਛਮਾ - ਨਿਛਮਾ	
ਸਹੁੰਦ ਕੁੜਾਰੀ :	
שלכטי דראי איז איז איז איז איז איז איז איז איז א	
בולאיא ואש אין :	
מיעכי מיעכי וטאי	(Lecture 11)
PART-B	
UNIT-III	
ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ	
ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਉਪਰ ਪਏ ਪ੍ਰਭਾਵ	(Lecture 12)
UNIT-IV	
ן ופעטוכטו, אאישיט ואַשָּל דו וּבְּעו אַ אַא אריידיד	
ੂ ਪੰਜਾਬੀ ਪਰ੍ਹ ਦਾ ਸਰਲ ਅਗਰੇਜ਼ੀ ਅਨੁਵਾਦ ਤੁਰਤਰਤੀ ਤਿੱਤੀ ਪੱਤਰ	
דפאו וסטו יואסט	
TEXT AND REFERENCE BOOK:	
1. ਸੰਪ.ਡਾ.ਮਹਿਲ ਸਿੰਘ, ਸਾਹਿਤ ਦੇ ਰੰਗ, ਰਵੀ ਸਾਹਿਤ ਪਕਾਸਨ, ਅੰ	ਮਿਤਸਰ, 2016.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 46 of 131

Ability Enhar Comp (AEC)	y nceme oulsor -4	ent Y	BH 116	HL- B-21	ਮੁਢਲੀ ⁻ Punja	ਪੰਜਾਬੀ (N bi)-II	1udhli	L-2	, T-0, P	9-0	2 Cre	dits
Pre-re	equisi	i te: Under	rstanding	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics		
Cours 1.To e 2.To e langua	e Obj nhanc enhan ge tea	ectives: the the lang the the all the ching wit	The obj juage at bility of h scienc	ective o pility of s Learni e subje	f the constudents ng scie cts.	urse is: 5. nce and	d develo	oping s	cience	literacy	throug	n local
Cours	e Out	comes: /	At the er	nd of the	e course	e, the stu	udent wi	ill be ab	le to			
CO	CO1 Translate and transfer/broadcast the western scientific knowledge in the local language.											
СО	2	Translate local kno	e and tr wledge	ansfer t into Eng	the indig and the second se	genous/i i other g	tradition global la	al scier nguage	itific kna s.	owledge	avail	able in
СО	3	Understa	ind the s	society t	hrough	Punjabi	languag	je, litera	ature an	d cultur	e.	
CO	4	Learning	science	and in	develop	ing scier	nce litera	acy.				
CO	5	Improve	the inte	rnal cor	nmunica	ation.						
		Мар	ping of	course	outco	mes wi	th the p	orograi	n outco	omes		
	PO1	. PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	2	2	3	2	3	2	2
CO2	2	2	2	1	1	2	2	3	2	2	2	2
CO3	3	3	2	1	2	2	2	3	2	2	2	2
CO4	2	3	-	1	1	2	2	3	2	3	2	2
CO5	2	1	1	1	1	2	2	3	2	3	2	2

Detailed Syllabus:		
UNIT I ਸ਼ਬਦ ਸ਼੍ਰੇਣੀਆਂ : ਪਛਾਣ ਤੇ ਵਰਤੋਂ- ਨਾਂਵ ਪੜਨਾਂਵ ਵਿਸ਼ੇਸ਼ਣ ਕਿਰਿਆ ਕਿਰਿਆ ਵਿਸ਼ੇਸ਼ਣ	PART-A	(12 Lectures)
UNIT-II ਰੋਜ਼ਾਨਾ ਵਰਤੋਂ ਦੀ ਪੰਜਾਬੀ ਸ਼ਬਦਾਵਲੀ: ਬਾਜ਼ਾਰ, ਵਪਾਰ, ਰਿਸ਼ਤੇ-ਨਾਤੇ ਤੇ ਕਿੱਤਿਆਂ ਸਬੰਧੀ।	PART-B	(12 Lectures)
UNIT-III ਪੰਜਾਬੀ ਵਾਕ ਬਣਤਰ : ਸਧਾਰਣ ਵਾਕ ਸੰਯੁਕਤ ਵਾਕ ਮਿਸ਼ਰਤ ਵਾਕ		(12 Lectures)
UNIT-IV		
ਸਧਾਰਣ ਵਾਕਾਂ ਦਾ ਅੰਗਰੇਜ਼ੀ ਤੋਂ ਪੰਜਾਬੀ ਅਨੁਵਾਦ ਸਧਾਰਣ ਵਾਕਾਂ ਦਾ ਪੰਜਾਬੀ ਤੋਂ ਅੰਗਰੇਜ਼ੀ ਅਨੁਵਾਦ		(11 Lectures)
TEXT AND REFERENCE BOOK: 1. ਸੰਪ.ਡਾ.ਮਹਿਲ ਸਿੰਘ, ਸਾਹਿਤ ਦੇ ਰੰਗ, ਰਵੀ ਸਾਹਿਤ	ਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ, 2016.	

SEMESTER-III

PHYS	ICS-C	C-5 B	SHP-21	1-21	Mathe Physic	ematica cs-I	al	L-!	5, T-1 , I	P-0	6 Cr	edits	
Pre-re	equisi	i te: Under	standin	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics			
Cours physic	e Ob s. Stu	jectives: dents to b	The ei De exami	mphasis ined bas	of the sed on p	course roblem	is on a solving a	applicat capabilit	ions in ties.	handlin	g proble	ems of	
Cours	e Out	comes: /	At the er	nd of the	e course	e, the stu	udent wi	ill be ab	le to				
CO	1	Understa Residue	nd matl Theoren	ns of count n and Ta	mplex n aylor Se	umber a ries for	ind appli analytic	ication of function	of Cauch ns.	ny-Riema	ann Equ	ations,	
CO	2	apply nu	merical	methods	s to solv	e physic	cs proble	ems.					
CO	3	Solve dif	ferential	equation	ons like	Legendr	e, Besse	el and H	ermite p	olynom	ial that a	are	
		common in physical sciences.											
CO	4	Understa	nd prob	ability a	nd erro	r propag	ation m	ethods					
СО	5	Utilize sp	ecial fu	nction su	uch as b	eta, gai	nma, an	d Dirac	Delta.				
		Мар	ping of	course	outco	mes wi	th the p	orograr	n outco	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	2	1	-	1	2	1	2	3	2	2	
CO2	3	2	1	1	1	1	1	1	1	3	1	1	
CO3	3	2	2	2	3	1	2	1	1	3	1	1	
CO4	3	2	2	2	1	1	2	1	1	3	1	1	
CO5	2	2	2	2	1	1	2	1	1	3	1	1	

PART-A

UNIT -I

Complex Analysis-I: Brief Revision of Complex Numbers and their Graphical Representation. Euler's formula, De Moivre's theorem, Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity, Cauchy's Integral formula. Simply and multiply connected region. Laurent and Taylor's expansion. Residues and Residue Theorem.

(15 Lectures)

UNIT -II

Numerical methods: Solution of Algebraic and Transcendental Equations: Fixed-point Iteration Method, Bisection Method, Secant Method, Newton Raphson Method, and Generalized Newton's Method, Comparison and Error Estimation.

Matrices and Linear System of Equations: Solution of Linear Equations: Gauss Elimination Method, Gauss Seidel Iterative Method, Computation of Eigen values and Eigenvectors of Matrices by using Iterative Methods. (15 Lectures)

PART-B

UNIT -III

Introduction to probability: Independent random variables: Probability distribution functions; binomial, Gaussian, and Poisson, with examples. Mean and variance. Dependent events: Conditional Probability. Bayes' Theorem and the idea of hypothesis testing.

Theory of Errors: Systematic and Random Errors. Propagation of Errors. Normal Law of Errors. Standard and Probable Error. Least square fit. Error on the slope and intercept of a fitted line.

(15 Lectures)

UNIT-IV

Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral).

Dirac Delta function and its properties: Definition of Dirac delta function. Representation as limit of a Gaussian function and rectangular function. Properties of Dirac delta function.

(15 Lectures)

Text and Reference Books:

- **1.** 1. Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier.
- 2. Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill.
- **3.** Mathematics for Physicists, Susan M. Lea, 2004, Thomson Brooks/Cole.
- 4. An Introduction to Ordinary Differential Equations, E.A Coddington, 1961, PHI Learning
- 5. Differential Equations, George F. Simmons, 2006, Tata McGraw-Hill.
- **6.** Partial Differential Equations for Scientists and Engineers, S.J. Farlow, 1993, Dover Publications.
- **7.** Mathematical methods for Scientists & Engineers, D.A. McQuarrie, 2003, Viva Books.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 51 of 131

PHYS	ICS-0	C-6	BS	6HP-21	.2-21	ELEM MODE PHYS	ENTS C ERN ICS)F	L-3	3, T-1,	P-0	4 Cro	edits
Pre-re	equis	ite: Ur	nders	standin	g of sen	ior seco	ndary le	evel Phys	sics and	Mather	natics		
Cours formin and a studer high e	Course Objectives: The course content covers foundations of modern physics, experiments forming basis of quantum mechanics, Schrodinger equation and applications, uncertainty principle and applications. The topics covered in the course build a foundation of undergraduate physics students to study the advance branches: quantum physics, nuclear physics, particle physics and high energy physics.												
Cours	Course Outcomes: At the end of the course, the student will be able to												
CO1 Understand the implication of special theory of relativity.													
CO CO	2 3	Unde Ident	erstar tify p	nd and properti	explain es of the	the diffe e nucleu	erences is and o	betweer ther sub	n classic -atomic	al and o particle	juantum s.	mechai	nics.
CO CO	4 95	Asses Schro Desci	ss w oding ribe tra.	hether <u>Jer equ</u> theorie	a solut ation foi s explai	ion to a <u>r simple</u> ning the	a given potenti e struct	probler als. ure of a	n is ph Itoms ai	ysically nd the o	reasona origin of	able and f the ob	l solve served
		M	1app	oing of	course	outco	mes wi	th the _l	program	n outco	omes		
	PO	L PC	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2	1		2	1	-	1	2	1	2	3	2	2
CO2	2	2		1	2	1	1	1	1	1	3	1	1
CO3	3	2		2	2	1	1	2	1	1	3	1	1
CO4	2	2		2	2	1	1	2	1	1	3	1	1
C05	2	2		2	2	1	1	2	1	1	3	1	1
Detai	Detailed Syllabus:												

UNIT -I

Special Theory of Relativity: Michelson-Morley Experiment and its outcome, Postulates of Special Theory of Relativity, Lorentz Transformations. Simultaneity and order of events, Lorentz contraction, Time dilation. Relativistic transformation of velocity, frequency, and wave number.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 52 of 131

Relativistic addition of velocities. Variation of mass with velocity, Massless Particles, Mass-energy Equivalence. Relativistic Doppler effect, Relativistic Kinematics. Transformation of Energy and Momentum. Energy-Momentum Four Vector. (10 Lectures)

UNIT-II

Particle Properties of Waves: Electromagnetic waves, Blackbody Radiation, ultraviolet catastrophe, Rayleigh-Jeans formula, Planck radiation hypothesis, Photoelectric Effect, Compton Scattering, Quantum theory of light: wave and particle nature, X-Rays, X-Ray Diffraction, determination of wavelengths using Compton Effect, Pair-Production. **(10 Lectures)**

PART-B

UNIT-III

Dual Nature of Waves and Particles: Waves of probability, Description of a Waves in general, Group and Phase velocities and relation between them, De Broglie wavelength, wave-particle duality, Matter waves, Davisson-Germer experiment, Two-Slit experiment with electrons, gamma ray microscope thought experiment, Heisenberg uncertainty principle: Derivation and applications-impossibility of a particle following a trajectory, estimating minimum energy of a confined particle; Energy-time uncertainty principle-application to virtual particles and range of interaction.

(10 Lectures)

UNIT-IV

Introduction to Quantum mechanics: Need for Quantum mechanics, Wave description of particles by wave packets, Physical interpretation of a wave function: Born interpretation, probabilities, and normalization time-dependent and time-independent Schrodinger equation for wave function, Solution of stationary-state Schrodinger equation for one dimensional problems: particle in a box. (10 Lectures)

Text and Reference Books:

1.		1.	Conce	epts
2	of Modern Physics, Arthur Beiser, 2002, McGraw-Hill.	Intro	ducti	on
Ζ.	to Quantum Mechanics, David J. Griffith, 2005, Pearson Education.	Inuc	Juucu	JII
3.	La Madara Dharing Dish Maran Karana di Cara 2002 Tala MaC ana Uli	Intro	oductio	on
4.	to Modern Physics, Rich Meyer, Kennard, Coop, 2002, Tata McGraw Hill.	Phys	sics	for
5.	Scientists and Engineers with Modern Physics, Jewett and Serway, 2010, Cengag	je Lea Mod	arning ern	
_	Physics, G.Kaur and G.R. Pickrell, 2014, McGraw Hill.	•		
6. 7.	Mechanics: Theory & Applications, A.K.Ghatak & S.Lokanathan, 2004, Macmillan	Quai Mod	ntum ern	
•	Physics, J.R. Taylor, C.D. Zafiratos, M.A. Dubson, 2004, PHI Learning.			
8.	Problems of Modern Physics, Schaum's outline, R. Gautreau and W. Savin,	Theo 2 nd	ory Edn, ⁻	and Tata

	McGraw-Hill Publishing Co. Ltd.		
9.		Quantur	n
	Physics, Berkeley Physics, Vol.4. E.H.Wichman, 1971, Tata McGraw-Hill Co.		
10		Basic	ideas
	and concepts in Nuclear Physics, K.Heyde, 3 rd Edn., Institute of Physics Pub.		
11	.Six Ideas that Shaped Physics: Particle Behave like Waves, T.A.Moore, 2003, Mc	Graw Hi	II.

PHYS	ICS-C	S-C BSHP-213-21 PHYSICS LAB-III L-0, T-0, P-4 2 Cred												
Pre-re	equis	ite: Unde	rstandin	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics				
Cours	e Ol	bjectives	The	laborati	Ory EXL	periment absorpti	ts form	ning ba Lemiss	sis of	quantu octra d	m mec	hanics,		
tunnei														
Cours	e Out	tcomes:	mes: At the end of the course, the student will be able to											
CO	1	Able to	le to verify the theoretical concepts/laws learnt in theory courses.											
CO	2	Trained	in carryi	ng out p	precise n	neasure	ments a	nd hand	lling ser	nsitive e	quipmer	nt.		
СО	3	Underst	and the	e metho	ods use natic "er	d for rors"	estimati	ng and	l dealir	ng with	experi	mental		
СО	4	Learn to	draw co	onclusion	ns from	data an	d develo	n skills	in expe	rimental	desian.			
CO	5	Docume	nt a tech	nnical re	port wh	ich com	municat	es scien	tific info	rmation	in a cle	ar and		
		concise	manner.		1									
		Мар	ping of	course	outco	mes wi	th the p	orograi	n outco	omes				
	PO1	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
C01	2	1	2	1	2	2	2	1	2	3	2	2		
CO2	2	2	3	2	1	1	1	1	1	3	2	2		
CO3	3	2 2 2 1 3 2 1 1 3 2 2												
CO4	2	2	2 2 2 3 1 2 1 1 3 1 1											
CO5	2	2	2	2	1	1	2	1	1	3	1	1		

Note: Students are expected to perform 8-10 experiments from the list taking at least 2-3 from the virtual lab.

List of experiment:

- **1.** Measurement of Planck's constant using black body radiation and photo-detector.
- **2.** Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photoelectrons versus frequency of light.
- **3.** To determine work function of material of filament of directly heated vacuum diode.
- **4.** To determine the Planck's constant using LEDs of at least 4 different colours.
- **5.** To determine the wavelength of H-alpha emission line of Hydrogen atom.
- **6.** To determine the ionization potential of mercury.
- **7.** To determine the absorption lines in the rotational spectrum of Iodine vapour.
- **8.** To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- **9.** To setup the Millikan oil drop apparatus and determine the charge of an electron.
- **10.** To show the tunneling effect in tunnel diode using I-V characteristics.
- **11.** To determine (i) wavelength and (ii) angular spread of a laser using plane diffraction grating.
- **12.** Dependence of scattering angle on kinetic energy and impact parameter in Rutherford scattering (mechanical analogue).
- **13.** Measurement of the electrical and thermal conductivity of copper to determine its Lorentz number.
- **14.** To determine energy band gap of a given semiconductor.

Reference Books:

- **1.** Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- **2.** Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- **3.** A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.

PHYS	ICS-C	-7 B	SHP-214	-21	ANAL	OG FRONIO	cs	L-3, T	-1, P-0		4 Cree	dits			
Pre-re	equisi	i te: Unde	erstandin	g of sen	ior seco	ndary le	evel Phys	sics and	Mather	natics					
Cours diodes applica	Course Objectives: The course content covers basic semiconductor physics and devices, diodes, bipolar junction transistors, amplifiers, feedback concepts, Operation amplifiers and applications.														
Cours	Course Outcomes: At the end of the course, the student will be able to														
CO	1	Illustrat life.	rate working principle of different electronic circuit and their applications in real												
CO	2	Underst and the	· derstand the working of semiconductor device and different operating condition d their performance parameter.												
CO	3	Design mechar	and ana ism.	lyse the	e differe	nt type	s of am	plifiers	and und	derstand	the fe	edback			
CO	4	Design	and anal	yse the	different	t types o	of oscilla	tors.							
CO	5	Recogn modern	ze differ	ent sign system a	al proce applicati	ssing ciı on.	cuit and	l the use	e in indu	ustrial, r	eal life,				
		Ma	oping of	course	e outco	mes wi	th the I	orograi	n outco	omes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	1	2	1	-	1	2	1	2	3	2	2			
CO2	2	2	1	2	1	1	1	1	1	3	1	1			
CO3	3	2	2 2 2 1 1 2 1 1 3 1 1												
CO4	2	2	2	2	1	1	2	1	1	3	1	1			
CO5	2	2	2	2	1	1	2	1	1	3	1	1			

PART-A

UNIT-I

Semiconductor Diodes: P and N type semiconductors. Energy Level Diagram. Conductivity and Mobility, Barrier Formation in PN Junction Diode. Static and Dynamic Resistance. Current Flow Mechanism in Forward and Reverse Biased Diode. Drift Velocity. Derivation for Barrier Potential, Barrier Width and Current for Step Junction. Current Flow Mechanism in Forward and Reverse Biased Diode. (10 Lectures)

UNIT-II

Two-terminal Devices and their Applications: (1) Rectifier Diode: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, C-filter (2) Zener Diode and Voltage Regulation. Principle and structure of (1) LEDs, (2) Photodiode and (3) Solar Cell.

