I.K. Gujral Punjab Technical University, Kapurthala Department of Physical Sciences

Minutes of Meeting

Ref No. /KGPTU/PS/171

Date: 17.09.2021

A meeting of members of Board of Studies (BoS)-Physical Sciences, Nano Science and Engineering, IKGPTU was held on 16.09.2021 in the Department of Physical Sciences, I K Gujral Punjab Technical University, Kapurthala via online mode.

Following members of BoS were present and actively participated in discussion:

- 1. Dr. Hitesh Sharma (Chairperson)
- 2. Dr. Amit Sarin, Member
- 3. Dr. Kanchan L. Singh, Member
- 4. Dr. Anupamdeep Sharma, Member
- 5. Dr. B.C. Chaudhary, Member
- 6. Dr. Harleen Dahiya, Member
- 7. Dr. H. M. Mittal, Member
- 8. Dr. Monika Randhawa
- 9. Dr. Munish Aggarwal, Member
- 10. Dr. Maninder Kaur, Member
- 11. Dr. Varinderjit Singh, Member
- 12. Dr. Neetika (coordinator)
- 13. Ms. Nikita Thakur, M.Sc. (2nd Year) -Student representative
- 14. Ms. Gurmeet Kaur, M.Sc. (2nd Year) -Student representative

Following members could not attend the meeting:

- 1. Dr Rakesh Dogra, Member
- 2. Dr A. K. Tyagi, Member

The Board of Studies discussed on all the agenda points and following recommendations were made:

Agenda 7.1 To consider the Program outcomes (POs) and Course outcomes (COs) of Pre-Ph.D. course work

All BoS members discussed the Program outcomes (POs) and Course outcomes (COs) of the Pre-PhD course work. After incorporating suggestions, BOS members recommended the Program outcomes (POs) and Course outcomes (COs) of various subjects Pre-PhD course for approval w.e.f. 2021 academic session.

The copy of revised Program outcomes (POs), and Course outcomes (COs) of Pre-Ph.D. course work is enclosed as Annexure-I.

Half .

1411. 1 (200) 231

44

Agenda 7.2 Revision of study scheme, course codes for B.Sc. (Hons) Physics

University has constituted a common BoS for university campuses and affiliated colleges accordingly the uniform course scheme from 2021-22 is to be followed. All BoS members discussed the study scheme and syllabus of B.Sc. (Hons) Physics 1st and 2nd semester to be implemented for the session 2021-21 with changes in course codes as per the new scheme.

All BoS members recommended the Study scheme and syllabus of B.Sc. (Hons) Physics 1st and 2nd semester to be implemented for the session 2021-21 onwards. The copy of study scheme and syllabi of B.Sc. (Hons.) Physics is attached here as Annexure-II.

Agenda 7.3 Revision of study scheme, course codes, and syllabus of M.Sc. (Physics)

All BoS members discussed and compared the M.Sc. Physics study scheme and syllabus of i) affiliated campuses scheme implemented in 2018 and ii) University campus scheme adopted in 2019. It has been observed that there is only less than 5% difference in the two schemes.

The board members unanimously decided that the University campus scheme-2019 may be implements for University and Affiliated campuses uniformly for the session 2021-22 onwards. The copy of updated study scheme, course codes and syllabi M.Sc. Physics is attached here as Annexure-III.

Agenda 7.4 Revision of marks distribution in internal and external examination of M.Sc. Physics scheme.

All BoS members discussed the present evaluation scheme (70:30) for the external and internal evaluation of theory courses in the University campus and affiliated campuses.

BoS members recommended that evaluation scheme may be changed to the (60:40) for the external and internal structure. The copy of updated study scheme, course codes, syllabi, MST and end semester question paper pattern of M.Sc. Physics is attached here as Annexure-III.

Agenda 7.5 Revision of study scheme, course codes, and syllabus of various physics courses in B. Tech. programs

> All the BoS members thoroughly discussed the syllabus of various physics theory and labs courses in B. Tech. first year. As per the feedback received from the various stake holders, minor revision in the syllabus of courses on Mechanics of

July of

Page 2 of 4

Solids (BTPH-101-18) were carried out, and a unit on introduction to Quantum mechanics is added in Semiconductor Physics (BTPH-104-18) and Semiconductor and Opto-electronics Physics (BTPH-105-18). The title of course on "Introduction to Physics: Biotechnology" (BTPH-107-18) is changed to the Introduction to Modern Physics. Further, the list of experiments is also updated in all the Lab courses.

All the BoS members recommended that the following courses may be revised. List of theory courses with new codes

- Mechanics of Solids (BTPH-101-21)
- Semiconductor Physics (BTPH-104-21)
- Semiconductor and Opto-electronics Physics (BTPH-105-21)
- Introduction to Modern Physics (BTPH-105-21)

List of Lab courses with new codes

- Mechanics of Solids Lab (BTPH-111-21)
- Optics and Modern Physics Lab (BTPH 112-21)
- Electromagnetism Lab (BTPH-113-21)
- Semiconductor Physics Lab (BTPH-114-21)
- Semiconductor and Opto-electronics Physics (BTPH-115-21)
- Optics and Electromagnetism Lab (BTPH116-21)
- Physics Lab (BTPH-117-21)

The copy of updated syllabi and course codes of B. Tech. first year courses are attached here as Annexure-IV.

TableRegarding preparation of syllabus of Bridge Courses of Physical Sciences.Agenda 7.6

The University has received the Punjab Govt. Notification No. TECH-TE-2013/4/ 2021-4TE2/1/229119/2021 and No.TECH-TE-2013/4/2021-4TE2/1/229120/2021 dated 13.08.2021, in which the Punjab Govt. has notified the criteria of B.Tech. 1st year and LEET Students admission (copies of notification are attached as Annexure IX). The relevant portion is as under:-

All those candidates who have passed the 10+2 examination from a board recognized or established by central/state government through a legislation and a member of Council of Boards of School Education (COBSE), New Delhi with Physics/Mathematics/Chemistry/Computer Science/Electronics/ Information Technology/Biology/Informatics Practices/ Biotechnology /Technical Vocational Subject /Agriculture/ Engineering Graphics / Business Studies / Entrepreneurship. (any of three)

Obtained atleast 45% marks (40% marks in case of candidates belonging to reserved category) in the above subject taken together.

Heelt or

Those candidates who have passed diploma in any Engineering Trade from Punjab State Board of Technical Education & Industrial Training, Chandigarh or Sant Longowal Institute of Engineering and Technology, Longowal (SLIET), or any such examination from any other recognized State Board of Technical Education with at least 45% marks (40% marks in case of candidates belonging to reserved category)

(The Universities will offer suitable bridge courses such as Mathematics, Physics, Engineering drawing, etc., for the students coming from diverse backgrounds to achieve desired learning outcomes of the programme)

OR

The candidates who have passed two years certificate course from Sant Longowal Institute of Engineering and Technology, Longowal (SLIET) shall be eligible.

Therefore, syllabus for bridge course for Physical Sciences is required to be prepared by BoS.

All BoS members discussed the content of lecture-based module for Bridge course in Physics proposed by AICTE. The bridge course comprising of nine modules in Classical Mechanics, Mechanical Properties of Solids and Fluids, Waves and Oscillations, Electricity and Magnetism, Electromagnetic Signal, Wave Optics, Semiconductor Electronics, Modern Physics, Atomic and Nuclear Physics prescribed by AICTE. Copy of syllabus is attached here as Annexure V.

BoS members recommended that lecture based module of Bridge course in physics comprising of 9 modules (22 hrs) proposed by the AICTE may be adopted for all non-physics background students. Copy of syllabus is attached here as Annexure V.

109/2021

Dr Hitesh Sharma Chairperson-BoS (Physical Sciences, Nanoscience and Engineering)

Annexure-I

Pre-Ph.D.

Course Structure and Syllabus (Based on Choice Based Credit System) 2021 onwards

Hleeth A.

Pre-PhD. Program

2

PROGRAM OUTCOMES: At the end of the program, the student will be able to:

PO1	Apply the scientific knowledge to solve the complex physics research problems.
PO2	Identify, formulate, and analyze advanced scientific problems reaching substantiated conclusions using first principles of physics, physical, and natural sciences
PO3	Design solutions for advanced scientific problems and design system components or processes that meet the specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal consideration.
PO4	Use research-based knowledge and methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Create, select, and apply appropriate techniques, resources, and modern scientific tools to complex physics problems with an understanding of the limitations
PO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional scientific practice.
PO7	Understand the impact of the scientific solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
PO8	Apply ethical principles and commit to the norms of scientific practice
PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communicate effectively on scientific activities with the Scientific/Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Demonstrate knowledge and understanding of the scientific principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of scientific and technological change.

Hull

SCHEME OF Pre-Ph.D. COURSE WORK

Course Code	Course Title	All	Load ocati	on	M: Distri	arks bution	Total Marks	Credits
		L	T	P	Internal	External		
PHS900	Research Methodology	3	1	-	40	60	100	4
PHS901	Theoretical methods in Physics	3	1	-	40	60	100	4
PHS902	Techniques in Experimental Physics	3	1	-	40	60	100	4
PHS903	Advanced Condensed Matter Physics	3	1	-	40	60	100	4
PHS904	Computational Physics	3	1	-	40	60	100	4
PHS905	Nano Materials	3	1	-	40	60	100	4
PHS906	Advanced Particle Physics	3	1	-	40	60	100	4
PHS907	Renewable Energy Resources	3	1	-	40	60	100	4

Hell

3

CORE COURSE

PHS 9	00	Researc	ch Meth	nodolog	gy		L-3	3, T-1 , I	P-0	4 Crea	lits	
Pre-ree	quisite:	Underst	anding	of post	graduat	e level pł	ysics					
Course student treatme researc	e Objec s with thent in di h in phy	tives: T ne resear fferent sics as a	the object ch meth courses career.	ective c nodolog and fc	of the co gies and t or develo	ourse on echnique oping a s	Researces that he trong b	ch met e/she ne ackgrou	hodolog eds for and if h	gy is to understa ne/she c	equip t anding th hooses t	he Ph.D eoretica o pursu
Course	Outco	mes: At	the end	l of the	course, t	he stude	nt will b	e able t	0			
C01	unde	rstand t	he need	for res	earch an	d basic o	bjective	of rese	arch.			
CO2	work	with di	fferent rious fo	types o rmattin	f docum	ents, organd write	anize the	em into	differen	nt sectio	ons, subs	ections,
CO3	hand using	le data, g any plo	plot gra	phs, dr. oftware	aw flow s.	charts, si	urvey re	search i	related j	oroblen	ns and in	fer data
CO4	unde and s	rstand the	ne meth	ods use ors".	ed for est	timating a	and deal	ing wit	h experi	imental	uncertai	nties
C05	ident a res	ify and earch pr	define a oposal	appropr using th	iate rese ne scient	arch prot	entation	d docum	ient a re	esearch	paper, th	esis, or
Mappi	ng of co	urse ou	tcomes	with th	ne pro <mark>g</mark> i	am outc	omes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
C01	3	3	2	2	2	1	1	2	2	1	1	2
CO2	3	3	2	1	2	1	1	2	2	1	1	2
CO3	3	3	2	2	2	1	1	2	2	1	1	2
CO4	3	3	2	2	2	1	1	2	2	1	1	2
					1				1	1	1	

- Introduction to Research, Objectives of research, motivation in research, types of research, significance of research, research methods vs methodology, research process in flow chart, criteria of good research, problems encountered by researchers in India.
- Difference between TEX and LATEX, basics of using latex, latex input files, input file structures, layout of the document, titles, chapter and sections, cross references, foot note, environments, typesetting building blocks of a mathematical formula, matrices, tables, including encapsulated postscript graphics, bibliography, downloading and installing LATEX packages.
- Introduction to origin, basics of importing and exporting data, working with Microsoft excel, graphing, statistics in origin, hypothesis testing power and sample size, basic linear regression and curve fitting.
- 4. Error Analysis and Basic Statistics: Measuring errors, uncertainties, parent and sample distributions, mean and standard deviation of distribution, types of probability distribution, instrumental and statistical uncertainties, propagation of errors, specific error formulas, method of least square fittings.
- Multivariate analysis: Multiple regression, multiple discriminant analysis, multiple analysis of variance, canonical correlation analysis, Factor analysis cluster analysis, path analysis. Computational techniques.
- 6. Survey of literature: The students will be required to review literature in their respective disciplines and submit an assignment for evaluation.

Text Books:

- 1. Michael P. Marde. "Research Methods for Science", Cambridge University Press, 2011.
- 2. Tobian Oetiker, Hubert Partl, Hrene Hyna and Elisabeth Schlegl, "The not so short introduction to LATEX"
- 3. T. Veerarajan and T. Ramachandran "Numerical methods", Tata McGraw Hill, New Delhi, 2008.
- 4. Philip R. Bevington and D. Keith Robinson, "Data reduction and error analysis for physical sciences" McGraw-Hill Education, 2002.

OV

Core: Subject Related Theory Paper

PHS	5 901	Theore	tical m	ethods	in Phys	ics	L-	3, T-1,	P-0	4 Cre	dits	
Pre-1	requis	ite: Und	erstand	ing of p	ost grad	uate leve	l physic	S				_
Cour Ph.D treatr to pu	se Ob stude nent ir rsue re	jectives ents with different esearch in	The of the m tresea physic	bjective athema rch pro cs as a c	of the c tical tec blems an career.	ourse on hniques nd for de	Theore that he/s veloping	tical m she nee g a stroi	ethods ds for i ng back	in Physundersta	sics is to anding th if he/she	equip theoreticate choose
Cour	se Ou	tcomes:	At the	end of t	he cours	se, the stu	ident wi	ll be ab	le to		-	
CO1	unde	erstand v	arious	theoreti	cal meth	ods used	l in adva	ince cou	irses in	physics	now a d	ays.
CO2 CO3	unde	erstand N erstand a	MR ar nd solv	nd other e the K	related ohn-Sha	technique m equati	es and d ons and	ensity f theoren	unction ns in co	al theor	y. d matter	physics
CO4	unde	erstand t	he elem	entary	particle	physics, t	heir inte	eraction	s and r	elativis	tic kinem	atice
C O 5	anal	yze and	solve v	arious n	uclear s	tructure b	based mo	odels.	o, una r	eracivis	tre kinen	laties.
Mapp	oing of	f course	outcon	nes with	h the pr	ogram o	utcomes	5				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
C O 1	3	3	2	2	2	1	1	2	2	1	1	2
CO2	3	3	2	1	2	1	1	2	2	1	1	2
CO3	3	3	2	2	2	1	1	2	2	1	1	2
		-	100	-	2	+						1
204	3	3	2	2	2	1	1	2	2	1	1	2

- Theoretical Techniques in Condensed Matter Physics: Theory of NMR techniques, Theory of Anharmonic solids, Theory of Liquid state.
- Advanced Quantum Techniques: Review of electronic properties, Density Functional Theory, Hohenberg- Kohn theorems, Kohn-Sham ansatz, Intricacies for exchange & correlation, Solving Kohn-Sham equations, Norm conserving pseudopotentials, Unscreening and core corrections, Transferability and hardness of pseudopotentials.
- 3. Theoretical Techniques in Particle Physics: Classification of fundamental forces; Elementary particles (quarks, baryons, mesons, leptons); Spin and parity assignments, isospin, strangeness; Gell-Mann-Nishijima formula; C, P, and T invariance and applications of symmetry arguments to particle reactions, party, nonconservation in weak interaction; Relativistic kinematics
- 4. Theoretical Techniques in Nuclear Physics: Review of static properties, binding energy, density, nuclear forces, and potentials, shell model, collective models and energy levels, Hartree - Fock theory of nuclear shape and states with good J Quantum number and applications, correlations in nuclear matter and exclusive principle correlations, Bethe- Goldstone equation and G-matrix, heavy-ion physics at low and intermediate energies, simulations and QMD model, hot and dense matter and multi fragmentation.

Text Books:

- 1. Solitons an Introduction by P.G. Drazin and R.S. Johan, Cambridge Univ. Press, 1989.
- 2. Chaos in Dynamical Systems by E. Ott, Cambridge Univ., Press, 1993.
- Gauge theory of Elementary Particles by T.P. Cheng and Li, Oxford university press, 2000.
- 4. Structure of the Nucleus by M.A. Preston and R.K Bhadhuri, CRC Press, 1993.
- 5. Quantum Theory of Solids by C. Kittel, Wiley 2nd edition, 1987.
- 6. Liquid State Physics by N.H. March and M.P. Tosi, World Scientific, 2002.
- 7. Quantum field theory by Lahiri and Pal, Narosa Publishing house, 2007.

Je.

R

PHS	5 902	Techni	ques in	Exper	imental	Physics	L-	3, T-1,	P-0	4 Cre	dits	
Pre-	requisi	i te: Und	erstand	ing of p	oost grad	uate leve	l physic	S				-
Cour the I exper	r se Ob Ph.D. rimenta	jectives students al aspect	The ot with s of the	ojective the e: subjec	of the co xperiment.	ourse on T ntal tech	° echniq niques	ues in I that he	E xperin e/she n	nental l eeds f	Physics i or unde	s to equi rstandin
Cour	se Ou	tcomes:	At the	end of	the cours	se, the stu	ident wi	II be ab	le to	-		
C01	Und and areas	erstand electror s.	various n micro	experi	mental t used in	echnique condense	s such a d matte	as optic r and r	al micr nano-teo	oscopy chnolog	, thermal y based	, surfac researc
CO2	Use	the imp	lication	s of stat	tistical e	Tor analy	sis for e	vnerim	ental de	ata		
CO3	Kno anal	w about ysis whi	t the di	fferent ing nuo	types of clear stru	the radi	ation de	etectors	and sp	ectrosc	opy for	radiatio
C O 4	Equi the v	pped wi various l	ith the l aborato	basic kı ries acr	nowledge oss the v	e about th vorld.	ne spect	roscopi	c exper	imental	method	s used in
CO5	Appl	ly the l troscopi	c analy:	dge of sis of at	X ray om/mole	diffractio ecules.	n in X	-ray flu	ioresce	nce and	d unders	tand th
Mapp	oing of	course	outcon	nes wit	h the pro	ogram ou	itcomes	6				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12
In	3	3	2	2	2	1	1	2	2	1	1	
101	3	3	2	1	2	1	1	2	2	1	1	2
CO2	5							1			1 =	2 2
CO2	3	3	2	2	2	1	1	2	2	1	1	2 2 2
CO2 CO2 CO3 CO4	3	3	2	2	2	1	1	2	2	1	1	2 2 2 2 2

- Light/Optical Microscopy: Optical Microscope basic principles & components, different examination modes (bright field illumination, oblique illumination, dark field illumination, phase contrast, polarized light, hot stage, interference techniques), stereomicroscopy, photo-microscopy.
- Surface Analysis: Atomic *force* microscopy, Scanning Tunneling microscopy, Secondary ion mass spectrometry, Auger electron spectroscopy, X-ray photoelectron spectroscopy, image analysis.
- 3. Thermal Analysis: Differential thermal analysis, Differential scanning calorimetry and Thermo-gravimetric analysis. Fourier transform infrared spectroscopy. Ultraviolet visible spectrophotometer.
- Electron Microscopy: Interaction of electrons with solids, Scanning Electron Microscopy and specimen preparation techniques, Wavelength dispersive spectroscopy.
- 5. Diffraction Methods: Generation and detection of X-rays, Diffraction of X-rays, X-ray diffraction techniques, X-ray methods of analysis including powder diffraction, Wavelength and energy dispersive X-ray fluorescence (XRF).
- 6. Radiation analysis: Raman analysis and spectroscopy, Photo luminance, Photo multiplier tube, Experimental methods for probing nuclear structure: Experimental methods for gamma-ray, conversion-electron and charged-particle spectroscopy associated with nuclear reactions and Coulomb excitation, Compton suppressed Ge detectors, multiplicity filter, Neutron detectors, Sector field electron spectrometer.

Text Books:

- 1. Materials Characterization, Metals Hand Book, 9th edition, Vol 10, 1986.
- Cullity, B.D., "Elements of X-ray Diffraction", Addison Wesley Publishing Co., Massachusetts, 1968.
- 3. Phillips, V.A., "Modern metallographic techniques and their applications", Wiley Interscience, 1971.
- 4. Cherepin and Malik, "Experimental Techniques in Physical Metallurgy", Asia Publishing Co. Bombay, 1968.
- 5. Brandon D.G., "Modern Techniques in Metallography", Von Nostrand Inc. NJ. USA, 1986.
- 6. Thomas G., "Transmission electron microscopy of metals", John Wiley, 1996.
- 7. Weinberg F., "Tools and Techniques in Physical Metallurgy", Volume I & II, Marcel and Decker, 1970.

N.

PHS 903	Advanced Condensed Matter Physics	L-3, T-1, P-0	4 Credits
Dro roquio	iter II. dans II. C.	and the second second	

Pre-requisite: Understanding of post graduate level physics

Course Objectives: The objective of the course on **Advanced Condensed Matter Physics** is to equip the Ph.D. students with the techniques in Transport, optical properties in Mesoscopic Systems, lattice vibrations, dielectric properties, energy band theory and transport theory so that they are equipped with the techniques used in investigating these aspects of the matter in condensed phase.

Course Outcomes: At the end of the course, the student will be able to

C01	Comprehend and describe the Optical properties of solids employing macroscopic theories
CO2	Explain various types of magnetic phenomenon in solids, underlying physics, and correlation and applications.
CO3	Understand and realize the use of defects and dislocations
CO4	Interpret the phenomena, behavior and applications of materials at the nanoscale

CO5 Figure out and perceive the effect of deformation and disorder on the behavior of solids

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	3	3	2	2	2	1	1	2	2	1	1	2
CO2	3	3	2	1	2	1	1	2	2	1	1	2
CO3	3	3	2	2	2	1	1	2	2	1	1	2
CO4	3	3	2	2	2	1	1	2	2	1	1	2
C05	3	3	2	2	3	1	3	3	3	3	3	3

- Transport Properties: Boltzmann equations, Electrical Conductivity, Calculation of relaxation time, Impurity scattering, Ideal resistance, Carrier mobility, General Transport coefficients, Thermal conductivity, Thermoelectric effects, Lattice conduction, Phonon drag, Hall effect, Two Band Model- Magneto resistance.
- Mesoscopic Systems: Low-dimensional systems; characteristic lengths; transverse mode or magneto-electric sub-bands; resistance of a ballistic conductor; Landauer formula; reformulation of Ohm's law; Landauer-Buttiker formula; transmission function and Sconductance fluctuations.
- 3. Quantum Hall Effect: Classical Hall effect; integral quantum Hall effect (IQHE); fractional quantum Hall effect (FQHE) and Laughlin's theory.
- 4. Material at Nanoscale: Synthesis and Fabrication methods (Physical and chemical approaches), characterization methods (microscopy, diffraction, spectroscopy techniques), surface analysis and depth profiling, techniques for physical property measurement, processing and properties of inorganic nanomaterials, special nanomaterials, Thermodynamics and statistical mechanics of small systems, Nucleation and growth of nanocrystals; kinetics of phase transformations. Effects of nanometer length scales, self assembling nanostructures molecular materials and devices, applications of nanomaterials: molecular electronics and nanoelectronics; nano-biotechnology; quantum devices; nanomagnetic materials and devices: magnetism, nanomagnetic materials, magnetoresistance; nano mechanics.
- 5. Defects and Dislocation: Lattice Vacancies, Diffusions, Color- Centers, Dislocations and their types, Strength of Alloys, Dislocation and crystal growth, Hardness of materials.

Recommended Books:

- 1. Introduction to Solid State Physics : C. Kittel (Wiley, New York) 2005.
- 2. Quantum Theory of Solids : C. Kittel (Wiley, New York) 1987.
- 3. Principles of the Theory of Solids : J. Ziman (Cambridge University Press) 1972.

PHS 904	Computational Physics	L-3, T-1, P-0	4 Credits	

Pre-requisite: Understanding of post graduate level physics

Course Objectives: The aim and objective of the course on **Computational Physics** is to familiarize the students of Ph.D. students with the numerical methods used in computation and programming using any high level language such as Fortran, C++, etc., so that they can use these in solving simple physics problems.