Bipolar Junction transistors: n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Current gains a and β Relations between a and β . Load Line analysis of Transistors. DC Load line and Q-point. Physical Mechanism of Current Flow. Active, Cutoff and Saturation Regions. (12 Lectures)

PART-B

UNIT-III

Amplifiers: Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider Bias. Transistor as 2-port Network. h-parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using Hybrid Model. Input and Output Impedance. Current, Voltage and Power Gains. Classification of Class A, B & C Amplifiers. Coupled Amplifier: Two stage RC-coupled amplifier and its frequency response. (10 Lectures)

UNIT-IV

Oscillators: Introduction, Types of oscillators, Fundamental principle of oscillators, Feedback oscillators, Tunes collector oscillator, Hartley and Colpitts Oscillator, Phase shift oscillator, Wein bridge oscillator, crystal oscillators. (9 Lectures)

Reference Books:

- 1. Integrated Electronics, J. Millman and C.C. Halkias, 1991, Tata Mc-Graw Hill.
- **2.** Electronics: Fundamentals and Applications, J.D. Ryder, 2004, Prentice Hall.
- 3. Solid State Electronic Devices, B. G. Streetman & S. K. Banerjee, 6th Edn., 2009, PHI Learning
- 4. Electronic Devices & circuits, S. Salivahanan & N. S. Kumar, 3rd Ed., 2012, Tata Mc-Graw Hill
- 5. OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall
- **6.** Microelectronic circuits, A.S. Sedra, K.C. Smith, A.N. Chandorkar, 2014, 6th Edn, Oxford University Press.
- 7. Electronic circuits: Handbook of design & applications, U.Tietze, C.Schenk, 2008, Springer
- **8.** Semiconductor Devices: Physics and Technology, S.M. Sze, 2nd Edn., 2002, Wiley India
- 9. Microelectronic Circuits, M.H. Rashid, 2nd Edition, Cengage Learning
- 10. Electronic Devices, 7th edn. Thomas L. Floyd, 2008, Pearson India

PHYS	ICS-C	В	SHP-21	.5-21	PHYS	ICS LA	B-IV	L-(), T-0, ∣	P-4	2 Cr	edits			
	<u> </u>							ļ							
Pre-re	equisi	te: Unde	rstandin	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics					
Cours	o Ohi	octivos	The lat	oratory		es have	heen s	o desiai	ned that	t the sti	idents li	earn to			
studv	charad	cteristics	of vario	us diode	es, solar	cells, a	and BJT	and the	eir biasi	na aspe	cts. am	plifiers.			
oscillat	oscillators, ADC and DAC based application circuits.														
Cours	Course Outcomes: At the end of the course, the student will be able to														
						,									
CO	1	Illustrate	strate working principle of different electronic circuit and their applications in real												
	_	life.			<u> </u>			<u> </u>							
СО	2	Understa	and the v	working	of semi	conduct	or devic	e and d	ifferent	operatir	ng condi	tion			
0	2	Design :	nd ana	hance p	differe	nt type	of am	nlifiors	and und	lorstand	the for	adback			
	5	mechani	sm.	lyse the	unere	ni type:		piners				CUDACK			
CO	4	Design a	nd anal	se the	different	t types o	of oscilla	tors.							
CO	5	Recogniz	ze differ	ent sig	nal pro	cessing	circuit	and the	e use i	n indus	trial, re	al life,			
		modern	control s	system a	applicati	on.									
		Мар	ping of	course	outco	mes wi	th the p	orograr	n outco	omes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	1	2	1	2	3	2	1	2	3	2	3			
CO2	2	2	2 1 2 1 3 1 1 3 1 3												
CO3	3	2	2	2	1	3	2	1	1	3	2	2			
CO4	2	2	2	2	1	3	2	1	1	3	2	2			
CO5	2	2	2	2	1	3	2	1	1	3	1	3			

Note: Students are expected to perform 8-10 experiments from the list taking at least 2-3 from the virtual lab.

- **1.** To study I-V characteristics of different diodes Ge, Si, LED and Zener.
- **2.** To study voltage regulation and ripple factor for a half-wave and a full-wave rectifier without and with different filters. Use of Zener diode and IC regulators.
- **3.** To study common emitter characteristics of a given transistor and to determine various parameters.
- **4.** Study of I-V & power curves of solar cells and find maximum power point & efficiency.
- **5.** To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.
- **6.** To study the frequency response of voltage gain of a RC-coupled transistor amplifier.
- **7.** To design a Wien bridge oscillator for given frequency using an op-amp.
- **8.** To design a phase shift oscillator of given specifications using BJT.
- **9.** To study the Colpitts's oscillator.
- **10.** To design a digital to analog converter (DAC) of given specifications.
- **11.** To study the analog to digital convertor (ADC) IC.
- **12.** To design an inverting amplifier using Op-amp (741,351) for dc voltage of given gain and study its frequency response.
- **13.** To draw the characteristics of a given triode and to determine the tube parameters.
- **14.** Calibration of a Si diode, a thermistor, and thermocouple for temperature measurements.
- **15.** To measure low resistance by Kelvin's double bridge/Carey Foster's bridge.

Reference Books:

- 1. Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc- Graw Hill.
- **2.** OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall.
- **3.** Electronic Principle, Albert Malvino, 2008, Tata Mc-Graw Hill.
- 4. Electronic Devices & circuit Theory, R.L. Boylestad & L.D. Nashelsky, 2009, Pearson.

Comoral	DUCL 204 21	Dhusical		1 Cuedite
General	BHCL-204-21	Physical	L-3, I-1, P-0	4 Credits
Elective (GE)-		Chemistry		
5 Chemistry				
5 chemistry				

Pre-requisite: Understanding of senior secondary level chemistry

Course Objectives: This course will equip students with the necessary knowledge concerning the fundamentals in the basic areas of physical chemistry viz. different states of matter, solutions, and ionic equilibrium. The problem-solving skills of students are expected to be enhanced through due weightage given to numerical problems in each unit.

Course Outcomes: At the end of the course, the student will be able to

CO1	Understand the basic principles and theories pertaining to different states of matter
CO2	Solve various problems related to pH
CO3	Define the various laws pertaining to gaseous state and solutions.
CO4	Familiarise with the different colligative properties of solutions and the concept of
	abnormal molecular mass
CO5	Understand the basic structure and symmetry elements in solids

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	2	1	2	2	2	3	2	2
CO2	2	2	1	2	1	1	1	2	1	3	1	2
CO3	3	2	2	2	1	1	2	2	2	3	2	2
CO4	2	2	2	2	1	1	2	1	2	3	1	1
CO5	2	2	2	2	1	1	2	1	1	3	1	1

Detailed Syllabus:

PART A

UNIT-I

Gaseous State: The kinetic molecular theory of gases, Postulates and derivation of kinetic gas equation and various gas laws, The ideal gas law: Applications, Behaviour of real gases: Deviations from ideal gas behaviour, compressibility factor, *Z* and its variation with pressure for different gases. Causes of deviation from ideal behavior. Van der Waals equation of state, its derivation and application in explaining real gas behaviour. Numerical.

UNIT-II

Liquid and Solid State: Physical properties of liquids; vapour pressure, surface tension and coefficient of viscosity and their determination, cleansing action of detergents.

Nature of the solid state, law of constancy of interfacial angles, law of rational indices, Miller indices, elementary ideas of symmetry, symmetry elements and symmetry operations, qualitative idea of point and space groups, seven crystal systems and fourteen Bravais lattices; X-ray diffraction, Bragg's law.

PART B

UNIT-III

Ionic equilibria: Concept of Acids and Bases. Electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect; dissociation constants of mono-, di-and triprotic acids. Buffer solutions; buffer capacity, buffer range, buffer action

Solubility and solubility product of sparingly soluble salts – applications of solubility product principle.

UNIT-IV

Solutions and Colligative Properties: Ways of expressing the concentration, lowering of vapour pressure, Raoult's Law. Colligative properties (i) relative lowering of vapour pressure, (ii) elevation of boiling point, (iii) Depression of freezing point, (iv) osmotic pressure. Applications in calculating molar masses of normal, dissociated, and associated solutes in solution.

RECOMMENDED BOOKS:

1. P.W. Atkins & J. de Paula, Atkin's Physical Chemistry, Oxford University Press (2006).

- **2.** S.H. Maron & C.F. Prutton, Principles of Physical Chemistry, 1st edition, Oxford and IBH (1958).
- **3.** G.W. Castellan, Physical Chemistry, 4th edition, Narosa (2004)
- **4.** I.N. Levine, Physical Chemistry 6th Ed., Tata Mc Graw Hill (2010)
- **5.** T. Engel & P. Reid, Physical Chemistry 3rd Ed., Prentice-Hall (2012)

Gener	General Elective BHCP-208- Chemistry Lab-III L-0, T-0, P-4 GE)-5 Chemistry 21											its	
Pre-re	quisit	te: Unde	rstanding	of seni	or secor	ndary lev	vel Physi	cs and	Mathem	atics			
Cours in theo skills.	Course Objectives: To provide students practical knowledge and skills about various topics taught in theory class of physical chemistry, which in turn will enhance their problem solving and analytical skills.												
Cours	rse Outcomes: At the end of the course, the student will be able to												
CO	1	Understa preparat with pre	and the b ion and s cision.	asic pro standard	cedures ization c	for carry of solutic	/ing out a ons, hand	a physic lling the	al chemi equipm	istry pra ent and	ctical like measuri	e ng	
CO	2	Correlate experiment	e the the ental err	oretical or.	and pra	ictical as	spects ar	nd know	about t	he limits	s of the		
CO	3	Determi	ne the va	rious ph	ysical pa	arametei	rs for the	various	s probler	ns undei	r conside	eration.	
CO	4	Verify v	arious la	ws studi	ied in th	e theory	/ part.						
Mappi	ing of	course	outcom	es with	the pr	ogram	outcom	es					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	2	1	2	3	2	2	2	3	2	2	
CO2	2	2 1 2 1 3 1 2 1 3 1 2											
CO3	3	2	2	2	1	3	2	2	2	3	2	2	
CO4	2	2	2 2 1 3 2 1 2 3 1 1										
CO5	2	2	2	2	1	3	2	1	1	3	1	1	

UNIT-I

Preparation and Standardization of Solutions.

UNIT-II

Surface tension measurements.

a) Determine the surface tension by (i) drop number (ii) drop weight method.

b) Study the variation of surface tension of detergent solutions with concentration.

UNIT-III

Viscosity measurement using Ostwald's viscometer.

a) Determination of viscosity of aqueous solutions of (i) polymer (ii) ethanol and (iii) sugar at room temperature.

b) Study the variation of viscosity of sucrose solution with the concentration of solute.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

UNIT-IV

pH metry

a) Study the effect on pH of addition of HCl/NaOH to solutions of acetic acid, sodium acetate and their mixtures.

b) Preparation of buffer solutions of different pH;

(i) Sodium acetate-acetic acid

(ii) Ammonium chloride-ammonium hydroxide

c) pH metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base.

d) Determination of dissociation constant of a weak acid.

Recommended Books

1. J.B. Yadav, Practical Physical Chemistry, Krishna

2. Findlay, Practical Physical Chemistry, Longman, New York

PHYS	ICS-S	SEC B	SHP-21	.6-21	PHYS	ICS (SHOP	SKTLL	L-(), T-1,	P-2	2 Cr	edits		
Pre-re	equisi	i te: Unde	rstandin	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics				
Cours with v of the	Course Objectives: The aim of this course is to enable the students to familiar and experience with various mechanical and electrical tools through hands-on mode, and to improve the abilities of the students to frame and tackle problems in Physics.													
Cours	e Out	tcomes:	ies: At the end of the course, the student will be able to											
CO	1	Underst	derstand the different types of unit's system and their conversion											
CO	2	Introduc	ed the c	oncept	of prime	movers	5.							
CO	3	Apply th	e Mecha	nical Sk	ills and	understa	and the	concept	of work	kshop pr	actices.			
CO	4	Understa	and the	learned	concept	s to eleo	tronics	and ele	ctrical ci	rcuits.				
CO	5													
		Мар	ping of	course		mes wi	th the p	orograi	n outco	omes				
	PO1	. PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	2	1	-	1	2	1	2	3	2	2		
CO2	2	2	1	2	1	1	1	1	1	3	1	1		
CO3	3	2	2	2	1	1	2	1	1	3	1	1		
CO4	2	2	2 2 1 1 2 1 1 3 1 1											
CO5	2	2	2	2	1	1	2	1	1	3	1	1		

PART-A

Unit-I

Introduction: Measuring units. conversion to SI and CGS unit system. Familiarization with meter scale, Vernier caliper, Screw gauge and their utilities. Measure the dimension of a solid block, volume of cylindrical beaker/glass, diameter of a thin wire, thickness of metal sheet, etc. Use of Sextant to measure height of buildings, mountains, etc. (4 Lectures)

Unit-II

Introduction to prime movers: Gear and gear mechanism, lever and lever mechanism, Brakes and braking mechanism, Pulley and pulley mechanism, power generator system. **(6 Lectures)**

PART-B

Unit-III

Mechanical Skills: Concept of workshop practice. Overview of manufacturing methods: foundry, machining, forming, and welding. Types of welding joints and welding defects. Common materials used for manufacturing like, metals, alloys, and composites. Concept of machine processing, introduction to common machine tools like lathe, shaper, drilling, milling and surface machines. Cutting tools, lubricating oils. Introduction to sheet metal, operations, and job of funnel fabrication. (**5 Lectures**)

Unit-IV

Electrical and Electronic Skill: Use of Multimeter. Soldering of electrical circuits having discrete components (R, L, C, diode) and ICs on PCB. Operation of oscilloscope. Making regulated power supply. Timer circuit, electronic switch using transistor and relay. **(5 Lectures)**

Reference Books:

- **1.** A textbook in Electrical Technology B L Theraja S. Chand and Company.
- 2. Performance and design of AC machines M.G. Say, ELBS Edn.
- **3.** Mechanical workshop practice, K.C. John, 2010, PHI Learning Pvt. Ltd.
- **4.** Workshop Processes, Practices and Materials, Bruce J Black 2005, 3rd Edn., Editor Newnes [ISBN: 0750660732]
- **5.** New Engineering Technology, Lawrence Smyth/Liam Hennessy, The Educational Company of Ireland [ISBN: 0861674480]

PHYS -2	ICS-S	EC B	SHP-21	7-21	COMP PHYS	UTATI ICS	ONAL	L-(), T-1 ,	P-2	2 Cr	edits		
Pre-re	equisi	te: Unde	rstandin	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics				
Cours • H • C	 Course Objectives: The aim of this course is to Highlights the use of computational methods to solve physical problems Course will consist of hands-on training on the Problem solving on Computers. 													
Cours	Course Outcomes: At the end of the course, the student will be able to													
CO	1	Introduc	oduced the concept of using the computers in Physics.											
CO	2	analyze suitable	roduced the concept of using the computers in Physics. alyze practical and theoretical aspects of physics problems with the help of a table mathematical model.											
CO	3	describe problem	escribe and evaluate sources of error for the modeling and calculation for a given roblem.											
CO	4	mathem technolo	natical ı gy.	modeling	g and	numeri	cal ana	lysis o	f probl	ems in	scienc	e and		
CO	5	how scie simulatio	entific kr on.	nowledge	e is ach	ieved by	y an inte	erplay b	etween	theory,	modelii	ng and		
		Мар	ping of	course	outco	mes wi	th the p	progran	n outco	omes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	2	1	3	3	2	3	2	3	3	2		
CO2	2	2	1	2	3	3	1	3	1	3	3	2		
CO3	3	2	2 2 2 3 3 2 3 1 3 3 1											
CO4	2	2	2	2	3	3	2	3	1	3	3	2		
CO5	2	2	2	2	3	3	2	3	1	3	3	2		

PART-A

UNIT-I

Introduction: Importance of computers in Physics, paradigm for solving physics problems for solution. Operating system, Usage of Linux as an editor, Algorithms and Flowcharts. Concept of flowchart, symbols, guidelines, types. Examples: Cartesian to Spherical Polar Coordinates, Roots of Quadratic Equation, Sum of two matrices, Sum and Product of a finite series, calculation of sin(x) as a series, algorithm for plotting (1) Lissajous figures and (2) trajectory of a projectile thrown at an angle with the horizontal. **(5 Lectures)**

UNIT-II

Scientific Programming using C++/Python: Introduction to the Concept of Object-Oriented Programming; Advantages of C++; Structure of a C++ program, concepts of compiling and linking, IDE and its features; Basic terminology - Character set, tokens, identifiers, keywords, fundamental data types, literal and symbolic constants, declaring variables, initializing variables, type modifiers. Operators in C++, Input/output using extraction and insertion operators, writing simple C++ programs, comments in C++, stages of program execution. **(5 Lectures)**

PART-B

UNIT-III

Control Statements: Types of Logic, Branching Statements, Looping Statements (DO-CONTINUE, DO-ENDDO, DO-WHILE, Implied and Nested DO Loops), Jumping Statements (Unconditional GOTO, Computed GOTO, Assigned GOTO), Subscripted Variables (Arrays: Types of Arrays, DIMENSION Statement, Reading and Writing Arrays), Functions and Subroutines (Arithmetic Statement Function, Function Subprogram and Subroutine), RETURN, CALL, COMMON and EQUIVALENCE Statements), Structure, Disk I/O Statements, open a file, writing in a file, reading from a file. Examples from physics problems. **(5 Lectures)**

UNIT-IV

Programming:

- **1.** Exercises on syntax on usage of C++/Python
- **2.** Usage of GUI Windows, Linux Commands, familiarity with DOS commands and working in an editor to write sources codes in C++/Python.
- 3. To print out all natural even/ odd numbers between given limits.
- **4.** To find maximum, minimum and range of a given set of numbers.
- **5.** Calculating Euler number using exp(x) series evaluated at x=1.

Reference Books:

- **1.** Introduction to Numerical Analysis, S.S. Sastry, 5th Edn., 2012, PHI Learning Pvt. Ltd.
- 2. Computer Programming in Fortran 77". V. Rajaraman (Publisher: PHI).
- **3.** Schaum's Outline of Theory and Problems of Programming with Fortran, S Lipsdutz and A Poe, 1986Mc-Graw Hill Book Co.
- **4.** Computational Physics: An Introduction, R. C. Verma et al., New Age International Publishers, New Delhi (1999)
- 5. A first course in Numerical Methods, U.M. Ascher and C. Greif, 2012, PHI Learning
- **6.** Elementary Numerical Analysis, K.E. Atkinson, 3rd Edn. 2007, Wiley India Edition.

PHYS SEC-3	ICS-		B	SHP-21	8-21	WEAT FORE	HER CASTIN	IG	L-0, T-1, P-2 2 Cre					
Pre-re	equis	ite: U	nder	standing	g of sen	ior seco	ndary le	evel Phys	sics and	Mather	natics			
Cours studer and ef	i e Ob its bu ffects	jectiv It to e of diff	res: enabl feren	The a le them it weath	im of th to devi er phen	nis cours elop an omenon	se is no awaren and ba	t just to ess and sic fored	impart unders casting t	theore tanding techniqu	tical kno regardi ies.	owledge ing the	to the causes	
Cours	Course Outcomes: At the end of the course, the student will be able to													
CO1 Students will understand the elements of weather that can be observed, measured, and recorded to make predictions and determine simple weather patterns.												asured,		
CO	2	Obse of ti pres	Observe, measure, and record data on the basic elements of weather over a period of time (i.e., precipitation, air temperature, wind speed and direction, and air pressure).											
CO	3	Interpret recorded weather data for simple patterns and infer relationships between wind and weather change (e.g., windy days often precede changes in the weather; south winds in Utah often precede a cold front coming from the north).												
CO	4	Grap evalu	oh tł uate	ne reco weathe	rded da r predict	ata to s tions ba	show da sed upo	aily and n observ	l seaso vational	nal patt data.	terns in	weathe	er and	
CO	5	prov losse healt	ide i es ar th ar	nformat nd enhai nd safetv	ion to p nce soci y, and s	people a etal ber upport o	and orga nefits, in of econo	anizatior cluding mic pros	ns can u protecti sperity a	use to re ion of lif and qua	educe w e and p lity of lif	veather- roperty, e.	related public	
		N	Мар	ping of	course	outco	mes wi	th the p	orograi	n outco	omes			
	PO	L P	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
C01	2	1		2	1	-	1	2	3	2	3	2	3	
CO2	2	2		1	2	1	1	1	3	1	3	1	3	
CO3	3	2 2 2 1 1 2 3 1 3 1 3												
CO4	CO4 2 2 2 2 1 1 2 3 1 3 1 3											3		
CO5	2	2		2	2	1	1	2	3	1	3	1	3	
Detai	led Sy	yllabı	JS:				•							

PART-A

UNIT-I

Introduction to atmosphere: Elementary idea of atmosphere: physical structure and composition; compositional layering of the atmosphere; variation of pressure and temperature with height; air temperature; requirements to measure air temperature; temperature sensors: types; atmospheric pressure: its measurement; cyclones and anticyclones: its characteristics.

(3 Lectures)

UNIT-II

Measuring the weather: Wind; forces acting to produce wind; wind speed direction: units, its direction; measuring wind speed and direction; humidity, clouds and rainfall, radiation: absorption, emission and scattering in atmosphere; radiation laws. Weather systems: Global wind systems; air masses and fronts: classifications; jet streams; local thunderstorms; tropical cyclones: classification; tornadoes; hurricanes.

Climate and Climate Change: Climate: its classification; causes of climate change; global warming and its outcomes; air pollution; aerosols, ozone depletion, acid rain, environmental issues related to climate. (7 Lectures)

PART-B

UNIT-III

Basics of weather forecasting: Weather forecasting: analysis and its historical background; need of measuring weather; types of weather forecasting; weather forecasting methods; criteria of choosing weather station; basics of choosing site and exposure; satellites observations in weather forecasting; weather maps; uncertainty and predictability; probability forecasts.

(4 Lectures)

UNIT-IV

Demonstrations and Experiments:

- **1.** Study of synoptic charts & weather reports, working principle of weather station.
- 2. Processing and analysis of weather data:
 - (i) To calculate the sunniest time of the year.
 - (ii) To study the variation of rainfall amount and intensity by wind direction.
 - (iii) To observe the sunniest/driest day of the week.
 - (iv) To examine the maximum and minimum temperature throughout the year.
 - (v) To evaluate the relative humidity of the day.
 - (vi) To examine the rainfall amount month wise.
- **3.** Exercises in chart reading: Plotting of constant pressure charts, surfaces charts, upper wind charts and its analysis.
- **4.** Formats and elements in different types of weather forecasts/warning (aviation and non-aviation).

Reference books:

- **1.** Aviation Meteorology, I.C. Joshi, 3rd edition 2014, Himalayan Books
- **2.** The weather Observers Handbook, Stephen Burt, 2012, Cambridge University Press.
- 3. Meteorology, S.R. Ghadekar, 2001, Agromet Publishers, Nagpur.
- 4. Textbook of Agrometeorology, S.R. Ghadekar, 2005, Agromet Publishers, Nagpur.
- 5. Why the weather, Charls Franklin Brooks, 1924, Chpraman & Hall, London.
- **6.** Atmosphere and Ocean, John G. Harvey, 1995, The Artemis Press.

SEMESTER-IV

(B.Sc. Hons. Physics) Batch 2021 & Onwards

PHYS	ICS-C	2-8 B	SHP-22	1-21	MATH PHYS	IEMATI ICS-II	CAL	L-!	5, T-1 ,	P-0	6 Cr	edits		
Pre-re	equisi	te: Unde	rstanding	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics				
Cours to phy.	e Obj sicists	ectives: . Students	The em s are to	phasis c be exan	of the co nined ba	ourse is ased on	on appli problem	cations s, seen	in solvir and uns	ng proble seen.	ems of i	interest		
Cours	e Out	comes: /	At the er	nd of the	e course	e, the stu	udent wi	ill be ab	le to					
CO	1	Understa such an	ind how expansio	to expa on is val	and a fu id.	nction i	n a Four	rier serie	es, and	under w	/hat con	ditions		
CO	2	Aware of the latte	are of the connection between Fourier and Laplace transforms and be able to use latter to solve mathematical problems relevant to the physical sciences.											
CO	3	Understa for man application	and Gaus y varial ons in pl	ssian int ples, La nysics.	egrals, Igrange	integrat multipl	ion by p iers and	arts, dii d Jacob	fferentia bins, Ta	al and in Nylor sei	itegral c ries and	alculus d their		
CO	4	Understa	nd the i	mplicati	ons of L	.aplace t	ransforr	n						
CO	5	Understa	nd Four	ier analy	ysis of c	ontinuo	us-time	signals	and syst	tems.				
		Мар	ping of	course	outco	mes wi	th the p	orograr	n outco	omes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	2	1	3	2	2	1	2	3	2	3		
CO2	2	2	1	2	1	1	1	1	1	3	1	3		
CO3	3	2	2 2 2 1 2 1 1 3 1 3											
CO4	2	2	2	2	1	2	2	1	1	3	1	3		
CO5	2	2	2	2	3	2	2	1	1	3	3	3		

PART-A

UNIT -I

Fourier Series: Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Complex representation of Fourier series. Expansion of functions with arbitrary period. Expansion of non-periodic functions over an interval. Even and odd functions and their Fourier expansions. **(15 Lectures)**
UNIT -II

Frobenius Method and Special Functions: Singular Points of Second Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre, Bessel Differential Equations, Properties of Legendre Polynomials: Rodrigues Formula, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. Bessel Functions of the First Kind: Generating Function, simple recurrence relations. Zeros of Bessel Functions and Orthogonality. (15 Lectures)

PART-B

UNIT -III

Integrals Transforms: Fourier Transforms: Fourier Integral theorem. Fourier Transform. Examples. Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Convolution theorem. Properties of Fourier transforms (translation, change of scale, complex conjugation, etc.). Three dimensional Fourier transforms with examples. Application of Fourier Transforms to differential equations: One dimensional Wave and Diffusion/Heat Flow Equations. (15 Lectures)

UNIT -IV

Laplace Transforms: Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of 1st and 2nd order Derivatives and Integrals of Functions, Derivatives, and Integrals of LTs. LT of Unit Step function, Dirac Delta function, Periodic Functions. Convolution Theorem. Inverse LT. Application of Laplace Transforms to 2 order Differential Equations: Damped Harmonic Oscillator, Simple Electrical Circuits, coupled differential equations of 1st order, Solution of heat flow along infinite bar using Laplace transform.

(15 Lectures)

Reference Books:

Bartlett

1.		Mathematical
	Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, Cambridge University Press.	, 3 rd ed. 2006,
2.		Mathematics
	for Physicists, P. Dennery and A.Krzywicki, 1967, Dover Publications	
3.		Complex
	Variables, A.S. Fokas & M.J. Ablowitz Ed., 2011, Cambridge Univ. Press	
4.	Complex Variables, A.K. Kapoor, 2014, Cambridge Univ. Press	
5.	Complex Variables and Applications, J.W. Brown & R.V. Churchill, 7th Ed. 2003,	Tata McGraw-
	Hill	
6.	First course in complex analysis with applications, D.G. Zill and P.D. Shanahan.	1940. Jones &

PHYS	ICS-C	2-9	BSHP-22	2-21	THER	ΜΔΙ		L-:	3. T-1.	P-0	4 Cr	edits		
					PHYS	ICS			<i>,</i> ,			curto		
Pre-re	equisi	i te: Und	lerstandin	g of sen	ior seco	ndary le	evel Phy	sics and	Mather	natics				
Cours	e Ob	jective	s: This co	ourse co	vers law	s of the	ermodyn	amics al	nd appli	cations,	Thermod	tynamic		
Potenti	ials, N	Aaxwell's	Thermod	lynamic	Relation	ns, Kine	tic theol	ry of g	ases, m	olecular	collisior	ns, and		
transm	nission	of heat.												
Cours	e Out	tcomes	: At the e	nd of th	e course	e, the st	udent w	ill be ab	le to					
CO	1	Develo	p a theor	etical an	d exper	imental	approad	h to giv	e a fun	damenta	I			
		unders	standing o	f how sy	/stems i	n therm	al equili	brium ca	an be de	escribed	by			
	 thermodynamics, kinetical gas theory and basic statistical mechanics. CO2 Understand the process of thermal conductivity viscosity and diffusion in cases 													
CO	2	Unders	stand the	process	of therr	nal cono	luctivity	, viscosi	ty and o	diffusion	in gase	s.		
CO	CO3 Ability to evaluate entropy changes in a wide range of processes and determine the													
	reversibility or irreversibility of a process from such calculations.													
CO	CO4 Understand the interrelationship between thermodynamic functions and ability to use													
	such relationships to solve practical problems.CO5Develop a working knowledge of the Laws and Methods of thermodynamics and to													
CO	CO5 Develop a working knowledge of the Laws and Methods of thermodynamics and to use this knowledge to explore various applications topics in materials science.													
	use this knowledge to explore various applications topics in materials science. Mapping of course outcomes with the program outcomes													
	Mapping of course outcomes with the program outcomes													
	PO1	PO2	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	2	1	-	1	2	1	2	3	2	2		
CO2	2	2	1	2	1	1	1	1	1	3	1	1		
CO3	3	2	2	2	1	1	2	1	1	3	1	1		
CO4	2	2	2	2	1	1	2	1	1	3	1	1		
CO5	2	2	2	2	1	1	2	1	1	3	1	1		
Detail UNIT-	Detailed Syllabus:													
Laws	of	Therm	odynami	i cs: Th	nermody	namic	Descrip	tion o	f syste	em: Ze	roth L	aw of		
(B.Sc.	Hons.	Physics)	Batch 202	1 & Onw	ards					Pä	age 74 o	f 131		

thermodynamics and temperature. First law and internal energy, conversion of heat into work, Various Thermodynamical Processes, Applications of First Law: General Relation between CP & CV, Work Done during Isothermal and Adiabatic Processes, Compressibility & Expansion Coefficient, Reversible & irreversible processes, Second law & Entropy, Carnot's cycle & theorem, Entropy changes in reversible & irreversible processes, Entropy-temperature diagrams, Third law of thermodynamics, Un-attainability of absolute zero. (12 Lectures)

UNIT-II

Thermodynamic Potentials: Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. Their Definitions, Properties and Applications. Surface Films and Variation of Surface Tension with Temperature. Magnetic Work, Cooling due to adiabatic demagnetization, First and second order Phase Transitions with examples, Clausius Clapeyron Equation and Ehrenfest equations, Expression for (CP-CV), CP/CV, TdS equations, Extensive and Intensive Thermodynamic Variables. **(10 Lectures)**

PART-B

UNIT-III

Kinetic Theory of Gases: Distribution of Velocities, Maxwell-Boltzmann Law of Distribution of Velocities in an Ideal Gas and its Experimental Verification. Doppler Broadening of Spectral Lines and Stern's Experiment. Mean, RMS and Most Probable Speeds. Degrees of Freedom. Qualitative description of Law of Equipartition of Energy. Specific heats of Gases, Conduction-Coefficient of the thermal conductivity, Lee's disc method to find thermal conductivity of bad conductor.

Molecular Collisions:Mean Free Path. Collision Probability. Estimates of Mean Free Path.Transport Phenomenon in Ideal Gases:(1) Viscosity, (2) Thermal Conductivity and (3) Diffusion.Brownian Motion and its Significance.(10 Lectures)

UNIT-IV

Real Gases: Behavior of Real Gases: Deviations from the Ideal Gas Equation. The Virial Equation. Andrew's Experiments on CO2 Gas. Critical Constants. Continuity of Liquid and Gaseous State. Vapour and Gas. Boyle Temperature. Van der Waal's Equation of State for Real Gases. Values of Critical Constants. Law of Corresponding States. Comparison with Experimental Curves. p-V Diagrams. Joule's Experiment. Free Adiabatic Expansion of a Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule- Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule- Thomson Cooling. **(10 Lectures)**

- 1. Statistical Physics, Thermodynamics and Kinetic theory, V.S. Bhatia, 2017, Vishal Publishing Co.
- **2.** Brijlal, N. Subrahmanyam and P. S. Hemne, Heat, Thermodynamics and Statistical Physics, S. Chand, and Company, 2010.
- **3.** Richard H Dittman and Zemansky MW, Heat and Thermodynamics, 3rd Special Edition, McGraw Hill, 2008.
- 4. Thermal Physics, S. Garg, R. Bansal and C. Ghosh, 1993, Tata McGraw-Hill.
- **5.** A Treatise on Heat, Meghnad Saha, and B.N. Srivastava, 1969, Indian Press.
- 6. Thermodynamics, Enrico Fermi, 1956, Courier Dover Publications.
- 7. Thermodynamics, Kinetic theory & Statistical thermodynamics, F.W.Sears & G.L. Salinger,

1988, Narosa.

- **8.** University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- **9.** Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.
- **10.** Thermal Physics, A. Kumar and S.P. Taneja, 2014, R. Chand Publications.
- **11.**Elements of Thermal Physics, 4th edition, James Wolfe.

12.An Introduction to the Thermal Physics, Daniel V. Schroeder.

PHYSICS-C	BSHP-223-21	PHYSICS LAB-V	L-0, T-0, P-4	2 Credits

Pre-requisite: Understanding of senior secondary level Physics and Mathematics

Course Objectives: The laboratory exercises have been so designed on measurements of thermal conductivity, Temperature Coefficient of Resistance, and use of various temperature transducers.

Course Outcomes: At the end of the course, the student will be able to

	·									
CO1	Able to verify the theoretical concepts/laws learnt in theory courses.									
CO2	Trained in carrying out precise measurements and handling sensitive equipment.									
CO3	Understand the methods used for estimating and dealing with experimental									
	uncertainties and systematic "errors".									
CO4	Learn to draw conclusions from data and develop skills in experimental design.									

CO5 Document a technical report which communicates scientific information in a clear and concise manner.

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	-	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	1	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
CO5	2	2	2	2	1	1	2	1	1	3	1	1

Note: Students are expected to perform 8-10 experiments from the list taking at least 2-3 from the virtual lab.

- **1.** To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.
- **2.** To measure the coefficient of linear expansion for different metals and alloys.
- **3.** To determine the value of Stefan's Constant of radiation.
- **4.** To determine the Coefficient of Thermal Conductivity of Cu by Searle's Apparatus.
- **5.** To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method.
- **6.** To measure the thermal conductivity and thermal diffusivity of a conductor.
- **7.** To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method.
- **8.** To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT).
- **9.** To study the variation of Thermo-Emf of a Thermocouple with Difference of Temperature of its Two Junctions. To calibrate a thermocouple to measure temperature in a specified Range using (i) Null Method, (ii) Direct measurement using Op-Amp difference amplifier and to determine Neutral Temperature.
- **10.** To determine thermal conductivity of a bad conductor disc using Advance kit involving constant current source for heating and thermocouples for temperature measurements.
- **11.** Calibration of Si diode and Copper -Constantan thermocouple as temperature sensor.
- **12.** Measurement of Planck's constant using black body radiation.
- **13.** To determine Stefan's Constant.
- **14.** To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method.
- **15.** To determine the temperature co-efficient of resistance by Platinum resistance thermometer.
- **16.** To calibrate Resistance Temperature Device (RTD) using Null Method/Off-Balance Bridge.