Course Outcomes: At the end of the course, the student will be able to

CO1	Apply basics knowledge of computational physics in solving the physics problems.
CO2	Program with the C++ or any other high level language.
CO3	Use various numerical methods in solving research level problems in his area of interest.
CO4	Analyze the outcome of the algorithm/program graphically.
CO5	Simulate the physical systems using simulation based approaches

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	3	3	2	2	2	2	2	2	2	1	1	2
CO2	3	3	2	1	2	1	2	2	2	1	1	2
CO3	3	3	2	2	2	1	1	2	2	1	1	2
CO4	3	3	2	2	2	1	1	2	2	1	1	2
C05	3	3	2	2	3	1	3	3	3	3	3	3

- Introduction to simulation approach: Introduction to modeling and simulation Methods
 of performance evaluation-simulation approach- Advantages and limitations, various
 type models and simulations, System model steps and its types involved in simulation
 study, Deterministic and Stochastic process, Introduction to random variables univariate
 models and multi-narrate models.
- 2. Numerical methods for differential equations: Euler's method, Runge Kutta method for ordinary differential equations: stability and convergence. Partial differential equations using matrix method for difference equation, relaxation method, initial value problems, stability, convergence and qualitative properties and qualitative properties. Random numbers, Monte Carlo Integral methods, Importance sampling, Fast Fourier Transform.
- 3. Simulation Techniques: Monte Carlo methods, molecular dynamics, simulation methods for the Ising model and atomic fluids, simulation methods for quantum-mechanical problems, time-dependent Schrodinger equation, discussion of selected problems in Physics, nonlinear dynamics, diffusion-limited aggregation and transport properties, etc. Introduction to parallel computation, Physical Simulations: N body methods and particle simulations.
- 4. Introduction to graphical analysis: Introduction to Gnuplot, importance of visualization of computational data, Gnuplot commands: simple plots, plotting data from a file, saving and exporting, multiple data sets per file, physics with Gnuplot (equations, building functions, user defined variables and functions), Understanding data with Gnuplot

Text Books:

- 1. Fortran Programming, V. Rajaraman, Prentice Hall India Learning Private Limited, 1997.
- 2. Numerical Methods: A Computer Oriented Approach, BPB Publ. 1996.
- 3. R.S. Salaria and Rajaraman, Computer based Numerical Methods 3rd Ed. Prentice Hall India, 1980.
- 4. Mathematica, S. Wolfram, Addison Wesley, 2003.
- 5. Application of the Monte Carlo Method, K. Binder, Springer-Verlag, 1987.
- An Introduction to Computer Simulation Methods, H.Gould and J. Toobochnlik, Addison Wesley, 1996.
- 7. Computational Physics, S.E. Koonin and Meredith, Westview Press, 1998.
- 8. Gnuplot in Action: Understanding Data with Graphs, Philipp K. Janert, Manning Publications (2016)

	905	Nano P	Physics				L-	3, T-1,	P-0	4 Cre	dits	
Pre-1	requisi	te: Und	erstand	ing of p	ost grad	uate leve	l conder	nsed ma	tter phy	/sics	-	_
Cour with conde	the m	jectives athematination	: The o tical ar	bjective d expe	e of the crimenta sue resea	course or techniq rch caree	n Nano ues tha r in nan	materia t he/sh o mater	ls is to e need ials res	equip t s for t earch.	he Ph.D. Inderstan	studen
Cour	se Out	tcomes:	At the	end of t	he cours	se, the stu	ident wi	ll be ab	le to			
C01	Und	erstand	and fan	niliarize	with sy	nthesis ar	nd proce	essing te	chniqu	es of N	ano parti	cles.
CO2	Unde	erstand ems.	the ele	ectrical	and ma	gnetic pro	operties	of qua	antized	states	in low-d	imensio
CO3	Desc phys	ribe the ical, che	use of emical,	unique and bio	optical logical a	propertie pplicatio	s of nan ns.	oscale	netallic	structu	ires for a	nalytica
	-											
CO4	Unde	porous	the phy materia	sical ar ls.	nd chem	ical prop	erties o	f carboi	n nanot	ubes ar	id nanosi	tructure
CO4	Unde mesc Dete appli	erstand porous rmine th cable at	the phy materia ne struct larger	sical ar ls. ture-pro length s	operty re cales.	ical prop lationshij	erties o os in nai	f carbon	n nanot ials as	ubes ar well as	the conc	tructure epts, no
CO4 CO5 Mapp	Unde mesc Deter appli	erstand oporous rmine th cable at course	the phy materia he struct larger outcon	sical ar lls. ture-pro length s nes with	operty re cales.	ical prop lationship ogram or	erties o os in nai utcomes	f carbon nomater	n nanot rials as	ubes ar well as	the conc	tructure
CO4 CO5 Mapp	Unde meso Deter appli Ding of	erstand oporous rmine th cable at course	the phy materia ne struct larger outcon PO3	sical ar ils. ture-pro- length s nes with PO4	pperty recales. h the pro-	ical prop lationship ogram of PO6	erties o os in nar utcomes PO7	f carbon nomater	ials as	well as	the conc	epts, no
CO4 CO5 Mapp	Unde mesc appli Dete appli Ding of PO1 3	PO2	the phy materia le struct larger outcon PO3 2	sical ar ils. ture-pro- length s nes with PO4 2	pperty recales.	ical prop lationship ogram ou PO6	erties o os in nar utcomes PO7	f carbon nomater PO8	PO9	well as	the conc PO11	PO12
CO4 CO5 Mapp CO1 CO2	Unde mesc Dete appli Ding of PO1 3 3	PO2 PO2 3 3	the phy materia larger outcon PO3 2 2 2	sical ar ils. ture-pro- length s nes with PO4 2 1	pperty recales. h the pro- PO5 2 2 2	ical prop lationship ogram ou PO6 1 1	erties o os in nar utcomes PO7 1 1	r carbon nomater PO8 2 1	PO9	PO1 0 1	PO11 1	PO12
CO4 CO5 Mapp CO1 CO2 CO3	Under mesco Deter appli Ding of PO1 3 3	PO2 PO2 3 3 3	the phy materia larger outcon PO3 2 2 2 2	sical ar ils. ture-pro- length s nes with PO4 2 1 2	pperty recales. h the pro- PO5 2 2 2 2	ical prop lationship ogram of PO6 1 1 1	erties o os in nar utcomes PO7 1 1 1	romater PO8 2 1 1	PO9 2 2 2 2	PO1 0 1 1 1	PO11 1 1	PO12 2 2 2
CO4 CO5 Mapp CO1 CO2 CO3 CO4	Unde mesc Dete appli Ding of PO1 3 3 3	PO2 PO2 3 3 3 3	the phy materia larger outcon PO3 2 2 2 2 2	sical ar ils. ture-pro- length s nes with PO4 2 1 2 2	PO5 2 2 2 2 2	ical prop lationship ogram ou PO6 1 1 1 1	erties o os in nar utcomes PO7 1 1 1 1	romater PO8 2 1 1 2	PO9 2 2 2 2	PO1 0 1 1 1 1	PO11 1 1 1	PO12 2 2 2 2

- 1. Synthesis and processing: Nano particles from low- pressure, Low temperature plasmas and its applications, Low temperature compaction of nanosize powders, Nanofabrication atomic optics, Processing of nanocrystalline materials. Vapour processing of nanostructured materials.
- 2. Electrical properties: Quantized states in low-dimension systems, Self-consistent treatment of one- and two- dimensional problems, Quantum wires- metasized effects and weak localization; magnetophonon resonances; vertical tunneling, Quantum dots-fabricated quantum dots; impurity dot system; energy states, Current-voltage characteristics Vertical transport through quantum dots.
- 3. Magnetic properties: Magnetic field profile, quantum moon in nonhomogeneous magnetic fields, Diffusive transport of electrons through magnetic barrel, one- and two- dimensional magnetic modulation, Hall effect devices, Nanoscale magnets.
- 4. Optical properties: Photo refractive quantum well structures and its optical properties, electronic transport and grating formation, Diffraction-Raman N diffraction; nondegenerate four-wave mixing two- wave mixing, Photorefractive effects and applications, Non-linear optical properties, Non-linear phenomenon theoretical treatment of optical on linearities.

Text Books:

- 1. Nalwa HS. "Handbook of Nanostructured Materials and Nanotechnology", Vol.1, 3 and 4 Academic Press 2000.
- 2. Ying J.Y. 'Nanostructured materials' Academic Press, U.S.A , 2001.

Panelloff

PHS	907	Re	newable	e Energ	y Resou	irces	L-	3, T-1, I	P-0	4 Cred	lits	
Pre-r	equisit	e: Unde	rstandin	g of sen	nicondu	ctor phy	vsics					
Cour expos energ	se Obje se the Pl y, etc.	e ctives: 1.D. stu	The air dents to	n and o the basi	bjective ics of the	of the o e alterna	course o tive ene	n Rene ergy sou	wable I rces like	E nergy e solar e	Resour nergy, h	ces is ydrog
Cour	se Outo	comes:	At the er	nd of the	e course.	, the stu	dent wil	l be able	e to			
C01		Une	derstand rnative	the end form of	ergy der energy	nand of	f world	& distin	nguish l	oetween	traditio	onal a
CO2		Des	cribe th	e conce	pt of sol	ar energ	v radiat	ion and	thermal	applica	tions	
CO3		Ana	alyze ma	aking of	solar ce	Il and it	s types	ion and	therman	applica	tions.	-
CO4		Ide	ntify hyd	drogen a	is energy	source	its stor	age and	transno	rtation	methode	,
CO5		Cor	npare w	ind ener	gv. way	e energ	v and oc	rean the	rmal ene	Prov cor	version	».
Mapp	oing of	course	outcome	es with	the prog	gram ou	itcomes		inter en	ingy con	iversion	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO
COL	2	2	2	2		-		-		0	1	2
cor	3	3	2	2	2	1	1	1	2	1	1	2
CO2	3	3	2	1	2	1	1	1	2	1	1	2
CO3	3	3	2	2	2	1	1	1	2	1	1	2
CO4	3	3	2	2	2	1	1	1	2	1	1	2
	1							1 N			1.1	4

 Introduction: Production and reserves of energy sources in the world and in India, need for alternatives, renewable energy sources. (Lectures 8)

 Solar Energy: Thermal applications, solar radiation outside the earth's atmosphere and at the earth's surface, Principal of working of solar cell, Performance characteristics of solar cell. Types of solar cell, crystalline silicon solar cell, Thin film solar cell, multijunction solar cell, Elementary ideas of perovskite solar cell, dye synthesized solar cell and Tandem solar cell, PV solar cell, module array, and panel, Applications. (Lectures 11)

Hydrogen Energy: Environmental considerations, solar hydrogen through photo electrolysis and photocatalytic process, physics of material characteristics for production of solar hydrogen. Storage processes, solid state hydrogen storage materials, structural and electronic properties of storage materials, new storage modes, safety factors, use of hydrogen as fuel; use in vehicles and electric generation, fuel cells. (Lectures 10)

4. Other sources: Nature of wind, classification and descriptions of wind machines, power coefficient, energy in the wind, wave energy, ocean thermal energy conversion (OTEC), system designs for OTEC, basic idea about biogas, biofuel, and biodiesel.

(Lectures 8)

Text Books:

1. Solar Energy: S.P. Sukhatme (Tata McGraw-Hill, New Delhi), 2008.

Reference Books:

- 1. Solar Cell Devices: Fonash (Academic Press, New York), 2010.
- 2. Fundamentals of Solar Cells, Photovoltaic Solar Energy: Fahrenbruch and Bube (Springer, Berlin), 1982.
- 3. Photoelectrochemical Solar Cells: Chandra (New Age, New Delhi).

PHS908		Research and Publication ethics			L-2, 7	Г-0, Р-() 2	Credit	s			
Pre-requ	isite: Und	erstand	ing of p	oost gra	duate le	evel phy	ysics ar	nd resea	arch			-
Course O the Ph.D. and theore	bjectives students etical treat	: The o with the ment o	bjective resear f subjec	e of the ch tech ct in dep	course niques oth.	on Res	search /she neo	and Pu eds for	unders	on Eth tanding	ics is to experi	equip menta
Course O	utcomes:	At the	end of	the cou	rse, the	studen	t will b	e able t	0			
CO1	Fam	iliarizin	g with	moral p	ohilosop	ohy of I	Researc	h Ethic	S			
CO2	To a beha	cquire viour ir	knowle resear	dge on ch	definit	ion, co	ncept a	nd pro	blems t	hat lea	d to un	ethical
CO3	The	students	s will u	ndersta	nd pred	latory p	ublishe	rs and	journal	5		
CO4	Stud	ents car	ı learn l	how to	search	relevan	t journa	als and	researc	h paper	s using	online
CO5	Iden	tify the	challen	ging pr	oblems	in rese	arch in	tegrity	and inte	ellectua	l hones	sty.
Mapping	of course	outcor	nes wit	th the p	orogram	n outco	omes		AL.			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	3	2	2	2	2	1	2	2	2	1	2
CO2	3	3	2	1	2	2	1	2	2	2	1	2
CO3	3	3	2	2	2	2	1	2	2	2	1	2
CO4	3	3	2	2	2	2	1	2	2	1	1	2
C05	3	3	2	2	3	2	3	3	3	3	3	2

Detailed syllabus as per UGC guidelines (letter No.D.O.No.F.1-112018 (Journal/CARE)

SV.

Annexure-II

B.Sc. (Hons.) Physics

Course Structure and Syllabus (Based on Choice Based Credit System) 2021 onwards

Scheme & Syllabus (B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 1 of 49

PROGRAM EDUCATIONAL OBJECTIVES: At the end of the program, the student will be able to:

PEO1	Apply principles of basic science concepts in understanding, analysis and prediction of physical systems.
PEO2	Develop human resource with knowledge, abilities and insight in Physics and related fields required for career in academia and industry.
PEO3	Engage in lifelong learning and adapt to changing professional and societal needs.

PROGRAM OUTCOMES: At the end of the program, the student will be able to:

PO1	Apply the knowledge gained to solve the scientific problems.
PO2	Identify, formulate, and analyze scientific problems reaching substantiated conclusions using first principles of mathematical, physical, and chemical sciences.
PO3	Design solutions for physics problems that meet the specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal consideration.
PO4	Use research-based knowledge and methods including design of experiments, analysis, interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Create, select, and apply appropriate techniques, resources, and modern scientific tools to physics problems with an understanding of the limitations.
PO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues, and the consequent responsibilities relevant to the professional scientific practice.
PO7	Understand the impact of the scientific solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Apply ethical principles and commit to the norms of scientific practice.
PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communicate effectively on scientific activities with the Scientific/Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Demonstrate knowledge and understanding of the scientific principles and apply these to one's own work, as a member and leader in a team, to manage projects and in

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 2 of 49

	multidisciplinary environments.
PO12	Recognize the need for and have the preparation and ability to engage in independent
	and life-long learning in the broadest context of scientific and technological change.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Understand the concepts of different branches of physics.
PSO2	Demonstrate expertise to conduct wide range of scientific experiments.
PSO3	Apply the concepts of physics in areas of mechanics, electromagnetism, solid state, nuclear, etc., in industry, academia, and day-to-day life.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 3 of 49

the Br

SEMESTER FIRST

Course Code	Course Title	Type of course	A	Loa Alloca	nd Ition	Marks Di	Total Marks	Cr	
			L	T	P	Internal	External		-
BSHP-111- 21	Optics	Core Course Theory and	3	1	-	40	60	100	4
BSHP-112- 21	Mechanics	— Practical	3	1	-	40	60	100	4
BSHP-113- 21	Physics Lab-I		•	-	4	30	20	50	2
BSHM-114- 21	Calculus	General Elective and	3	1	-	40	60	100	4
BSHC-112- 21	Inorganic Chemistry	- Practical	3	1	-	40	60	100	4
BSHC-113- 21	Chemistry Lab-I		-	-	4	30	20	50	2
BHHH-105- 21	Communicative English -I	Ability Enhancement	2	-	-	20	30	50	2
BSHH- 106A-21 BSHH- 106B-21	Punjabi Compulsory-I or Mudhli Punjabi-I	- Compulsory Course	2	-	-	20	30	50	2
TOTAL			16	4	8	260	340	600	24

L: Lectures T: Tutorial P: Practical Cr: Credits

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 4 of 49

F &

SEMESTER SECOND

Course Code	Course Title	Type of course	Load Allocation			Marks D	Total Marks	Cr	
	1.5		L	Т	P	Internal	External		
BSHP-121- 21	Waves and Vibrations	Core Course Theory and	3	1	-	40	60	100	4
BSHP-122- 21	Electricity and Magnetism	- Practical	3	1	-	40	60	100	4
BSHP-123- 21	Physics Lab-II		-	-	4	30	20	50	2
BSHM-204- 21	Mathematics	General Elective and	3	1	-	40	60	100	4
BSHC-102- 21	Organic Chemistry	- Practical	3	1	-	40	60	100	4
BSHC-102- 21	Chemistry Lab-II		-	-	4	30	20	50	2
BSHH-205- 21	Communicative English -II	Ability Enhancement	2	-	-	20	30	50	2
BSHH- 206A-21 BSHH- 206A-21	Punjabi Compulsory -II or Mudhli Punjabi-II	- Compulsory Course	2	-	-	20	30	50	2
	TOTAL		16	4	8	260	340	600	24

L: Lectures T: Tutorial P: Practical Cr: Credits

fr

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 5 of 49

Examination and Evaluation

Theory	1	11 34 34	
S. No.	Evaluation criteria	Weightage in Marks	Remarks
1	Mid term/sessional Tests	24	Internal evaluation (40 Marks)
2	Attendance	6	MSTs, Quizzes, assignments,
3	Assignments	10	evaluation. Average of two mid semester test will be considered for evaluation.
4	End semester examination	60	External evaluation
5	Total	100	Marks may be rounded off to neares integer.
ractica	al		
1	Evaluation of practical record/ Viva Voice/Attendance/Seminar/ Presentation	30	Internal evaluation
2	Final Practical Performance + Viva-Voce	20	External evaluation
3	Total	50	Marks may be rounded off to nearest integer.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 6 of 49

Instructions for Paper-Setter in B. Sc (Hons.) Physics

A. Scope

- 1. The question papers should be prepared strictly in accordance with the prescribed syllabus and pattern of question paper of the University.
- 2. The question paper should cover the entire syllabus with proper distribution and Weightage of marks for each question.
- 3. The language of questions should be simple, direct, and documented clearly and unequivocally so that the candidates may have no difficulty in appreciating the scope and purpose of the questions. The length of the expected answer should be specified as far as possible in the question itself.
- 4. The distribution of marks to each question/answer should be indicated in the question paper properly.

B. Type and difficulty level of question papers

- 1. Questions should be framed in such a way as to test the students intelligent grasp of broad principles and understanding of the applied aspects of the subject. The Weightage of the marks as per the difficulty level of the question paper shall be as follows:
 - i) Easy question 30%
 - ii) Average questions 50%
 - iii) Difficult questions 20%
- 2. The numerical content of the question paper should be upto 25%.

C. Format of question paper

- 1. Paper code and Paper-ID should be mentioned properly.
- 2. The question paper will consist of three sections: Sections-A, B and C.
- 3. Section-A is COMPULSORY consisting of TEN SHORT questions carrying two marks each (total 20 marks) covering the entire syllabus.
- 4. The Section-B consists of FOUR questions of eight marks each covering the entire PART-A of syllabus (Taking two questions from every unit).
- 5. The Section-C consists of FOUR questions of eight marks each covering the entire PART-B of syllabus (Taking two questions from every unit).
- 6. Attempt any five questions from Section-B and Section-C, selecting at least two questions from each of the two sections.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 7 of 49

Question paper pattern for MST:

	No of pages	
IK Gujral Punjab Technical U	niversity- Jalandhar	
Department of Physic	cal Sciences	
Academic Sess	lion:	
Mid-Semester Test: I/II/III (Regular/reappear)	Date	
Programme: B.Sc. (Hons.) Physics	Semester:	
Course Code:		
Maximum Mada 24	Course:	
Maximum Marks: 24	Times 1 L	

Note: Section A is compulsory; Attempt any two questions from Section B and one question from Section C.

Section: A	Marks	COs
1		
2	2	
2	2	
3		
1	2	
4	2	-
Section: B		
5		
6	4	
0	4	
7		
Section: C	Ť	
0	8	
9	0	-
	0	

Details of Course Objectives

COI	
CO2	
CO3	
CO4	
CO5	

Jr. Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 8 of 49

SEMESTER-I

fr

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 9 of 49

BSI	HP-111	1-21	Optics	;				L-4	4, T-0, P	P-0	4 Cre	dits
Pre-	requis	ite: U	nderstar	nding of se	enior seco	ondary I	evel Phy	sics and	d Mathe	matics		
Cou Diffr Stude relate caree	rse Ob action ents w ed para er.	jectiv and P ill be meter	es: The olarizati equipp s, whicl	objective ion among ed with k h will act	of the co students cnowledg as a stror	ourse is 5. They a se to ma ng back	to deve also lear easure v ground i	lop basi n about wavelen if he/she	c unders the LAS gth, refi choose	standing SER and ractive i s to pur-	of Inter its appl ndex ar sue phys	ference ication and oth sics as
Cour	rse Out	tcome	s: At th	e end of th	ne course	, the stu	dent wil	l be able	e to			_
C01		Identify and illustrate physical concepts and terminology used in optics and other related wave phenomena										
CO2		Analyze and understand coherence and phenomenon of interference and their applications										
CO3		Acquainted with Fresnel's and Fraunhofer's diffraction and their applications.										
CO4		Get thorough knowledge of the polarization of light, changes upon reflection an transmission and will learn to analyze the polarization in optical systems.										
CO5		Describe the different types of lasers, its principle, properties and applications of lase beam.										
			Марр	ing of cou	irse outco	omes w	ith the p	orogran	n outcor	nes		
	PO1	PC)2 PC	D3 PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	-	1	2	1	2	3	2	2
202	2	2	1	2	1	1	1	1	1	3	1	1
03	3	2	2	2	1	1	2	1	1	3	1	1
04	2	2	2	2	1	1	2	1	1	3	1	1
	2	12	-	-								92

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 10 of 49
Detailed Syllabus:

PART-A

UNIT I

Interference: Definition and properties of wave front, Temporal and Spatial Coherence, Young's double slit experiment, Lloyd's single mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films, Fringes of equal inclination (Haidinger Fringes), Newton's Rings: Measurement of wavelength and refractive index, Interferometer: Michelson Interferometer-(1) idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, Fabry-Perot interferometer. (11 Lectures)

UNIT-II

Diffraction: Huygens Principle, Huygens-Fresnel Diffraction theory, Fraunhofer diffraction: Single slit. Circular aperture, Rayleigh criterion of resolution, Resolving Power of a telescope, Double slit, Multiple slits, Diffraction grating, Resolving power of grating. Fresnel Diffraction: Fresnel's Assumptions, Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light, Theory of a Zone Plate: Multiple Foci of a Zone Plate, Fresnel diffraction pattern of a straight edge and circular aperture. (11 Lectures)

PART-B

UNIT-III

Polarization: Plane polarized light, Representation of Unpolarized and Polarized light, Polarization by Reflection, Brewster's law, Malus Law, Polarization by Selective absorption by Crystals, Polarization by Scattering, Polarization by Double Refraction, Nicol Prism, Huygen's theory of Double Refraction, Polaroid, Elliptically and Circularly polarized lights, Quarter and Half wave plates. (11 Lectures)

UNIT-IV

Laser and Application: Lasers, Spontaneous emission, Stimulated absorption, Stimulated emission, Einstein coefficients, Einstein relations, Conditions for Laser actions, Population inversion, Different types of Laser Pumping mechanism: Optical Pumping, Electric Discharge and Electrical pumping, Resonators, Two, Three and Four level laser systems, Ruby laser, He-Ne gas Laser, Semiconductor laser, CO2 laser, applications of laser: Holography, Principle of Holography. (11 Lectures)

Text and Reference Books:

- 1. Optics: A.K. Ghatak (Tata-McGraw Hill), 1992.
- 2. Fundamentals of Optics: F.A. Jenkins and H.E. White (McGraw Hill), 1981.
- 3. A Textbook of Optics: Subrahmaniyam N. & et al., S. Chand Publishing, 2006.
- 4. O. Svelto: Principles of Lasers, Springer Science & Business Media, 2010.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 11 of 49

BSH	IP-112-2	21 Me	echanics	5				L-4,	T-0, P-	0	4 Cree	lits
Pre-r	requisite	e: Under	rstandin	g of sen	ior seco	ndary le	vel Phy	sics and	Mathen	natics		
Court to the they of he/she	e formal can use choose	ectives: structu these in es to pur	The aim re of ve Engine sue high	n and ob ctor me ering as ner studi	jective of chanics, per the ies in ph	of the co harmon ir requin ysics.	ourse on nic oscil rement.	Mecha llators, a This wi	nics is to and mec Il act as	o introdu hanics c a strong	uce the s of solids g backgi	student so tha ound i
Cour	se Outc	omes: A	At the en	nd of the	course,	the stud	lent will	be able	to		_	-
C	D1	Understa	and the fu	Indamen	tals of ve	ector med	chanics f	or a class	sical syst	em.		
CC	02	Identify	various t	ypes of f	orces in	nature, f	rames of	referenc	es, and c	onservati	on laws.	
CC	03	Know tł	ne inertia	al and n	on-inert	ial syste	m.					
CC	04	Understa	nd the G	ravitatio	n force a	s a Centi	ral Force	Motion	-			
CC	05	Apply th	ne know	ledge of	otained i	n this co	ourse to	dav-to-	dav proł	olems		_
		М	lapping	of cour	se outco	omes wi	ith the p	orogran	1 outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	2	1	2	1	2	3	2	2
CO2	2	3	1	2	2	1	1	1	1	3	1	1
CO3	3	3	2	2	2	1	2	1	1	3	1	1
CO4	2	2	2	-	2	1	2	1	1	3	1	1
				-								

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 12 of 49

Detailed Syllabus:

UNIT I:

Fundamentals of Dynamics: Reference frames. Inertial frames; Review of Newton's Laws of Motion. Galilean transformations; Galilean invariance. Dynamics of a system of particles. Centre of Mass. Principle of conservation of momentum. Impulse. Momentum of variable-mass system: motion of rocket. (12 Lectures)

UNIT II:

Work and Energy: Work and Kinetic Energy Theorem. Conservative and non-conservative forces. Potential Energy. Energy diagram. Stable and unstable equilibrium. Force as gradient of potential energy. Work done by non-conservative forces. Law of conservation of Energy.

Collisions: Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frame of references. (12 Lectures)

UNIT-III

Non-Inertial Systems: Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications. Components of Velocity and Acceleration in Cylindrical and Spherical Coordinate Systems.

(12 Lectures)

UNIT-IV

Gravitation and Central Force Motion: Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and fields due to spherical shell and solid sphere. Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS). (12 Lectures)

Text and Reference Books:

- 1. Mechanics, Berkeley Physics, Vol.1, C.Kittel, W.Knight, et.al. 2007, Tata McGraw-Hill.
- 2. Physics, Resnick, Halliday and Walker 8/e. 2008, Wiley.
- 3. Feynman Lectures, Vol. I, R.P.Feynman, R.B.Leighton, M. Sands, 2008, Pearson Education
- 4. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons
- 5. University Physics. F.W Sears, M.W Zemansky, H.D Young 13/e, 1986, Addison Wesley
- 6. Physics for scientists and Engineers with Modern Phys., J.W.Jewett, R.A.Serway, 2010, Cengage Learning
- 7. Theoretical Mechanics, M.R. Spiegel, 2006, Tata McGraw Hill.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 13 of 49

BSH 21	P-113-	Physi	ics Lab	-1			L-0,	T-0, P-	4	2 (Credits	
Pre-r	requisit	e (If an	y): Higl	h-schoo	l educat	tion						
Cour forma these	se Obj al struct as per t	ectives: ture of heir req	The air electron uiremer	n and o nagnetis nt.	bjective sm and	e of the phenor	lab cou nenon (rse is to of wave	o introduce optics	uce the so that	students they c	s to the an use
Cour	se Out	comes:	At the e	nd of th	e cours	e, the st	udent w	vill be a	ble to			
CO1		Able to	o verify	the theor	retical co	oncepts/	aws lear	nt in the	ory cou	rses.	_	-
CO2		Traine	d in carr	ying out	precise	measure	ments a	nd handl	ing sens	sitive eau	ipment.	
CO3		Under uncert	stand tl ainties a	he metl and syst	nods us ematic	ed for "errors"	estimat	ing and	dealir	ng with	experin	nental
CO4		Learn	to draw d	conclusi	ons from	n data an	d develo	p skills	in exper	imental	lesion	
CO5		Docum	ent a teo manner	chnical r r.	eport wł	nich com	municat	tes scien	tific info	ormation	in a clea	ir and
		Ma	pping o	f cours	e outco	mes wi	th the p	orogran	1 outco	mes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	2	1	2	3	2	3
C O2	3	3	1	-	2	2	1	1	1	3	2	3
CO3	3	3	2	-	2	1	2	1	1	3	2	3
C O 4	3	2	2	2	-	2	2	1	1	3	2	3
05	2	2	2	2	-	2	2	1	1	3	2	3

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 14 of 49

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses.
- 2. To study the laser beam characteristics like; wave length, aperture, spot size, etc. using diffraction grating.
- 3. To study the diffraction using laser beam and thus to determine the grating element.
- 4. To study wavelength and laser interference using Michelson's Interferometer.
- 5. To find the refractive index of a material/glass using spectrometer.
- 6. To find the refractive index of a liquid using spectrometer.
- 7. To determine the angle of prism and resolving power of a prism.
- 8. To study the magnetic field of a circular coil carrying current using a Steward and Gees Tangent Galvanometer.
- 9. Determine the radius of circular coil using the Circular coil.
- 10. To study B-H curve using CRO.
- 11. To find out polarizability of a dielectric substance.
- 12. To find out the horizontal component of earth's magnetic field (B_h).