- **1.** Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- **2.** A Textbook of Practical Physics, I. Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- **3.** Advanced level Physics Practical's, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- **4.** A Laboratory Manual of Physics for undergraduate classes, D.P. Khandelwal,1985, Vani Pub.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

PHYS 10	ICS-C	2-	BS	SHP-22	4-21	DIGI1 ELEC1	TAL TRONIC	cs	L-3	3, T-1 ,∣	P-0	4 Cr	edits		
Pre-re	equisi	te: Ur	nder	standing	g of bas	ics of el	ectronic	s.							
Course Objectives: The course covers basics of integrated circuit technology, binary arithmetic, Logic gates, sequential and combinational circuits, Timers and counters, and Computer organization. Course Outcomes: At the end of the course, the student will be able to															
Cours		.come	: 5 . /				, the sti								
CO	1	Unde	nderstand the fundamentals of codes and number system												
CO	2	Unde	derstand the binary arithmetic, logics, and Boolean functions.												
CO	3	Unde	nderstand the functions and working of flipflop circuits register s and counters.												
CO	4	Unde	Jnderstand the applications into memory circuits.												
CO	5	Unde	rsta	nd sync	hronous	s sequer	ntial circ	uits, reg	isters a	nd multi	plexer-c	lemultip	lexer.		
		M	lap	ping of	course	outco	mes wi	th the p	program	n outco	omes				
	PO1	PC)2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1		2	1	-	1	2	1	2	3	2	2		
CO2	2	2		1	2	1	1	1	1	1	3	1	1		
CO3	3	2		2	2	1	1	2	1	1	3	1	1		
CO4	2	2	2 2 2 1 1 2 1 1 3 1 1												
C05	2	2		2	2	1	1	2	1	1	3	1	1		

PART-A

UNIT-I

Digital Circuits: Binary Numbers. Decimal to Binary and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers. AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates and application as Parity Checkers. Boolean algebra: De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean Algebra. Fundamental Products. Idea of Minterms and Maxterms. Conversion of a Truth table into Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map. (11 Lectures)

UNIT-II

Data Processing Circuits: Basic idea of Multiplexers, De-multiplexers, Decoders, Encoders. Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor. (9 Lectures)

PART-B

UNIT-III

Sequential Circuits: SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Race-around conditions in JK Flip-Flop. M/S JK Flip-Flop. Timers: IC 555: block diagram and applications: Astable multivibrator and Monostable multivibrator. Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits). **(10 Lectures)**

UNIT-IV

Counters and Converters: Counters (4 bits): Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter. Computer Organization: Input/Output Devices. Data storage (idea of RAM and ROM). Computer memory. Memory organization & addressing. Digital to analogue converter, analogue to digital converter using counter. (10 Lectures)

- **1.** Digital Principles and Applications, A.P. Malvino, D.P.Leach and Saha, 7th Ed., 2011,Tata McGraw
- **2.** Fundamentals of Digital Circuits, Anand Kumar, Edn, 2009, PHI Learning Pvt. Ltd.
- **3.** Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- **4.** Digital Electronics G K Kharate ,2010, Oxford University Press
- **5.** Digital Systems: Principles & Applications, R.J.Tocci, N.S. Widmer, 2001, PHI Learning
- **6.** Logic circuit design, Shimon P. Vingron, 2012, Springer.
- **7.** Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning.
- 8. Digital Electronics, S.K. Mandal, 2010, edition, McGraw Hill

PHYS	ICS-C		BSHP-22	25-21	PHYS	ICS LA	B-VI	L-(0, T-0,	P-4	2 Cr	edits				
Pre-re	equisi	i te: Und	erstandir	ig of ser	lior seco	ondary le	evel Phys	sics and	Mather	natics						
Cours verify trainin counte	Course Objectives: The laboratory exercises have been so designed that the students learn to verify some of the concepts learnt in the theory course of digital electronics. It covers practical training on basic Logic gates, flip-flops, sequential and combinational circuits, Timers, and counters.															
Cours	e Out	tcomes	nes: At the end of the course, the student will be able to													
CO	1	Able to	ble to verify the theoretical concepts/laws learnt in theory courses.													
CO	2	Trained	Able to verify the theoretical concepts/laws learnt in theory courses. Frained in carrying out precise measurements and handling sensitive equipment.													
СО	 Infanted in carrying out precise measurements and handling sensitive equipment. Understand the methods used for estimating and dealing with experimental uncertainties and systematic "errors". 															
CO	uncertainties and systematic "errors".CO4 Learn to draw conclusions from data and develop skills in experimental design.															
СО	5	Docum concise	ent a tec manner	hnical re	port wh	ich com	municat	es scier	ntific info	ormatior	in a cle	ear and				
		Ма	pping of	fcourse	eoutco	mes wi	th the I	prograi	m outco	omes						
	PO1	. PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
C01	2	1	2	1	-	1	2	1	2	3	2	2				
CO2	2	2	1	2	1	1	1	1	1	3	2	1				
CO3	3	2	2	2	2	1	2	1	1	3	2	1				
CO4	2	2	2	2	1	1	2	1	1	3	2	1				
CO5	2	2	2	2	1	1	2	1	1	3	2	1				

Note: Students are expected to perform 8-10 experiments from the list taking at least 2-3 from the virtual lab.

List of Experiments:

- **1.** To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO.
- **2.** To test a Diode and Transistor using a Multimeter.
- **3.** To design a switch (NOT gate) using a transistor.
- **4.** To verify and design AND, OR, NOT and XOR gates using NAND gates.
- **5.** To design a combinational logic system for a specified Truth Table.
- **6.** To convert a Boolean expression into logic circuit and design it is using logic gate ICs.
- **7.** To minimize a given logic circuit.
- **8.** Half Adder, Full Adder, and 4-bit binary Adder.
- **9.** Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C.
- **10.** To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates.
- **11.** To build JK Master-slave flip-flop using Flip-Flop ICs
- **12.** To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram.
- **13.** To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop ICs.
- **14.** To design an astable multivibrator of given specifications using 555 Timer.
- **15.** To design a monostable multivibrator of given specifications using 555 Timer.

- **1.** Modern Digital Electronics, R.P. Jain, 4th Edition, 2010, Tata McGraw Hill.
- **2.** Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-Graw Hill.

General ((GE)-6 Mathema	Electiv atics	/e	BSHM	-408-2	1 Ma Di Eq	atrices a fferenti uations	& Ordin al S	ary	L-4, T-	1, P-0	4 C	redits	
Pre-requi	i site:	Students	must h	ave the	knowle	dge of b	asic alge	ebraic o	peration	s, differ	entiatior	n, and	
Course O to equip t of equatic Differentia	bject he B.S ons and al Equa	ves: The c. (Hons) d real-life tions.	e object) studen e engine	ive of th ts with t ering pr	e cours he theo roblems	se on Ma pretical a s. Furthe	atrices aspects o ermore,	& Ordi of matri student	nary Di ces. The s will be	fferent eir applic e introdu	ial Equa cations i uced to	ations is n system Ordinary	
Course O	outcon	omes: At the end of the course, the student will be able to											
C01	Lea	Learn the basic concepts of Matrices.											
CO2	Un an	Understand about operations on matrices, such as, addition, subtraction and multiplication and concept of determinants.											
CO3	Us Jor	e matrico don met	es in so hod, Ma	olving sy trix inve	/stem (rsion m	of equat lethod et	tions us tc.	ing Ga	uss Elim	ination	method	, Gauss-	
CO4	Be	acquain Jations.	ted with	n knowle	edge of	f ordinar	ry differ	ential e	equation	s and L	inear di	fferential	
C05	Ар	oly the le	earnt teo	hniques	in solv	ing vario	ous prob	lems re	lated to	differen	tial equa	ations.	
		Мар	ping of	course	outco	mes wit	th the p	orograr	n outco	mes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
C01	2	1	2	1	-	1	2	1	2	3	2	2	
CO2	2	2 1 2 1 1 1 1 1 <u>3 2</u> 1											
CO3	3	2	2	2	2	1	2	1	1	3	2	1	
CO4	2	2	2	2	1	1	2	1	1	3	2	1	
C05	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											

PART A

UNIT-I

Matrices: Introduction to matrix, Different kinds of matrices, Addition, Multiplication, Symmetric and Skew symmetric matrix, Transpose of matrix, trace of a matrix.

Determinants: Determinant of matrix, Properties of determinant, Singular and non-singular matrices, Adjoint and inverse of a matrix, Rank of a matrix.

UNIT-II

Linear System of Equations: Introduction to system of linear equations, Condition of Consistency of system of linear equations, Homogenous and Non-homogenous system of equations, Echelon form. Solving Linear system of Equations: Matrix inversion method, Gauss-Jordon method and Gauss Elimination method.

PART B

UNIT-III

ODE: Introduction of differential coefficient, Ordinary differential equation, Order and degree of differential equation, Formation of differential equation, Difference between linear and non-linear differential equations.

UNIT-IV

Solving Ordinary Differential Equations: Solution of Separable differential equations, linear differential equations of the first order, Exact differential equations, Solution of homogeneous differential equations, Bernoulli's equation and Riccati equation, The chemical application of these first order differential equations.

Text and Reference Books:

- **1.** Mathematics 10+2, NCERT, New Delhi.
- 2. Kreyszig, E., *Advanced Engineering Mathematics*, 9th Edition Wiley Publications, 2005.
- **3.** O'Neil, P.V., *Advanced Engineering Mathematics* 7th *Edition,* Cengage Learning Custom Publishing, 2011.
- **4.** Jain, R.K. and Iyengar, S.K., *Advanced Engineering Mathematics 5th Edition.* New Delhi: Narosa Publication, 2011.

								-				-		
Ability	1		EVS-10	1A	Envir	onmen	tal	L-	2, T-0 ,	P-0	2 Credi	ts		
Enhan	cemen	t			Studi	ies								
Course	e (AEC)	-5												
Pre-re	quisite	s (if an	y): NA											
Course	e Obje	ctives:	The aim	and obj	ective o	of this c	ourse is	to teacl	h the fu	ndamen	ital conc	epts of		
Enviror	nment a	s a who	le along	with Nat	ural Res	sources,	their typ	bes, and	issues r	elated v	vith sust	ainable		
use as	its com	onents	along wi	th social	issues r	elated w	ith envir	onment.						
Course	e Outco	omes: A	mes: At the end of the course, the student will be											
			Understand the fundamental concents about Environment and its compensate											
CO1		Understand the fundamental concepts about Environment and its components.												
CO2		Understand the fundamental concepts about Environment and its components. Know about various types of natural resources, their functions, uses, exploitation and the problems arise due to these along with suitable case studies												
		Know about various types of natural resources, their functions, uses, exploitation and the problems arise due to these along with suitable case studies. Gain knowledge about working of various ecosystems, their features and functions and												
CO3		the problems arise due to these along with suitable case studies. Gain knowledge about working of various ecosystems, their features and functions and												
		energy	flow three	ough the	n.									
CO4		Know a	about bio	diversity,	its vari	ous form	ns, impor	tance ar	nd signif	cant are	eas			
		Ma	pping o	f course	outco	mes wi	th the p	rogram	outcor	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	2	1	2	1	2	2	2	3	2	2		
CO2	2	2 1 2 2 1 1 2 2 3 2 2										2		
CO3	3	2 2 2 2 1 2 2 1 3 2 2										2		
CO4 2 2 2 2 1 1 2 2 1 3 2										1				
CO5	2	2	2	2	1	1	2	1	1	3	2	1		

PART-A

UNIT-I

Multidisciplinary nature of environmental studies, Definition, scope and importance, Need for public awareness. (3 Lectures)

UNIT-II

Natural Resources: Renewable and non-renewable resources: Natural resources and associated problems.

a) Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forest and tribal people.

b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.

c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.

d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.

e) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of

(B.Sc. Hons. Physics) Batch 2021 & Onwards

alternate energy sources. Case studies.

f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.

- Role of an individual in conservation of natural resources.
- Equitable use of resources for sustainable lifestyles.

PART-B

UNIT-III

Ecosystems

- Concept of an ecosystem.
- Structure and function of an ecosystem.
- Producers, consumers and decomposers.
- Energy flow in the ecosystem.
- Ecological succession.
- Food chains, food webs and ecological pyramids.
- Introduction, types, characteristic features, structure, and function of the following ecosystem: -
- a. Forest ecosystem
- b. Grassland ecosystem
- c. Desert ecosystem
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

(8 Lectures)

(6 Lectures)

(10 Lectures)

UNIT-IV

Biodiversity and its conservation

- Introduction Definition: genetic, species and ecosystem diversity.
- Biogeographical classification of India
- Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values
- Biodiversity at global, National, and local levels.
- India as a mega-diversity nation
- Hot spots of biodiversity.
- Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts.
- Endangered and endemic species of India
- Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

RECOMMENDED BOOKS

- 1. K.C. Aggarwal, Environmental Biology, Nidi Publishers, 2001
- 2. E.P. Odum, Fundamentals of Ecology, WB Saunders, 1971
- 3. Erach Bharucha, The Biodiversity of India, Mapin Publishers, 2003
- 4. Benny Joseph, Environmental Studies, McGraw Hills, 2015.
- 5. R Rajagopalan, Environmental Studies, Oxford Higher Education, 2016.
- 6. S.P. Misra & S.N. Pandey, Essential Environmental Studies, Ane Books Pvt. Ltd. 2016.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 86 of 131

PHYS -4	ICS-S	EC B	SHP-22	6-21	ELECT CIRCU NETW	FRICAL UITS AI /ORK S	ND KILLS	L-(), T-1, ∣	P-2	2 Cro	edits			
Pre-re	equisi	te: Unde	rstandin	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics					
Cours shoot	e Obj the ele	jectives: ectrical cir	The a rcuits, no	im of tl etworks,	his cour. and ap	se is to pliances	enable througi	the stu h hands	dents to -on mod	o desigr de.	n, and ti	rouble-			
Cours	e Out	Comes: At the end of the course, the student will be able to													
CO	1	Familiari ammeter	miliarization with basic electronics devices such as, multimeter, voltmeter, and nmeter.												
CO	2	Understa	iderstand the concept of generators and transformers. Iderstand the DC Power sources, AC/DC generators, inductance, capacitance, and												
CO	3	Understa	Jnderstand the concept of generators and transformers. Jnderstand the DC Power sources, AC/DC generators, inductance, capacitance, and mpedance.												
		impedan	ce.												
CO	4	Apply the	e concep	ot of ope	eration o	of transf	ormers.								
CO	5	Understa	and the	concept	of elect	ric wirin	g and us	sage.							
		Мар	ping of	course	outco	mes wi	th the p	orograr	n outco	omes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	1	2	1	-	1	2	2	2	3	2	2			
CO2	2	2	1	2	1	1	1	1	1	3	1	1			
CO3	3	2	2	2	1	1	2	2	1	3	1	2			
CO4	2	2	2	2	1	1	2	2	1	3	1	2			
CO5	2	2	2	2	1	1	2	2	1	3	1	2			

PART-A

UNIT I

Basic Electricity Principles: Voltage, Current, Resistance, and Power. Ohm's law. Series, parallel, and series-parallel combinations. AC Electricity and DC Electricity. Familiarization with multimeter, voltmeter, and ammeter.

Understanding Electrical Circuits: Main electric circuit elements and their combination. Rules to analyze DC sourced electrical circuits. Current and voltage drop across the DC circuit elements. Single-phase and three-phase alternating current sources. Rules to analyze AC sourced electrical circuits. Real, imaginary, and complex power components of AC source. Power factor. Saving energy and money. **(6 Lectures)**

UNIT -II

Generators and Transformers: DC Power sources. AC/DC generators. Inductance, capacitance, and impedance. Operation of transformers.

Electric Motors: Single-phase, three-phase & DC motors. Basic design. Interfacing DC or AC sources to control heaters & motors. Speed & power of ac motor. (5 Lectures)

PART-B

UNIT-III

Solid-State Devices: Resistors, inductors, and capacitors. Diode and rectifiers. Components in Series or in shunt. Response of inductors and capacitors with DC or AC sources.

Electrical Protection: Relays. Fuses and disconnect switches. Circuit breakers. Overload devices. Ground-fault protection. Grounding and isolating. Phase reversal. Surge protection. Interfacing DC or AC sources to control elements (relay protection device) **(6 Lectures)**

UNIT-IV

Electrical Wiring: Different types of conductors and cables. Basics of wiring-Star and delta connection. Voltage drops and losses across cables and conductors. Instruments to measure current, voltage, power in DC and AC circuits. Insulation. Solid and stranded cable. Conduit. Cable trays. Splices: wirenuts, crimps, terminal blocks, split bolts, and solder. Preparation of extension board. (5 Lectures)

- **1.** A textbook in Electrical Technology B L Theraja and A K Theraja S Chand & Co.
- 2. Performance and design of AC machines M G Say, CBS Publisher.
- **3.** Electronic Principles (SIE)- Albert Malvino and David J. Bates 7th Edition, McGraw Hill Education.

PHYS 5	ICS-S	SEC -	BSHP-2 21	227-	BASIC INSTR SKILLS	UMENT	ATION	L-C), T-1,	P-2	2 Cr	edits			
Pre-re	equisi	i te: Und	erstandin	g of se	nior seco	ndary le	evel Physic	cs and I	Mathen	natics	•				
Cours usage topics. Cours	Course Objectives: This course is to get exposure with various aspects of instruments and their usage through hands-on mode. Experiments listed below are to be done in continuation of the topics. Course Outcomes: At the end of the course, the student will be able to														
CO	CO1 Apply the fundamentals of instrumentation in measurements and calibration of instruments.														
CO	2	Make use of instrument with appropriate specifications and design of extension of range instrument. Experiment with different bridge circuits for unknown parameter (Desistance)													
CO	range instrument. CO3 Experiment with different bridge circuits for unknown parameter (Resistance, Capacitance) measurement.														
CO	Capacitance) measurement.CO4Demonstrate the use of oscilloscopes for electrical parameter measurement.														
CO	5	Select t	he digita	l instru	ment for	the mea	asuremen	t of give	en para	ameter a	and mak	e use			
		of reco	der and	functio	n genera	tor for t	he specifi	ed para	meter						
		Ма	pping of	cours	se outco	mes wi	th the pi	ogram	outco	omes					
	PO1	. PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	1	2	1	2	1	2	2	2	3	2	2			
CO2	2	2	1	2	1	1	1	1	1	3	1	1			
CO3	3	2	2	2	2	1	2	2	1	3	1	2			
CO4	2	2	2	2	2	1	2	2	1	3	1	2			
CO5	2	2	2	2	2	1	2	2	1	3	1	2			
Detail	ed Sy	/llabus:			•	•	•			-	-				

PART-A

UNIT-I

Basic of Measurement: Instruments accuracy, precision, sensitivity, resolution range etc. Errors in measurements and loading effects. Multimeter: Principles of measurement of dc voltage and dc current, ac voltage, ac current and resistance. Specifications of a multimeter and their significance.

Electronic Voltmeter: Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity. Principles of voltage, measurement (block diagram only). Specifications of an electronic Voltmeter/ Multimeter and their significance. AC millivoltmeter: Type of AC millivoltmeters: Amplifier- rectifier, and rectifier- amplifier. Block diagram ac millivoltmeter, specifications and their significance. **(6 Lectures)**

UNIT-II

Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only-no mathematical treatment), brief discussion on screen phosphor, visual persistence & chemical composition. Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance.

Use of CRO for the measurement of voltage (dc and ac frequency, time-period, Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working. (6 Lectures)

PART B

UNIT-III

Signal Generators and Analysis Instruments: Block diagram, explanation, and specifications of low frequency signal generators. pulse generator, and function generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis.

Impedance Bridges & Q-Meters:Block diagram of bridge. working principles of basic(balancing type)RLC bridge.Specifications of RLC bridge.Block diagram & working principles of aQ- Meter.Digital LCR bridges.(6 Lectures)

UNIT-IV

Digital Instruments: Principle and working of digital meters. Comparison of analog & digital instruments. Characteristics of a digital meter. Working principles of digital voltmeter.