Text and Reference Books:

- 1. A Text -book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 2. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 3. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 4. Practical Physics, C L Arora. S. Chand & Company Ltd.
- 5. http://www.vlab.co.in

th

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 15 of 49

Pre-requisite: I Course Object following: 1. The funct 2. The geon 3. Applicat 4. Limit, C 5. The utilit Course Outcom CO1 Un CO2 Vis CO3 Ap def CO4 Export Var	Understandin tives: The damental cor metrical mea ions of deriv ontinuity, pa ty of double nes: At the e iderstand the sualize all co ply the kno inite integra plain the cor	ng of seni objective ncepts of aning of f vatives an artial deri and triple nd of the basic co oncepts ge wledge of ls to find	ior second s of the different unctions d integrated vatives a e integrated course, ncepts contection eometrico	ndary le is cours tial and s, limits, rals. and their als in fir the stud of Differ cally.	vel Mati se are i integral , continu r applica nding are lent will ential ar	hematics to make calculus uity, deri ations in ea and vo be able	the st s. vatives, finding plume b to	udents mean v extreme ounded	underst alue the e values by surfa	and th orems.
Course Object following:1. The func 2. The geor 3. Applicat 4. Limit, C 5. The utiliCourse OutcomCO1Un CO2CO3Ap defCO4Ex var	tives: The damental con metrical mea ions of deriv ontinuity, pa ty of double nes: At the e iderstand the sualize all co ply the kno inite integra plain the con	objective ncepts of aning of f vatives an artial deri- and triple nd of the basic co oncepts go wledge co ls to find	s of th differen unctions d integr vatives a e integra course, ncepts c eometric	is cours tial and s, limits, als. and their als in fir the stud of Differ cally.	se are i integral , continu r applica nding are lent will ential ar	calculus ity, deri ations in ea and vo be able	the st vatives, finding plume b to	udents mean v extreme ounded	understa alue the e values by surfa	and th orems.
1. The func 2. The geor 3. Applicat 4. Limit, C 5. The utili Course Outcom CO1 Un CO2 Vis CO3 Ap def CO4 Export Var CO4 Export	damental con metrical mea ions of deriv ontinuity, pa ty of double nes: At the e iderstand the sualize all co ply the kno inite integra plain the con	ncepts of aning of f vatives an artial deri- and triple nd of the basic co oncepts go wledge co ls to find	differen unctions id integr vatives a e integra course, ncepts o eometric	tial and s, limits, als. and thei als in fir the stud of Differ cally.	integral , continu r applica nding are lent will ential ar	calculus iity, deri ations in ea and vo be able nd Integr	s. vatives, finding olume b to ral Calcu	mean v extreme ounded	alue the e values by surfa	orems.
Course Outcom CO1 Un CO2 Vis CO3 Ap def CO4 Ex var	nes: At the e iderstand the sualize all co ply the kno finite integra plain the con	nd of the basic co oncepts ge wledge c ls to find	course, ncepts o eometric	the stud of Differ cally.	lent will rential ar	be able	to al Calcu	1/110		
CO1UnCO2VisCO3ApdefCO4Expvar	derstand the sualize all co ply the kno finite integra plain the con	basic co oncepts go wledge co ls to find	ncepts of eometric	of Differ cally.	ential ar	nd Integr	al Calcu	iliie		
CO2 Vis CO3 Ap def CO4 Exp var	sualize all co ply the kno inite integra plain the con	oncepts go wledge o ls to find	eometric of deriva	cally.				aius.		
CO3 Ap def CO4 Ex var	ply the kno finite integra plain the con	wledge o ls to find	of derivation							
CO4 Exp	plain the con		area un	atives in der the o	n findin curve.	g extren	ne value	es of th	e functi	on and
	iables and th	ncept of I neir appli	Limit, C cations.	ontinuit	y, partia	ıl deriva	tives of	functio	ns of se	verable
CO5 Uti geo	lize the con ometrical sha	icept of i	multiple	integra	uls in fi	nding ar	eas and	volum	es of d	ifferen
	Mapping	g of cours	se outco	omes wi	th the p	rogram	outcon	ies	-	
PO1 1	PO2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
201										
02										-
03										
04							_			
05										

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 16 of 49

Detailed Syllabus:

UNIT-I

Functions of single variable, Simple examples of limit, continuity, differentiability, Derivative of elementary functions (t-ratios, logarithmic functions, exponential functions), Higher order derivatives, Statement of Mean value theorems and simple applications, Applications of derivative: increasing decreasing functions, extreme values of functions. (**Ref. 1**)

UNIT-II

Integration as an inverse process of differentiation, Finding integrals by partial fractions, by parts, Statement of fundamental theorem of calculus, Finding definite integrals by method of substitution, Applications of definite integral in finding length of an arc, area under simple curves, area enclosed between two curves. (**Ref. 1**)

UNIT-III

Introduction of Limit, continuity of functions of two variables with simple examples, partial derivatives, Total derivatives, Homogeneous functions, Statement of Euler's theorem, Simple examples of maxima-minima of functions of several variables, Lagrange's method of multipliers.

UNIT-IV

Double integrals, Change of order of integration, Jacobian, Double integral in polar coordinates, Triple integrals, Simple applications in finding area and volumes.

RECOMMENDED BOOKS:

- Mathematics, A Text book for Class XII (Parts I & II), New Delhi: NCERT, 2003. (Unit I & II)
- R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Pub., 4th Edition, 2015.
- James Stewart, Calculus, 5th Edition, Brooks/Cole (Thomson), 2003.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 17 of 49

BHCL-I 21	-102-	INC	ORGAN	NIC CH	EMIST	RY		L-4,	T-0, P-	0	4 Cree	lits
Pre-requ	isite:	Under	standing	g of seni	or secor	ndary le	vel Phys	sics and	Mathen	natics		
Course (applicatio	Objeo ns.	ctives:	To te	ach the	funda	mental	concept	s of In	norganic	chemi	stry an	d thei
Course O	utco	mes: A	t the en	d of the	course,	the stud	lent will	be able	to			
C01	U st	ndersta ructure	and the i	fundame 1.	ental cor	ncepts a	nd postu	lates of	various	theories	regardi	ng the
CO2	L	earn th	e period	icity of	the s &	p block	element	te				
CO3	U	ndersta	and the v	arious t	vpes of	bonding	nresen	t in the	lifforon	ingraa	da anno	1
CO4	Le	earn ab	out the	various	theories	nertain	ing to th	o differ	interen	i morgar	iic comp	oounds
CO5			out the	ranous	theories	penam	ing to th	e uniero	ent type	s of bod	ing	
PO	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POIL	POI
COI												1012
CO2												
CO3						-	2 2					
CO4												
CO5												
Dete:1.10												

Detailed Syllabus:

PART-A

UNIT-I

Atomic Structure:

Bohr's theory, its limitations and atomic spectrum of hydrogen atom. Wave mechanics: deBroglie equation, Heisenberg's Uncertainty Principle and its significance, Schrödinger's wave equation, significance of ψ and ψ^2 . Quantum numbers and their significance. Normalized and orthogonal wave functions. Sign of wave functions. Radial and angular wave functions for hydrogen atom. Radial and angular distribution curves. Shapes of s, p, d and f orbitals. Contour boundary and probability diagrams. Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations, Variation of orbital energy with atomic number

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 18 of 49

UNIT-II

Chemical Bonding-I:

lonic bond: General characteristics, types of ions, size effects, radius ratio rule and its limitations. Packing of ions in crystals. Born-Landé equation with derivation and importance of Kapustinskii expression for lattice energy. Madelung constant, Born-Haber cycle and its application, Solvation energy.

Metallic Bond: Qualitative idea of valence bond and band theories. Semiconductors and insulators, defects in solids.

Weak Chemical Forces: van der Waals forces, ion-dipole forces, dipole-dipole interactions, induced dipole interactions. Instantaneous dipole-induced dipole interactions. Repulsive forces, Hydrogen bonding (theories of hydrogen bonding, valence bond treatment) Effects of chemical force, melting and boiling points, solubility energetics of dissolution

process.

UNIT-III

Chemical Bonding-II:

Covalent bond: Lewis structure, Valence Bond theory (Heitler-London approach). Energetics of hybridization, equivalent and non-equivalent hybrid orbitals. Bent's rule, Resonance and resonance energy, Molecular orbital theory. Molecular orbital diagrams of diatomic and simple polyatomic molecules N₂, O₂, C₂, B₂, F₂, CO, NO, and their ions; HCl, BeF₂, CO₂, (idea of s-p mixing and orbital interaction to be given). Formal charge, Valence shell electron pair repulsion theory (VSEPR), shapes of simple molecules and ions containing lone pairs and bond pairs of electrons, multiple bonding (σ and π bond approach) and bond lengths. Covalent character in ionic compounds, polarizing power and polarizability. Fajan's rules and consequences of polarization. Ionic character in covalent compounds: Bond moment and dipole moment. Percentage ionic character from dipole moment and electronegativity difference.

UNIT-IV

Chemistry of s and p Block Elements:

Inert pair effect, Relative stability of different oxidation states, diagonal relationship and anomalous behaviour of first member of each group. Allotropy and catenation. Complex formation tendency of s and p block elements. Hydrides and their classification ionic, covalent and interstitial. Basic beryllium acetate and nitrate. Study of the following compounds with emphasis on structure, bonding, preparation, properties and uses. Boric acid and borates, boron nitrides, borohydrides (diborane) carboranes and graphitic compounds, silanes, Oxides and oxoacids of nitrogen, Phosphorus and chlorine. Peroxo acids of sulphur, interhalogen compounds, polyhalide ions, pseudohalogens and basic properties of halogens.

Reference Books :-

1. Lee, J.D. Concise Inorganic Chemistry, ELBS, 1991.

2. Douglas, B.E; Mc Daniel, D.H. & Alexander, J.J. Concepts & Models of Inorganic Chemistry 3rd Ed., John Wiley Sons, N.Y. 1994.

3. Greenwood, N.N. & Earnshaw. Chemistry of the Elements, Butterworth-Heinemann. 1997.

4. Cotton, F.A. & Wilkinson, G. Advanced Inorganic Chemistry, Wiley, VCH, 1999.

5. Miessler, G. L. & Donald, A. Tarr. Inorganic Chemistry 4th Ed., Pearson, 2010.

6. Shriver & Atkins, Inorganic Chemistry 5th Ed.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 19 of 49

BHO	CP-I-1 21	02-	CH	EMIST	FRY LA	B-I			L-0,	T-0, P-	4	2 Cre	dits
Pre-r	equisi	te: Ur	nder	standin	g of sen	ior seco	ndary le	vel Che	mistry			-	
Cour exper comp	se Obj iments ounds.	i ectiv abou	es: 7 t var	The obje tious ty	ective of pes of ir	this con organic	urse is to titratior	p provid ns and p	e practio reparatio	cal knov on of sin	vledge a nple ino	nd illus rganic	trative
Cour	se Out	come	s: A	t the en	d of the	course,	the stud	lent will	be able	to			
CC	D1	Unde	ersta	nd to c	alibrate	and run	the inst	ruments	for anal	vsis			
CC	02	Lear	n to	the qua	ntitative	e analysi	is of var	ious me	tal ions/	cations :	and anic	ns	_
CC)3	Unde analy	ersta /sis.	nd the	various	principle	es of dif	ferent te	chnique	es involv	ed in th	e quanti	tative
CC)4	Lear	n to	prepare	various	inorgar	nic comp	oounds					
			Ma	apping	of cour	se outco	omes wi	th the p	rogram	outcon	nes		
	DOL			i uusaana									
601	PO1	PC)2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO2								812					
CO3													
CO4													
List of	Expe	rimen	ts:										
(A) Ti	itrimet	ric A	naly	sis									
i) Cali	ibratio	n and	use (of appa	ratus								
ii) Pre	paratic	on of s	olut	ions of	differen	t Molari	ity/Norn	nality of	titrants				
B) Ac	id-Bas	e Titr	atio	ns									
i) Esti	mation	of ca	rbon	ate and	hydrox	ide pres	ent toge	ther in r	nixture.				
ii) Esti	imation	n of ca	irboi	nate and	d bicarb	onate pr	esent to	gether in	n a mixt	ure.			
iii) Est	timatio	n of fi	ree a	ılkali pı	esent in	differer	nt soaps/	deterge	nts				
C) Ox	idatio	1-Red	ucti	on Titı	imetry								
i) Estir	nation	of Fe	(II) a	and oxa	lic acid	using st	andardiz	zed KM	nO4 sol	ution.			

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 20 of 49

(ii) Estimation of oxalic acid and sodium oxalate in a given mixture.

(iii) Estimation of Fe(II) with K₂Cr₂O₇ using internal (diphenylamine, anthranilic acid) and external indicator.

Reference text:

1. Vogel, A.I. A Textbook of Quantitative Inorganic Analysis, ELBS.

p

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 21 of 49

BHH	IL-105-	21 Co	mmuni	cative E	nglish -	·I		L-2,	T-0, P-	0	2 Crea	lits
Pre-r	equisit	e: Basic	proficie	ncy in C	Commur	nication	Skills					
Cour	se Obje	ectives:	The mai	n object	ive of th	nis cours	se is:					
	•	To he Writi	elp the s ng skills	tudents	become	profici	ent in L	.SRW-L	istening	, Speaki	ing, Rea	iding &
	•	To he	lp the st	udents b	become	the inde	pendent	users o	f Englis	h langua	ge	
	•	To de	evelop in	them v	ital com	munica	tion skil	lls, integ	ral to th	eir pers	onal, sou	cial an
		profe	ssional i	nteractio	ons					1	,	
	•	To tea	ach them	the app	oropriate	e langua	ge of pr	ofessior	al comr	nunicati	on	
	•	To pr	epare the	em for j	ob mark	et						
Cour	se Outo	comes: A	At the en	d of the	course,	the stuc	lent will					
CC	D1	acquire	basic pro	oficienc	y in rea	ding &li	stening.	writing	and spe	aking sl	cills	
CC	02	be able	to under	stand sp	oken an	d writte	n Englis	sh langu	age, par	ticularly	the lan	guage
_		of their	chosen t	echnica	l field.		C	0	0.,1			5
CC	03	be able	to conve	rse flue	ntly.							1.1
CC	04	be able	to produ	ce on th	eir own	clear ar	d coher	ent texts	5.			
CC	D1	become	proficie	nt in pro	ofession	al comn	nunicati	on, such	as, inte	rviews.	group	-
		discussi	ons, offi	ce envir	onment	s, impor	tant rea	ding ski	lls as we	ell as wr	iting ski	lls and
		thereby	will hav	e better	job pros	spects.		2			0	
		M	lapping	of cour	se outco	omes wi	th the p	orogran	1 outcor	nes		
	1											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	1	1	2	2	3	2	3	2	2
02	1	-	-	1	1	2	2	3	2	3	2	2
03	1	-	-	1	1	2	2	3	2	3	2	2
C O 4	1	-	-	1	1	2	2	3	2	3	2	2
CO5	2	-	-	1	1	2	2	3	2	3	2	2

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 22 of 49

Detail	ed Syllabu	s:
		Part –A
UNIT	I-(Literat	ure)
(A)	The Poe	tic Palette (Orient Black Swan, Second Edition, 2016)
	Th	e following poems from this anthology are prescribed:
	1.	Pippa's Song: Robert Browning
	2.	Apparently With No Surprise: Emily Dickinson
	3.	Fool and Flea: Jeet Thayil

(B) Prose Parables (Orient Black Swan, 2013)

The following stories from the above volume are prescribed:

- a. The Kabuliwallah : Rabindranath Tagore
- b. The Eyes Are Not Here: Ruskin Bond
- c. Grief: Anton Chekov

UNIT-II

Vocabulary: Word Formation Processes; Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives; Synonyms, antonyms

Grammar: Subject-verb agreement; Noun-pronoun agreement; Misplaced modifiers; Articles Determiners; Modals; Prepositions;

PART-B

UNIT-III

Reading and Understanding: Close Reading; Comprehension;

UNIT-IV

Mechanics of Writing & Speaking Skills

Essay Writing (Descriptive/Narrative/Argumentative); Business letters; Précis Writing; Self Introductions; Group Discussion

TEXT AND REFERENCE BOOK

- 1. John Eastwood, Oxford Practice Grammar, Oxford University Press, 2014
- 2. Michael Swan, Practical English Usage, OUP. 1995.
- 3. F.T. Wood, Remedial English Grammar, Macmillan. 2007.
- 4. William Zinsser, On Writing Well, Harper Resource Book 2001.
- 5. Sanjay Kumar and Pushp Lata, Oxford University Press. 2011.
- 6. Communication Skills, Oxford University Press. 2011.
- 7. Liz Hamp-Lyons and Ben Heasly, Study Writing, Cambridge University Press. 2006.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 23 of 49

внн	L-106 21	A- ਪੰਜ	ਬੀ ਲਾਜ਼	ਮੀ (Pu	njabi Co	ompulse	ory)-I	L-2,	T-0, P-0	0	2 Cred	lits
Pre-re	equisit	e: Under	standing	ofseni	or secon	ndary lev	el Punj	abi				
Cours 1.To e 2.To langua	se Obje enhance enhance age tea	ectives: 7 e the lang e the at ching wit	The obje uage ab bility of h scienc	ctive of ility of s Learni e subjec	the count students ing scie cts.	rse is: ence and	d devel	oping s	cience	literacy	throug	h local
Cours	se Outo	comes: A	t the end	d of the	course,	the stud	ent will	be able	to			
CO	01	Translate	e and 1	transfer	/broadca	ist the	westerr	n scient	ific kn	owledge	in the	e local
CO	02	Translate local kno	e and tra wledge	ansfer t into En	he indig glish an	genous/t d other	radition	al scien	tific kno	owledge	avail	able in
CO)3	Understa	ind the s	ociety t	hrough	Punjabi	languag	e, litera	ture and	culture		
CO)4	Learning	science	and in	develop	ing scie	nce liter	acy.			-	
CO	95	Improve	the inte	rnal con	nmunica	ation.						
		М	apping	of cour:	se outco	omes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01										-		
CO2				-								
CO3												
CO4												

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 24 of 49

Detailed Syllabus:	
P,	ART-A
UNIT I : ਕਵਿਤਾ ਭਾਗ:	
ਭਾਈ ਵੀਰ ਸਿੰਘ:	
ਸਮਾਂ, ਚਸ਼ਮਾ	
ਪ੍ਰੋ. ਪੂਰਨ ਸਿੰਘ :	
ਪੰਜਾਬ ਨੂੰ ਕੂਕਾਂ ਮੈਂ, ਹੱਲ ਵਾਹੁਣ ਵਾਲੇ	
ਪ੍ਰੋ.ਮੋਹਨ ਸਿੰਘ :	
ਮਾਂ, ਕੋਈ ਆਇਆ ਸਾਡੇ ਵਿਹੜੇ, ਪਿਆਰ ਪੰਧ	
ਅੰਮ੍ਰਿਤਾ ਪ੍ਰੀਤਮ:	
ਆਖਾਂ ਵਾਰਿਸ ਸ਼ਾਹ ਨੂੰ, ਅੰਨਦਾਤਾ	(Lecture
11)	
UNIT-II ਕਹਾਣੀ ਭਾਗ:	
ਸੰਤ ਸਿੰਘ ਸੇਖੋਂ :	
ਪੇਮੀ ਦੇ ਨਿਆਣੇ	
ਸੁਜਾਨ ਸਿੰਘ :	
ਕੁਲਫੀ	
ਕੁਲਵੰਤ ਸਿੰਘ ਵਿਰਕ :	
ਤੂੜੀ ਦੀ ਪੰਡ	
ਗੁਰਦਿਆਲ ਸਿੰਘ :	
ਸਾਂਝ	(Lecture 12)
F	ART-B
UNIT-III ਭਾਸ਼ਾ ਦਾ ਟਕਸਾਲੀ ਰੂਪ, ਭਾਸ਼ਾ ਤੇ ਉਪ-ਭਾਸ਼ਾ ਵਿਚ	ਅੰਤਰ, ਪੰਜਾਬੀ ਦੀਆਂ ਉਪ-ਭਾਸ਼ਾਵਾਂ,ਪੰਜਾਬੀ ਭਾਸ਼ਾ:ਨਿਕਾਸ ਤੇ
ਵਿਕਾਸ।	
ਭਾਸ਼ਾ ਤੇ ਲਿਪੀ, ਗੁਰਮੁਖੀ ਲਿਪੀ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ, ਗੁਰ	ਸਮੁਖੀ ਲਿਪੀ: ਨਿਕਾਸ ਤੇ ਵਿਕਾਸ।
	(Lecture 11)
UNIT-IV	th

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 25 of 49

ਸੰਖੇਪ ਰਚਨਾ (ਪ੍ਰੈਸੀ)

ਪੈਰ੍ਹਾ ਰਚਨਾ ਸਰਲ ਅੰਗਰੇਜ਼ੀ ਪੈਰ੍ਹੇ ਦਾ ਪੰਜਾਬੀ ਅਨੁਵਾਦ

(Lecture 11)

TEXT AND REFERENCE BOOK: 1. ਸੰਪ.ਡਾ.ਮਹਿਲ ਸਿੰਘ, ਸਾਹਿਤ ਦੇ ਰੰਗ, ਰਵੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ, 2016.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 26 of 49

BHHI 2	L-106B	- ਮੁਢਲ	ਹੀ ਪੰਜਾਬੰ	t (Mudł	ıli Punj	abi)-I		L-2, 7	Г-0, Р-0)	2 Cred	its
Pre-ree	quisite	: Unders	tanding	of senic	or secon	dary lev	el Physi	cs and M	Mathem	atics		
Course 1. enha 2. enha teachin	e Objec nce the ince the g with	ctives: T languag e ability science s	he objects the ability of Lear subjects	ctive of y of stuc ning sci	the cour lents. ience an	rse is to: nd devel	oping so	cience li	teracy t	through	local la	nguage
Course	Outco	omes: A	t the end	l of the	course,	the stud	ent will	be able	to			
CO	1 	Franslate anguage	e and t	ransfer/	broadca	st the	western	scienti	ific kno	owledge	in the	e local
CO	2	Franslate ocal kno	and transformed and transformed and transformed and the second seco	ansfer tl into En	he indig glish an	genous/t d other ;	raditiona global la	al scient inguage:	ific kno s.	owledge	avail	able in
CO.	3	Understa	nd the s	ociety t	hrough	Punjabi	languag	e, literat	ure and	culture.		
<u>CO</u>	4 1	Learning	science	and in	develop	ing scie	nce liter	acy.	_			
0	3 1	M	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01												
CO2												
CO3												
CO4												
C05					1							
Detaile	ed Sylla	abus:										
						PART-	1					
UNIT	I		-									
ਪੈਂਤੀ ਅੱ	ਖਰੀ (ਵ	ਰੲਮਾਲਾ), ਅੱਖਰ	ਕ੍ਰਮ								
ਮਾਤਰਾਵ ਕਗਾਮਤ	ਵਾਂ : ਮੁਢ ਹ :ਬਿੰਦੀ	ਲੀ ਜਾਣ-ਪ ਟਿੱਸੀ ਘੱ	ਮਛਾਣ ਸ਼ਾਕ									
00140		, 1041, 14										
UNIT-	ш											
ਪੰਜਾਬੀ	ਸ਼ਬਦ ਬ	ਬਣਤਰ: ਮੁ	ਢਲੀ ਜਾ	ੲ-ਪਛਾੲ			حا	V				
ਮਲ ਸ਼ਬ	ਜਦ . ਅਰ	ਗੇਤਰ. ਪਿ	ਛੇਤਰ				C	P-				

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 27 of 49

ਸਮਾਨਾਰਥਕ ਸ਼ਬਦ, ਵਿਰੋਧਾਰਥਕ ਸ਼ਬਦ

ਸ਼ੁੱਧ- ਅਸ਼ੁੱਧ: ਦਿੱਤੇ ਪੈਰ੍ਹੇ ਵਿੱਚੋਂ ਅਸ਼ੁੱਧ ਸ਼ਬਦ ਨੂੰ ਸ਼ੁੱਧ ਕਰਨਾ (11 Lectures)

PART-B

UNIT-III ਹਫਤੇ ਦੇ ਸੱਤ ਦਿਨਾਂ ਦੇ ਨਾਂ ਬਾਰ੍ਹਾਂ ਮਹੀਨਿਆਂ ਦੇ ਨਾਂ ਰੁੱਤਾਂ ਦੇ ਨਾਂ ਇਕ ਸੈ ਤੱਕ ਗਿਣਤੀ ਸ਼ਬਦਾਂ ਵਿਚ

UNIT-IV

ਸਧਾਰਣ ਸ਼ਬਦਾਂ ਦਾ ਅੰਗਰੇਜ਼ੀ ਤੋਂ ਪੰਜਾਬੀ ਅਨੁਵਾਦ

ਸਧਾਰਣ ਸ਼ਬਦਾਂ ਦਾ ਪੰਜਾਬੀ ਤੋਂ ਅੰਗਰੇਜ਼ੀ ਅਨੁਵਾਦ

TEXT AND REFERENCE BOOK 1.ਸੰਪ.ਡਾ.ਮਹਿਲ ਸਿੰਘ, ਸਾਹਿਤ ਦੇ ਰੰਗ, ਰਵੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ, 2016.

V

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 28 of 49

SEMESTER-II

A

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 29 of 49

BSPH	I-121-	21	W	aves ai	nd Vibr	ations		L-4,	T-0, P-	0	4 Crea	lits
Pre-r	equisi	te: Under	standin	g of sen	ior seco	ndary le	vel phys	sics and	Mathem	natics		
Cour: motio waves interfa	se Ob ns, da s, prop ace of	jectives: mped has bagation mediums.	The ob rmonic of wave	jective motions es in va	of the and fo arious n	course orced os nediums	provides cillatior and re	s an exp ns. Stud flection	posure a ents lea /transmi	about si rns abou ssion o	mple ha ut the d f waves	ifferen at the
Cours	se Out	comes: A	t the en	d of the	course,	the stud	lent will	be able	to			
C()1	Underst	and the	simple a	und dam	ped har	monic m	notion of	f an osci	llator.		
CC)3	Apply th	ne Coup	led osci	llator to	the real	life pro	blems.	onance	-		
CC)4	Understa	and the	transmis	ssion of	signals	and Elec	ctromagi	netic Wa	aves		
CC)5	Apply th	ne know	ledge of	otained i	n this co	ourse to	day-to-o	day prot	olems.		
		М	apping	of cour	se outco	omes wi	ith the p	orogran	ı outcor	nes		
_	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	1	-	1	2	-	2	3	2	3
CO2	2	2	1	2	1	1	1	-	1	3	2	3
CO3	3	2	-	2	1	1	2	-	1	3	2	3
CO4	2	2	-	2	1	1	2	1	1	3	3	1
05	2	2	-	2	1	1	2	1	1	2	2	2

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 30 of 49

Detailed Syllabus:

PART-A

UNIT-I

Simple and Damped Harmonic Motion: Simple harmonic motion, energy of a SHO, Compound pendulum, Torsional pendulum, Electrical Oscillations, Lattice Vibrations, Transverse Vibrations of a mass on a string, Anharmonic Oscillations. Damped simple harmonic motion, Decay of free Vibrations due to damping, types of damping, Determination of damping coefficients: Logarithmic decrement, relaxation time and Q-factor. Electromagnetic damping.