Digital Multimeter: Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time-base stability, accuracy, and resolution. **(5 Lectures)**

The test of lab skills will be of the following test items:

- **1.** Use of an oscilloscope.
- **2.** CRO as a versatile measuring device.
- 3. Circuit tracing of Laboratory electronic equipment,
- **4.** Use of Digital multimeter/VTVM for measuring voltages
- 5. Circuit tracing of Laboratory electronic equipment
- 6. Winding a coil / transformer
- **7.** Study the layout of receiver circuit.
- **8.** Trouble shooting a circuit
- 9. Balancing of bridges

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Laboratory Exercises:

- **1.** To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance.
- **2.** To observe the limitations of a multimeter for measuring high frequency voltage and currents.
- **3.** To measure Q of a coil and its dependence on frequency, using a Q-meter.
- 4. Measurement of voltage, frequency, time period and phase angle using CRO.
- **5.** Measurement of time period, frequency, average period using universal counter/ frequency counter.
- **6.** Measurement of rise, fall and delay times using a CRO.
- **7.** Measurement of distortion of a RF signal generator using distortion factor meter.
- **8.** Measurement of R, L and C using a LCR bridge/ universal bridge.
- 9. Using a Dual Trace Oscilloscope

10.Converting the range of a given measuring instrument (voltmeter, ammeter)

- **1.** A Textbook in Electrical Technology B L Theraja S Chand and Co.
- 2. Performance and design of AC machines M G Say ELBS Edn.
- **3.** Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- **4.** Logic circuit design, Shimon P. Vingron, 2012, Springer.
- **5.** Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning.
- 6. Electronic Devices and circuits, S. Salivahanan & N. S.Kumar, Ed., 2012, Tata Mc Graw Hill.
- 7. Electronic circuits: Handbook of design and applications, U.Tietze, Ch.Schenk, 2008, Springer
- 8. Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India

PHYS 6	ICS-S	EC - E	SHP-2	28-21	SCIEN WORI PROC	NTIFIC D ESSIN(3	L-(0, T-1, I	P-2	2 Cr	edits			
Pre-re	equisi	te: Unde	rstandin	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics	1				
Cours and nu Us Co	 Course Objectives: The aim of this course is not just to teach scientific documentation methods and numerical analysis but to emphasize its role in solving problems in Physics. Use of latex as a tool in writing scientific document in physics applications. Course will consist of hands-on training on the latex on Computers. 														
Cours	e Out	comes: /	nes: At the end of the course, the student will be able to												
СО	1	Explain,	plain, install, and use of TeX and LaTeX.												
СО	2	Describe	plain, install, and use of TeX and LaTeX. Escribes the development process of TeX and LaTeX. Plains the difference between TeX and LaTeX.												
CO	Image: Describes the development process of rex and LaTeX. Image: Describes the development process of rex and LaTeX. Image: Describes the development process of rex and LaTeX.														
CO	4	Tells the	advanta	ages of l	LaTeX o	ver othe	er more	traditior	nal softw	vare's.					
CO	5	Lists LaT	eX com	patible	operatin	g syster	ms and	use late	ex for so	ientific	docume	ntation			
		purpose.													
		мар	ping or	course		mes wi	th the p	program	n outco	omes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	1	2	1	2	2	2	1	2	3	2	2			
CO2	2	2	1	2	1	1	1	1	1	3	1	1			
CO3	3	2	2	2	2	2	2	1	1	3	1	2			
CO4	2	2	2 2 2 2 2 1 1 3 1 2												
CO5	2	2	2	2	1	1	2	1	1	3	1	2			

Page 92 of 131

PART-A

UNIT-I

Introduction to LaTeX: TeX/LaTeX word processor, preparing a basic LaTeX file, Document classes, preparing an input file for LaTeX, Compiling LaTeX File, LaTeX tags for creating different environments, Defining LaTeX commands and environments, Changing the type of style, Symbols from other languages. (6 Lectures)

UNIT-II

Equation representation: Formulae and equations, Figures and other floating bodies, lining in columns- Tabbing and tabular environment, generating table of contents, bibliography, and citation, making an index and glossary, List making environments, Fonts, Picture environment and colors, errors. **(8 Lectures)**

PART-B

UNIT-III

Visualization: Introduction to graphical analysis and its limitations. Introduction to Gnuplot importance of visualization of computational and computational data, basic Gnuplot commands: simple plots, plotting data from a file, saving, and exporting, multiple data sets per file, physics with Gnuplot (equations, building functions, user defined variables and functions), Understanding data with Gnuplot. **(8 Lectures)**

UNIT-IV

Exercises:

- **1.** Write a 20 pages report in latex on any topic of your interest in Physics.
- **2.** Creating an input Gnuplot file for plotting a data and saving the output for seeing on the screen. Saving it as an .eps file and as a .pdf file.

- **1.** LaTeX-A Document Preparation System", Leslie Lamport (Second Edition, Addison- Wesley, 1994).
- **2.** Gnuplot in action: understanding data with graphs, Philip K Janert, (Manning 2010)
- **3.** Schaum's Outline of Theory and Problems of Programming with Fortran, S Lipsdutz and A Poe, 1986Mc-Graw Hill Book Co.
- **4.** Computational Physics: An Introduction, R. C. Verma et al. New Age International Publishers, New Delhi (1999).

I. K. Gujral Punjab Technical University, Kapurthala

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 94 of 131

I. K. Gujral Punjab Technical University, Kapurthala

SEMESTER-V

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 95 of 131

PHYS 11	ICS-C	2-	BS	SHP-31	1-21	QUAN MECH	UANTUM L-5, T-1, P-0 IECHANICS					6 Credits	
Pre-re	Pre-requisite: Understanding of senior secondary level Physics and Mathematics												
Cours superp atoms	Course Objectives: The aim of course includes examples to explain the quantization of energy, superposition principle, wave-particle duality, tunnelling and quantum theory of hydrogen atom, atoms in electric and magnetic field.												
Course Outcomes: At the end of the course, the student will be able to													
СО	1	Unde and c	Inderstand and explain the differences between classical and quantum mechanics and origins of quantum mechanics										
CO	2	Unde	Understand the idea of wave functions, probability and uncertainty relations										
CO	3	Understand the Schrodinger wave mechanics and operator formalism											
CO	4	Solve	e the	Schrod	inger ed	quation	for simp	le 1D tir	ne-inde	pendent	: potenti	als	
CO	5	Ident mom	tify entu	and re ım, and	late th central	e eiger potentia	nvalue als	oroblem	s for e	energy,	momer	ntum, a	angular
		Μ	1apj	ping of	course	outco	mes wi	th the p	progran	n outco	omes		
	PO1	. PC	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1		2	1	-	1	2	1	2	3	2	2
CO2	2	2		1	2	1	1	1	1	1	3	1	1
CO3	3	2		2	2	1	1	2	1	1	3	1	1
CO4	2	2		2	2	1	1	2	1	1	3	1	1
CO5	2	2		2	2	1	1	2	1	1	3	1	1
Detail	ed Sy	/llabu	S:			•	•						

UNIT-I

PART-A

Time dependent Schrodinger wave equation: Time dependent Schrodinger equation and dynamical evolution of a quantum state; Properties of Wave Function. Interpretation of Wave Function Probability and probability current densities in three dimensions; Conditions for Physical Acceptability of Wave Functions. Normalization. Linearity and Superposition Principles. Eigenvalues and Eigenfunctions. Position, momentum, and Energy operators; commutator of position and momentum operators; Expectation values of position and momentum. Wave Function of a Free Particle. (15 Lectures)

UNIT-II

Time independent Schrodinger wave equation-Hamiltonian, stationary states, and energy eigenvalues; expansion of an arbitrary wavefunction as a linear combination of energy eigenfunctions; General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states; Application to spread of Gaussian wave-packet for a free particle in one dimension; wave packets, Fourier transforms and momentum space wavefunction; Position-momentum uncertainty principle.

General discussion of bound states in an arbitrary potential: Application to onedimensional problem-square well potential; simple harmonic oscillator-energy levels and energy eigenfunctions using Frobenius method; Hermite polynomials; ground state, zero-point energy & uncertainty principle. (15 Lectures)

PART-B

UNIT-III

Quantum theory of hydrogen-like atoms: time independent Schrodinger equation in spherical polar coordinates; separation of variables for second order partial differential equation; angular momentum operator & quantum numbers; Radial wavefunctions from Frobenius method; shapes of the probability densities for ground & first excited states; Orbital angular momentum quantum numbers I and m; s, p, d, ... shells.

Atoms in Electric & Magnetic Fields:Electron angular momentum.Space quantization.Electron Spin and Spin Angular Momentum.Larmor's Theorem.Spin Magnetic Moment.Stern-Gerlach Experiment.Zeeman Effect:Electron Magnetic Moment and Magnetic Energy,Gyromagnetic Ratio and Bohr Magneton.(15 Lectures)

UNIT-IV

Atoms in External Magnetic Fields: Normal and Anomalous Zeeman Effect. Paschen Back and Stark Effect (Qualitative Discussion only).

Many electron atoms: Pauli's Exclusion Principle. Symmetric & Antisymmetric Wave Functions. Periodic table. Fine structure. Spin orbit coupling. Spectral Notations for Atomic States. Total angular momentum. Vector Model. Spin-orbit coupling in atoms: L-S and J-J couplings. Hund's Rule. Spectra of Hydrogen and Alkali Atoms (Na etc.). (15 Lectures)

Reference Books:

- 1. A Textbook of Quantum Mechanics, P.M. Mathews and Venkatesan, 2nd Ed. 2010, McGraw Hill
- 2. Quantum Mechanics, Robert Eisberg and Robert Resnick, 2nd Edn., 2002, Wiley.
- 3. Quantum Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tata McGraw Hill.
- 4. Quantum Mechanics, G. Aruldhas, 2nd Edn. 2002, PHI Learning of India.
- 5. Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.
- 6. Quantum Mechanics: Foundations & Applications, Arno Bohm, 3rd Edn., 1993, Springer
- 7. Quantum Mechanics for Scientists & Engineers, D.A.B. Miller, 2008, Cambridge University Press
- 8. Quantum Mechanics, Eugen Merzbacher, 2004, John Wiley and Sons, Inc.
- 9. Introduction to Quantum Mechanics, D.J. Griffith, 2nd Ed. 2005, Pearson Education

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 97 of 131

10.Quantum Mechanics, Walter Greiner, 4th Edn., 2001, Springer.

PHYS 12	ICS-C	- B	SHP-31	2-21	SOLII PHYS	D STAT ICS	E	L-:	3, T-1,	P-0	4 Cr	edits	
Pre-re	Pre-requisite: Understanding of senior secondary level Physics and Mathematics												
Cours emplo of soli solid s	e Obj y class ids. En itate.	jectives: sical and nphasis is	The c quantur put on	ourse in m mecha building	ntroduce anical th g model	es solid neories i Is able t	state pi needed to explai	hysics a to unde in sever	ond will erstand t al differ	enable the phys ent phe	the stud sical pro nomena	dent to perties in the	
Cours	e Out	comes: /	At the ei	nd of the	e course	e, the st	udent w	ill be ab	le to				
CO1 Understand free electron Fermi gas: density of states, Fermi level, and electric conductivity										electrica	al		
CO	Understand electrons in periodic potential: energy bands theory classification metals, semiconductors and insulators									tion of			
CO	3	Understa doping, p	ind sem o-n junc	iconduc tions	tors: ba	nd gap,	effective	e masse	s, charg	e carrie	r distrib	utions,	
СО	4	Understa conductiv	ind me vity	etals: I	Fermi	surfaces	s, temp	perature	depe	ndence	of el	ectrical	
CO	5	Understa conductiv	ind the vity	e relati	onship	betwee	en conc	luctors	and i	nsulator	s and	super	
		Мар	ping of	course	outco	mes wi	th the I	prograi	n outco	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	2	1	1	2	2	2	2	3	2	2	
CO2	2	2	1	2	1	1	1	1	1	3	1	1	
CO3	3	2	2	2	1	2	2	2	1	3	2	1	
CO4	2	2	2	2	1	2	2	2	1	3	2	2	
CO5	2	2	2	2	1	2	2	2	1	3	2	1	

Page 98 of 131

PART-A

UNIT-I

Crystal Structure: Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors. Lattice with a Basis – Central and Non-Central Elements. Unit Cell. Miller Indices. Reciprocal Lattice. Types of Lattices. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg's Law. Atomic and Geometrical Factor.

Lattice Dynamics: Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit's Law, Einstein and Debye's theories of specific heat of solids. T3/2 law. **(15 Lecturers)**

Unit-II

Elementary Band theory: Nearly Free electron model, Density of states, Bloch Theorem, the wavefunction of an electron in a periodic potential, Origin of Band Gap, Kronig Penny model, Tight binding method, Semiconductor crystals (P and N type), Effective mass, Conductivity of Semiconductor, mobility, Hall Effect, Measurement of conductivity using four probe method & Hall coefficient. (12 Lectures)

PART-B

UNIT-III

Magnetic Properties of Matter: Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical Langevin Theory of dia- and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss.

Ferroelectric Properties of Materials:Structural phase transition, Classification of crystals,Piezoelectric effect, Pyroelectric effect, Ferroelectric effect, Electrostrictive effect, Curie-Weiss Law,Ferroelectric domains, PE hysteresis loop.(15 Lectures)

UNIT-IV

Dielectric Properties of Materials: Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion.

Superconductivity: Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation and Penetration Depth. Isotope effect, Idea of BCS theory (No derivation) (15 Lectures)

Reference Books:

- 1. Introduction to Solid State Physics, Charles Kittel, 8th Edition, 2004, Wiley India Pvt. Ltd.
- 2. Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India
- 3. Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill
- 4. Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning
- 5. Solid-state Physics, H. Ibach and H. Luth, 2009, Springer
- 6. Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 99 of 131

7. Solid State Physics, M.A. Wahab, 2011, Narosa Publications

PHYS	ICS-C	B	SHP-31	3-21	B-VII	L-(), T-0,	P-4	2 Cr	edits			
Pre-re	Pre-requisite: Understanding of senior secondary level Physics and Mathematics												
Course Objectives: The aim and objective of the lab course is to introduce the students to the formal structure of solid state physics so that they can use these as per their requirement.													
Course Outcomes: At the end of the course, the student will be able to													
CO1 Able to verify the theoretical concepts/laws learnt in theory courses.													
CO	2	Trained	in carryi	ng out p	precise r	neasure	ments a	nd hand	lling ser	nsitive e	quipmer	nt.	
CO3 Understand the methods used for estimating and dealing with exp									experi	mental			
		uncertai	nties and	d system	natic "er	rors".							
CO	4	Learn to	draw co	onclusio	ns from	data an	d develo	p skills	in expe	rimental	design.		
CO	5	Docume	ument a technical report which communicates scientific information in a clear and										
		concise	manner.										
		Мар	ping of	course	outco	mes wi	th the p	orograi	n outco	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	2	1	2	2	2	2	2	3	2	2	
CO2	2	2	1	2	3	1	1	1	2	3	1	1	
CO3	3	2	2	2	2	2	2	2	2	3	2	2	
CO4	2	2	2	2	2	2	2	2	1	3	2	2	
CO5	2	2	2	2	2	2	2	2	1	3	2	2	

Page 100 of 131

Note: Students are expected to perform 8-10 experiments from the list taking at least 2-3 from the virtual lab.

List of Experiments:

- **1.** Measurement of susceptibility of paramagnetic solution (Quinck's Tube Method)
- 2. To measure the Magnetic susceptibility of Solids.
- **3.** To determine the Coupling Coefficient of a Piezoelectric crystal.
- **4.** To measure the Dielectric Constant of a dielectric Materials with frequency
- **5.** To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR)
- 6. To determine the refractive index of a dielectric layer using SPR
- **7.** To study the PE Hysteresis loop of a Ferroelectric Crystal.
- 8. To draw the BH curve of Fe using Solenoid & determine energy loss from Hysteresis.
- **9.** To measure the resistivity of a semiconductor (Ge) with temperature by four-probe method (room temperature to 150 oC) and to determine its band gap.
- **10.**To determine the Hall coefficient of a semiconductor sample.
- **11.**Study of Electron spin resonance- determine magnetic field as a function of the resonance frequency
- 12. To study of Zeeman effect: with external magnetic field; Hyperfine splitting
- **13.**To show the tunneling effect in tunnel diode using I-V characteristics.
- **14.**Quantum efficiency of CCDs

- **1.** Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- **2.** Advanced level Physics Practicals, Michael Nelson, and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- 4. Elements of Solid-State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India.

PHYS	ICS-C	B	SHP-31	.4-21	COMF PHYS	PUTATI ICS LA	ONAL B	L-(D, T-0,	P-4	2 Credits		
Pre-re	equis	ite: Unde	rstandin	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics			
Cours formal proble	Course Objectives: The aim and objective of the lab course is to introduce the students to the formal structure of computational physics so that they can use these essential to solve the physics problems.												
Course Outcomes: At the end of the course, the student will be able to													
CO1 Able to verify the theoretical concepts/laws learnt in theory courses.													
CO	2	Trained	in carryi	ng out p	orecise r	neasure	ments a	nd hand	lling ser	nsitive e	quipmer	nt.	
СО	3	Understa uncertaii	and the nties and	e metho d system	ods use natic "er	ed for rors".	estimati	ng and	l dealir	ng with	experi	mental	
CO	4	Learn to	draw co	onclusion	ns from	data an	d develo	p skills	in expe	rimental	design.		
CO	5	5 Document a technical report which communicates scientific information in a clear and											
	concise manner.												
Mapping of course outcomes with the program outcomes													
	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	2	1	-	1	2	1	2	3	2	2	
CO2	2	2	1	2	1	1	1	1	1	3	1	2	
CO3	3	2	2	2	1	1	2	1	1	3	1	1	
CO4	2	2	2	2	1	1	2	1	1	3	1	1	
CO5	2	2	2	2	1	1	2	1	1	3	2	2	

Note: Students are expected to perform atleast 10 experiments out of following list using C++ and Gnuplot.

List of experiments:

- 1. To find the standard deviation, mean, variance, moments etc. of at least 15 entries.
- 2. To compile a frequency distribution and evaluate mean, standard deviation etc.
- **3.** To evaluate sum of finite series and the area under a curve.
- 4. To find the product of two matrices
- **5.** To find a set of prime numbers and Fibonacci series.
- **6.** To write program to open a file and generate data for plotting using Gnuplot.
- **7.** To choose a set of 10 values and find the least squared fitted curve.
- **8.** Plotting trajectory of a projectile projected horizontally.
- 9. Plotting trajectory of a projectile projected making an angle with the horizontally.
- **10.** To find the roots of a quadratic equation.
- **11.** Motion of a projectile using simulation and plot the output for visualization.
- **12.** Numerical solution of equation of motion of simple harmonic oscillator and plot the outputs for visualization.
- **13.** Motion of particle in a central force field and plot the output for visualization.
- **14.** To find the determinant of a matrix and its eigenvalues and eigenvectors.
- **15.** To generate random numbers between (i) 1 and 0, (ii) 1 and 100.

Text and Reference Books:

- 1. Numerical Mathematical Analysis, J.B. Scarborough (Oxford & IBH Book Co.) 6th ed., 1979.
- 2. A first course in Computational Physics: P.L. DeVries (Wiley) 2nd edition, 2011.
- **3.** Computer Applications in Physics: S. Chandra (Narosa) 2nd edition, 2005.
- 4. Computational Physics: R.C. Verma, P.K. Ahluwalia and K.C. Sharma (New Age) 2000.
- **5.** Object Oriented Programming with C++: Balagurusamy, (Tata McGrawHill) 4th edition 2008.