(12 Lectures)

UNIT-II

Forced Vibrations and Resonance: Forced mechanical and electrical oscillator, Transient and Steady State Oscillations, Displacement and velocity variation with driving force frequency, Variation of phase with frequency resonance, Power supplied to forced oscillator by the driving force. Q-factor and band width of a forced oscillator, Electrical and nuclear magnetic resonances. (12 lectures)

PART-B

UNIT-III

Coupled Oscillations: Stiffness coupled oscillators, Normal coordinates and modes of vibrations. Inductance coupling of electrical oscillators, Normal frequencies, Forced vibrations and resonance for coupled oscillators, Masses on string-coupled oscillators.

Waves in Physical Media: Types of waves, wave equation (transverse) and its solution characteristics impedance of a string, Impedance matching, Reflection and Transmission of waves at boundary, Energy of vibrating string, wave and group velocity. (12 Lectures)

UNIT-IV

Transmission of signals and Electromagnetic Waves: Transmission of a non-monochromatic wave, Frequency range and Signal duration, Bandwidth theorem, Group and phase velocities, Electromagnetic theory of dispersion, Doppler effect, Electromagnetic (EM) Waves: Maxwell Equations, Wave equation, EM waves in a medium of finite ε , μ and σ . Energy flow due to a plane EM wave, EM waves in a conducting medium, Skin depth. (12 Lectures)

Text and Reference Books:

- 1. Text Book of Vibrations and Waves: S.P. Puri (Macmillan India), 2004.
- 2. The Physics of Vibrations and Waves: H.J. Pain (Wiley and ELBS), 2013.

3. N.K. Bajaj, The Physics of Waves and Oscillations, Tata McGraw Hill, 1998.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 31 of 49

BSH	P-122-	-21	Elec	tricity :	and Ma	gnetism	1	L-4,	T-0, P-0	0	4 Cred	lits
Pre-r	equisit	te: Basic	knowled	dge of E	lectricit	y and M	lagnetisi	n at hig	h school	level.		
Cours electri	se Obj icity ar	ectives: " nd magne	The obje tism so	ective of that they	f the cou	irse is to e these a	o expose as per th	e the stu eir requ	dents to irement.	the form	nal strue	cture of
Cours	se Out	comes: A	t the en	d of the	course,	the stud	lent will	be able	to			
C	01	Underst	and and	describe	e the dif	ferent c	oncepts	of elect	rostatics	and ma	gnetosta	itics
CC	02	Apply t	he knov	vledge o	of Maxv	vell's ec	uation	and flow	w of ele	ctromag	netic w	aves in
	12	real prol	olems.			11.00						
c)5	Analyze	the way	ve propa	igation i	n differe	ent medi	a				
<u> </u>	04	Compar	e the dif	ferent ty	pes of p	oolarizat	tion	_				
CC)5	have a s	olid four	ndation	in electr	omagne	tism fur	ndament	als requ	ired to s	olve pro	blems
		Į VI	apping	of cour	se outco	omes wi	ith the p	orogran	1 outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	2	2	1	2	1	2	3	2	2
CO2	3	2	1	-	2	2	1	1	1	3	1	1
CO3	3	2	3	-	2	1	2	1	1	3	1	1
CO4	3	2	3	2	1.5	2	2	1	1	3	1	1
				-				1				

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 32 of 49

Detailed Syllabus:

PART-A

UNIT I

Review of Vector Analysis and Electrostatics: scalar and vector product; gradient, divergence and curl and their significance; Gauss-divergence theorem and Stoke's theorem (statement only); Electrostatic field; electric flux; Gauss's law of electrostatics; Applications of Gauss law-Electric filed due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charge sheet; Electric potential as line integral of electric field, potential due to point charge and electric dipole; calculation of electric field from potential; Poisson's equation and Laplace's equation(Cartesian coordinate); Capacitance; capacitance of a spherical conductor and cylindrical capacitor, Energy per unit volume in electrostatic field, Dielectric medium, dielectric polarization and its types, Displacement vector, Boundary conditions *(11 Lectures)*

UNIT-II

Magnetostatics: Magnetic flux; magnetic flux density; Faraday's law; magnetomotive force; Biot-Savart's law and its applications-straight conductor, circular coil, divergence and curl of magnetic field; Ampere's work law in differential form; Magnetic vector potential; ampere's force law; magnetic vector potential; Energy stored in a magnetic field, boundary conditions on magnetic fields. *(10 Lectures)*

PART-B

UNIT-III

Maxwell's Equations and Poynting Vector: Equation of continuity for time varying fields; Inconsistency of ampere's law; concept of sinusoidal time variations (Phasor notation); Maxwell's equations with physical significance; Maxwell equations in free space, static field and in Phasor notation; Difference between displacement current and conduction current; Concept of Poynting vector; Poynting Theorem. (11 Lectures)

UNIT-IV

Electromagnetic Waves: Wave equation in free space or non-conducting or lossless medium; wave equation for conducting medium; wave propagation in lossless and conducting medium (phasor form); Propagation characteristics of EM waves in free space, lossless and in conducting medium; Uniform plane waves and solution; relation between electric and magnetic fields of an electromagnetic wave; Linear, circular and elliptical polarization; depth of penetration, Reflection of waves by a perfect conductor: normal incidence and oblique incidence; Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence. *(12 Lectures)*

Reference Books:

- David Griffiths, Introduction to Electrodynamics, Pearson Education India Learning Private Limited; 4 edition.
- 2. Edward C Jordan and Keith G Balmain, Electromagnetic waves and radiating systems, Prentice Hall
- 3. Kraus John D, Electromagnetics, McGraw-Hill Publisher
- 4. W. Saslow, Electricity, magnetism and light, Academic Press
- 5. A Textbook of Electricity and Magnetism, S K Sharma, Shalini Sharma, Publisher: S Dinesh & Co.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 33 of 49

BSHI 2	P-123- 21	Physics	s Lab-II				L-0, T-	0, P-4	2 Credits			
Pre-r	equisite	es (if any): High-	school e	ducation	with Ph	ysics lat	as one	of the su	bject.	-	_
Cours Sc. (F these	se Obje Ions.) F as per tl	ctives: T hysics to neir requi	The aim the for rement.	and obje mal stru	ective of cture of	the Phy wave ar	sics Lab nd vibrat	course tions and	is to inti 1 mechai	roduce th nics so th	e studer hat they	nts of B can us
Cours	se Outc	omes: A	t the end	of the c	ourse, th	e studen	t will be					
CO1		Able to	understa	and the t	heoretica	al concer	ots learne	ed in the	theory o	OUISA		
CO2		Trained	in carry	ing out p	orecise m	neasuren	nents and	d handlir	ng equip	ment		-
CO3		Learn to	draw co	onclusio	ns from	data and	develop	skills in	experin	nental de	sion	
CO4		Able to understand the principles of error analysis and develop skills in experimental design.									imenta	
CO5		Able to and con-	documer cise man	nt a tech	nical rep	ort whic	h comm	unicates	scientif	ic inform	ation in	a clear
			Mappin	g of cou	rse outc	omes wi	th the p	rogram	outcom	es		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	2	2	2	1	2	1	2	3	2	3
CO2	3	3	1	-	2	2	1	1	1	3	2	3
CO3	3	3	2	-	2	1	2	1	1	3	2	3
CO4	3	2	2	2	-	2	2	1	1	3	2	3
	1											

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 34 of 49

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. Measurements of length (or diameter) using vernier caliper and screw gauge.
- 2. Measurement of volume using travelling microscope. Use of Plumb line and Spirit level.
- 3. To determine the frequency of an electrically maintained tuning fork in a) Transverse mode of vibration b) Longitudinal mode of vibration.
- 4. To verify the law of vibrating string Using Melde's experiment.
- 5. To compare mass per unit length of two strings by Melde's experiment.
- 6. To find out the frequency of AC mains using electric-vibrator/sonometer.
- 7. To determine the horizontal and vertical distance between two points using a Sextant.
- 8. To determine the height of an inaccessible object using a Sextant.
- 9. To determine the angular diameter of the sun using the sextant.
- 10. To determine the angular acceleration α , torque τ , and Moment of Inertia of flywheel.
- 11. To study the Motion of a Spring and calculate (a) Spring Constant (b) Value of g and (c) Modulus of rigidity.
- 12. To determine the time period of a simple pendulum for different length and acceleration due to gravity.
- 13. To study the variation of time period with distance between centre of suspension and centre of gravity for a compound pendulum and to determine: (i) Radius of gyration of the bar about an axis through its C.G. and perpendicular to its length. (ii) The value of g in the laboratory.
- 14. To find the moment of inertia of an irregular body about an axis through its C.G with the torsional pendulum.

Reference book and suggested readings:

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 6. Practical Physics, C L Arora. S. Chand & Company Ltd.
- 7. http://www.vlab.co.in

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 35 of 49

BSHM	1-204-	-21 Ve	ctor Alg	ebra &	Vector	is	L-4,	T-1, P-	0	4 Crea	lits	
Pre-re	quisit	e: Elem	entary ca	lculus o	f matric	level.						
Course followi	e Obj ng:	jectives:	The o	bjectives	s of thi	is cours	se are t	o make	the st	udents	understa	and the
1. 2. 3.	The f The g Appli	undamer eometri cations	ntal conc cal mean of gradie	cepts of a ning of p ent, dive	Scalars a rojectio rgence a	and Vec ns and c and curl.	tor alge orthogor	bra. ality.				
4. 5.	Geon The u	netric me utility of	eaning of Gauss, C	f scalar a Green an	and vect d Stoke	or value s Theor	ed functi em.	ons, gra	dient of	scalar p	oint fur	nction.
Course	Outo	comes: A	At the en	d of the	course,	the stud	ent will	be able	to			
CO	1	Underst	and the l	hasic co	ncents o	f Scalar	s and V	ector al	abra			
CO	2	Visualiz	ze all cor	icepts ge	cometric	cally	s and v	ector alg	scora.	-		
CO	3	Apply t	he know nality.	ledge of	dot pro	duct and	d cross p	product	n findir	ng projec	ctions, a	rea and
CO4	4	Utilize functior interpre	the cond n, diver tation.	cept of gence	scalar a and cu	nd vect Irl of	or value vector	ed funct point	tions, g function	radient 1s, thei	of scala ir geon	r point netrical
COS	5	Acquire	the kno	wledge	of the o	concept	of relat	ion betw	veen ca	rtesian,	cylindri	cal and
		M	lapping	of cours	se outco	omes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2			1.1.1									
CO3												
CO4												
C O 5												

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 36 of 49

Detailed Syllabus:

PART-A

UNIT I

Definitions of Scalars, vectors, position vector, unit vector, types of vectors, Addition of vectors, direction ratios, direction cosines, multiplication by a scalar, dot product, cross product of vectors, projection of vectors on a line.

UNIT-II

Vector joining two points, section formula, angle between two vectors, Cauchy-Schwartz inequality, Solenoidal vectors, orthogonality, Area of triangle, area of parallelogram, Scalar and vector product of three vectors

PART-B

UNIT-III

Scalar valued point functions, vector valued point functions, Derivative along a curve, directional derivatives, Differentiation and partial differentiation of a vector function. Derivative of sum, dot product and cross product of two vectors, Gradient, divergence and curl Gradient of a scalar point function. Geometrical interpretation of gradient of a scalar point function (grad φ).

UNIT-IV

Divergence and curl of a vector point function, Character of divergence and curl of a vector point function, relation between Cartesian and cylindrical or spherical coordinates, Statements of Theorems of Gauss, Green and Stokes (without proof).

TEXT AND REFERENCE BOOK

- Mathematics, A Text book for Class XII (Parts I & II), New Delhi: NCERT, 2003. (Unit I & II)
- 2. G.B. Thomas and R.L. Finney, Calculus, 9th Ed., Pearson Education, Delhi, 2005.
- 3. H. Anton, I. Bivens and S. Davis, Calculus, John Wiley and Sons (Asia) P. Ltd. 2002.
- 4. P.C. Matthew's, Vector Calculus, Springer Verlag London Limited, 1998.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 37 of 49

BSH	C-113-	3-21 ORGANIC CHEMISTRY							L-4,	T-0, P-	•0	4 Cree	dits
Pre-r	equisit	te: U	nder	standing	g of seni	ior seco	ndary le	vel Phys	sics and	Mathen	natics		
Cours	se Obj	ectiv	es:			_				11	-		
1. 2. 3.	To t comp To in alken To p	teach bound mpart nes, d bredic	the ls. t kn iene ct a	e basic lowledge s, alkyn ind acco	princip e regard es, arend ount fo	les, rea ling phy es, alkyl or the	ysical p and ary most co	nechani ropertie I halide ommoni	sms and c s and c s etc. y enco	d stere chemica untered	ochemis I reactio reactio	try of ons of a n mech	organic alkanes, nanisms
Cours	se Out	come	s: A	t the en	d of the	course,	the stud	lent will	be able	to			_
CC	01	Understand the fundamental concepts of organic chemistry i.e. structure, bonding an various effects in organic compounds										ng and	
CC	02	To lo conf	earn orm	the ster ational i	eochem someris	istry viz m of or	. optica ganic co	l isomer	ism, ste ls.	reoisom	erism ar	ıd	
CO)3	To s	tudy	the var	ious kno	own read	ctive int	ermedia	te in org	ganic sy	nthesis.		_
CO)4	To le the s elim	earn tudy inati	the fund of reaction react	damenta tion me tions.	l and ad chanism	lvanced is in var	concept ious typ	s of read es of sul	ction me bstitutio	echanisn on additio	ns along on and	with
CO	95	То р	redi	ct the re	lationsh	ips betw	veen org	anic ch	emical s	tructure	s and the	eir react	ivity.
			M	apping	of cours	se outco	omes wi	th the p	rogram	outcon	nes		
	PO1	P	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		-											1012
CO2			-					-				-	
03		-								<u></u>			
04													
-		-				_			San San S				

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 38 of 49

Detailed Syllabus:

PART-A

Unit-I

Basics of Organic Chemistry

Organic Compounds: Classification, and Nomenclature, Hybridization, Shapes of molecules, Influence of hybridization on bond properties. *Electronic Displacements:* Inductive, electromeric, resonance and mesomeric effects, hyperconjugation and their applications; Dipole moment; Organic acids and bases; their relative strength. Homolytic and Heterolytic fission with suitable examples. Curly arrow rules, formal charges; Electrophiles and Nucleophiles; Nucleo phlicity and basicity; Types, shape and their relative stability of Carbocations, Carbanions, Free radicals and Carbenes. Introduction to types of organic reactions and their mechanism: Addition, Elimination and Substitution reactions.

Unit-II

Stereochemistry:

Fischer Projection, Newmann and Sawhorse Projection formulae and their interconversions; Geometrical isomerism: cis-trans and, syn-anti isomerism E/Z notations with C.I.P rules.

Optical Isomerism: Optical Activity, Specific Rotation, Chirality/Asymmetry, Enantiomers, Molecules with two or more chiral-centres, Distereoisomers, meso structures, Racemicmixture and resolution. Relative and absolute configuration: D/L and R/S designations.

A. Carbon-Carbon sigma bonds formation:-

Chemistry of alkanes: Formation of alkanes, Wurtz Reaction, Wurtz-Fittig Reactions, Free radical substitutions: Halogenation -relative reactivity and selectivity.

PART-B

Unit-III

Carbon-Carbon pi bonds:

Formation of alkenes and alkynes by elimination reactions, Mechanism of E1, E2, E1cb reactions. Saytzeff and Hofmann eliminations.

Reactions of alkenes: Electrophilic additions their mechanisms (Markownikoff/ AntiMarkownikoff addition), mechanism of oxymercuration-demercuration, hydroboration oxidation, ozonolysis, reduction (catalytic and chemical), syn and anti-hydroxylation(oxidation). 1,2-and 1,4-addition reactions in conjugated dienes and, Diels-Alder reaction; Allylic and benzylic bromination and mechanism, e.g. propene, 1-butene, toluene, ethyl benzene. *Reactions of alkynes:* Acidity, Electrophilic and Nucleophilic additions. Hydration to form carbonyl compounds, Alkylation of terminal alkynes.

Unit-IV

Cycloalkanes and Conformational Analysis

Types of cycloalkanes and their relative stability, Baeyer strain theory, Conformation analysis of alkanes: Relative stability: Energy diagrams of cyclohexane: Chair, Boat and Twist boat forms; Relative stability with energy diagrams.

Aromatic Hydrocarbons

Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions and heterocyclic compounds with suitable examples. Electrophilic aromatic substitution: halogenation, nitration, sulphonation and Friedel-Craft's alkylation/acylation with their mechanism. Directing effects of the groups.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 39 of 49

Text and Reference Books:

- Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 2. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 3. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 4. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds; Wiley: London, 1994.
- 5. Kalsi, P. S. Stereochemistry Conformation and Mechanism; New Age International, 2005.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 40 of 49

B2HC	C-119-21	CH	CHEMISTRY LAB-II						Г-0, Р-2	2	2 Cred	its
Pre-re	equisite:	Unders	tanding	of senior	second	dary lev	el Chen	nistry				
Cours career.	e Objec	tives: w	which wi	ll act as a	a strong	g backg	round if	he/she	chooses	to purs	ue physi	ics as a
Cours	e Outco	mes: A	t the end	d of the co	ourse, t	he stude	ent will	be able	to			
CO	01											
<u> </u>	2											
0	15		_		_							_
CO)4											
					_							
CO	5											
CO	95	M	apping	of course	e outco	mes wi	th the p	rogram	outcon	nes		
CO	PO1	M PO2	apping PO3	of course	e outco PO5	mes wi	th the p PO7	rogram PO8	outcon PO9	nes PO10	PO11	PO12
C0	PO1	M PO2	apping PO3	of course	e outco PO5	mes wi	th the p PO7	rogram PO8	outcon PO9	nes PO10	PO11	PO12
CO CO1 CO2	PO1	M PO2	apping PO3	PO4	PO5	mes wi	th the p	PO8	outcon PO9	PO10	PO11	PO12
CO CO1 CO2 CO3	PO1	Ma PO2	apping PO3	PO4	PO5	mes wi	PO7	PO8	PO9	PO10	PO11	PO12
CO1 CO2 CO3 CO4	PO1	Ma PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1 CO2 CO3 CO4 CO5	PO1	Ma PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

- 2. Purification of organic compounds by crystallization using the following solvents: a) Water b) Alcohol, and c) Alcohol-Water.
- 3. Determination of the melting points of above compounds and unknown organic compounds (Kjeldahl method and electrically heated melting point apparatus)
- 4. Effect of impurities on the melting point mixed melting point of two unknown organic compounds
- 5. Determination of boiling point of liquid compounds. (boiling point lower than and more than 100°C by distillation and capillary method)
- 6. Chromatography a) Separation of a mixture of two amino acids by ascending and horizontal paper chromatography b) Separation of a mixture of two sugars by ascending paper chromatography, c) Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC)

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 41 of 49

Reference Books

- Mann, F.G. & Saunders, B.C. *Practical Organic Chemistry*, Pearson Education (2009).
 Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. *Practical Organic Chemistry*, *5th Ed.*, Pearson (2012).

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 42 of 49

BHHI	L-115-	21 Con	nmunic	ative Er	nglish-I	I		L-2,	T-0, P-()	2 Cred	its
Pre-re	quisit	e: Basic j	proficier	icy in co	ommunio	cative E	nglish			_		
Cours	e Obje	ectives: T	his cour	rse is de	signed t	0 oficient	in IS	DW/Lie	tening	Speakin	a Paar	ling &
		Writin	g skills	ents bet	onie pi	oncient	. 111 L.S	IX W-L15	terning,	эрсакт	g, Read	ing a
		help th	ne studer	its beco m vital	me the i	ndepend	dent use n skills	rs of En	glish lar L to the	iguage	nal soc	ial and
		profes	sional in	iteractio	ns	amoutio	n okno,	integra	i to uio	n person	inui, 500	an and
	:	teach t	hem the	approp	riate lan parket	guage c	of profes	sional c	ommuni	ication		6. B
Cours	e Outo	comes: A	t the end	d of the	course,	the stud	ent will	be able	to			
СО	1	Students will acquire basic proficiency in reading &listening, writing and speaking skills.										
CO	2	Students	will be	able to	underst	and spo	ken and	written	English	languag	ge, parti	cularly
CO	3	They wi	lage of t	e to con	verse flu	inical fi	eid.					
CO	4	They wi	ll be able	e to proc	luce on	their ov	vn clear	and coh	erent te:	xts.		
CO	5	Students group di skills and	will bec scussion d thereb	come pro s, office y will ha	oficient e enviror ave bette	in profe nments, er job pi	essional importa ospects	commu nt readi	nication ng skills	such as as well	intervie as writi	ws, ng
		Μ	apping	of cours	se outco	omes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	1	1	2	2	3	2	3	2	2
CO2	1	-	-	1	1	2	2	3	2	3	2	2
CO3	1	-	-	1	1	2	2	3	2	3	2	2
CO4	1	-	-	1	1	2	2	3	2	3	2	2
CO5	2	-	-	1	1	2	2	3	2	3	2	2

de

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 43 of 49

Detailed Syllabus:

Part -A

UNIT I-(Literature) (A) The Poetic Palette (Orient Black Swan, Second Edition, 2016)

The following poems from this anthology are prescribed:

- 1. The Soul's Prayer: Sarojini Naidu
- 2. I Sit and Look Out: Walt Whitman
- 3. Women's Rights: Annie Louise Walker

(B) Prose Parables (Orient Black Swan, 2013)

The following stories from the above volume are prescribed:

- 1. The Doctor's Word: R.K. Narayan
- 2. The Doll's House: Katherine Mansfield
- 3. Dusk: H.H. Munroe (Saki)

UNIT-II

Vocabulary: Standard abbreviations; One word substitution; Word Pairs (Homophones/ Homonyms)

Grammar: Sentence Structures; Use of phrases and clauses in sentences; Transformation of Sentences; Importance of proper punctuation

PART-B

UNIT-III

Reading and Understanding: Summary Paraphrasing; Analysis and Interpretation; Translation (from Hindi/Punjabi to English and vice-versa)

UNIT-IV

Mechanics of Writing & Speaking Skills: Report writing; Career Documents- Job applications, Resume/CV writing, Common Everyday Situations: Conversations & Dialogues, Formal Presentations

TEXT AND REFERENCE BOOK

- 1. John Eastwood, Oxford Practice Grammar, Oxford University Press, 2014
- 2. Michael Swan, Practical English Usage, OUP. 1995.
- 3. F.T. Wood, Remedial English Grammar, Macmillan. 2007.
- 4. William Zinsser, On Writing Well, Harper Resource Book 2001.
- 5. Sanjay Kumar and Pushp Lata, Oxford University Press. 2011.
- 6. Communication Skills, Oxford University Press. 2011.
- 7. Liz Hamp-Lyons and Ben Heasly, Study Writing, Cambridge University Press. 2006.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 44 of 49

внн	L-116/ 21	ਪ- ਪੰਜਾ Ⅱ	ory)-	L-2, '	Г-0, Р-()	2 Cred	its				
Pre-re	equisite	e: Unders	standing	of senio	or secon	dary lev	el Punja	abi				
Cours and de	e Obje velopii	ectives: 7	Гhe obje e literac	ective of y throug	f the cough local	urse is t languag	o enhan e teachi	ce the a ng with	bility o science	f via Le subjects	earning : s.	science
Cours	e Outc	omes: A	t the end	d of the	course,	the stud	ent will	be able	to			
CO	01	Translate language	e and t	transfer/	broadca	st the	western	scient	ific kno	owledge	in the	e local
CO	02	Translate local kno	e and tra wledge	ansfer t into En	he indig glish an	genous/t d other j	radition: global la	al scient inguage:	tific kno s.	owledge	avail	able in
CO	3	Understa	and the s	ociety t	hrough I	Punjabi	languag	e, literat	ure and	culture		
CO)4	Learning	science	and in	develop	ing scie	nce liter	acy.				
CO	5	Improve	the inte	rnal con	nmunica	ition.						
		М	apping	of cour:	se outco	omes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01												
CO2												
CO3												
CO4												
C05							· · · · ·					

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 45 of 49

	1. K. Gujrai Funjab Technicai University, Kapurinata
Detailed Syllabus:	
PART-A	1
UNIT I :	
ਡਾ.ਹਰਿਭਜਨ ਸਿੰਘ:	
ਅਪ੍ਰਮਾਣਿਕ, ਤੇਰੇ ਹਜ਼ੂਰ ਮੇਰੀ ਹਾਜ਼ਰੀ ਦੀ ਦਾਸਤਾਨ	
ਸ਼ਿਵ ਕੁਮਾਰ ਬਟਾਲਵੀ:	
ਕੰਡਿਆਲੀ ਥੋਰ੍ਹ, ਧਰਮੀ ਬਾਬਲ ਪਾਪ ਕਮਾਇਆ, ਰੁੱਖ	
भग्न:	
ਇਨਕਾਰ,ਸਭ ਤੋਂ ਖਤਰਨਾਕ,ਦਹਿਕਦੇ ਅੰਗਿਆਰਾਂ 'ਤੇ	
ਸੁਰਜੀਤ ਪਾਤਰ:	
ਹੁਣ ਘਰਾਂ ਨੂੰ ਪਰਤਣਾ, ਕੁਝ ਕਿਹਾ ਤਾਂ, ਪੁਲ	(Lecture 12)
UNIT-II	
ਕਹਾਣੀ ਭਾਗ:	
ਸੰਤੋਖ ਸਿੰਘ ਧੀਰ:	
ਕੋਈ ਇਕ ਸਵਾਰ	
ਪ੍ਰੇਮ ਪ੍ਰਕਾਸ਼:	
ਲੱਛਮੀ	
ਮੋਹਨ ਭੰਡਾਰੀ :	
ਘੋਟਣਾ	
ਵਰਿਆਮ ਸਿੰਘ ਸੰਧੂ :	
ਆਪਣਾ ਆਪਣਾ ਹਿੱਸਾ	(Lecture 11)
PART-B	
UNIT-III ਪੰਜਾਬੀ ਕਾਸ਼ਾ ਦੀਆਂ ਟਿਬੇਸ਼ਤਾਟਾਂ	
ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਉਪਰ ਪਏ ਪ੍ਰਭਾਵ	(Lecture 12)

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 46 of 49
UNIT-IV

ਰਿਪੋਰਟਿੰਗ, ਸਮਾਚਾਰ ਲਿਖਣ ਦੀ ਵਿਧੀ ਤੇ ਤੱਤ

ਪੰਜਾਬੀ ਪੈਰ੍ਹੇ ਦਾ ਸਰਲ ਅੰਗਰੇਜ਼ੀ ਅਨੁਵਾਦ ਦਫਤਰੀ ਚਿੱਠੀ ਪੱਤਰ

TEXT AND REFERENCE BOOK:

1. ਸੰਪ.ਡਾ.ਮਹਿਲ ਸਿੰਘ, ਸਾਹਿਤ ਦੇ ਰੰਗ, ਰਵੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ, 2016.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 47 of 49

BHH	BHHL-116B- ਮੁਢਲੀ ਪੰਜਾਬੀ (Mudhli Punjabi)-II 21				L-2,	T-0, P-0	0	2 Cred	lits			
Pre-re	equisit	e: Unders	standing	of senio	or secon	dary lev	el Phys	ics and I	Mathem	atics		
Cours 1.To e 2.To langua	se Obje enhance enhanc age teac	ectives: T the lang e the ab ching wit	The object uage ab bility of h scienc	ctive of ility of s Learni e subjec	the counstudents ing scie	rse is: ence and	d devel	oping s	cience	literacy	throug	h local
Cours CC	se Outo	romes: A Translate language	t the end e and t	d of the	course, /broadca	the stud	ent will western	be able scient	to ific kn	owledge	in the	e local
CC	02	Translate local kno	e and tra wledge	ansfer t into En	he indig glish an	genous/t d other	radition global la	al scient anguage	tific kno s.	owledge	avail	able in
CC)3	Understa	ind the s	ociety t	hrough	Punjabi	languag	e, literat	ure and	culture.		
CO)4	Learning	science	and in	develop	ing scie	nce liter	acy.			-	
CO)5	Improve	the inte	rnal con	nmunica	ition.						
		M	apping	of cour:	se outco	omes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4							-					
CO5		1		2.14			-				-1	

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 48 of 49

Detailed Syllabus: PART-A UNIT I ਸ਼ਬਦ ਸ਼੍ਰੇਈਆਂ : ਪਛਾਣ ਤੇ ਵਰਤੋਂ-ਨਾਂਵ ਪਤਨਾਂਵ ਵਿਸ਼ੇਸ਼ਣ ਕਿਰਿਆ ਕਿਰਿਆ ਵਿਸ਼ੇਸ਼ਣ (12 Lectures) UNIT-II ਰੋਜ਼ਾਨਾ ਵਰਤੋਂ ਦੀ ਪੰਜਾਬੀ ਸ਼ਬਦਾਵਲੀ: ਬਾਜ਼ਾਰ, ਵਪਾਰ, ਰਿਸ਼ਤੇ-ਨਾਤੇ ਤੇ ਕਿੱਤਿਆਂ ਸਬੰਧੀ। (12 Lectures) PART-B UNIT-III ਪੰਜਾਬੀ ਵਾਕ ਬਣਤਰਂ : ਸਧਾਰਣ ਵਾਕ ਸੰਯੁਕਤ ਵਾਕ ਮਿਸ਼ਰਤ ਵਾਕ (12 Lectures) **UNIT-IV** ਸਧਾਰਣ ਵਾਕਾਂ ਦਾ ਅੰਗਰੇਜ਼ੀ ਤੋਂ ਪੰਜਾਬੀ ਅਨੁਵਾਦ ਸਧਾਰਣ ਵਾਕਾਂ ਦਾ ਪੰਜਾਬੀ ਤੋਂ ਅੰਗਰੇਜ਼ੀ ਅਨੁਵਾਦ (11 Lectures) TEXT AND REFERENCE BOOK: 1. ਸੰਪ.ਡਾ.ਮਹਿਲ ਸਿੰਘ, ਸਾਹਿਤ ਦੇ ਰੰਗ, ਰਵੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ, 2016.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2021 & Onwards

Page 49 of 49

Reference books and suggested reading:

- 1. "Fundamentals of Physics", 6th Ed., D. Halliday, R. Resnick and J. Walker, John Wiley and Sons, Inc., New York, 2001.
- 2. "Physics", M. Alonso and E.J. Finn, Addison Wesley, 1992.
- Physics , M. Alonso and E.J. Finn, Addison wesley, 1992.
 "Fundamentals of Optics", 4th Ed., F.A. Jenkins and H.E. White, McGraw-Hill Book Co., 1981.
 "Optics", A Ghatak, Tata-McGraw Hill, New Delhi, 1992
 "Vibration and Waves", A.P. French, Arnold-Heinemann, New Delhi, 1972.

- "Students Reference Manual for Electronic Instrumentation Laboratories",
- 7. "Laboratory Experiments in College Physics", C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- Practical Physics", G.L. Squires, Cambridge University Press, Cambridge, 1985.
 "Experiments in Modern Physics", A.C. Melissinos, Academic Press, N.Y., 1966.
- 10. "Practical Physics", C L Arora. S. Chand & Company LTD.
- 11. http://www.vlab.co.in

31 | Page onwards B.Tech. Ist Year Batch 2021

Annexure-III

M.Sc. Physics

Course Structure and Syllabus (Based on Choice Based Credit System) 2021 onwards

Hulf Page 1 of 73

M.Sc. (Physics) Program

Duration: 2 Years (Semester System)

This M.Sc. (Physics) Program includes various core, electives, and other interdisciplinary courses. The diverse lab experiments allow students to understand the fundamental aspects of the subject. A choice of advanced elective courses offers a glimpse in the frontier areas of research and allow students to work on research project as an integral part of their M.Sc. program. The program also provides adequate exposure to the students for pursuing higher education in the field of technology, research and development in Physics and related areas (M.Phil./Ph.D.) and other job opportunities in academia and industry.

Eligibility:

Pass B.Sc. with 50% marks having Physics as one of the subject. A relaxation of 5% is given in case of candidates belonging to SC/ST category.

PROGRAM EDUCATIONAL OBJECTIVES: At the end of the program, the student will be able to:

PEO1	Apply principles of basic scientific concepts in understanding, analysis, and prediction of physical systems.
PEO2	Develop human resource with specialization in theoretical and experimental techniques required for career in academia, research and industry.
PEO3	Engage in lifelong learning and adapt to changing professional and societal needs.

Hell Page 2 of 73

T TEO OTE	the offediteorite of the program, the state of the offedite
PO1	Apply the scientific knowledge to solve the complex physics problems.
PO2	Identify, formulate, and analyze advanced scientific problems reaching substantiated conclusions using first principles of mathematics, physical, and natural sciences.
PO3	Design solutions for advanced scientific problems and design system components or processes that meet the specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal consideration.
PO4	Use research-based knowledge and methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Create, select, and apply appropriate techniques, resources, and modern scientific tools to complex physics problems with an understanding of the limitations.
PO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional scientific practice.
PO7	Understand the impact of the scientific solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Apply ethical principles and commit to the norms of scientific practice.
PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communicate effectively on scientific activities with the Scientific/Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Demonstrate knowledge and understanding of the scientific principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of scientific and technological change.

PROGRAM OUTCOMES: At the end of the program, the student will be able to:

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Understand the basic and advance concepts of different branches of physics.
PSO2	Perform and design experiments in the areas of electronics, atomic, nuclear, condensed matter, and computational physics.
PSO3	Apply the concepts of physics in specialized areas of condensed, nuclear, renewable energies, particle physics, etc., in industry, academia, research and day today life.

Page 3 of 73

Course Code	Course Title		Loa oca	d tion	Marks Distribution		Total Marks	Credits
		L	T	P	Internal	External		
MSPH-411-21	Mathematical Physics-I	3	1	-	40	60	100	4
MSPH-412-21	Classical Mechanics	3	1	-	40	60	100	4
MSPH-413-21	Quantum Mechanics-I	3	1	-	40	60	100	4
MSPH-414-21	Electronics	3	1	-	40	60	100	4
MSPH-415-21	Computational Physics	3	1	-	40	60	100	4
MSPH-416-21	Electronics Lab	-	-	6	50	25	75	3
MSPH-417-21	Computational Physics Lab-I	-	-	6	50	25	75	3
,	TOTAL	15	5	12	300	350	650	26

SEMESTER FIRST

SEMESTER SECOND

Course Code	Course Title	Load Allocation		Ma Distri	arks bution	Total Marks	Credits	
		L	T	P	Internal	External		
MSPH-421-21	Mathematical Physics-II	3	1	-	40	60	100	4
MSPH-422-21	Statistical Mechanics	3	1	-	40	60	100	4
MSPH-423-21	Quantum Mechanics-II	3	1	-	40	60	100	4
MSPH-424-21	Classical Electrodynamics	3	1	-	40	60	100	4
MSPH-425-21	Atomic and Molecular Physics	3	1	-	40	60	100	4
MSPH-426-21	Atomic, Nuclear, and Particle Physics Lab	-	-	6	50	25	75	3
MSPH-427-21	Computational Physics Lab-II	-	-	6	50	25	75	3
	TOTAL	15	5	12	300	350	650	26

L: Lectures T: Tutorial P: Practical

Page 4 of 73

3

Course Code	Course Title	Load Allocation			Marks D	istribution	Total Marks	Credits
		L	T	P	Internal	External		
MSPH-531-21	Condensed Matter Physics	3	1	-	40	60	100	4
MSPH-532-21	Nuclear Physics	3	1	-	40	60	100	4
MSPH-533-21	Particle Physics	3	1	-	40	60	100	4
MSPH-534-21 MSPH-535-21 MSPH-536-21	Elective Subject-I	3	1	-	40	60	100	4
MSPH-537-21 MSPH-538-21 MSPH-539-21	Elective Subject-II	3	1	-	40	60	100	4
MSPH-540-21	Condensed Matter Physics Lab	-	-	6	50	25	75	3
T	OTAL	15	5	6	250	325	575	23

SEMESTER THIRD

SEMESTER FOURTH

Course Code	Course Title	Load Allocation			Marks Distribution		Total Marks	Credits
		L	T	P	Internal	External		
MSPH-541-21 MSPH-542-21 MSPH-543-21	Elective Subject-	3	1	-	40	60	100	4
MSPH-544-21 MSPH-545-21 MSPH-546-21	Elective Subject- IV	3	1	-	40	60	100	4
MSPH-547-21	Dissertation		12		200	100	300*	12
тот	TAL	6	14		280	220	500	20

*Evaluation criteria as per IKGPTU norms.

TOTAL NUMBER OF CREDITS = 95

Jer Her Page 5 of

LIST OF DEPARTMENTAL/INTERDISCIPLINARY ELECTIVES

Elective Subject-I

S. No.	Name of the Subject	Code
1	Fibre optics and non-linear optics	MSPH-534-21
2	Radiation Physics	MSPH-535-21
3	Nonlinear Dynamics	MSPH-536-21

Elective Subject -II

S. No.	Name of the Subject	Code
1	Plasma Physics	MSPH-537-21
2	Structures, Spectra and Properties of Biomolecules	MSPH-538-21
3	Science of Renewable Source of Energy	MSPH-539-21

Elective-III

S. No.	Name of the Subject	Code
1	Physics of Nanomaterials	MSPH-541-21
2	Experimental Techniques in Nuclear and Particle Physics	MSPH-542-21
3	Superconductivity and Low Temperature Physics	MSPH-543-21

Elective-IV

	Name of the Subject	Code
1	Advanced Condensed Matter Physics	MSPH-544-21
2	Advanced Particle Physics	MSPH-545-21
3	Environment Physics	MSPH-546-21

Page 6 of 73

Examination and Evaluation

Theory			
S. No.	Evaluation criteria	Weightage in Marks	Remarks
1	Mid term/sessional Tests	24	Internal evaluation (40 Marks)
2	Attendance	6	MSTs, Quizzes, assignments, attendance, etc., constitute internal
3	Assignments	10	evaluation. Average of two mid semester test will be considered for evaluation.
4	End semester examination	60	External evaluation (60 Marks)
5	Total	100	Marks may be rounded off to nearest integer.
Practic	al	1.	
1	Evaluation of practical record/ Viva Voice	30	Internal evaluation (50 Marks)
2	Attendance	5	
3	Seminar/Presentation	15	
4	Final Practical Performance + Viva Voice	25	External evaluation (25 Marks)
5	Total	75	Marks may be rounded off to nearest integer.

Hulk Page 7 of 73

Instructions for End semester Paper-Setter in M. Sc. Physics

A. Scope

- 1. The question papers should be prepared strictly in accordance with the prescribed syllabus and pattern of question paper of the University.
- 2. The question paper should cover the entire syllabus uniformly covering each chapter thoroughly with proper distribution.
- 3. Each unit of course/syllabus carries weightage according to the number of lectures mentioned in syllabus. (1 Lecture ~ 2 Marks)
- 4. The language of questions should be simple, direct, and documented clearly and unequivocally so that the candidates may have no difficulty in appreciating the scope and purpose of the questions. The length of the expected answer should be specified as far as possible in the question itself.
- 5. The distribution of marks to each question/answer should be indicated in the question paper properly.

B. Type and difficulty level of question papers

- 1. Questions should be framed in such a way as to test the students intelligent grasp of broad principles and understanding of the applied aspects of the subject. The weightage of the marks as per the difficulty level of the question paper shall be as follows:
 - i) Easy question 30%
 - ii) Average questions 50%
 - iii) Difficult questions 20%
- 2. The numerical content of the question paper should be upto 20%.

C. Format of question paper

- 1. Paper code and Paper-ID should be mentioned properly.
- 2. The question paper will consist of three sections: Sections-A, B, and C.
- 3. Section-A is COMPULSORY consisting of TEN SHORT questions carrying two marks each (total 20 marks) covering the entire syllabus.
- 4. The Section-B consists of five questions of five marks each covering the entire syllabus.
- 5. The Section-C consists of THREE questions of ten marks each covering the entire syllabus.
- 6. Attempt any FOUR questions from Section-B and any TWO from Section-C.

Page 8 of 73

Question paper pattern for MST:

Roll No:	No of pages:
IK Gujral Punjab Technical U	niversity- Jalandhar
Department of Physic	cal Sciences
Academic Ses	sion:
Mid-Semester Test: I/II/III (Regular/reappear)	Date:
Programme: M.Sc. Physics	Semester:
Course Code:	Course:
Maximum Marks: 24	Time: 1 hour 30 minutes

Note: Section A is compulsory; Attempt any two questions from Section B and one question from Section C.

COs	Marks	ection: A
	2	
	2	2
	2	1
	2	1
		ection: B
	4	5
	4	5
	4	7
		ection: C
	8	3
-	8	9
	4 4 8 8 8	5 7 eection: C 3 9

Details of Course Objectives

C01	
CO2	
CO3	
CO4	
CO5	

Herb Page 9 of 73

X

			Intern	nal Assessment		
	Communic present	ation and ation	R	esponse to queries	Maximum Marks	Evaluated by
Departmental Presentation	20			30	50	Committee Member: 1.Head 2.Supervisor 3.One of Faculty Member
Dissertation	Plagiarism Subject Usage of Publication/Presentation Matter Language in Conference				150	memoer
	25	70	25	30		
			External	Assessment		
External Examiner			Subject Ma	tter	50	
Bitainite			50		Marks by Marks by Committee Member: 1.Head 50 2.Supervis 3.One of Faculty Member 150 50 50 50 Committee Member: 1.Head 2.Supervis 3.One of Faculty Member 150 50 50 50 50 50 50 50 50 50	
	Communi and Preser	cation ntation	Re	sponse to queries		Committee Member:
Viva Voce	20			30	50	1.Head 2.External Expert 3.Supervisor 4. Director (MC) nominee
		То	tal		300	

Guidelines for the evaluation of Dissertation:

Evaluation Process:

- 1. The subject matter evaluation can further be defined on the basis of Title, Review of literature/Motivation, Objectives, Methodology, Results and discussions, and Conclusion.
- 2. The usage of language and the subject matter shall be evaluated by the supervisor. Out of 300 marks, 95 marks are to be evaluated by the concerned supervisor.
- 3. Total 15% Plagiarism is admissible for submission of the dissertation. For (0-5)% of plagiarism, candidate should be awarded 25 marks. For >5%-10% candidate should be awarded 15 marks and for the range of > 10% to < 15%, candidate should be awarded 5 marks.
- 4. For publication candidate should be awarded full 30 marks and for presenting the work related to dissertation, candidate should be awarded 25 marks.

Page 10 of 73

MSPH	[-411-	21 N	AATHE	CMATI	CAL PH	IYSICS	5-I	L-3, 1	C-1, P-0		4 Credi	its
Pre-rec	quisit	e: Unders	tanding	of gradı	uate leve	el mathe	matics	_				
Course student in diffe pursue	e Obje s with rent c resear	ectives: T in the math ourses tau rch in phy	he objec ematica ight in t sics as a	ctive of l technic his class career.	the coun ques that and for	rse on N t he/she r develo	fathem needs f ping a s	atical P or under trong ba	hysics- standin ckgrou	I is to ea g theore nd if he/	quip the tical tre she cho	M.Sc. atment oses to
Course	e Out	comes: At	t the end	l of the o	course, t	he stude	ent will	be able	.0			
CO	1	Use com	plex var	iables fo	or solvir	ng defini	te integ	ral.				
CO	2	Use the I	Delta an	d Gamm	na functi	ions for	describi	ng phys	ical sys	tems.		
CO	3	Solve pa	rtial diff	erential	equatio	ns using	bounda	ary value	e proble	ms.		
CO	4	Describe	special	function	ns and re	ecurrenc	e relatio	ons to so	lve the	physics	problem	ıs.
CO	5	Use stati	stical m	ethods t	o analys	e the ex	perimer	ntal data				
		M	apping	of cours	se outco	omes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	-	1	1	-	2	1	1	2
CO2	3	3	2	1	-	1	1	-	2	1	1	2
CO3	3	3	2	2	-	1	1	-	2	1	1	2
CO4	3	3	2	2	-	1	1	-	2	1	1	2
C05	3	3	2	3	-	2	1	-	2	1	1	2

Page 11 of 73

- 1. **Complex Variables**: Introduction, Cauchy-Riemann conditions, Cauchy's Integral formula, Laurent expansion, singularities, calculus of residues, evaluation of definite integrals, Dispersion relation. *(Lectures 10)*
- Delta and Gamma Functions: Dirac delta function, Delta sequences for one dimensional function, properties of delta function, Gamma function, factorial notation and applications, Beta function. (Lectures 7)
- Differential Equations: Partial differential equations of theoretical physics, boundary value, problems, Neumann & Dirichlet Boundary conditions, separation of variables, singular points, series solutions, second solution. (Lectures 8)
- 4. **Special Functions:** Bessel functions of first and second kind, Generating function, integral representation and recurrence relations for Bessel's functions of first kind, orthogonality. Legendre functions: generating function, recurrence relations and special properties, orthogonality, various definitions of Legendre polynomials, Associated Legendre functions: recurrence relations, parity and orthogonality, Hermite functions, Laguerre functions.

(Lectures 10)

5. Elementary Statistics: Introduction to probability theory, random variables, Binomial, Poisson and Normal distribution. (Lectures 5)

Text Books:

1. Mathematical Methods for Physicists: G. Arfken and H.J. Weber (Academic Press, SanDiego) 7th edition, 2011.

Reference Books:

- 1. Mathematical Physics: P.K. Chattopadhyay (Wiley Eastern, New Delhi), 2004.
- 2. Mathematical Physics: A.K. Ghatak, I.C. Goyal and S.J. Chua (MacMillan, India, Delhi), 1986.
- 3. Mathematical Methods in the Physical Sciences M.L. Boas (Wiley, New York) 3rd edition, 2007.
- 4. Special Functions: E.D. Rainville (MacMillan, New York), 1960.
- 5. Mathematical Methods for Physics and Engineering: K.F. Riley, M.P. Hobson and S.J. Bence (Cambridge University Press, Cambridge) 3rd ed., 2006.

MSPH-412-21	CLASSICAL MECHANICS	L-3, T-1, P-0	4 Credits

Pre-requisite: Understanding of graduate level physics

Course Objectives: The aim and objective of the course on **Classical Mechanics** is to train the students of M.Sc. students in the Lagrangian and Hamiltonian formalisms so that they can use these in the modern branches of physics such as Quantum Mechanics, Quantum Field Theory, Condensed Matter Physics, Astrophysics, etc.

Course Outcomes: At the end of the course, the student will be able to

CO1	Understand the necessity of Action, Lagrangian, and Hamiltonian formalism.
CO2	Use d'Alambert principle and calculus of variations to derive the Lagrange equations of motion.
CO3	Describe the motion of a mechanical system using Lagrange-Hamilton formalism.
CO4	Apply essential features of a classical physics problem (like motion under central force, periodic motions, etc.) to set up and solve the appropriate physics problems.
C05	Appreciate the theory of rigid body motion which is important in several areas of physics e.g., molecular spectra, acoustics, vibrations of atoms in solids, coupled mechanical oscillators, electrical circuits, etc

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	2	1	1	2	2	2	2	2
CO2	3	2	2	2	2	1	1	2	2	2	2	2
CO3	3	2	2	2	2	1	1	2	2	2	2	2
CO4	3	2	2	2	1	1	1	2	2	2	2	2
C05	3	2	2	2	1	1	1	2	2	2	2	2
							1					

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 13 of 73

1. Lagrangian Formulation: Mechanics of a system of particles; constraints of motion, generalized coordinates, d'Alembert Principle and Lagrange's velocity-dependent forces and the dissipation function, Applications of Lagrangian formulation.

(Lectures 7)

2. Hamilton's Principles: Calculus of variations, Hamilton's principle, Lagrange's equation from Hamilton's principle, extension to nonholonomic systems, advantages of variational principle formulation, symmetry properties of space and time and conservation theorems.

(Lectures 7)

3. Hamilton's Equations: Legendre Transformation, Hamilton's equations of motion, Cyclic coordinates, Hamilton's equations from variational principle, Principle of least action.

(Lectures 7)

1

- 4. Canonical Transformation and Hamilton-Jacobi Theory: Canonical transformation and its examples, Poisson's brackets, Equations of motion, Angular momentum, Poisson's Bracket relations, infinitesimal canonical transformation, Conservation Theorems. Hamilton- Jacobi equations for principal and characteristic functions, Action-angle variables for systems with one-degree of freedom. (Lectures 10)
- 5. Rigid Body Motion: Independent co-ordinates of rigid body, orthogonal transformations, Eulerian Angles and Euler's theorem, infinitesimal rotation, Rate of change of a vector, Coriolis force, angular momentum and kinetic energy of a rigid body, the inertia tensor, principal axis transformation, Euler equations of motion, Torque free motion of rigid body, motion of a symmetrical top. (Lectures 10)

Text Books:

- 1. Classical Mechanics: H. Goldstein, C.Poole and J.Safko (Pearson Education Asia, New Delhi), 3rd ed 2001.
- 2. Mechanics by L.D. Landau & E.M. Lifschz (Pergamon), 1976.

Reference Books:

- 1. Classical Mechanics of Particles and Rigid Bodies: K.C. Gupta (Wiley Eastern, New Delhi), 1988.
- 2. Classical Mechanics- J. W. Muller- Kirsten (World Scientific) 2008.
- 3. Advanced Classical & Quantum Dynamics by W. Dittrich, W. And M Reuter, M. (Springer) 1991.
- 4. Classical mechanics by T.W.B. Kibble and Frank H. Berkshire (Imperial College Press) 2004.
- 5. Mathematical Methods of Classical Mechanics by V. I. Arnold, (Springer) 1978.

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 14 of 73

MSPH 21	H-413-	Qua	ntum M	lechanio	cs-I			L-3, T-1, P-0 4 Cro				ts
Pre-re	equisite	: Basic	knowled	lge of w	ave med	chanical	quantu	m mecha	nics	1		
Cours the str techni they ca	se Object udents of ques of an use the	of M.So vectors hese in v	The aim c. class spaces, various	and obj to the angular branche	ective o formal momen s of phy	f the co structure tum, per sics as p	urse on e of the rturbatic per their	Quantu e subject on theory requiren	m Mecl and to , and so nent.	hanics-I equip cattering	is to in them w theory	troduce with the so that
Cours	se Outco	omes: A	it the en	d of the	course,	the stuc	ient will	be able	to			
C	201	Unde	erstand t	he need	for qua	ntum me	echanica	al formal	ism and	l its basi	c princi	ples.
C	202	Appr notat	eciate ions, eig	the imp gen valu	oortance e proble	and in em.	nplicati	on of v	vector s	spaces,	Dirac I	ket bra
C	03	Unde	erstand t	he impli	ications	of gene	ralized u	incertain	ity princ	iple in (QM.	
C	:04	Bette mom	r unde entum f	rstandin or a syst	g of tl tem of p	ne matl articles.	nematica	al found	lations	of spin	and	angular
C	05	Solve	e Schroc	linger ea	quation	for vario	ous QM	systems	using a	pproxim	ate met	hods.
		M	apping	of cour	se outco	omes wi	ith the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	2	2	2	2	2	1	1	2	3	2	2
CO2	3	2	2	2	2	2	1	1	2	2	2	2
CO3	3	2	2	2	2	2	1	2	1	3	2	2
CO4	3	2	2	2	2	2	2	2	2	2	2	2
C05	3	2	2	2	2	2	1	1	2	3	2	2

Page 15 of 73

- Linear Vector Space and Matrix Mechanics: Vector spaces, Schwarz inequality, Orthonormal basis, Operators: Projection operator, Hermitian and Unitary operators, change of basis, Eigenvalue and Eigenvectors of operators, Dirac's bra and ket notation, commutators, Simultaneous eigenvectors, Postulates of quantum mechanics, uncertainty relation, Harmonic oscillator in matrix mechanics, Time development of states and operators, Heisenberg, Schroedinger and Interaction representations, Exchange operator and identical particles, Density Matrix and Mixed Ensemble. (Lectures 15)
- Angular Momentum: Angular part of the Schrödinger equation for a spherically symmetric potential, orbital angular momentum operator. Eigen values and eigenvectors of L² and Lz. Spin angular momentum, General angular momentum, Eigen values and eigenvectors of J² and Jz. Representation of general angular momentum operator, Addition of angular momenta, C.G. coefficients. (Lectures 10)
- 3. Stationary State Approximate Methods: Non-Degenerate and degenerate perturbation theory and its applications, Variational method with applications to the ground states of harmonic oscillator and other sample systems. (Lectures 8)
- 4. **Time Dependent Perturbation:** General expression for the probability of transition from one state to another, constant and harmonic perturbations, Fermi's golden rule and its application to radiative transition in atoms, Selection rules for emission and absorption of light.