PHYS: -1	ICS-D	SE B	SHP-31	.5-21	ATOM MOLE PHYS	IIC ANI CULAR ICS		L-!	5, T-1, I	P-0	6 Cr	edits
Pre-re	equisi	te: Unde	rstandin	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics		
Course Objectives: The course contents cover the basics of atomic structure, hydrogen, and alkali spectra, coupling schemes, molecular electronic spectra, Infrared and Raman spectroscopy.												
Course Outcomes: At the end of the course, the student will be able to												
CO	1	Understand basic elements of practical spectroscopy, i.e., signal-to-noise ratio, resolving power, width and intensity of spectral transitions.										
CO	2	Understand many electron atoms and interaction of spins, i.e., LS and JJ coupling.										ing.
CO	3	Underst	and effe	ct of ext	ernal fie	elds to s	pectra lil	ke, Land	de's-fact	or and A	Anomalo	ous
		Zeeman	effect.									
CO	4	Underst	and rota	tional, v	vibratior	nal, elec	tronic a	nd Ram	nan spe	ctra of	molecul	es and
		their ap	olication	5.								
СО	5	Underst electron	and woi spin res	king of onance,	IR spe NMR a	ectrome nd Moss	ter, Rar bauer sp	nan sp pectrosc	ectrome copy.	ter and	l princip	oles of
		Мар	ping of	course	outco	mes wi	th the p	program	n outco	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	2	1	2	1	2	3	2	2
CO2	2	2	1	2	2	1	1	1	1	3	3	1
CO3	3	2	2	2	1	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	3	3
C05	2	2	2	2	1	1	2	1	1	3	1	1

Page 104 of 131

PART A

UNIT I

Atomic structure: Atomic models, Electron orbits, Atomic spectra, The Bohr Model, Energy level and Spectra, Correspondence principle, Effect of Nuclear motion, Atomic excitation, Many electron atoms, Exclusion Principle, electron spin, X-ray spectra. (12 Lectures)

UNIT-II

Hydrogen and Alkali Spectra: Quantum theory of hydrogen atom, Series in hydrogen, nuclear mass effect, elliptical orbits, Sommerfeld model, spin-orbit coupling, relativistic correction, and Lamb shift (qualitative). Alkali Spectra and intensity ratios in doublets, LS-Coupling scheme, normal triplets, basic assumptions of the theory, identification of terms, selection rules, jj-coupling, Lande's interval rule, Selection rules, intensity ratios, regularities in complex spectra. Normal and anomalous Zeeman and Paschen Back effects, intensity rules. (16 Lectures)

PART B

Unit-III

Molecular structure: Bonding mechanism, Types of bonds, Classification of electronic states in molecules: Orbital angular momentum, electronic energy and potential curves, resolution of total energy, Vibrational Structure of Electronic transitions. Vibrational analysis, Rotational Structure of Electronic bands: General relations, branches of a band, band-head formation, Intensity distribution in a vibrational band system. Franck-Condon Principle and its wave mechanical formulation. (15 Lectures)

UNIT IV

Infrared and Raman Spectroscopy: Rigid rotator, energy levels, spectrum, intensity of rotational lines, Harmonic oscillator: energy levels, eigenfunctions, spectrum, Raman effect, Rotational and Vibrational Raman spectrum. Infrared and Raman Spectrum, Vibrational frequency, and force constants. Non-rigid rotator including symmetric top: energy levels, spectrum, Vibrating-rotator energy levels, Infrared and Raman spectrum, Symmetry properties of rotational levels.

(15 Lectures)

Recommended Books:

- **1.** Atomic Spectra: H. Kuhn (Longman Green) 1969.
- 2. Molecular Spectra and Molecular Structure I: G. Herzberg (Van-Nostrand Rein-hold), 1950.
- **3.** Atomic Spectra: H.E. White (McGraw Hill) 1934.
- 4. Fundamentals of Molecular spectroscopy: Banwell and McCash (Tata McGraw Hill), 1994.
- 5. Molecular Spectroscopy: S. Chandra (Narosa), 2009.
- 6. Atomic, Molecular and Photons, Wolfgang Damtrodes (Springer), 2010.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 105 of 131

I. K. Gujral Punjab Technical University, Kapurthala

PHYS: -2	ICS-D	SE	BS	SHP-31	6-21	Nucle	ar Phys	sics	L-!	5, T-1, I	P-0	6 Cr	edits	
Pre-re	Pre-requisite: Understanding of senior secondary level Physics and Mathematics													
Course Objectives: The course contents cover general properties of nuclei, nuclear models, radioactive decays, nuclear reactions, fission and fusion processes and applications, interaction of gamma ray, charged particles and neutrons radiation with matter and respective detectors.														
Course Outcomes: At the end of the course, the student will be able to														
CO	1	Under	Inderstand the ideas of basics of nucleus and their energy.											
CO	2	Understand the procedures for nuclear fission and fusion.												
CO	3	Understand the relationship between various types of couplings.												
CO	4	Ability moder	to n e	have i experime	insight ents and	into the 1 into ho	interpl	ay betw najor op	veen the	eory, m stions ar	odels, a e being	and data address	a from sed.	
СО	5	A basi structu	c u ire,	ndersta , decay,	nding of and rea	f nuclea actions o	r proper of nuclei	ties and	models	s that de	escribe t	he quan	tum	
		Ma	pp	oing of	course	outco	mes wi	th the p	orograi	n outco	omes			
	PO1	PO	2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1		2	1	2	2	2	2	2	3	2	2	
CO2	2	2		1	2	1	2	2	1	3	3	2	1	
CO3	3	2 2 2 1 1 2 2 3 3 2							2	2				
CO4	2	2		2	2	1	1	2	2	1	3	1	2	
CO5	2	2		2	2	1	1	2	2	1	3	1	2	

Detailed Syllabus

PART A

UNIT-I

General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states.

Radioactivity decay: (a) Alpha decay: basics of a-decay processes, radioactive series, tunnel theory of a emission, Gamow factor, Geiger Nuttall law, a-decay spectroscopy. (b) β -decay: β -, β +, EC decays, beta energy spectrum, end point energy, Gamma decay: Gamma rays' emission & kinematics, internal conversion. (16 Lectures)

(B.Sc. Hons. Physics) Batch 2021 & Onwards

UNIT-II

Nuclear Models: Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, two nucleon separation energies, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model, concept of mean field, residual interaction, concept of nuclear force, Meson theory of nuclear forces. **(14 Lectures)**

PART B

Nuclear Reactions: Types of Reactions, Coulomb scattering (Rutherford scattering), Coulomb barrier, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct Reaction, resonance reaction.

Fission and Fusion: Nuclear reactors, Breeder reactors, nuclear fusion in stars, formation of heavier elements, nuclear reactor accidents – Chernobyl and Fukushima, nuclear weapons, Fusion reactors, International thermonuclear experimental reactor (ITER). **(15 Lectures)**

UNIT-IV

UNIT-III

Interaction of radiation and charged particles with matter: Interaction of gamma rays with matter - photoelectric effect, Compton scattering, pair production, Energy loss of electrons and positrons, Positron annihilation in condensed media, Stopping power and range of heavier charged particles, derivation of Bethe-Bloch formula, neutron interaction with matter.

Nuclear Detectors: Gas-filled detectors: ionization chamber, proportional counter and GM Counter. Basic principle of Organic and Inorganic scintillation detectors for gamma and electron radiation, photo-multiplier tube, Semiconductor detectors, Solid state nuclear track detectors, Neutron detector, Cherenkov detector, radiation monitoring devices. **(15 Lectures)**

Reference Books:

- **1.** Introductory Nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008).
- 2. Concepts of Nuclear Physics by Bernard L. Cohen. (Tata Mcgraw Hill, 1998).
- **3.** Concepts of Modern Physics by Arthur Beiser, Shobit Mahajan and S. Rai Choudhury (Tata Mcgraw Hill, 2006).
- 4. Modern Physics by J. Bernstein, Paul M. Fishbane, S. G. Gasiorowicz (Pearson, 2000).
- 5. Introduction to the physics of Nuclei & Particles, R.A. Dunlap. (Thomson Asia, 2004).
- **6.** Basic ideas and concepts in Nuclear Physics An Introductory Approach by K. Heyde (IOP-Institute of Physics Publishing, 2004).
- 7. Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).
- **8.** Physics and Engineering of Radiation Detection, Syed Naeem Ahmed (Academic Press, Elsevier, 2007).
- 9. Theoretical Nuclear Physics, J.M. Blatt & V.F.Weisskopf (Dover Pub.Inc., 1991).

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 107 of 131

PHYS -3	ICS-I	DSE BSHP-317-21 DISSERTATION L-5, T-1, P-0 6 Credi									edits		
Pre-re	equisi	i te: Unde	rstandin	g of Phy	vsics and	d Mather	matics						
Cours	Course Objectives:												
Course Outcomes: At the end of the course, the student will be able to													
CO1 Explain the significance and value of problem in physics, both scientifically and in the wider community.												in the	
СО	2	Design experime	Design and carry out experiments as well as accurately record the results of experiments.										
CO	3	Critically analyse and evaluate experimental strategies and decide which is mos appropriate for answering specific questions.										s most	
СО	94	Researcl physics.	n and co	ommunio	cate scie	entific k	nowledg	e in the	e contex	t of a t	opic rela	ated to	
CO)5	Explore	new are	as of res	search ir	n physic	s and all	lied field	ls of sci	ence an	d techno	ology.	
		Мар	ping of	course	outco	mes wi	th the p	program	n outco	omes			
	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	2	1	-	2	2	1	2	3	2	2	
CO2	2	2	1	2	1	1	1	1	1	3	3	1	
CO3	3	2	2	2	1	2	2	1	1	3	3	2	
CO4	2	2	2	2	1	2	2	1	1	3	2	2	
CO5	2	2	2	2	1	2	2	1	1	3	2	2	

Guidelines:

- The aim of project work in B.Sc. (H.S.) 5th semester is to expose the students to Instrumentation, Power Electronics, Microcontroller, Digital communication.
- It may include development of pulse processing electronic modules, power supplies, softwarecontrolled equipment in a research laboratory, or fabrication of a device. Project work based on participation in some ongoing research activity or analysis of data or review of some research papers is included.
- A student will work under the guidance of a faculty member from the department before the end of the 5th semester.
- A report of nearly 40 pages about the work done in the project (typed on both the sides of the paper and properly bound) will be submitted by a date to be announced by the Department.
- Assessment of the work done under the project will be carried out by a committee based on grasp of the problem assigned, efforts put in the execution of the project, degree of interest shown in learning the methodology, report prepared, and viva-voce/seminar, etc., as per guidelines.
I. K. Gujral Punjab Technical University, Kapurthala

PHYS DSE-4	ICS-	E	SHP-31	8-21		UNIC/	ATION CS	L-!	5, T-1, I	P-0	Cre	dits			
Pre-re	equisi	i te: Unde	erstandin	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics					
Cours unders interpi and be	e Ob stand ret and e able	jectives and use d analyz to design	The the basing of the basing of the basing of the character of the sime of the	fundame ic concep paracteris pplest de	ental ob ots of ti stics of ovices ar	pjectives he circu the ma nd transi	of this its found in comp mitting t	s cours d in rac ponents the sign	e are liocomm of com als.	to mako nunicatic municat	e the s ons, be d tion elec	student able to ctronics			
Cours	e Out	comes:	At the e	end of t	he cou	rse, sti	Idents	will be	able to						
СО	1	Introdu	roduced to the communication methods means and modes.												
CO	2	Compar	ompare the performance of AM, FM and PM schemes with reference to SNR												
CO	3	Understand noise as a random process and its effect on communication receivers													
CO	4	Evaluat	Address and noise as a random process and its effect on communication receivers valuate the performance of PCM, DPCM and DM in a digital communication system												
CO	5	Identify	source of	coding a	nd chan	nel codi	ng sche	mes for	a given	commu	inication	link			
		Ma	oping of	course	outco	mes wi	th the p	orograi	n outco	omes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	1	2	1	-	1	2	1	2	3	2	2			
CO2	2	2 1 2 1 1 1 1 1 1 1 1													
CO3	3	2	2 2 2 1 1 2 1 1 3 1 1												
CO4	2	2	2	2	1	1	2	1	1	3	1	1			
CO5	2	2	2	2	1	1	2	1	1	3	1	1			

UNIT-I

PART A

Electronic communication: Introduction to communication – means and modes. Need for modulation. Block diagram of an electronic communication system. Basic principles of propagation of e. m. waves through atmosphere and ionosphere, Brief idea of frequency allocation for radio communication system in India (TRAI). Electromagnetic communication spectrum, band designations and usage. Channels and base-band signals. Concept of Noise, signal-to- noise (S/N) ratio. (10 Lectures)

UNIT-II

AM Transmission and Reception: Mathematical analysis of AM, Power content of sidebands and carrier, Generation of AM signals, switching modulator, square law modulation, double sideband suppressed carrier modulation, Ring modulator, Coherent detection, Costas receiver, Receiver Parameters; Selectivity, Sensitivity, Fidelity, Super heterodyne Receiver. Generation of SSB signals; Filter method, Phase-shift Method, Demodulation of SSB-SC signals. Transmission and

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 109 of 131

reception of vestigial side band signals.

FM Transmission and Reception: Frequency Modulation (FM) and Phase Modulation (PM), modulation index and frequency spectrum, FM allocation standards, generation of FM signals, Direct and Indirect FM, Diode reactance modulator, Phase-Locked-Loop, Armstrong method, RC phase shift method, Frequency stabilized reactance FM transmitter. Frequency demodulators tuned circuit frequency discriminators; FM stereo multiplexing, FM detection using PLL.

(16 Lectures)

UNIT-III

PART B

Analog Pulse Modulation: Channel capacity, Sampling theorem, Basic Principles-PAM, PWM, PPM, modulation and detection technique for PAM only, Multiplexing.

Digital transmission – Need for digital transmission, Pulse code modulation, Sampling, Aliasing, quatisation error, Digital carrier modulation and demodulation techniques: Information capacity, Shannon limit of information capacity, ASK, FSK, PSK, Differential encoder and decoder, Differential PSK, modulators and detectors, Scrambling and descrambling.

Advanced communication: Overview of picture and sound transmission and reception, channel band width, television standards, Block diagram of T.V. receivers, Concept of colour picture transmission. (15 Lectures)

UNIT-IV

Satellite Communication: Introduction, need, Geosynchronous satellite orbits, geostationary satellite advantages of geostationary satellites. Satellite visibility, transponders (C - Band), path loss, ground station, simplified block diagram of earth station. Uplink and downlink. FDMA, TDMA, CDMA, SDMA.

Mobile Telephony System – Basic concept of mobile communication, frequency bands used in mobile communication, concept of cell sectoring and cell splitting, SIM number, IMEI number, need for data encryption, architecture (block diagram) of mobile communication network, simplified block diagram of mobile phone handset, 2G, 3G 4G and 5G concepts (qualitative only). GPS navigation system (qualitative idea only) (14 Lectures)

Reference Books:

- **1.** Communication Systems: B.P. Lathi, Wiley Eastern Limited.
- 2. Communication Systems, S. Haykin, 2006, Wiley India
- **3.** Principles of Communication Systems: Taub and Schilling, John Wiley and Sons.
- 4. Electronic Communications, D. Roddy and J. Coolen, Pearson Education India.
- 5. Advanced Electronics Communication Systems- Tomasi, 6th edition, Prentice Hall.
- 6. Electronic Communication systems, G. Kennedy, 3rd Edn., 1999, Tata McGraw Hill.
- 7. Principles of Electronic communication systems Frenzel, 3rd edition, McGraw Hill
- **8.** Electronic Communication system, Blake, Cengage, 5th edition.
- **9.** Wireless communications, Andrea Goldsmith, 2015, Cambridge University Press
- **10.** Digital Computer Electronics: Albert P. Malvino, Jerald A Brown Tata-McGraw Hill.
- 11. Digital signal Transmission: C.C. Bissell and D.A. Chapman, Cambridge University Press.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 110 of 131

PHYS: -5	ICS-D	DSE	BS	SHP-31	9-21	RENE AND E HARV	WABLE ENERG` ESTIN	ENERG (G	GY	L-5, T-	1, P-0	6 Cr	edits	
Pre-re	equisi	i te: U	Inder	standing	g of sen	ior seco	ndary le	evel Phys	sics and	Mather	natics	1		
Cours studer	e Obj	jectiv t to pi	res: rovia	The air le them	n of thi with exp	is cours posure a	e is not and hand	f just to ds-on lea	impart arning v	theored whereve	tical knc r possibi	wledge le	to the	
Cours	e Out	com	es: /	At the er	nd of the	e course	e, the sti	udent wi	ill be ab	le to				
CO	1	Unde alter	ersta mativ	nd the e /e form	energy o of energ	lemand Jy.	of world	d & disti	nguish I	between	traditio	nal and		
CO	2	Desc	Describe the concept of solar energy radiation and thermal applications.											
CO	3	Anal	yze r	making	of solar	cell and	its type	s.						
CO	4	Iden	itify l	nydroge	n as ene	ergy sou	ırce, its	storage	and tra	nsporta	tion met	hods.		
CO	5	Com	pare	wind e	nergy, w	vave ene	ergy and	locean	thermal	energy	convers	sion.		
		r	Мар	ping of	course	outco	mes wi	th the p	orograi	m outco	omes			
	PO1	. P	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1		2	1	-	1	2	2	2	3	2	2	
CO2	2	2		1	2	1	1	1	1	1	3	1	1	
CO3	3	2	2 2 2 1 1 2 2 1 3 2 2											
CO4	2	2		2	2	1	1	2	2	1	3	2	1	
CO5	2	2		2	2	1	1	2	2	1	3	2	1	

PART A

UNIT-I

Introduction to alternate sources of energy: Fossil fuels and nuclear energy, their limitation, need of renewable energy, non-conventional energy sources. Renewable energy source, Types of renewable energy, zero-carbon or low-carbon energy, Working of renewable energy sources: Solar energy, Wind energy, Hydro energy, Tidal energy, Geothermal energy, Biomass energy, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity. Scope and future of renewable energy. (**11 Lectures**)

Unit II

Solar energy and solar cell: Solar energy, its importance, storage of solar energy, solar pond, non-convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 111 of 131

circuits, and sun tracking systems.

Wind Energy harvesting: Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies.

(13 Lectures)

UNIT-III

PART B

Hydrogen Energy: Solar hydrogen through photo electrolysis and photocatalytic process, Physics of material characteristics for production of solar hydrogen.

Production storage and transportation: Storage processes, solid state hydrogen storage materials, structural and electronic properties of storage materials, new storage modes, safety factors, use of hydrogen as fuel; use in vehicles and electric generation, fuel cells, hydride batteries. (15 Lectures)

UNIT-IV

Ocean Energy: Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics, Wave Energy Devices, Tide characteristics and Statistics, Tide Energy Technologies, Ocean Thermal Energy, Osmotic Power, Ocean Bio-mass, Geothermal Energy: Geothermal Resources, Geothermal Technologies. Hydro Energy: Hydropower resources, hydropower technologies, environmental impact of hydro power sources.