(Lectures 7)

Text Books:

- 1. A Text book of Quantum Mechanics: P.M. Mathews and K. Venkatesan (Tata McGraw Hill, New Delhi) 2nd edition, 2004.
- 2. Quantum Mechanics: V.K. Thankappan (New Age, New Delhi), 2004.

Reference Books:

- 1. Quantum Mechanics: M.P. Khanna (Har Anand, New Delhi), 2006.
- 2. Modern Quantum Mechanics: J.J. Sakurai (Addison Wesley, Reading), 2004.
- 3. Quantum Mechanics: J.L. Powell and B. Crasemann (Narosa, New Delhi), 1995.
- 4. Quantum Physics: S. Gasiorowicz (Wiley, New York), 3rd ed. 2002.
- Quantum Physics: Concepts and Applications: Nouredine Zettili (Wiley, New York), 2nd ed. 2009.

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 16 of 73

MSPH	H-414-2	1 Ele	ectronic	8			L	-3, T-1,	P-0	4 Credits				
Pre-re	equisite	: Basic	knowled	lge abou	ut electro	onics								
Cours studen of sen analog of phy Cours	se Obje nts of M nicondu g circuit sics as se Outc	ectives: .Sc. classictor phase and in per their omes: A	The air ss to the sysics, b troducti require at the en	m and formal pasic cin on to di ment. d of the	objectiv structur rcuit an gital ele course,	e of the e of the alysis, t ctronics the stuc	e course subject first-ord so that lent will	e on El and to e er nonli they car	ectroni quip the near ci n use the to	cs is to em with rcuits, (ese in va	introdu the kno DPAMP trious bi	uce the wledge based ranches		
(CO1	Un Wc	derstand orking P	work work	ing of s and V-	Differ I charac	ent Se teristics	micondu s) and the	ictor d eir appl	levices ications,	(Constr	uction,		
CO2 Explain the construction and working of Thyristors and use Thyristor various applications.														
(C O 3	De	sign Ana	alog and	l Digital	Instrum	ients an	d their a	pplicati	ons.				
(C O 4	Ap	ply Boo	lean alg	ebra and	l Karnaı	igh map	os.						
(C O 5	De	sign the	Sequent	tial and	Integrat	ed circu	its.						
		М	apping	of cour	se outco	omes wi	th the p	orogram	outcol	mes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
C01	3	3	2	1	2	2	1	2	1	2	2	2		
CO2	3	3	2	1	2	2	1	2	1	2	2	2		
CO3	2	2	3	2	2	2	1	2	1	2	2	2		
CO4	3	3	2	1	2	2	1	2	1	2	2	2		
C05	2	2	2	2	2	2	1	2	1	2	2	2		

Page 17 of 73

1. Semiconductor Devices and applications: Direct and indirect semiconductors, Drift and diffusion of carriers, Photoconductors, Semiconductor junctions, Metal-semiconductor junctions - Ohmic and rectifying contacts, Zener diode, Schottky diode, Switching diodes, Tunnel diode, Light emitting diodes, Photodiodes, Solar cell, Liquid crystal displays.

(Lectures 7)

- UJTs and Thyristors: Operational Principle of UJT: UJT Relaxation Oscillator circuit; PNPN Diode: Characteristics- As a Relaxation Oscillator-Rate Effect; SCR: V-I Characteristics-Gate Triggering Characteristics; DIAC and TRIAC; Thyristors: Basic Parameters- As Current Controllable Devices- Thyristors in Series and in Parallel; Applications of Thyristors- as a Pulse Generator, Bistable Multivibrator, Half and Full Wave Controlled Rectifier, TRIAC based AC power control, SCR based Crowbar Protection; Gate Turn-Off Thyristors; Programmable UJT. (Lectures 10)
- Analog and Digital Instruments: OPAMP and its applications, Time Base; 555 Timer, Basic Digital Frequency Meter System; Reciprocal Counting Technique; Digital Voltmeter System.

(Lectures 8)

4. Digital and Sequential circuits: Boolean algebra, de Morgans theorem, Karnaugh maps, Flip-Flops – RS, JK, D, COcked, preset and clear operation, race around conditions in JK Flipflops, master-slave JK flip-flops, Switch contact bounce circuit. Shift registers, Asynchronous and Synchronous counters, Counter design and applications.

(Lectures 8)

5. Integrated Circuits as Digital System Building Blocks: Binary Adders: Half Adder-Parallel Operation-Full Adder-MSI Adder-Serial Operation; Decoder/Demultiplexer: BCD to Decimal Decoder-4-to-16 line Demultiplexer; Data Selector/Multiplexer:16-to-1 Multiplexer; Encoder; ROM: Code Converters-Programming the ROM-Applications; RAM:Linear Selection-Coincident Selection-Basic RAM Elements Bipolar RAM-Static and Dynamic MOS RAM; Digital to Analog Converters: Ladder Type D/A Converter-Multiplying D/A Converter; Analog to Digital Converters: Successive Approximation A/D Converter.

(Lectures 8)

Text Books:

- 1. Text Book of Electronics: S. Chattopadhyay, New Central Book Agency P.Ltd., Kolkata, 2006.
- 2. Digital Principles and Applications: A.P. Malvino and D.P. Leach, Tata McGraw-Hill, Publishing Co., New Delhi.

Reference Books:

- 1. Electronics Principles and Applications: A.B. Bhattacharya, New Central Book Agency P.Ltd., Kolkata, 2007.
- 2. Integrated Electronics Analog and Digital Circuits and Systems: *J. Millman, C.C Halkins and C. Parikh*, 2nd Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2010.

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 18 of 73

MSPH	[-415-2]	Com	putatio	nal Phy	vsics		L-	3, T-1,	P-0	4	Credits	
Pre-re	quisite:	Unders	standing	of grad	uate lev	el physi	cs				-	
Course familia prograt in solv	e Object arize the mming ing simp	studen studen using an ole phys	The air its of M ny high sics prob	n and .Sc. stu level la blems.	objectiv dents w nguage	e of th ith the such as	e cours numeric Fortran	e on C cal meth , C++, e	comput ods use etc., so	ational ed in co that they	Physic: mputati can us	s is to on and e these
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to		972-b-	
C	01	App	ly basic lems.	es knov	vledge	of com	putation	nal phy	sics in	solving	g the p	ohysics
C	02	Prog	ramme	with the	C++ or	any oth	ner high	level la	nguage.		16-	
C	03	Use	various	numerio	cal meth	ods in s	olving p	physics p	oroblem	IS.		
C	04	Ana	lyze the	outcom	e of the	algorith	m/prog	ram graj	phically	•		
C	:05	Sim	ulate the	physica	al syster	ns using	, simula	tions.				
		M	apping	of cours	se outco	omes wi	th the p	rogram	outcol	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	1	2	3	2	3	2
CO2	3	3	3	1	2	1	1	1	3	2	3	2
CO3	3	3	3	2	2	1	1	2	1	2	2	2
CO4	3	3	3	3	2	2	2	2	2	2	2	2
C05	3	3	3	3	2	2	1	2	2	2	2	2

Page 19 of 73

Detailed Syllabus:

- 1. Introduction to Computational Physics: Need and advantages of high level language in physics, programming in a suitable high level language, input/output, interactive input, loading and saving data, loops branches and control flow, Matrices and Vectors, Matrix and array operations, need for Graphic tools. (Lectures 11)
- Programming with C++: Introduction to the Concept of Object Oriented Programming; Advantages of C++ over conventional programming languages; Introduction to Classes, Objects; C++ programming syntax for Input/Output, Operators, Loops, Decisions, simple and inline functions, arrays, strings, pointers; some basic ideas about memory management in C+. (Lectures 15)
- 3. Numerical methods: Computer algorithms, interpolations-cubic spline fitting, Numerical differentiation Lagrange interpolation, Numerical integration by Simpson and Weddle's rules, Random number generators, Numerical solution of differential equations by Euler, predictor-corrector and Runge-Kutta methods, eigenvalue problems, Monte Carlo simulations.

(Lectures 15)

Text Books:

- 1. Numerical Mathematical Analysis, J.B. Scarborough (Oxford & IBH Book Co.) 6th ed., 1979.
- 2. A first course in Computational Physics: P.L. DeVries (Wiley) 2nd edition, 2011.

Reference Books:

- 1. Computer Applications in Physics: S. Chandra (Narosa) 2nd edition, 2005.
- 2. Computational Physics: R.C. Verma, P.K. Ahluwalia and K.C. Sharma (New Age) 2000.
- 3. Object Oriented Programming with C++: Balagurusamy, (Tata McGraw Hill) 4th edition 2008.

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 20 of 73

MSPH-416-21	Electronics Lab	L-3, T-1, P-0	4 Credits

Pre-requisite: Understanding of graduate level physics electronics experiments

Course Objectives: The aim and objective of the laboratory on **Electronics Lab** is to expose the students of M.Sc. class to experimental techniques in electronics so that they can verify some of the things read in theory here or in earlier classes and develop confidence to handle sophisticated equipment.

Course Outcomes: At the end of the course, the student wi	Course Outcomes:	At the	end of	the course,	the student will
---	-------------------------	--------	--------	-------------	------------------

C01	Acquire hands on experience of handling and building electronics circuits.
CO2	Be familiar with the various components such as resistors, capacitor, inductor, IC chips and how to use these components in circuits.
CO3	Be able to understand the construction, working principles and V-I characteristics of various devices such as PN junction diodes, UJT, TRIAC, etc.
CO4	Capable of using components of digital electronics for various applications.
C05	Able to design and perform scientific experiments as well as accurately record and analyze the results of experiments.

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	1	2	1	2	2	2	2	2
CO2	2	1	2	2	2	2	1	2	2	2	2	2
CO3	1	1	2	2	1	1	1	2	2	2	2	2
CO4	2	2	2	2	2	3	1	2	2	2	2	2
CO5	3	2	3	3	2	3	1	2	2	2	2	2

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 21 of 73

Note: Students are expected to perform atleast 10 experiments out of following list.

- 1. Study the forward and reverse characteristics of a Semiconctor/Zener diode.
- 2. Construction of adder, subtracter, differentiator and integrator circuits using the given OP-Amp.
- 3. Study the static and drain characteristics of a JFET.
- 4. Construction of an Astable multivibrator circuit using transistor.
- 5. Construction of a single FET amplifier with common source configuration.
- 6. To study the operation of Analog to Digital convertor.
- 7. To study the operation of Digital to Analog convertor.
- 8. Construction of a low-pass filter circuit and study its output performance.
- 9. Construction of a high-pass filter circuit and study its output performance.
- 10. To verify the Dmorgan's law using Logic Gates circuit.
- 11. To study the Characteristics of Tunnel Diode.
- 12. To study Amplitude Modulation.
- 13. To study Frequency Modulation.
- 14. To study the Characteristics of SCR.
- 15. To study the Characteristics of MOSFET.
- 16. To study the Characteristics of UJT.
- 17. To study the Characteristics of TRIAC.
- 18. To verify the different Logic and Arithmetic operations on ALU system.
- 19. To study the operation of Encoders and Decoders.
- 20. To study the operation of Left and right shift registers.
- 21. To study the operation of Counters, Ring counters.
- 22. To determine the thermal coefficient of a thermistor.
- 23. To study the operation of an Integrated Circuit Timer.

Text Books:

- 1. Text Book of Electronics: S. Chattopadhyay, New Central Book Agency P.Ltd., Kolkata, 2006.
- 2. Digital Principles and Applications: A.P. Malvino and D.P. Leach, Tata McGraw-Hill, Publishing Co., New Delhi.

Reference Books:

- 1. Electronics Principles and Applications: *A.B. Bhattacharya*, New Central Book Agency P.Ltd., Kolkata, 2007.
- 2. Integrated Electronics Analog and Digital Circuits and Systems: *J. Millman, C.C Halkins and C. Parikh*, 2nd Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2010.

MSPH	-417-21	C	omputa	tional	Physics	Lab-I	L-	3, T-1, I	P-0	4	Credits	
Pre-re	quisite:	Unders	standing	ofgrad	luate lev	el nume	erical me	ethods				
Course familia program to physic	e Objec arize th mming sics. e Outco	etives: T e of M using C omes: A	The aim A.Sc. s ++ lang t the end	and ob tudents uage so d of the	jective of with t that the course,	of the co he nun y can us the stud	ourse or nerical se these lent will	Comp methods in solvin be able	utation s used ng simp to	al Physi in con le proble	cs Lab- nputatio ems per	-I is to on and taining
C	01	App	ly basic lems.	s know	ledge o	f comp	utationa	l Physic	s in so	lving va	rious p	hysical
C	02	Prog Use	ramme various	with the	e C++ or cal meth	r any oth ods in c	ner high lescribir	level lan ng/solvir	nguage. 1g physi	cs probl	ems.	
C	04	Solv	e proble lems.	em, crit	ical thin	king an	d analy	tical rea	soning	as applie	ed to sc	ientific
C	05	Ana	lyse and	reprod	uce the o	experim	ental da	ta.	outoor			
		IVI	apping	of cour	se outer	omes wi	th the p	nogram	outcoi	lies		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	2	2	2	1	1	2	3	2	3	2
CO2	3	3	3	1	2	1	1	1	3	2	3	2
CO3	3	3	3	2	2	1	1	2	1	2	2	2
CO4	3	3	2	2	3	1	1	1	1	1	1	1
C05	1	3	3	3	1	1	1	1	2	1	2	2

Page 23 of 73

Note: Students are expected to perform atleast 10 experiments out of following list using C++ and Gnuplot.

- 1. To find the standard deviation, mean, variance, moments etc. of at least 15 entries.
- 2. To choose a set of 10 values and find the least squared fitted curve.
- 3. Find y for a given x by fitting a set of values with the help of cubic spline fitting technique.
- 4. To find the Roots of an Algebraic Equation by Bisection method and secant method
- 5. To find the Roots of an Algebraic Equation by Newton-Raphson Method.
- 6. To find the Roots of Linear Equations by Gauss Elimination Method.
- 7. To find the Roots of Linear Equations by Gauss-Seidal Iterative Method.
- 8. Find first order derivative at given x for a set of values with the help of Lagrange interpolation.
- 9. To perform numerical integration of a function by Trapezoidal Rule.
- 10. To perform numerical integration of a function by Simpson's Rule.
- 11. To perform numerical integration of a function by Weddle's rule.
- 12. To solve a Differential Equation by Euler's method and Modified Euler's Method.
- 13. To solve a Differential Equation by Runge Kutta method.
- 14. To find the determinant of a matrix and its eigenvalues and eigenvectors.
- 15. To generate random numbers between (i) 1 and 0, (ii) 1 and 100.

Text Books:

- 1. Numerical Mathematical Analysis, J.B. Scarborough (Oxford & IBH Book Co.) 6th ed., 1979.
- 2. A first course in Computational Physics: P.L. DeVries (Wiley) 2nd edition, 2011.

Reference Books:

- 1. Computer Applications in Physics: S. Chandra (Narosa) 2nd edition, 2005.
- 2. Computational Physics: R.C. Verma, P.K. Ahluwalia and K.C. Sharma (New Age) 2000.
- 3. Object Oriented Programming with C++: Balagurusamy, (Tata McGrawHill) 4th edition 2008.

MSPH	I-421-2	1	Mathe	ematica	l Physic	s-II	L	-3, T-1,	P-0	4	Credits	5		
Pre-re	equisite	: Under	standing	of grad	luate lev	el math	ematics	i i i i i i i i i i i i i i i i i i i		-				
Cours the N theore backg	e Obje 1.Sc. Si tical tro round if se Outco	ctives: f tudents eatment `he/she	The aim with th in dif chooses	and ob ne math ferent c to pursu d of the	jective o nematica courses ue resea course,	of the co al techn taught rch in pl the stud	ourse on liques t in this hysics a lent will	Mathe hat he/s class a s a caree	matical she nee and for er.	Physics eds for develo	s-II is to underst ping a	anding strong		
(CO1	Und Phy:	erstand sics.	the basi	cs and a	plicatio	ns of gr	oup theo	ry in al	l the bra	nches o	f		
(CO2	Use	Fourier	series a	nd trans	formatio	ons as a	n aid for	analyz	ing phys	ical pro	blems.		
(203	App	Apply integral transform to solve mathematical problems of Physics interest.											
(CO4	Forr	nulate a dinate t	nd expr ransform	ess a phy ns.	ysical la	w in ter	ms of te	nsors ai	nd simpl	ify it by	use of		
(05	Dev	elop ma	themati	cal skill	s to solv	e quant	itative p	roblems	in phys	ics.			
		М	apping	of cour	se outco	omes wi	th the p	orogram	outcor	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	2	2	-	1	1	-	2	1	1	2		
CO2	3	3	2	2	-	1	1	-	2	1	1	2		
CO3	3	3	2	2	-	1	1	-	2	1	1	2		
CO4	3	3	2	2	-	1	1	-	2	1	1	2		
C05	3	3	2	2	-	1	1	-	2	1	1	2		

Page 25 of 73

- Group Theory: What is a group? Multiplication table, conjugate elements and classes, subgroups, Isomorphism and Homomorphism, Definition of representation and its properties, Reducible and irreducible representations, Schur's lemmas (only statements), characters of a representation. Example of C4v, Topological groups and Lie groups, three dimensional rotation group, special unitary groups SU(1) and SU(2). (Lectures 10)
- 2. **Tensors:** Introduction, definitions, contraction, direct product. Quotient rule, Levi-Civita symbol, Noncartesian tensors, metric tensor, Covariant differentiation.

(Lectures 7)

- 3. Fourier Series and Integral Transforms: Fourier series, Dirichlet conditions, General properties, Advantages and applications, Gibbs phenomenon, Fourier transforms, Development of the Fourier integral, Inversion theorem, Fourier transforms of derivatives; Momentum representation. Laplace transforms, Laplace transforms of derivatives, Properties of Laplace transform, Inverse Laplace transformation. *(Lectures 15)*
- 4. Integral Equations: Definitions and classifications, integral transforms and generating functions. Neumann series, Separable Kernels, Hilbert-Schmidt theory, Green's functions in one dimension. (Lectures 10)

Text Books:

- 1. Group Theory for Physicists: A.W. Joshi (Wiley Eastern, New Delhi) 2011.
- 2. Mathematical Methods for Physicists: G. Arfken and H.J. Weber, (Academic Press, San Diego) 7th edition, 2011.

Reference Books:

- 1. Matrices and Tensors in Physics: A.W. Joshi (Wiley Eastern, New Delhi) 2005.
- 2. Numerical Mathematical Analysis: J.B. Scarborough (Oxford Book Co., Kolkata) 4th edition.
- 3. A First Course in Computational Physics: P.L. Devries (Wiley, New York) 1994.
- 4. Mathematical Physics: P.K. Chatopadhyay (Wiley Eastern, New Delhi) 2011.
- 5. Introduction to Mathematical Physics: C. Harper (Prentice Hall of India, New Delhi) 2006.

MSPI	H-422-2	1	Stat	istical N	Aechan	ics	L	-3, T-1,	P-0	4	Credits	5		
Pre-re	equisite	: Under	standing	g of grad	luate lev	el statis	stical me	echanics						
Cours M.Sc. unders constit	se Obje studen stand th tuents.	ctives: ' t with the mac	The aim he techr roscopic	and ob iques o prope	jective of f statist rties of	of the co ical ens the m	ourse on semble t natter in	Statisti heory so bulk	cal Me o that h in term	chanics e/she cans of it	is to eq in use t is micro	uip the hese to oscopic		
cours		E:		u or the	course,	Ci ci ci			1.1	,				
C	.01	Finc	the cor	inection	betwee	n Statist	tical Me	chanics	and the	rmodyna	amics			
C	202	Use	Use ensemble theory to explain the behavior of Physical systems											
C	203	Exp their	lain the applica	statistie tions.	cal beha	ivior of	Bose-E	instein	and Fer	mi-Dira	c syster	ns and		
C	CO4	Wor	k with r	nodels o	of phase	transiti	ons and	thermo-	dynami	cal fluct	uations.			
C	205	Des	cribe ph	ysical p	roblems	using q	uantum	statistic	s.					
		М	apping	of cour	se outco	omes wi	th the p	orogram	outcor	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	-	1	-	-	-	-	-	1	1	-	-	-		
CO2	3	3	3	1	3	2	1	2	2	1	1	1		
CO3	3	3	3	1	2	2	1	2	2	1	1	1		
CO4	3	3	3	1	2	2	1	2	2	1	1	1		
C05	3	3	3	1	2	2	1	2	2	1	1	1		

Page 27 of 73

- The Statistical Basis of Thermodynamics: The macroscopic and microscopic states, contact between statistics and thermodynamics, classical ideal gas, Gibbs paradox and its solution. (Lectures 7)
- 2. Ensemble Theory: Phase space and Liouville's theorem, the microcanonical ensemble theory and its application to ideal gas of monatomic particles; The canonical ensemble and its thermodynamics, partition function, classical ideal gas in canonical ensemble theory, energy fluctuations, equipartition and virial theorems, a system of quantum harmonic oscillators as canonical ensemble, statistics of paramagnetism; The grand canonical ensemble and significance of statistical quantities, classical ideal gas in grand canonical ensemble theory, density and energy fluctuations. *(Lectures 10)*
- 3. Quantum Statistics of Ideal Systems: Quantum states and phase space, an ideal gas in quantum mechanical ensembles, statistics of occupation numbers; Ideal Bose systems: basic concepts and thermodynamic behaviour of an ideal Bose gas, Bose-Einstein condensation, discussion of gas of photons (the radiation fields) and phonons (the Debye field); Ideal Fermi systems: thermodynamic behaviour of an ideal Fermi gas, discussion of heat capacity of a free electron gas at low temperatures, Pauli paramagnetism.

(Lectures 10)

(Lectures 5)

- 4. Elements of Phase Transitions: Introduction, a dynamical model of phase transitions, Ising model in zeroth approximation. (Lectures 8)
- 5. Fluctuations: Thermodynamic fluctuations, random walk and Brownian motion, introduction to non-equilibrium processes, diffusion equation.

Text Books:

1. Statistical Mechanics: R.K. Pathria and P.D. Beale (Butterworth-Heinemann, Oxford), 3rd edition, 2011.

Reference Books:

- 1. Statistical Mechanics: K. Huang (Wiley Eastern, New Delhi), 1987.
- 2. Statistical Mechanics: B.K. Agarwal and M. Eisner (Wiley Eastern, New Delhi) 2nd edition, 2011.
- 3. Elementary Statistical Physics: C. Kittel (Wiley, New York), 2004.
- 4. Statistical Mechanics: S.K. Sinha (Tata McGraw Hill, New Delhi), 1990.

Page 28 of 73

MSPH	[-423-2]	1	Quant	um Me	chanics	-11	L-	3, T-1, I	P-0	4	Credits	
Pre-re	quisite	Prelim	inary co	urse of	Quantur	n Mech	anics					
Course introdu technic these in	e Obje ice the ques of n variou	ctives: M.Sc. s Relativ is branc	The air tudents istic qua hes of p	n and o to the fo antum n hysics a	objectiv ormal st nechanic s per his	e of th tructure cs and o s/her rec	e cours of the s Quantur quiremen	e on Q subject a n field t nt.	uantun and to e heory s	Mech equip hir so that h	anics-II n/her w ne/she c	is to ith the an use
Cours	e Outco	omes: A	t the end	d of the	course,	the stud	ent will	be able	to			
C	01	Defi and	ne the re need for	elativisti quantu	c QM a m field 1	s the co theory	variant	formulat	ion of q	luantum	mechan	ics
C	202	Give	the signed the the signed the signed the signed states and sta	nificanc antipart	e of Kle icles.	in Gord	lon and	Dirac eq	uation a	and expl	ain the	
C	203	App cons	ly the sy erved cu	mmetri urrents a	es princ ind char	iples an ges.	d Noeth	er's theo	orem in	calculat	ing the	
C	204	Dem	nonstrate	e the sec	ond qua	ntizatio	on for sc	alar, Dir	ac, and	electron	nagnetic	
C	205	Exp the a	lain the amplitud	origin o les for e	f Feynm lementa	nan diag ry proce	rams an esses.	d apply	the Fey	nman ru	les to de	rive
		М	apping	of cour:	se outco	omes wi	th the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	1	1	1	2	2	1	2	2
CO2	2	2	3	1	1	1	-	1	2	1	2	2
CO3	2	2	2	2	1	1	1	1	2	1	2	2
CO4	2	2	2	2	1	1	1	2	2	1	2	2

CO5 2

Page 29 of 73

1. Relativistic Quantum Mechanics-I: Klein-Gordon equation, Dirac equation and its plane wave solutions, significance of negative energy solutions, spin angular momentum of the Dirac particle, the non-relativistic limit of Dirac equation.

(Lectures 10)

2. Relativistic Quantum Mechanics-II: Electron in electromagnetic fields, spin magnetic moment, spin-orbit interaction, Dirac equation for a particle in a central field, fine structure of hydrogen atom, Lamb shift.

(Lectures 10)

- 3. Quantum Field Theory: Resume of Lagrangian and Hamiltonian formalism of a classical field, Noether theorem, Quantization of real scalar field, complex scalar field, Dirac field and electromagnetic field, Covariant perturbation theory, Wick's theorem, Scattering matrix. (Lectures 10)
- 4. **Feynman diagrams**: Feynman rules, Feynman diagrams and their applications, Yukawa field theory, calculations of scattering cross-sections, decay rates with examples, Quantum Electrodynamics, calculations of matrix elements for first order and second order.

(Lectures 10)

Text Books:

- 1. Relativistic quantum Mechanics, J D Bjorken and S D Drell, (Tata McGraw Hill, New Delhi) 2012.
- A first book of Quantum Field Theory, A. Lahiri & P. Pal, (Narosa Publishers, New Delhi), 1st ed. 2005.
- 3. Introduction to Quantum Field Theory, M. Peskin & D.V. Schroeder. (Levant Books) 2015.

Reference Books:

- 1. Quantum Field Theory in a Nutshell: A Zee (University Press), 2012.
- 2. Lecture on Quantum Field Theory, A. Das (World Scientific), 2008.
- 3. Text Book of Quantum Mechanics-P.M. Mathews & K. Venkatesan (Tata McGraw Hill, New Delhi), 2004.
- 4. Quantum Field Theory: H. Mandl and G. Shaw (Wiley, New York), 2010.
- 5. Advance Quantum Mechanics: J.J. Sakurai (Addison- Wesley, Reading), 2004.