Piezoelectric Energy harvesting: Introduction, Physics and characteristics of piezoelectric effect, materials, and mathematical description of piezoelectricity, Piezoelectric parameters and modeling piezoelectric generators, Piezoelectric energy harvesting applications, Electromagnetic Energy Harvesting: Linear generators, physics mathematical models, recent applications.

(15 Lectures)

Demonstrations and Experiments

- **1.** Demonstration of Training modules on Solar energy, wind energy, etc.
- 2. Conversion of vibration to voltage using piezoelectric materials
- **3.** Conversion of thermal energy into voltage using thermoelectric modules.

Reference Books:

- 1. Non-conventional energy sources G.D Rai Khanna Publishers, New Delhi
- **2.** Solar energy M P Agarwal S Chand and Co. Ltd.
- **3.** Solar energy Suhas P Sukhative Tata McGraw Hill Publishing Company Ltd.
- **4.** Godfrey Boyle, "Renewable Energy, Power for a sustainable future", 2004, Oxford University Press, in association with The Open University.
- 5. Dr. P Jayakumar, Solar Energy: Resource Assesment Handbook, 2009
- **6.** J.Balfour, M.Shaw and S. Jarosek, Photovoltaics, Lawrence J Goodrich (USA).

I. K. Gujral Punjab Technical University, Kapurthala

SEMESTER-VI

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 113 of 131

PHYS	ICS-C	-13 B	SHP-32	21-21	ELECTR C THEO	ROMAGI ORY	NETI	L-	5, T-1	, P-0	6 Cr	edits		
Pre-re	equisi	te: Under	standing	g of bas	ic physics	, electric	ity and	l magne	etism, v	vector alg	ebra.			
Cours	e Obj	ectives:	Electroi	nagnetio	c theory l	based or	n Maxv	vell's eq	uation	s establis	shes the	basic		
princip	ole of e	electrical a	and elect	tronic cil	rcuits ove	er the ent	tire fre	quency	spectr	um.				
Cours	e Out	comes: /	At the er	nd of the	e course,	the stude	ent wil	l be abl	e to					
CO	1	Analyze	the relat	ion betv	veen elect	trostatics	s & ma	gnetost	atics, I	Biot-Sarva	at law,			
		Ampere's potential	s law, Fa	araday's	Electroma	agnetic i	nductio	on & ve	rify wit	h vector a	and scal	ar		
СО	2	Basic ide	sic ideas about plane waves, their properties, linear, circular and elliptical ctromagnetic waves											
		electrom	sic ideas about plane waves, their properties, linear, circular and elliptical ectromagnetic waves amine the phenomena of wave propagation in different media and its interfaces											
CO	3	Examine	amine the phenomena of wave propagation in different media and its interfaces											
CO	4	Analyze t used in r	nalyze the nature of electromagnetic wave propagation in guided medium which are sed in microwave applications.											
CO	5	Ability t	o descr	ibe and	d make	calculati	ons o	f plane	e elect	tromagne	tic wav	ves in		
		homoger	neous m	edia, ind	cluding re	flexion c	of such	waves	in plar	ne bound	aries be	tween		
		nomoger	neous m		outcom	oc with	tha n	roaran						
		тар	ping or	course	outcom	es with	uie p	logiali	Tould	omes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
C01	2	1	2	1	-	1	2	1	2	3	2	2		
CO2	2	2	1	2	1	1	1	1	1	3	3	1		
CO3	3	2	2	2	1	1	2	1	1	3	3	2		
CO4	2	2	2	2	1	1	2	1	1	3	1	2		
CO5	2	2	2	2	1	1	2	1	1	3	1	2		

Detailed Syllabus

UNIT-I

Maxwell Equations: Review of Maxwell's equations. Displacement Current. Vector and Scalar Potentials. Gauge Transformations: Lorentz and Coulomb Gauge. Boundary Conditions at Interface between Different Media. Wave Equations. Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector. Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic

PARTA

Field Energy Density, Momentum Density and Angular Momentum Density. (12 Lectures)

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 114 of 131

EM Wave Propagation in Unbounded Media: Plane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media, relaxation time, skin depth.

EM Wave in Bounded Media: Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at plane interface between two dielectric media-Laws of Reflection & Refraction. Reflection & Transmission coefficients. Fresnel's Formulae for perpendicular & parallel polarization cases. **(10 Lectures)**

PART B

Polarization of Electromagnetic Waves: Description of Linear, Circular and Elliptical Polarization. Propagation of E.M. Waves in Anisotropic Media. Symmetric Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light. (12 Lectures)

UNIT-IV

UNIT-III

Wave Guides: Planar optical wave guides. Planar dielectric wave guide. Condition of continuity at interface. Phase shift on total reflection. Eigenvalue equations. Phase and group velocity of guided waves. Field energy and Power transmission.

Optical Fibres: Introduction, Brewster's law. Acceptance angle, Numerical Aperture. Step index and Graded Index. Single and Multiple Mode Fibres, material dispersion and pulse broadening in optical fibre, fible connector, splicer and couplers, application of optical fiber. **(15 Lectures)**

Reference Books:

- **1.** Introduction to Electrodynamics, D.J. Griffiths, 3rd Ed., 1998, Benjamin Cummings.
- 2. Elements of Electromagnetics, M.N.O. Sadiku, 2001, Oxford University Press.
- 3. Introduction to Electromagnetic Theory, T.L. Chow, 2006, Jones & Bartlett Learning
- 4. Fundamentals of Electromagnetics, M.A.W. Miah, 1982, Tata McGraw Hill
- **5.** Electromagnetic field Theory, R.S. Kshetrimayun, 2012, Cengage Learning
- 6. Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer
- 7. Electromagnetic Fields & Waves, P.Lorrain & D.Corson, 1970, W.H. Freeman & Co.
- 8. Electromagnetics, J.A. Edminster, Schaum Series, 2006, Tata McGraw Hill.
- **9.** Electromagnetic field theory fundamentals, B. Guru and H. Hiziroglu, 2004, Cambridge University Press.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 115 of 131

PHYS 14	ICS-C	-	BS	SHP-32	2-21	STATI MECH	STICA	L	L-3	3, T-1, I	P-0	4 Cro	edits
Pre-re	equisi	te: Un	nder	standing	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics		
Cours statisti	e Obj ical me	jectiv echanie	es: cs a	The a and it's i	im of t mplication	he coui ons.	rse is t	o familia	arize th	e stude	ents wit	h the i	dea of
Cours	e Out	come	s: A	At the er	nd of the	e course	, the stu	udent wi	ill be ab	le to			
CO	1	Under theor	rsta ies a	nd the and sim	Principl ple exar	es of T nples.	hermod	ynamics	and S	tatistica	l Mecha	nics-en	semble
CO	2	Under statist	Inderstand the relation between microscopic and macroscopic description through tatistical mechanics, know and can apply the laws of thermodynamics and principles of free energy Boson gasesblack body radiation. Debye theory. Bose-Einstein condensation										
CO	3	Bosor	oson gasesblack body radiation, Debye theory, Bose-Einstein condensation										
CO	4	under	rsta	nd statis	stics of p	particles	and sta	tistics o	f fields,		-		
CO	5	under	rstai	nd vario	us mod	els in sta	atistical mos wi	mechan	ics, and	apply t	hem		
		141	ahl	ping or	course	outcoi		ui uie ț	Jograi	nouted	JIIICS		
	PO1	PC)2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1		2	1	-	1	2	1	2	3	2	2
CO2	2	2 1 2 1 1 1 1 1 3 1 1										1	
CO3	3	2 2 2 1 1 2 1 3 2 2											
CO4	2	2		2	2	1	1	2	1	1	3	1	2
CO5	2	2		2	2	1	1	2	1	1	3	1	2

PART A

UNIT-I

Classical Statistics: Macrostate & Microstate, Elementary Concept of Ensemble, Phase Space, Entropy and Thermodynamic Probability, Maxwell-Boltzmann Distribution Law, Partition Function, Thermodynamic Functions of an Ideal Gas, Classical Entropy Expression, Gibbs Paradox, Sackur Tetrode equation, Law of Equipartition of Energy with proof – Applications to Specific Heat and its Limitations, Thermodynamic Functions of a Two-Energy Levels System, Negative Temperature.

(11 Lectures)

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Classical Theory of Radiation: Properties of Thermal Radiation. Blackbody Radiation. Pure temperature dependence. Kirchhoff's law. Stefan-Boltzmann law: Thermodynamic proof. Radiation Pressure. Wien's Displacement law. Wien's Distribution Law. Saha's Ionization Formula. Rayleigh-Jean's Law. Ultraviolet Catastrophe.

Quantum Theory of Radiation: Spectral Distribution of Black Body Radiation. Planck's Quantum Postulates. Planck's Law of Blackbody Radiation: Experimental Verification. Deduction of (1) Wien's Distribution Law, (2) Rayleigh-Jeans Law, (3) Stefan-Boltzmann Law, (4) Wien's Displacement law from Planck's law. (10 Lectures)

PART B

UNIT-III

Bose-Einstein Statistics: B-E distribution law, Thermodynamic functions of a strongly Degenerate Bose Gas, Bose Einstein condensation, properties of liquid He (qualitative description), Radiation as a photon gas and Thermodynamic functions of photon gas. Bose derivation of Planck's law. (9 Lectures)

UNIT-IV

Fermi-Dirac Statistics: Fermi-Dirac Distribution Law, Thermodynamic functions of a Completely and strongly Degenerate Fermi Gas, Fermi Energy, Electron gas in a Metal, Specific Heat of Metals, Relativistic Fermi gas, White Dwarf Stars, Chandrasekhar Mass Limit. **(15 Lectures)**

Reference Books:

- **1.** Statistical Mechanics, R.K. Pathria, Butterworth Heinemann: 2nd Ed., 1996, Oxford University Press.
- 2. Statistical Physics, Berkeley Physics Course, F. Reif, 2008, Tata McGraw-Hill.
- 3. Statistical and Thermal Physics, S. Lokanathan and R.S. Gambhir. 1991, Prentice Hall.
- **4.** Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and Gerhard L. Salinger, 1986, Narosa.
- **5.** Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.
- **6.** An Introduction to Statistical Mechanics & Thermodynamics, R.H. Swendsen, 2012, Oxford Univ. Press.

PHYS	ICS-C		BSHP-32	23-21	PHYS	ICS LA	B-VIII	L-(0, T-0 ,	P-4	2 Cr	edits		
Pre-re	equisi	te: Und	erstandir	g of sen	ior seco	ndary le	evel Phys	sics and	Mather	natics	1			
Cours and to	e Obj ols of	ectives experin	: The lat nental phy	oratory sics and	should . I data ai	help the nalysis.	e studen	t develo	op a bro	ad arraj	v of bas	ic skills		
Cours	e Out	comes	: At the e	nd of the	e course	e, the st	udent w	ill be ab	le to					
СО	1	Able to	verify th	e theore	tical cor	ncepts/la	aws lear	nt in the	eory cou	irses.				
CO	2	Traine	rained in carrying out precise measurements and handling sensitive equipment.											
CO	3	Understand the methods used for estimating and dealing with experimental uncertainties and systematic "errors".												
CO	Learn to draw conclusions from data and develop skills in experimental design.													
CO	5	Docum concise	Document a technical report which communicates scientific information in a clear and concise manner.											
		Ma	pping of	f course	outco	mes wi	th the p	orograi	n outco	omes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	2	1	2	1	2	1	2	3	2	2		
CO2	2	2 1 2 1 1 1 1 3 3 1										1		
CO3	3	2	2	2	2	1	2	1	1	3	2	2		
CO4	2	2	2	2	2	1	2	1	1	3	2	2		
CO5	2	2	2	2	1	1	2	1	1	3	2	2		

Note: Students are expected to perform 8-10 experiments from the list taking at least 2-3 from the virtual lab.

List of Experiments:

- **1.** To verify the law of Malus for plane polarized light.
- **2.** To determine the specific rotation of sugar solution using Polarimeter.
- **3.** To analyze elliptically polarized Light by using a Babinet's compensator.
- **4.** To study dependence of radiation on angle for a simple Dipole antenna.
- **5.** To determine the wavelength and velocity of ultrasonic waves in a liquid (Kerosene Oil, Xylene, etc.) by studying the diffraction through ultrasonic grating.
- **6.** To study the reflection, refraction of microwaves.
- 7. To study Polarization and double slit interference in microwaves.
- **8.** To determine the refractive index of liquid by total internal reflection using Wollaston's air-film.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 118 of 131

- **9.** To determine the refractive Index of (1) glass and (2) a liquid by total internal reflection using a Gaussian eyepiece.
- **10.**To study the polarization of light by reflection and determine the polarizing angle for air-glass interface.
- **11.**To verify the Stefan's law of radiation and to determine Stefan's constant.
- **12.**To determine the Boltzmann constant using V-I characteristics of PN junction diode.

Reference Books

- **1.** Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- **2.** Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- 3. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- 4. Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer

PHYS -6	ICS-I	DSE	BS	SHP-32	4-21	PART: PHYS	ICLE ICS		L-!	5, T-1, I	P-0	6 Cro	edits
Pre-re	equisi	ite: U	Inder	standing	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics	1	
Cours proper detect	e Ob ties a ors fo	jectiv and th r high	ves: heir 1 h ene	The co reaction. orgy phy.	urse co s, evolu sics.	ntents d tion of	cover th universe	e eleme e, Partic	entary µ cle acce	particles, lerators,	cosmic collidin	c rays, p ng beam	particle ns, and
Cours	e Out	tcom	es: /	At the er	nd of the	e course	e, the st	udent wi	ill be ab	le to			
CO	1	Und inter	ersta actic	nd basi ons.	c knowl	edge ab	out the	Standa	rd Mode	el of ele	mentary	/ particl	es and
CO	2	Abili of pi	Ability to apply fundamental conservation laws and symmetries to judge the viability of production and decay processes for nuclei and elementary particles. To impart the knowledge of fundamental particles, and fundamental interactions.										
CO	3	of production and decay processes for nuclei and elementary particles. To impart the knowledge of fundamental particles, and fundamental interactions.											
CO	4	Und and the	To impart the knowledge of fundamental particles, and fundamental interactions. Understand the roles of nuclear and particle physics in energy production, medicine, and astrophysics - for example how to search for dark matter and how to understand the origin of the elements in the universe.										
CO	5	To ir	mpar	t the kn	owledge	e of con	cept of	particles	and ho	w they a	are prod	luced.	
			Мар	ping of	course		mes wi	th the p	orogran	n outco	omes		
	PO1	. P	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1		2	1	2	1	2	1	2	3	3	2
CO2	2	2		1	2	1	1	1	1	1	3	3	2
CO3	3	2		2	2	1	1	2	1	1	3	3	2
CO4	2	2		2	2	1	1	2	1	1	3	3	1
CO5	2	2		2	2	1	1	2	1	1	3	3	1

Detailed Syllabus

PART A

UNIT-I Elementary Particles: Historical introduction, fermions and bosons, particles and antiparticles, Classification of elementary particles and their interactions -electromagnetic, weak, strong, and gravitational interactions.

Cosmic Connection: Cosmic rays, sources of cosmic rays and production of secondary cosmic rays in atmosphere, Van allen radiation belt, Carbon-14 and other isotopic datings, soft and hard cosmic rays, cosmic ray experiments: discovery of particles, Brief about ground-based experiments: GRAPES. (16 Lectures)

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 120 of 131

Symmetries and Conservation Laws: Invariance in classical mechanics and quantum mechanics, Energy, momentum, and angular momentum, Parity, baryons number, lepton number, Isospin, strangeness and charm, Charge conjugation, Time reversal invariance, CPT theorem, concept of quark model and color quantum number. (13 Lectures)

PART B

UNIT-III

Particle Properties and their reactions: Properties and lifetime of muon, pions: Determination of mass, spin, and parity. Lifetime of neutral pion and isotopic spin. Strange particles: V particles, charged K-mesons, mass and lifetime for charged K-mesons. Observations of different strange particles, strange particle production and decay. Strangeness and Hypercharge. **(15 Lectures)**

UNIT-IV

Particle Accelerators: Accelerators, Ion sources, Introduction to beam optics, beamline components – magnets and vacuum systems. Linear accelerator, Cockroft accelerator, Van-de Graaff generator, Tandem accelerator, Cyclotron, Electron synchrotron, Accelerator facilities in India. Introduction to colliding beam machines CERN LHC facility.

Detectors: Nuclear emulsions, Bubble chamber, Cloud chamber, Position-sensitive gas-filled and scintillator detectors, electromagnetic calorimeter, and hadron calorimeter. **(15 Lectures)**

Reference Books:

- **1.** Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press.
- 2. Introduction to Elementary Particles, D. Griffith, John Wiley & Sons.
- **3.** Quarks and Leptons, F. Halzen and A.D. Martin, Wiley India, New Delhi.
- **4.** Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).
- **5.** Physics and Engineering of Radiation Detection, Syed Naeem Ahmed (Academic Press, Elsevier, 2007).
- **6.** Concepts of Modern Physics by Arthur Beiser, Shobit Mahajan and S. Rai Choudhury (Tata Mcgraw Hill, 2006).
- 7. Modern Physics by J. Bernstein, Paul M. Fishbane, S. G. Gasiorowicz (Pearson, 2000).