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 30 of 73
MSPH	I-424-2	1 Clas	ssical E	lectrody	namics		L	-3, T-1,	P-0	4	Credits	6
Pre-re	equisite	: Under	standing	g of grac	luate lev	el elect	ricity an	d magne	etism			
Cours Magne electro time v	e Obj etostatic omagnet arying s	ectives: s inclu ic wave sources.	The iding M es in die	Classic Maxwell electrics	cal Ele l equat ; EM w	ectrodyn ions, a aves in	namics and the bounde	course eir appl d media	cover ications , waveg	s Elect to pr guides, F	trostatic ropagati Radiatio	s and on of n from
Cours	e Outco	omes: A	t the en	d of the	course,	the stuc	lent will	be able	to			
C	201	Und pola	erstand rization	the co	oncept o	of quad	lrupole,	multipo	ole exp	ansion	and die	electric
C	202	Exp mag	lain the netic fie	e magne elds.	etic sca	ılar, ve	ctor po	tential a	and bo	undary	conditio	ons on
(CO3	Prov	ide solu	ution to	various	boundai	y value	problem	ıs.			
(CO4	Use prop	Maxwe	ll equat of elect	ions in romagn	differen etic wav	t forms es throu	and dif ugh diffe	ferent n erent me	nedia an edia.	d descr	ibe the
(05	Dev thro	elop ana ugh wav	alytical /e guide	skills to s.	solve p	oroblem	s related	l to pro	pagation	of EM	waves
		M	apping	of cour	se outco	omes wi	th the p	orogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	2	1	2	1	1	1	2	3
CO2	2	2	1	1	1	1	1	1	1	3	2	3
CO3	2	2	2	2	2	2	1	1	1	2	2	3
CO4	2	2	1	2	1	2	1	1	1	3	2	3
C05	1	2	1	2	1	1	1	2	2	3	2	3

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 31 of 73

 Electrostatics: Electrostatic potential and potential of a charge distribution, dipole moment, Electric Quadrupole and multipoles, Multipole expansion of the scalar potential, Dielectric polarization and its types, Polarization vector, Relation between electric displacement, electric field and Polarisation, Electrostatic energy and energy density in free space and dielectric, Boundary conditions at the interface of two dielectrics.

(Lectures 10)

- Magnetostatics: Current density, magnetic induction, Force on a current element: Ampere's Force law, Divergence of magnetic induction, Magnetic scalar and vector potential, Boundary conditions on magnetic fields. (Lectures 6)
- 3. Boundary value problems: Uniqueness theorem, Green's theorem, Green's reciprocation theorem, Solution of electrostatic boundary value problem with Green function, Method of images with examples; Point charge near an infinite grounded conducting plane; Dielectric slab of infinite face in front of a point charge, Laplace and Poisson's equations in different coordinates, Solution of Laplace equation. (Lectures 8)
- 4. **Maxwell equations and Electromagnetic Waves:** Maxwell equations, Concept of displacement current, Maxwell's equations for free space, static fields and in Phasor notation, Wave equations in free space, non-conducting and conduction medium (Phasor form), Propagation characteristics of EM waves in free space, non-conducting and conducting media, conductors and dielectrics, depth of penetration, Poynting vector, Poynting theorem, Poynting theorem in complex form, Polarisation, Reflection of waves by a perfect conductor-normal and oblique incidence, Reflection and transmission of waves by a perfect dielectric-normal and oblique incidence, Brewster's angle, Total internal reflection, Gauge transformation, Lorentz and Coulomb gauges, Hertz potential,

(Lectures 10)

(Lectures 10)

5. Wave Guides: Wave guides, Derivation of field equations in rectangular wave guides, Transverse magnetic (TM) waves, Transverse Electric (TE) waves, Propagation characteristics of TM and TE waves, Lowest possible mode in TM and TE waves, Dominant mode, Evanescent mode, Degenerate mode, Transverse electromagnetic (TEM) waves and characteristics, Difference between Transmission lines and wave guides, Definition, function and properties of an antenna, Retarded vector potential.

Text Books:

- 1. Classical Electrodynamics: S.P. Puri (Narosa Publishing House) 2011.
- 2. Classical Electrodynamics: J.D. Jackson, (New Age, New Delhi) 2009.
- 3. Introduction to Electrodynamics: D.J. Griffiths (Prentice Hall India, New Delhi) 4th ed., 2011.

Reference Books:

- 1. Classical Electromagnetic Radiation: J.B. Marion and M.A. Heald(Saunders College Publishing House) 2nd edition, 1995.
- 2. Electromagnetic Fields, Ronald K. Wangsness (John Wiley and Sons) 2nd edition, 1986.
- 3. Electromagnetic Field Theory Fundamentals: Bhag Singh Guru and H.R. Hiziroglu

MSPH	-425-2	1 At	omic ai	nd Mole	ecular P	hysics	L-	3, T-1, I	>-0	4	Credits	
Pre-re	quisite	: Unders	anding	of grad	uate lev	el spect	roscopy					
Course the stu Vibrati	e Object idents of ional, R	ctives: 7 of M.Sc aman, a	The aim c. Physi nd Elect	and objects is to tronic sp	jective o o equip bectra.	of the co them	ourse or with the	a Atomio e knowl	c and M edge o	f Atomi	ar Phys ic, Rota	ics for tional,
Cours	e Outco	omes: A	t the end	d of the	course,	the stud	ent will	be able	to		-	
C	01	Have	e the ba atom	sic know	wledge	of Bohr	's- Som	merfeld	Quantu	im theor	y of hy	drogen
C	02	Undemole	erstand ecules	classica	al/quant	um des	cription	of elec	ctronic	spectra	of ato	m and
C	203	Use	microw	ave and	Raman	Spectro	scopy for	or analys	sis of kr	nown ma	lecules	
C	204	Corr phys	elate ir sical des	frared cription	spectros	scopic i	nformat	ion of	known	molecu	les wit	n their
C	205	Und anal	erstand ysis	Spin Re	sonance	Spectro	oscopy	with focu	us on N	MR for	molecul	ar
		M	apping	of cour	se outco	omes wi	th the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	2	2	1	1	2	2	3	1	2
CO2	2	2	3	3	2	1	2	2	2	3	1	1
CO3	2	2	3	3	2	1	2	2	2	3	1	3
CO4	2	2	3	3	2	1	2	2	2	3	1	3
C05	2	2	3	3	2	1	2	2	2	3	1	3

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 33 of 73

- Electronic Spectroscopy of Atoms: Bohr-Sommerfeld model of atomic structure, Electronic wave function and atomic quantum numbers – hydrogen spectrum – orbital, spin and total angular momentum - fine structure of hydrogen atom – many electron spectrum: Lithium atom spectrum, angular momentum of many electrons – term symbols – the spectrum of helium and alkaline earths – equivalent and non-equivalent electrons –X-ray photoelectron spectroscopy. (Lectures 8)
- Electronic Spectroscopy of Molecules: Diatomic molecular spectra: Born-Oppenheimer approximation – vibrational spectra and their progressions – Franck-Condon principle – dissociation energy and their products –rotational fine structure of electronic-vibration transition - molecular orbital theory – the spectrum of molecular hydrogen – change of shape on excitation – chemical analysis by electronic spectroscopy – reemission of energy – fundamentals of UV photoelectron spectroscopy. (Lectures 9)
- Microwave and Raman Spectroscopy: Rotation of molecules and their spectra diatomic molecules intensity of line spectra the effect of isotropic substitution non-rigid rotator and their spectra polyatomic molecules (linear and symmetric top molecules) Classical theory of Raman effect pure rotational Raman spectra (linear and symmetric top molecules). (Lectures 8)
- 4. Infra-red and Raman Spectroscopy: The energy of diatomic molecules Simple Harmonic Oscillator the Anharmonic oscillator the diatomic vibrating rotator vibration-rotation spectrum of carbon monoxide –breakdown of Born-Oppenheimer approximation the vibrations of polyatomic molecules –influence of rotation on the spectra of polyatomic molecules (linear and symmetric top molecules) Raman activity of vibrations vibrational Raman spectra vibrations of Spherical top molecules.

(Lectures 8)

 Spin Resonance Spectroscopy Spin and magnetic field interaction – Larmor precession – relaxation time – spin-spin relaxation - spin-lattice relaxation - NMR chemical shift coupling constants – coupling between nuclei – chemical analysis by NMR – NMR for nuclei other than hydrogen – ESR spectroscopy - fine structure in ESR. (Lectures 8)

Text Books:

- 1. Fundamentals of Molecular Spectroscopy: Colin N. Banwell and Elaine M. McCash (Tata McGraw-Hill Publishing Company limited).
- 2. Physics of Atoms and Molecules: B. H. Bransden and C. J. Joachain.

Reference Books:

- 1. Physical method for Chemists (Second Edition): Russell S. Drago (Saunders College Publishing).
- 2. Introduction to Atomic Spectra: H.E. White-Auckland McGraw Hill, 1924.
- 3. Spectroscopy Vol. I, II & III: Walker & Straughen
- 4. Introduction to Molecular spectroscopy: G.M. Barrow-Tokyo McGraw Hill, 1961.
- 5. Spectra of diatomic molecules: Herzberg-New York, 1944.

MSPH	-426-2	I A	tomic, I	Nuclear Physics	, and Pa Lab	article	L-	3, T-1, I	P-0	4	Credits	
Pre-re	quisite	: Unders	standing	of grad	uate lev	el atom	ic specti	oscopy	and nuc	lear phy	sics	
Course to expense so that sophist	e Objectose the they control to the	e tives: T students an verif equipme	The aim of M.S y some ent.	and object stude	ective of nts to ex results of	f the lab xperime obtained	on Ato ental tech in theo	mic, Nu hniques ory and	clear a in atom develop	nd Part ic and n confide	icle Phy uclear p ence to	v sics is ohysics handle
Cours	e Outco	omes: A	t the en	d of the	course,	the stud	lent will	be able	to			
C	01	Acq Scin	uire han tillation	ds on ex counter	xperienc	ce of usi	ing parti	icle dete	ctors su	ch as G	M coun	ter and
C	CO2	Han	dle oscil	lloscope	for visu	ualisatic	on of var	ious inp	ut and c	output si	gnals.	
C	03	Und	erstand	the basic	c of nuc	lear safe	ely man	agement	•			
C	CO4	Perf resu	orm sci lts of nu	entific clear ex	experim perimer	ients as nts.	well a	s accura	ately re	cord an	d analy	ze the
C	CO5	Solv	e applie	d nuclea	ar probl	ems wit	h critica	l thinkin	ig and a	nalytica	l reason	ing.
		M	apping	of cour	se outco	omes wi	th the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	2	2	2	2	2	2	2
CO2	1	1	1	2	1	2	1	2	2	2	2	2
CO3	1	1	1	2	1	2	1	2	2	2	2	2
CO4	1	2	2	2	1	2	2	2	2	2	2	2
C05	1	2	2	2	1	2	2	2	2	2	2	2

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 35 of 73

Note: Students are expected to perform atleast 10 experiments out of following list.

- 1. Determination of e/m of electron by Normal Zeeman Effect using Febry Perot interferometer.
- 2. To verify the existence of Bohr's energy levels with Frank-Hertz experiments.
- 3. Determination of Lande's factor of DPPH using Electron-spin resonance (E.S.R.) spectrometer.
- 4. Determination of ionization Potential of Lithium.
- 5. Analysis of pulse height of gamma ray spectra.
- 6. To study the characteristics of G.M. tube.
- 7. To verify the inverse square law using GM counter.
- 8. To determine the dead time of G.M. counter.
- 9. To study absorption of beta particles is matter using GM counter.
- 10. To study Gaussian distribution using G.M. counter.
- 11. To estimate the efficiency of GM detector for Gamma and Beta source.
- 12. Determination of Planck's constant using Photocell and interference filters.
- 13. Verification of Inverse square law using Photocell.
- 14. To study Gaussian distribution using scintillation counter.
- 15. To study absorption of gamma radiation by scintillation counter.
- 16. To estimate the efficiency of Scintillator counter.

Text Books:

- 1. Fundamentals of Molecular Spectroscopy: Colin N. Banwell and Elaine M. McCash (Tata McGraw-Hill Publishing Company limited).
- 2. Physics of Atoms and Molecules: B. H. Bransden and C. J. Joachain.

Reference Books:

- 1. Physical method for Chemists (Second Edition): Russell S. Drago (Saunders College Publishing).
- 2. Introduction to Atomic Spectra: H.E. White-Auckland McGraw Hill, 1924.
- 3. Spectroscopy Vol. I, II & III: Walker & Straughen
- 4. Introduction to Molecular spectroscopy: G.M. Barrow-Tokyo McGraw Hill, 1961.
- 5. Spectra of diatomic molecules: Herzberg-New York, 1944.

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 36 of 73

MSPH-427-21	Computational Physics Lab-II	L-3, T-1, P-0	4 Credits

Pre-requisite: Understanding of graduate level numerical methods and C++

Course Objectives: The aim and objective of the lab on **Computational Physics-II** is to train the students of M.Sc. class in understanding numerical methods, the usage of high level language such as C++ language for simulation of results for different physics problems and graphic analysis of physical data, so that they are well equipped in the use of computer for solving physics related problems.

Course Outcomes:	At the end of the course,	the student will be able to
-------------------------	---------------------------	-----------------------------

0	201	Und Phys	erstand sics prob	and applems.	ply basi	ics know	wledge	of nume	erical m	nethods	in solvi	ing the
(202	Writ	e progra	amme w	ith the (C++ or a	any othe	er high le	evel lang	guage.		
(CO3	Lear	n use of	fgraphic	cal meth	ods in c	lata ana	lysis and	solving	g physics	s proble	ms.
(CO4	Solv	e physio oning.	cal prob	olem, en	abling d	levelopr	ment of o	critical	thinking	and and	alytical
(05	App phys	ly comp sics and	outation allied fi	al phys ields.	ics in fi	rontier a	areas of	pure a	nd appli	ed resea	arch in
		M	apping	of cour	se outco	omes wi	th the p	orogram	outcor	nes		
_	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	2	1	1	1	3	2	3	2
CO2	3	3	3	2	2	1	1	2	1	2	2	2
CO3	1	2	1	3	1	2	1	1	1	1	1	1
CO4	3	3	2	2	3	1	1	1	1	1	1	1
C05	1	1	1	1	1	1	1	1	3	2	1	1

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 37 of 73

Note: Students are expected to perform atleast 10 experiments out of following list using C++ and Gnuplot.

- 1. Write a program to study graphically the EM oscillations in LCR circuit (use Runge-Kutta Method). Show the variation of (i) Charge vs Time and (ii) Current vs Time.
- 2. Study graphically the motion of falling spherical body under various effects of medium (viscous drag, buoyancy and air drag) using Euler method.
- 3. Study graphically the path of a projectile with air drag using FN method. Find the horizontal and maximum height in either case. Write your comments on the findings.
- 4. Study graphically the path of a projectile without air drag using FN method. Find the horizontal and maximum height in either case. Write your comments on the findings.
- 5. Study the motion of an artificial satellite.
- Study the motion of 1-D harmonic oscillator (without and with damping effects). Draw graphs showing the relations: i) Velocity vs Time, ii) Acceleration vs Time iii) Position vs Time, also compare the numerical and analytical results.
- Study the motion of two coupled harmonic oscillators. Draw graphs showing the relations: i) Velocity vs Time, ii) Acceleration vs Time iii) Position vs Time, also compare the numerical and analytical results.
- 8. To obtain the energy eigenvalues of a quantum oscillator using the Runge-Kutta method.
- 9. Study the motion of a charged particle in uniform electric field.
- 10. Study the motion of a charged particle in uniform Magnetic field.
- 11. Study the motion of a charged particle in combined uniform electric and magnetic fields.
- 12. Use Monte Carlo techniques to simulate phenomenon of Nuclear Radioactivity. Do the cases in which the daughter nuclei are also unstable with half life greater/lesser than the parent nucleus.
- 13. Use Monte Carlo techniques to simulate phenomenon to determine solid angle in a given geometry.
- 14. Use Monte Carlo techniques to simulate phenomenon to simulate attenuation of gamma rays/neutron in an absorber.
- 15. Use Monte Carlo techniques to simulate phenomenon to solve multiple integrals and compare results with Simpson's method.

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 38 of 73

- 16. To study phase trajectory of a Chaotic Pendulum.
- 17. To study convection in fluids using Lorenz system.

Text Books:

- 1. Numerical Recipes in C++ The Art of Scientific Computing, William H. Press, Saul, A.Teukolsky, William T. Vetterling, and Brian P. Flannery, (Cambridge), 2nd ed. 2001.
- 2. A First Course in Computational Physics: P.L. DeVries (John Wiley) 2000.

Reference Books:

- 1. An introduction to Computational Physics: Tao Pang (Cambridge), 2nd ed. 2006.
- 2. Computer Applications in Physics: S. Chandra (Narosa), 2006.
- 3. Computational Physics: R.C. Verma, P.K. Ahluwalia and K.C. Sharma (New Age), 2005.
- 4. Object Oriented Programming with C++: Balagurusamy, (Tata McGraw Hill), 5th ed. 2011.

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 39 of 73

MSP	H-531-2	21	Conde	nsed M	atter P	hysics	L	2-3, T-1,	, P-0	4	Credit	s
Pre-r	equisite	e: Unde	rstandin	g of gra	duate le	vel solic	d state p	hysics				_
Course expose prope used i	se Obje te the st rties, er n invest	ectives: udents o hergy ba tigating	The air of M.Sc. and theo these as	m and o class ry and t pects of	bjective to the to transpor f the mat	e of the pics lik t theory tter in co	course e elastic so that ondense	on Constant constant they are d phase.	ndensed nts, latti e equipp	Matter ce vibrat bed with	r Physi tions, di the tec	cs is to electric hniques
Cours	se Outc	omes: /	At the er	nd of the	e course,	the stu	dent wil	l be able	e to			
(01	Gai	n in-dep forming	oth knov calculat	vledge a tions on	bout the their ele	format emental	ion of va	arious ci ters.	rystal str	ucture v	ia
(02	Dif ther	ferentia 1 explair	te betwo therma	een vari al proper	ous latt ties of c	ice type crystalli	es based	on the s.	ir lattice	dynam	ics and
(03	Unc	lerstand iconduc	the electors.	etron me	otion in _l	periodic	solids a	ind orig	in of ene	rgy ban	ds in
(CO4	To e in se	explain t olids	the basic	c transpo	ort theor	y for ur	derstan	ding the	transpo	rt pheno	menon
(05	Usin prop	ng vario perties o	ous mo finsulat	dels of tors.	molecu	ular pol	larizabil	ity, und	lerstand	the di	electric
		M	apping	of cour	se outco	omes wi	ith the j	orogran	1 outcoi	mes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1	2	1	2	2	2	1	2
CO2	2	2	2	2	2	2	2	2	2	2	2	2
CO3	2	2	1	2	1	2	2	2	1	2	1	2
CO4	2	2	1	2	2	2	1	2	1	2	2	2
CO5	2	1	1	2	2	2	2	2	1	2	2	2

1. Crystal binding and Elastic constants: Binding in solids; Cohesive energy, Crystals of Inert gases, ionic crystal, Covalent Crystals, Analysis of elastic strains: dilation, stress components; Elastic Compliance and Stiffness: elastic constants, elastic waves in cubic crystals.

(Lectures 6)

- Lattice Dynamics and Thermal Properties: Vibrations of crystal with monatomic and two atom per primitive Basis; Quantization of Elastic waves, Phonon momentum; Inelastic scattering by phonons, Phonon Heat Capacity, Planck Distribution, normal modes; Density of states, Debye T2 model; Einstein Model; anharmonic crystal interactions; thermal conductivity expansion. (Lectures 9)
- Energy Band Theory: Electrons in a periodic potential: Bloch theorem, Nearly free electron model; Kronig Penney Model; Electron in a periodic potential; tight binding method; Wigner-Seitz Method Semiconductor Crystals, Band theory of pure and doped semiconductors; effective mass elementary idea of semiconductor superlattices.

(Lectures 9)

4. **Transport Theory:** Electronic transport from classical kinetic theory; Introduction to Boltzmann transport equation; electrical and thermal conductivity of metals; thermoelectric effects; Hall effect and magneto resistance.

(Lectures 8)

 Dielectrics and Ferro Electrics: Polarization mechanisms, Dielectric function from oscillator strength, Clausius-Mosotti relation; piezo, pyro- and ferro-electricity; Dipole theory of ferroelectricity; thermodynamics of ferroelectric transition.

(Lectures 8)

Text Books:

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, New York), 8th ed. 2005.
- 2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.

Reference Books:

- 1. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1971
- 2. Solid State Theory: Walter A. Harrison (Tata McGraw-Hill, New Delhi) 1970.
- 3. Liquid Crystals: S. Chandrasekhar (Cambridge University), 2nd ed. 1991.

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 41 of 73

MSPI	H-532-2	1	N	uclear	Physics		L	-3, T-1,	P-0	4	Credit	s
Pre-r	equisite	: Under	standing	g of gra	duate le	vel phys	ics	ni ^b				-
Cours studer radioa with t	se Obje nts of N active de he techn	ctives: 7 1.Sc. cla ccays, nu iques us	The aim ass to thuclear fo sed in st	and ob the basic prees, no tudying	jective aspect uclear m these th	of the co s of Nu nodels, a ings.	ourse or clear Pl and nucl	n Nuclea hysics li lear react	r Phys ke stat tions so	ics is to ic prope that the	familia rties of y are ec	rize the nuclei, quipped
Cours	se Outc	omes: A	t the en	d of the	course,	the stud	lent wil	l be able	to			
(C O 1	Und nucl	erstand ear moc	and cor lels.	npare nu	ıclear m	odels a	nd explai	in nucle	ear prope	erties us	ing
(CO2	Und	erstand	structur	e and st	atic proj	perties o	of nuclei.				
(03	Ana	lyse var	ious dec	cay mod	e of nuc	leus.					
(CO4	Use nucl	nucleon ear forc	n-nucleo es.	on scatte	ring and	deutero	on proble	em to e:	xplain na	ature of	
(CO5	Dese	cribe va	rious ty	pes of n	uclear re	eactions	and thei	r prope	rties.		
		М	apping	of cour	se outco	omes wi	th the p	orogram	outco	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	1	1	2	1	1	2	1	2	2	2
CO2	3	3	1	1	2	1	1	2	1	2	2	2
CO3	3	3	1	1	2	1	1	2	1	2	2	2
CO4	3	3	1	1	2	1	1	2	1	2	2	2

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 42 of 73

- 1. Static properties of nucleus: Nuclear radii and measurements, nuclear binding energy (review), nuclear moments and systematic, wave-mechanical properties of nuclei, hyperfine structure. (Lectures 5)
- 2. Nuclear forces: Evidence for saturation of nuclear density and binding energies (review), types of nuclear potential, Ground and excited states of deuteron, dipole and quadrupole moment of deuteron, single and triplet potentials, meson theory of nuclear forces.

(Lectures 10)

- 3. Nuclear decay: Review of barrier penetration of alpha decay & Geiger-Nuttal law. Beta decays, Fermi theory, Kurie plots and comparative half-lives, Allowed and forbidden transitions, Experimental evidence for Parity-violation in beta decay, Electron capture probabilities, Neutrino, detection of neutrinos, Multipolarity of gamma transitions, internal conversion process. (Lectures 10)
- 4. Nuclear Models: Liquid drop model, Binding energy; fission and fusion, Experimental evidence for shell effects, Shell Model, Spin-Orbit coupling, Magic numbers, Application of Shell Model like Angular momenta and parities of nuclear ground states, Collective model-nuclear vibrations spectra and rotational spectra. (Lectures 8)
- Nuclear reactions: Nuclear reactions and cross-sections, Resonance, Breit- Wigner dispersion formula for I=0 and higher values, compound nucleus, Direct reactions, Transfer reactions. (Lectures 7)

Text Books:

- 1. Nuclear Physics: Irving Kaplan (Narosa), 2001.
- 2. Theory of Nuclear Structure: R.R. Roy and B.P. Nigam (New Age, New Delhi) 2005.
- 3. Handbook of Nuclear Physics: S.N. Ghoshal, S. Chand Publishing (1994).

Reference Books:

- 1. Basic Ideas and Concepts in Nuclear Physics: K. Hyde (Institute of Physics) 2004.
- 2. Nuclear physics: Experimental and Theoretical, H.S. Hans (New Academic Science) 2nd ed (2011).

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 43 of 73

MSPI	H-533-2	1	ł	Particle	Physics		L	3, T-1,	P-0	4	Credit	s
Pre-r	equisite	course:	e on Qua	antum N	/lechanic	cs and Q)uantum	field Th	neory			
The ai invaria static particl	im and o ance pri quark m les in pr se Outc	objective nciples nodel of oper per omes: A	e of the and con hadrons rspectiv	course of servatic s and we e. ad of the	on Parti on laws, eak inter e course,	the stud	sics is to hadron so that to dent wil	o introdu interaction they grass	to	M.Sc. sti ativistic asics of	udents to kinema fundamo	o the tics, ental
(CO1	Ove	rview tl elopmer	he parti	cle spec	trum, tł	eir inte	raction a	and maj	or histo	rical an	d latest
(02	Und prop	lerstand perties in	the in particl	nplicatio e physic	ns of s	various	invariar	ice prii	nciples	and syr	nmetry
(203	Mas and	ter relat decay p	tivistic rocesse:	kinemat s.	ics for a	computa	tions of	outcon	ne of va	rious re	actions
0	CO4	Prop	perties o	fbaryo	ns and n	nesons i	n terms	of naive	nonrela	ativistic	quark m	odel.
C	05	Wea deca	ak intera 1y.	action in	n quarks	s and le	ptons a	nd how	that th	is is res	ponsible	e for β
		М	apping	of cour	se outco	omes wi	th the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	1	1	1	2	2	1	1	2	1	2	1	3
CO2	1	1	1	2	2	1	1	2	2	2	2	3
CO3	1	1	1	2	2	1	1	2	2	2	-	1
CO4	1	1	1	2	2	1	2	2	2	2	2	2
CO5	1	1	1	2	2	1	2	1	3	2	-	2

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 44 of 73

1. **Introduction:** Fermions and bosons, particles and antiparticles, quarks and leptons, interactions and fields in particle physics, classical and quantum pictures, Yukawa picture, types of interactions - electromagnetic, weak, strong and gravitational, units.

(Lectures 7)

- Invariance Principles and Conservation Laws: Invariance in classical mechanics and quantum mechanics, Parity, Pion parity, Charge conjugation, Positronium decay, Time reversal invariance, CPT theorem. (Lectures 7)
- Hadron-Hadron Interactions: Cross section and decay rates, Pion spin, Isospin, Two nucleon system, Pion-nucleon system, Strangeness and Isospin, G-parity, Total and Elastic cross section, Particle production at high energy. (Lectures 7)
- Relativistic Kinematics and Phase Space: Introduction to relativistic kinematics, particle reactions, Lorentz invariant phase space, two-body and three-body phase space, dalitz plots, K-2p-decay, t-θ puzzle, dalitz plots for dissimilar particles, Breit-Wigner resonance formula, Mandelstem variables. (Lectures 7)
- 5. Static Quark Model of Hadrons: The Baryon decuplet, quark spin and color, baryon octet, quark-antiquark combination. (Lectures 7)
- **6.** Weak Interactions: Classification of weak interactions, Fermi theory, Parity non conservation in β-decay, experimental determination of parity violation, helicity of neutrino, K-decay, CP violation in K- decay and its experimental determination.