PHYS: -7	ICS-D	SE	BS	SHP-32	5-21	ADVA MATH PHYS	NCED IEMATI ICS	CAL	L-!	5, T-1, I	P-0	6 Cro	edits	
Pre-re	equisi	te: U	nder	standing	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics			
Cours	e Obj	ectiv	es:	The em	phasis c	of the co	ourse is	on appli	cations	in solvir.	ng proble	ems of i	interest	
to phy	sicists	. Stud	dents	s are to	be exan	nined ba	nsed on j	problem	s, seen	and uns	seen.			
Cours	e Out	come	es: /	At the er	nd of the	e course	e, the stu	udent wi	ill be ab	le to				
СО	1	Deve vecto	elop or sp	knowleo ace.	lge and	unders	tanding	of the o	concept	that qu	antum s	states liv	ve in a	
CO	2	Deve	elop	the und	erstandi	ng and	need fo	r linear t	ransfor	mation.				
CO	3	unde vecto	understand the concept and have learned the basic skills in using linear algebra, vector calculus and tensor analysis in solving physics problems.											
CO	4	Use	the o	concept	of Calcu	ulus of V	'ariation	s & Vari	ational I	Principle				
СО	5	Unde elem	ersta Ienta	nd the iry aspe	vector cts of lir	and te near alg	ensor ai ebra, ge	nalysis ometry	provides and ana	s a kin alysis.	d of br	idge be	etween	
		ľ	Мар	ping of	course	outco	mes wi	th the p	orograr	n outco	omes			
	PO1	P	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
C01	2	1		2	1	-	1	2	3	2	3	2	2	
CO2	2	2 1 2 1 1 1 3 3 3 2 2										2		
CO3	3	2 2 2 1 1 2 3 3 3 2 2												
CO4	2	2 2 2 1 1 2 3 1 3 2 1												
CO5	2	2		2	2	1	1	2	3	1	3	1	1	

Detailed Syllabus

UNIT-T

PART A

Linear Algebra: Vector Spaces: Vector Spaces over Fields of Real and Complex numbers. Examples. Vector space of functions. Linear independence of vectors. Basis and dimension of a vector space. Change of basis. Subspace. Isomorphisms. Inner product and Norm. Inner product of functions: the weight function. Triangle and Cauchy Schwartz Inequalities. Orthonormal bases. Sine and cosine functions in a Fourier series as an orthonormal basis. Gram Schmidt orthogonalisation. (12 Lectures)

Linear Transformations: Introduction. Identity and inverse. Singular and non-singular transformations. Representation of linear transformations by matrices. Similarity transformation. Linear operators. Differential operators as linear operators on vector space of functions. Commutator of operators. Orthogonal and unitary operators and their matrix representations. Adjoint of a linear operator. Hermitian operators and their matrix representation. Hermitian differential operators and boundary conditions. Examples. Eigenvalues and eigenvectors of linear operators. Properties of eigenvalues and eigenvectors of Hermitian and unitary operators. Functions of Hermitian operators/ matrices. **(8 Lectures)**

PART B

UNIT-III

Tensors: Tensors as multilinear transformations (functionals) on vectors. Examples: Moment of Inertia, dielectric susceptibility. Components of a tensor in basis. Symmetric and antisymmetric tensors. The completely antisymmetric tensor. Non-orthonormal and reciprocal bases. Summation convention. Inner product of vectors and the metric tensor. Coordinate systems and coordinate basis vectors. Reciprocal coordinate basis. Components of metric in a coordinate basis and association with infinitesimal distance. Change of basis: relation between coordinate basis vectors. Change of tensor components under change of coordinate system. Example: Inertial coordinates & bases in Minkowski space, Lorentz transformations as coordinate transformations, Electromagnetic tensor and change in its components under Lorentz transformations. **(8 Lectures)**

UNIT-IV

Calculus of Variations & Variational Principle: Euler's Equation. Application to Simple Problems (shape of a soap film, Fermat's Principle, etc.). Several Dependent Variables and Euler's Equations. Example: Hamilton's Principle and the Euler-Lagrange equations of motion. Geodesics: geodesic equation as a set of Euler's equations.

Constrained Variations: Variations with constraints. Applications: motion of a simple pendulum, particle constrained to move on a hoop. (12 Lectures)

Reference Books:

- **1.** Mathematical Tools for Physics, James Nearing, 2010, Dover Publications
- 2. Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, and F.E. Harris, 1970, Elsevier.
- **3.** Introduction to Matrices and Linear Transformations, D.T. Finkbeiner, 1978, Dover Pub.
- 4. Linear Algebra, W. Cheney, E.W.Cheney & D.R.Kincaid, 2012, Jones & Bartlett Learning
- 5. Mathematics for Physicists, Susan M. Lea, 2004, Thomson Brooks/Cole
- **6.** Mathematical Methods for Physicis & Engineers, K.F.Riley, M.P.Hobson, S.J.Bence, 3rd Ed., 2006, Cambridge University Press.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

PHYS -8	ICS-I	DSE E	SHP-32	26-21	ADVA COND MATT	NCED DENSED ER PH) YSICS	L-!	5, T-1,	P-0	6 Cr	edits	
Pre-re	equisi	ite: Unde	erstandin	g of ser	ior seco	ondary le	evel Phys	sics and	Mather	natics			
Cours conder interac	e Ob nsed ctions	jectives matter effects.	The all only sics	im of th and to	ne propo familiar	osed co rize the	urse is studen	to intro ts with	duce the va	he basic arious a	notion aspects	of the of the	
Cours	CO1 Explain the significance and value of condensed matter physics												
CO	1	Explain	the sign	ficance	and valı	ue of co	ndensed	matter	physics				
со	 D2 The subject will be useful to gain an understanding of the interplay between classical – and quantum mechanical phenomena, and how microscopic/atomic processes acting between many atoms/molecules produces the typical properties of different solid-state matter. O3 Understand the Defects in crystals. 												
CO	CO3 Understand the Defects in crystals.												
CO	4	Learn t materia	he basi ls.	c techn	iques c	of synth	nesis an	id char	acteriza	tion of	nanosti	ructure	
СО	5	Criticall ^y appropr	/ analys iate for a	e and e answerir	evaluate ng specil	experii fic quest	mental s tions.	strategie	es and	decide	which is	s most	
		Ma	oping of	course	eoutco	mes wi	th the I	prograi	m outc	omes			
	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	2	1	-	1	2	1	2	3	2	2	
CO2	2	2	1	2	1	1	1	1	1	3	1	1	
CO3	3	2	2	2	1	1	2	1	1	3	1	1	
CO4	2	2	2	2	1	1	2	1	1	3	1	1	
CO5	2	2	2	2	1	1	2	1	1	3	1	1	

PART A

Crystal Types and Crystal Binding Ionic crystals: Types: Ionic crystals, Covalent crystals, Metal crystals, Molecular crystals, Hydrogen-Bonded crystals. Calculations of binding energies in Ionic crystals, Covalent crystals, Metal crystals, and the crystals of inert gases

Elastic Constants of Crystals: Analysis of stress. Analysis of strain. Dilation. Elastic compliance and stiffness constants. Elastic energy density. Elastic stiffness constants of cubic crystals. Elastic Waves in Cubic Crystals. Waves in [100], [110], and [111] directions. Experimental determination of elastic constants. (15 Lectures)

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Defects in crystals: Point Defects, Impurities, Vacancies, Schottky and Frenkel intrinsic vacancies, Extrinsic vacancies, Diffusion through solids, Measurement of diffusion constant and its applications, Kirkendall effect, Colour centers and coloration of crystals, F-center model, V-centers, Colour centers produced by other treatments.

Line Defects (or the Dislocations), Geometry of dislocations, Edge dislocation, Screw dislocations, Burgers vector, Stress fields of dislocations: dislocation energy, Dislocation densities, Shear strength of single crystals, Slip, Plastic deformation. (15 Lectures)

PART B

UNIT-III

NANOSCALE SYSTEMS: Length scales in physics, Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thin films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano systems, Quantum confinement: Applications of Schrodinger equation- Infinite potential well, potential step, potential box, quantum confinement of carriers in 3D, 2D, 1D nanostructures and its consequences. **(12 Lectures)**

UNIT-IV

SYNTHESIS OF NANOSTRUCTURE MATERIALS: Top-down and bottom-up approach, Photolithography. Ball milling. Gas phase condensation. Vacuum deposition. Physical vapor deposition (PVD): Thermal evaporation, E-beam evaporation, Pulsed Laser deposition. Chemical vapor deposition (CVD). Sol-Gel. Electro deposition. Spray pyrolysis. Hydrothermal synthesis. Preparation through colloidal methods. MBE growth of quantum dots.

CHARACTERIZATION: X-Ray Diffraction. Optical Microscopy. Scanning Electron Microscopy. Transmission Electron Microscopy. Atomic Force Microscopy. Scanning Tunneling Microscopy.

(16 Lectures)

Reference books:

- **1.** C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.).
- 2. S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publishing Company)
- **3.** K.K. Chattopadhyay and A. N. Banerjee, Introduction to Nanoscience and Technology (PHI Learning Private Limited).
- 4. Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).
- **5.** M. Hosokawa, K. Nogi, M. Naita, T. Yokoyama, Nanoparticle Technology Handbook (Elsevier, 2007).
- 6. Bharat Bhushan, Springer Handbook of Nanotechnology (Springer-Verlag, Berlin, 2004).

PHYS -9	ICS-D	SE B	SHP-32	7-21	EXPE TECH	RIMEN [.] NIQUE	TAL S	L-!	5, T-1 , I	P-0	6 Cro	edits		
Pre-re	equisi	te: Unde	rstandin	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics				
Cours measu role ar widely is used	e Obj premen nd sign c emplo d in ex	ectives: In theory Inificance Dyed explored Interpretation Dyeriment	The ain and exp of exper erimenta al physic	n of cour eriment imentat. al techni cs resear	rse is to design. ion in th iques an rch.	introdu The pri he field nd be in	ice stude mary go of scienc troduced	ents to l pal is to l ce. Stud d to son	basic ex _l develop dents wi ne of th	perimen an appi ill be ex e instru	tal techi reciation posed to mentatio	niques, o of the o some on that		
Cours	e Out	comes:	At the er	nd of the	e course	e, the st	udent w	ill be ab	le to					
СО	1	mastere	d the us	e of digi	tal mult	imeters	and osc	illoscope	es to me	easure D	C and A	VC		
	2	voltages	astered the assessment of reasonable experimental uncertainty in a variety of											
0	2	different	a the as	sessmer	it of rea	sonable	experin bow to	nental u minimi	ncertain	ty in a v	ariety o	Г		
	2	rigorous	fferent measurements and understood how to minimize that uncertainty.											
	3	to verify	theoreti	ical pred	lictions.	ii uata u	sing acc	epteu e		119515 1110		yies		
CO	4	Use the commun	tools, icate ide	methodo eas and	ologies, explana	langua tions.	ge and	conven	tions of	f physic	s to te	st and		
CO	5	learned	to efficie	ently sea	arch the	scientif	ic literat	ture and	l critical	ly asses	s the sc	ientific		
		merit of	what the	ey read.										
		Мар	ping of	course	outco	mes wi	th the p	program	n outco	omes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	1 2 1 2 1 2 1 2 2											
CO2	2	2	2 1 2 2 1 1 1 3 2 2											
CO3	3	2	2	2	2	2	2	1	2	3	2	2		
CO4	2	2	2	2	1	1	2	1	2	3	1	1		

CO5

PART A

Measurements: Accuracy and precision. Significant figures. Error and uncertainty analysis. Types of errors: Gross error, systematic error, random error. Statistical analysis of data (Arithmetic mean, deviation from mean, average deviation, standard deviation, chi-square) and curve fitting. Gaussian distribution. (10 Lectures)

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 126 of 131

Signals and Systems: Periodic and aperiodic signals. Impulse response, transfer function and frequency response of first and second order systems. Fluctuations and Noise in measurement system. S/N ratio and Noise figure. Noise in frequency domain. Sources of Noise: Inherent fluctuations, Thermal noise, Shot noise, 1/f noise.

Shielding and Grounding: Methods of safety grounding. Energy coupling. Grounding. Shielding:Electrostatic shielding. Electromagnetic Interference.(14 Lectures)

PART B

UNIT-III

Transducers & industrial instrumentation (working principle, efficiency, applications): Static and dynamic characteristics of measurement Systems. Generalized performance of systems, Zero order first order, second order and higher order systems. Electrical, Thermal and Mechanical systems. Calibration. Transducers and sensors. Characteristics of Transducers. Transducers as electrical element and their signal conditioning. Temperature transducers: RTD, Thermistor, Thermocouples, Semiconductor type temperature sensors (AD590, LM35, LM75) and signal conditioning. Linear Position transducer: Strain gauge, Piezoelectric. Inductance change transducer: Linear variable differential transformer (LVDT), Capacitance change transducers. Radiation Sensors: Principle of Gas filled detector, ionization chamber, scintillation detector.

(16 Lectures)

UNIT-IV

Digital Multimeter: Comparison of analog and digital instruments. Block diagram of digital multimeter, principle of measurement of I, V, C. Accuracy, and resolution of measurement.

Impedance Bridges and Q-meter: Block diagram and working principles of RLC bridge. Q-meter and its working operation. Digital LCR bridge.

Vacuum Systems:Characteristics of vacuum:Gas law, Mean free path. Application of vacuum.Vacuum system-Chamber, Mechanical pumps, Diffusion pump & Turbo Modular pump, Pumping
speed, Pressure gauges (Pirani, Penning, ionization).(12 Lectures)

Reference Books:

- 1. Measurement, Instrumentation and Experiment Design in Physics and Engineering,
- 2. M. Sayer and A. Mansingh, PHI Learning Pvt. Ltd.
- 3. Experimental Methods for Engineers, J.P. Holman, McGraw Hill
- **4.** Introduction to Measurements and Instrumentation, A.K. Ghosh, 3rd Edition, PHI Learning Pvt. Ltd.
- 5. Transducers and Instrumentation, D.V.S. Murty, 2nd Edition, PHI Learning Pvt. Ltd.
- **6.** Instrumentation Devices and Systems, C.S. Rangan, G.R. Sharma, V.S.V. Mani, Tata McGraw Hill
- 7. Principles of Electronic Instrumentation, D. Patranabis, PHI Learning Pvt. Ltd.
- 8. Electronic circuits: Handbook of design & applications, U.Tietze, Ch.Schenk, Springer

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 127 of 131

PHYSICS-	BSHP-328-21	RADIATION	L-5, T-1, P-0	6 Credits
DSE-10		SAFETY		
Pre-requisite: U	Inderstanding of sen	ior secondary level Phys	sics and Mathematics	

Course Objectives: The aim of this course is for awareness and understanding regarding radiation hazards and safety. The list of laboratory skills and experiments listed below the course are to be done in continuation of the topics.

Course Outcomes: At the end of the course, the student will be able to

CO	1 (Jndersta	nd the l	pasics of	f nuclea	r and pa	rticle ph	nysics.				
CO	2 9	Students	will der	nonstrat	te know	ledge of	radiatio	n safety	/.			
CO	3 (Students of radiati	will use on haza	e critical rdous.	thinking	g and pr	oblem-s	olving s	kills to	understa	and the	impact
CO	4 (Compare the effects of radiation has on a variety of biological and non-biological materials.										
CO	5 ä	account environm	for the nental ch	role of i nallenge	radiatior s.	n physic	s in a s	ocietal (context,	includir	ng clima	te and
		Мар	ping of	course	outco	mes wi	th the p	orograr	n outco	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

CO1	2	1	2	1	-	3	2	1	2	3	2	2
CO2	2	2	1	2	1	3	1	1	1	3	3	2
CO3	3	2	2	2	1	3	2	1	1	3	3	1
CO4	2	2	2	2	1	3	2	1	1	3	3	1
CO5	2	2	2	2	1	3	2	1	1	3	2	1

Detailed Syllabus:

UNIT-I

PART A

Basics of Atomic and Nuclear Physics: Basic concept of atomic structure; X rays characteristic and production; concept of bremsstrahlung and auger electron, The composition of nucleus and its properties, mass number, isotopes of element, spin, binding energy, stable and unstable isotopes, law of radioactive decay, Mean life and half-life, basic concept of alpha, beta and gamma decay, concept of cross section and kinematics of nuclear reactions, types of nuclear reaction, Fusion, fission. (15 Lectures)

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 128 of 131

Interaction of Radiation with matter: Types of Radiation: Alpha, Beta, Gamma and Neutron and their sources, sealed and unsealed sources, Interaction of Photons - Photo- electric effect, Compton Scattering, Pair Production, Linear and Mass Attenuation Coefficients, Interaction of Charged Particles: Heavy charged particles - Beth-Bloch Formula, Scaling laws, Mass Stopping Power, Range, Straggling, Channeling and Cherenkov radiation. Beta Particles- Collision and Radiation loss (Bremsstrahlung), Interaction of Neutrons- Collision, slowing down and Moderation. (15 Lectures)

PART B

Radiation detection and monitoring devices: Radiation Quantities and Units: Basic idea of different units of activity, KERMA, exposure, absorbed dose, equivalent dose, effective dose, collective equivalent dose, Annual Limit of Intake (ALI) and derived Air Concentration (DAC). Radiation detection: Basic concept and working principle of gas detectors (Ionization Chambers, Proportional Counter, Multi-Wire Proportional Counters (MWPC) and Gieger Muller Counter), Scintillation Detectors (Inorganic and Organic Scintillators), Solid States Detectors and Neutron Detectors, Thermo luminescent Dosimetry. (15 lectures)

UNIT-IV

UNIT-III

Radiation safety management: Biological effects of ionizing radiation, Operational limits and basics of radiation hazards evaluation and control: radiation protection standards, International Commission on Radiological Protection (ICRP) principles, justification, optimization, limitation, introduction of safety and risk management of radiation. Nuclear waste and disposal management. Brief idea about Accelerator driven Sub-critical system (ADS) for waste management.

Application of nuclear techniques: Application in medical science (e.g., MRI, PET, Projection Imaging Gamma Camera, radiation therapy), Archaeology, Art, Crime detection, Mining and oil. Industrial Uses: Tracing, Gauging, Material Modification, and Food preservation. **(15 Lectures)**

Reference Books:

- 1. W.E. Burcham and M. Jobes Nuclear and Particle Physics Longman (1995)
- 2. G.F.Knoll, Radiation detection and measurements
- **3.** Thermoluninescense Dosimetry, Mcknlay A.F., Bristol, Adam Hilger (Medical Physics Handbook)
- **4.** W.J. Meredith and J.B. Massey, "Fundamental Physics of Radiology". John Wright and Sons, UK, 1989.
- **5.** J.R. Greening, "Fundamentals of Radiation Dosimetry", Medical Physics Hand-Book Series, No.6, Adam Hilger Ltd., Bristol 1981.
- **6.** Practical Applications of Radioactivity and Nuclear Radiations, G.C. Lowental and P.L. Airey, Cambridge University Press, U.K., 2001
- **7.** A. Martin and S.A. Harbisor, An Introduction to Radiation Protection, John Willey & Sons, Inc. New York, 1981.
- **8.** W.R. Hendee, "Medical Radiation Physics", Year Book Medical Publishers Inc. London, 1981.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 129 of 131

I. K. Gujral Punjab Technical University, Kapurthala

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 130 of 131

		UGC			IKG PTU		
Type of	Nomenclature	Credits	Credits	Total	Credits	Credits	Total
course		in	in	Credit	in	in	Credit
		Theory	Practica	S	Theory	Practica	S
Core	PHYSICS-C	14*4=5	14*2=28	84	14*4=5	13*2=26	82
courses		6			6		
Electives	Department						
	Specific Elective	4*4=16	4*2=8	24	4*6=24	-	24
	(PHYSICS-DSE)						
	General Elective	14*4	14*2	24	6*4=24	3*3=6	30
	(GE)						
Ability	Ability	2*2	-	04	5*2=10	-	10
Enhanceme	Enhancement						
nt Course	Compulsory						
	(AEC)						
	Skill	2*2	-	04	2*2=4	-	04
	Enhancement						
	Elective Course						
	(PHYSICS-SEC)						
	Total credits			140			150

Comparison of Credit system with UGC