(Lectures 7)

Text Books:

- 1. Introduction to High Energy Physics: D.H. Perkins (Cambridge University Press), 2000.
- 2. Introduction to Quarks and Partons: F.E. Close (Academic Press, London), 1979.
- 3. Introduction to Particle Physics: M.P. Khanna (Prentice Hall of India, New Delhi), 2004.

Reference Books:

- 1. An Introductory Course of Particle Physics: Palash Pal (CRC Press).
- 2. Elementary Particles: I.S. Hughes (Cambridge University Press), 3rd ed. 1991.
- 3. Gauge Theory of Elementary Particle Physics: T.P Cheng & L.F. Li (Oxford).
- 4. Dynamics of the Standard Model: J.F. Donoghue (Cambridge University Press).
- 5. First Book of Quantum Field Theory: A. Lahiri & P. Pal, Narosa, New Delhi.
- 6. Introduction to Quantum Field Theory: M. Peskin & D.V. Schroeder. (Levant Books).

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 45 of 73

Elective Subject -I

MSPI	1-534-2	1 Fib	re Optio	es and N	Non-line	ear optic	s L	-3, T-1,	P-0	4	Credits	5
Pre-re	equisite	: Under	standing	g of grad	luate lev	vel optic:	s and La	asers	1			
Cours and N field o	se Objection Nonlinea of optica	ctives: ar Option l fibres	Course cs is to and thei	Object expose r use in	the M.S. nonline	he aim a Sc. stude ar optics	and objects to the second s	ective o the basic	f the co cs of th	ourse on e challe	Fibre nging re	Optics esearch
Cours	se Outco	omes: A	t the en	d of the	course,	the stud	ent will	be able	to			
(CO1	Und	erstand	the stru	cture of	optical f	iber and	d descril	pe prope	erties of	optical	fibers.
(CO2	Iden	tify and	compa	re the va	arious pro	ocesses	of fiber	s fabric	ation		
(03	Des	cribe the	optics	of aniso	tropic m	edia					
(CO4	Ana	lyze the	electro	-optic ai	nd acous	to-optic	effects	in fiber	S		
(05	anal	yze non	-linear e	effects in	n optical	fibers.			5		
		Μ	apping	of cour	se outco	omes wit	th the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2	2	-	1	-	1	-	1	-	3	-	1
CO2	3	2	1	1	1	1	-	1	-	3	-	1
CO3	2	2	-	1	-	1	- 1	1	-	3	-	1
CO4	3	2	1	1	1	-	- 19	1	-	3	-	1
C05	3	2	1	1	1	-	-	1	-	3	-	1

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 46 of 73

- Optical fibre and its properties: Introduction, basic fibre construction, propagation of light, modes and the fibre, refractive index profile, types of fibre, dispersion, data rate and band width, attenuation, leaky modes, bending losses, cut-off wavelength, mode field diameter, other fibre types. (Lectures 7)
- Fiber fabrication and cable design: Fibre fabrication, mass production of fiber, comparison of the processes, fiber drawing process, coatings, cable design requirements, typical cable design, testing. (Lectures 5)
- 3. **Optics of anisotropic media:** Introduction, the dielectric tensor, stored electromagnetic energy in anisotropic media, propagation of monochromatic plane waves in anisotropic media, directions of D for a given wave vector, angular relationships between D, E, H, k and Poynting vector S, the indicatrix, uniaxial crystals, index surfaces, other surfaces related to the uniaxial indicatrix, Huygenian constructions, retardation, biaxial crystals, intensity through polarizer/waveplate/ polarizer combinations. *(Lectures 10)*
- 4. Electro-optic and acousto-optic effects and modulation of light beams: Introduction to the electro-optic effects, linear electro-optic effect, quadratic electro-optic effects, longitudinal electro-optic modulation, transverse electro optic modulation, electro optic amplitude modulation, electro-optic phase modulation, high frequency wave guide, electro-optic modulator, strain optic tensor, calculation of LM for a logitudinal acoustic wave in isotropic medium, Raman-Nath diffraction, Raman-Nath acousto-optic modulator.

(Lectures 10)

 Non-linear optics/processes: Introduction, anharmonic potentials and nonlinear polarization, non-linear susceptibilities and mixing coefficients, parametric and other nonlinear processes, macroscopic and microscopic susceptibilities. (Lectures 8)

Text Books:

1. The Elements of Fibre Optics: S.L. Wymer and Meardon (Regents/Prentice Hall), 1992.

Reference Books:

- 1. Lasers and Electro-Optics: C.C. Davis (Cambridge University Press), 1996.
- 2. Optical Electronics: Gathak & Thyagarajan (Cambridge Univ. Press), 1989.
- 3. The Elements of Non-linear Optics: P.N. Butcher & D. Cotter (Cambridge University Press), 1991.

Page 47 of 73

MSP	H_535	21	D	diation	Dhave	_	1.		DO	Electiv	e Subje	ct -I
WISI .	11-353-2	21	K	adiation	i Physic	S	L	-3, T-1,	P-0	4	Credit	S
Pre-r	equisite	e: Under	rstandin	g of gra	duate le	vel nucl	ear phy:	sics				
Cour studen that th to be	se Object nts of M ney und radiatio	ectives: I.Sc. cla erstand n or nuc	The ain ss to the the deta lear phy	n and o relative ils of th vsicists i	bjective ely adva e underl n their c	of the nced top lying as career.	course o pics Rac pects an	on Radi liation P d can us	ation P hysics a se the te	hysics is and nucle chniques	s to exp ear reac s if they	oose th tions s decid
Cours	se Outc	omes: A	At the er	d of the	course,	the stud	dent wil	l be able	to		-	
(01	Unc	lerstand rged par	variou ticles w	s mode	es of in er.	nteractio	n of el	ectroma	agnetic	radiatio	ns an
(02	Dist	tinguish	various	types o	f radiati	ons base	ed on the	eir inter	action w	ith matt	er.
(C O 3	Lea	rn and u	ndersta	nd abou	t differe	nt detec	tors.				
(CO4	Use anal	differer ysis and	nt analy l electro	tical tecl	nnique s esonanc	uch as 2 e spectr	KRF, PE	XE, neu	tron acti	vation	
(05	Des	ign expe	eriments	to anal	yze effe	cts of ra	diation	on vario	ous objec	ets.	
		М	apping	of cour	se outco	o <mark>mes w</mark> i	ith the j	orogram	outco	mes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI
CO1	1	1	1	-	1	1	1	1	1	2	1	2
CO2	1	1	1	-	1	2	2	1	2	2	2	2
CO3	2	1	2	2	2	2	2	2	2	2	2	2
	2	2	2	2	2	3	3	2	2	2	2	2
CO4	2											

1. Interaction of electromagnetic radiations with Matter: Different photon interaction processes viz. photoelectric effect, Compton scattering and pair production. Minor interaction processes, Energy and Z dependence of partial photon interaction processes. Attenuation coefficients, Broad and narrow beam geometries. Multiple scattering.

(Lectures 10)

2. Interaction of charged particles with Matter: Elastic and inelastic collisions with electrons and atomic nucleus. Energy loss of heavy charged particles. Range-energy relationships, Straggling. Radiative collisions of electrons with atomic nucleus.

(Lectures 10)

3. Nuclear Detectors and Instrumentation: General characteristics of detectors, Gas filled detectors, Organic and inorganic scintillation detectors, Semi-conductor detectors [Si(Li), Ge(Li) HPGe]. Room temperature detectors, Gamma ray spectrometers. Gamma ray spectrometers with NaI(TI) scintillation and semiconductor detectors.

(Lectures 10)

4. Analytical Techniques: Principle, instrumentation and spectrum analysis of XRF, PIXE and neutron activation analysis (NAA) techniques. Theory, instrumentation and applications of electron spin resonance spectroscopy (ESR). Experimental techniques and applications of Rutherford backscattering. Applications of elemental analysis and nuclear medicine.

(Lectures 10)

Text Books:

- 1. The Atomic Nucleus: R.D. Evans, Tata Mc Graw Hill, New Delhi.
- 2. Nuclear Radiation Detectors: S. S. Kapoor and V. S. Ramamurthy, New Age, International, New Delhi.

Reference Books:

- 1. Radiation Detection and Measurements: G. F. Knoll, Wiley & Sons, New Delhi.
- 2. Introductory Nuclear Physics: K. S. Krane, Wiley & Sons, New Delhi.
- 3. An Introduction to X-ray Spectrometry: Ron Jenkin, Wiley.
- 4. Techniques for Nuclear and Particle Physics Experiments: W. R. Leo, Narosa Publishing House, New Delhi.
- 5. Introduction to experimental Nuclear Physics: R.M. Singru, Wiley & Sons, New Delhi

Elective Subject -I

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 49 of 73

MSP	H-536-2	21	No	nlinear	Dynam	ics	I	3, T-1,	P-0	4	Credit	s
Pre-r	equisit	e: Unde	rstandin	g of gra	duate le	vel phy	sics					
Cour the M Hami	se Obje I.Sc. stu Itonian	ectives: dents w systems	The air ith the b	n and ob asics of	jective the rec	of the c ently en	ourse or nerging	Nonlin research	ear Dy field o	namics f dynam	is to fan ics of no	niliarize
Cour	se Outc	omes: /	At the er	nd of the	e course	, the stu	dent wil	l be able	e to		<u>}</u>	
(C O 1	Unc	derstand os.	basic k	nowledg	ge of no	nlinear o	dynamic	s and pl	nenomer	ology o	of
(C O2	App	oly the te	ools of c	lynamic	al syste	ms theo	ry in cor	itext to	models.		
(03	Lea met	rn skills hods.	by solv	ing prol	olems of	n solvin	g nonline	ear prob	lems us	ing num	erical
(04	Unc	lerstand	Hamilto	on appro	bach for	describ	ing vario	ous phys	sical sys	tem.	
(05	Qua	ntify cla	assical c	haos an	d Quant	um chao	os.				
		M	apping	of cour	se outco	omes w	ith the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C O 1	2	1	-	1	-	1	2	1	2	2	2	2
C O2	2	2	1	2	1	1	1	1	1	2	1	1
C O 3	3	2	-	2	1	1	2	1	1	2	1	1
C O 4	2	2	-	2	1	1	2	1	1	2	1	1
C O 5	2	2	-	2	1	1	2	1	1	2	1	1

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 50 of 73

- Phenomenology of Chaos: Linear and nonlinear systems, A nonlinear electrical system, Biological population growth model, Lorenz model; determinism, unpredictability and divergence of trajectories, Feigenbaum numbers and size scaling, self similarity, models and universality of chaos. (Lectures 8)
- Dynamics in State Space: State space, autonomous and nonautonomous systems, dissipative systems, one dimensional state space, Linearization near fixed points, two dimensional state space, dissipation and divergence theorem. Limit cycles and their stability, Bifurcation theory, Heuristics, Routes to chaos. Three-dimensional dynamical systems, fixed points and limit cycles in three dimensions, Lyapunov exponents and chaos. Three dimensional iterated maps, U-sequence. (Lectures 10)
- 3. **Hamiltonian System:** Non-integrable systems, KAM theorem and period doubling, standard map. Applications of Hamiltonian Dynamics, chaos and stochasticity.

(Lectures 8)

4. Quantifying Chaos: Time series, Lyapunov exponents. Invariant measure, Kolmogorov - Sinai entropy. Fractal dimension, Statistical mechanics and thermodynamic formalism.

(Lectures 7)

5. Quantum Chaos: Quantum Mechanical analogies of chaotic behaviour, Distribution of energy eigenvalue spacing, chaos and semi-classical approach to quantum mechanics.

(Lectures 7)

Text Books:

1. Chaos and Non Linear Dynamics: R.C. Hilborn (Oxford Univ. Press), 2001.

Reference Books:

- 1. Chaos in Dynamical Systems: E. Ott (Cambridge Univ. Press), 2001.
- 2. Applied Nonlinear Dynamics: A.H. Nayfeh and B. Balachandran (Wiley), 1995.
- 3. Chaos in Classical and Quantum Mechanics: M.C. Gutzwiller (Springer-Verlag), 1990.

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 51 of 73

Elective Subject -II

MSP	H-537-2	21	1	Plasma	Physics		L	2-3, T-1	, P-0	4	4 Credi	ts
Pre-r	equisite	e: Cours	se on Ele	ectrodyr	amics	-						
Cour M.Sc.	se Obje . studen	ectives:	The air e basics	m and of the cl	bjectiv hallengi	e of the	course arch field	on Pla d Plasm	sma P a physic	hysics is cs.	s to exp	oose th
Cours	se Outc	omes: /	At the er	nd of the	course.	, the stu	dent wil	l be able	e to			
(CO1	Unc of p	derstand lasma.	the orig	gin of p	lasma, o	conditio	ns of pl	asma fo	ormation	and pr	opertie
(02	Dist stati	tinguish istical aj	betwee oproach	to descr	single p ribe diff	article a erent pla	approac asma ph	h, fluid enomer	approa 1a.	ch and	kineti
(03	Clas	ssify pro non-ma	opagatio gnetized	n of el l plasma	ectrostat as	tic and	electron	nagnetio	c waves	in mag	netized
(CO4	Des mot	cribe the	e basic t both m	ranspor agnetize	t pheno ed and n	mena su on-magi	ch as pl netized	lasma ro plasmas	esistivity s.	, diffus	ion and
C	205	For ther equi	nulate modyna llibrium.	the con mic equ	nditions ilibrium	for d n, or nor	escribin n-equilib	g a pl prium, a	lasma nd anal	to be i yze the s	in a si stability	tate of of this
		M	apping	of cours	se outco	omes wi	th the p	rogram	outco	mes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C O 1	1	1	1	-	1	1	1	1	2	2	1	2
C O2	1	1	1	-	1	1	1	1	2	2	1	2
C O 3	1	1	1	-	1	1	1	1	2	2	1	2
C O 4	1	1	1	-	1	1	1	1	2	2	1	2
205	1	2	2	2	2	-						

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 52 of 73

- 1. **Introduction:** Plasma State, elementary concepts and definitions of temperature and other parameters, occurrence and importance of plasma for various applications, Production of Plasma in the laboratory, Physics of glow discharge, electron emission, ionization, breakdown of gases, Paschen's laws and different regimes of E/p in a discharge, Townsend discharge and the evolution of discharge. *(Lectures 8)*
- 2. Plasma diagnostics: Probes, energy analyzers, magnetic probes and optical diagnostics, preliminary concepts. (Lectures 5)
- 3. Single particle orbit theory: Drifts of charged particles under the effect of different combinations of electric and magnetic fields, Crossed electric and magnetic fields, Homogenous electric and magnetic fields, spatially varying electric and magnetic fields, time varying electric and magnetic fields, particle motion in large amplitude waves.

(Lectures 8)

- 4. Fluid description of plasmas: distribution functions and Liouville's equation, macroscopic parameters of plasma, two and one fluid equations for plasma, MHD approximations commonly used in one fluid equations and simplified one fluid and MHD equations. dielectric constant of field free plasma, plasma oscillations, space charge waves of warm plasma, dielectric constant of a cold magnetized plasma, ion- acoustic waves, Alfven waves, Magnetosonic waves. *(Lectures 10)*
- 5. Stability of fluid plasma: The equilibrium of plasma, plasma instabilities, stability analysis, two stream instability, instability of Alfven waves, plasma supported against gravity by magnetic field, energy principle. microscopic equations for my body system: Statistical equations for many body systems, Vlasov equation and its properties, drift kinetic equation and its properties. (Lectures 7)

Text Books:

1. Introduction to Plasma Physics, F.F. Chen

Reference Books:

- 1. Principles of Plasma Physics, Krall and Trievelpice
- 2. Introduction to Plasma Theory, D.R. Nicholson
- 3. The Plasma State, J.L. Shohet
- 4. Introduction to Plasma Physics, M. Uman
- 5. Principles of Plasma Diagnostic, I.H. Hutchinson

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 53 of 73

Elective Subject-II

MSP	PH-538-2	21 Str of	uctures Biomole	P-0	4 Credits									
Pre-1	requisite	e: Unde	rstandin	g of gra	iduate le	evel che	mistry a	nd physi	cs		_			
Cour of Bi resear	rse Obje iomolec rch field	ectives: ules is of dyna	The air to fami amics of	n and ol liarize t f Structu	bjective the M.S tres, Spo	of the of sc. stude ectra and	course o ents wit d proper	n Struc t h the ba ties of B	t ures, S isics of iomole	bectra the rec cules.	and pro ently en	pertie nergin		
Cour	se Outc	omes:	At the er	nd of the	e course	, the stu	dent wi	ll be able	to	_	_			
(CO1	Des	scribe va	arious st	ructural	and che	emical b	onding a	spects	of Biom	olecules			
(C O2	Uno Bio	Understand structure and theoretical techniques and their application Biomolecules.											
(C O 3	Uno Bio	lerstand molecul	use of es.	various	spectro	scopic 1	technique	es and	their app	olication	n to the		
(C O 4	Unc	lerstand	the stru	cture-Fi	unction	relations	ship and	modeli	ng of bio	molecu	les.		
(05	Out	line and	correla	te for pr	oviding	solution	n to inter	discipli	nary pro	blem.			
		М	apping	of cour	se outc	omes w	ith the j	orogram	outcor	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
C O 1	2	2	1	2	2	1	2	1	2	2	1	2		
C O 2	2	2	1	2	2	2	2	-	2	2	1	2		
CO3	2	2	1	2	1	2	2	-	2	2	1	2		
CO4	2	2	1	2	2	2	2	-	2	2	1	2		
	05 2 2 1 2 2													

- Structure Aspects of Biomolecule: Conformational Principles, Conformation and Configuration Isomers and Derivatives, Structure of Polynucleotides, Structure of Polypeptides, Primary, Secondary, Tertiary and Quaternary Structure of Proteins, Structure of Polysaccharides. (Lectures10)
- Theoretical Techniques and Their Application to Biomolecules: Hard Sphere Approximation, Ramachandran Plot, Potential Energy Surface, Outline of Molecular Mechanics Method, Brief ideas about Semi-empirical and Ab initio Quantum Theoretical Methods, Molecular Charge Distribution, Molecular Electrostatic Potential and Field and their uses. (Lectures 10)
- Spectroscopic Techniques and their Application to Biomolecules: Use of NMR in Elucidation of Molecular Structure, Absorption and Fluorescence Spectroscopy, Circular Dichroism, Laser Raman Spectroscopy, IR spectroscopy, Photoacoustic Spectroscopy, Photo-biological Aspects of Nucleic Acids. (Lectures 10)
- 4. Structure-Function Relationship and Modeling: Molecular Recognition, Hydrogen Bonding, Lipophilic Pockets on Receptors, Drugs and Their Principles of Action, Lock and Key Model and Induced fit Model. (Lectures 10)

Text Books:

1. Srinivasan & Pattabhi: Structure Aspects of Biomolecules.

Reference Books:

- 1. Govil & Hosur: Conformations of Biological Molecules
- 2. Price: Basic Molecular Biology
- 3. Pullman: Quantum Mechanics of Molecular Conformations
- 4. Lehninger: Biochemistry
- 5. Mehler & Cordes: Biological Chemistry
- 6. Smith and Hanawait: molecular Photobiology, Inactivation and Recovery

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 55 of 73

Elective Subject - II

MSPI	H-539-2	1 Scie Ene	ence of l ergy	Renewa	ble sou	rce of	L	-3, T-1,	P-0	4 Credi	ts		
Pre-r	equisite	: Under	standin	g of grad	duate lev	vel semi	conduct	or physi	CS				
Cours Source energy	se Obje es is to y, hydro	ectives: expose gen ene	The ai the M.S rgy, etc	m and Sc. stuc	objectiv lents to	e of th the bas	e cours ics of th	e on So le alterna	cience ative en	of renever ergy sou	wable 1 urces lik	E nergy te solar	
Cours	se Outco	omes: A	t the en	d of the	course,	the stud	lent will	l be able	to				
(CO1	Und alter	lerstand mative f	the ene	ergy den energy.	nand of	world	& distin	guish b	etween	tradition	nal and	
(CO2	Describe the concept of solar energy radiation and thermal applications.											
(CO3	Ana	lyze ma	king of	solar ce	ll and it	s types.						
(CO4	Iden	tify hyd	lrogen a	s energy	/ source	, its stor	age and	transpo	rtation n	nethods		
(05	Con	npare w	ind ener	gy, wav	e energy	y and oc	ean ther	mal ene	rgy con	version.		
		M	apping	of cour	se outco	omes wi	th the p	orogram	outcoi	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	-	1	-	1	2	1	2	3	2	2	
CO2	2	2	1	2	1	1	1	1	1	3	1	1	
CO3	3	2	-	2	1	1	2	1	1	3	1	1	
CO4	2	2	-	2	1	1	2	1	1	3	1	1	
CO5	2	2	-	2	1	1	2	1	1	3	1	1	

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 56 of 73

- 1. Introduction: Production and reserves of energy sources in the world and in India, need for alternatives, renewable energy sources. (Lectures 8)
- Solar Energy: Thermal applications, solar radiation outside the earth's atmosphere and at the earth's surface, Principal of working of solar cell, Performance characteristics of solar cell. Types of solar cell, crystalline silicon solar cell, Thin film solar cell, multijunction solar cell, Elementary ideas of perovskite solar cell, dye synthesized solar cell and Tandem solar cell, PV solar cell, module array, and panel, Applications. (Lectures 11)
- 3. Hydrogen Energy: Environmental considerations, solar hydrogen through photo electrolysis and photocatalytic process, physics of material characteristics for production of solar hydrogen. Storage processes, solid state hydrogen storage materials, structural and electronic properties of storage materials, new storage modes, safety factors, use of hydrogen as fuel; use in vehicles and electric generation, fuel cells.

(Lectures 10)

4. Other sources: Nature of wind, classification and descriptions of wind machines, power coefficient, energy in the wind, wave energy, ocean thermal energy conversion (OTEC), system designs for OTEC, basic idea about biogas, biofuel, and biodiesel.

(Lectures 8)

Text Books:

1. Solar Energy: S.P. Sukhatme (Tata McGraw-Hill, New Delhi), 2008.

Reference Books:

- 1. Solar Cell Devices: Fonash (Academic Press, New York), 2010.
- 2. Fundamentals of Solar Cells, Photovoltaic Solar Energy: Fahrenbruch and Bube (Springer, Berlin), 1982.
- 3. Photoelectrochemical Solar Cells: Chandra (New Age, New Delhi).

MSPH	SPH-540-21 Condensed Matter Physics La							3, T-1, I	P-0	4	Credits			
Pre-ree	quisite:	Unders	tanding	of grad	uate lev	el solid	state phy	ysics ex	perime	nts				
Course to trair physics sophist	e Object the st s so th icated e	etives: T udents at they equipme	The aim of M.So can ir nt and a	and obj c. class nvestiga nalyze t	ective o to adva te vario he data.	of the co anced e ous rele	ourses or xperime evant as	n Conde ntal tec spects a	ensed N hniques and are	Aatter F in con confide	Physics densed ent to	Lab is matter handle		
Course	e Outco	omes: A	t the end	d of the	course,	the stud	ent will	be able	to					
С	01	Mea	sure con	ductivit	y, resist	ivity an	d thermo	o-dynam	nical pro	operties	of solid	s.		
CO2 Measure magnetic properties and magnetic behavior of magnetic materials.														
C	03	Desc relat	cribe the ions.	lattice	dynami	cs of si	mple lat	ttice stru	uctures	in terms	s of dis	persion		
C	04	Desi anal	Design and carry out scientific experiments as well as accurately record and analyze the results of experiments.											
С	05	Solv	e proble	m with	critical	thinking	, and ana	alytical	reasoni	ng.				
		M	apping	of cours	se outco	omes wi	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	1	1	1	-	-	2	2	2	2	2		
CO2	2	1	1	1	1	-	-	2	2	2	2	2		
CO2	1	1	0.1	1	1	10.4	-	2	2	2	2	2		
CUS					2	2	2	2	2	2	2			
CO3	2	2	2	2	2	2	-	-	-	-	4	2		

Note: Students are expected to perform atleast ten experiments out of following list.

- To study temperature dependence of conductivity of a given semiconductor crystal using four probe method.
- 2. Verification of curie-weiss law for the electrical susceptibility of a ferroelectric material.
- 3. To determine charge carrier density and Hall coefficient by Hall effect.
- 4. To determine magnetic susceptibility of material using Quink's tube method.
- 5. To determine energy gap and resistivity of the semiconductor using four probe method.
- 6. To study the B-H loop characteristics.
- 7. To determine dielectric constant of a material with Microwave set up.
- 8. To measure the Curie temperature of a given PZT sample.
- 9. To measure the velocity of ultrasonic wave in liquids.
- 10. To study dispersion relation for Mono-atomic and Diatomic lattices using Lattice dynamic kit.
- 11. To study the properties of crystals using X-Ray Apparatus.

Text Books:

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, New York), 8th ed. 2005.
- 2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.

Reference Books:

- 1. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1971
- 2. Solid State Theory: Walter A. Harrison (Tata McGraw-Hill, New Delhi) 1970.
- 3. Liquid Crystals: S. Chandrasekhar (Cambridge University), 2nd ed. 1991.

Elective Subject -III

MSPH	H-541-2	1 Phy	sics of l	Nanoma	aterials		L	-3, T-1,	P-0	4	Credits	5
Pre-re	equisite	: Conde	ensed m	atter phy	sics							
Cours familia study as care	se Obje arize the of diffe eer.	ctives: e studen rent pro	The air its of M perties	n and c .Sc. to t of nanon	bjective he vario material	e of the ous aspe s so tha	course cts relat t they c	on Phy ed to pro an pursu	eparation reparation re this e	Nano-r on, chara emerging	nateria cterizati g researc	ls is to ion and ch field
Cours	col	omes: A	t the en	d of the	course,	the stud	dent will	be able	to	d atmost		
C	.01	insu	lators, a	ind semi	conduct	tors.	ctron th	eory to	the bar	ia struct	ure of	metals.
(CO2	Acq	uire kno	owledge	of basic	c approa	ches to	synthesi	ze the i	norganic	nanopa	rticles
C	03	Des anal	cribe the ytical and	e use of nd biolo	unique gical ap	optical plicatio	properti ns	es of na	noscale	metallio	e structu	ires foi
C	CO4	Und nano	erstand ostructu	the ph red mes	iysical oporous	and ch materia	emical Ils.	propertie	es of c	carbon i	nanotub	es and
0	CO5	Dete	ermine cepts, no	the strue ot applic	cture-pr able at l	operty l larger le	relations	ships in iles.	nanom	aterials	as well	as the
		M	apping	of cour	se outco	omes wi	ith the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	1	2	2	2	-	1	2	1	1	2	2	3
CO2	1	2	2	2	-	2	2	1	1	2	2	3
CO3	1	2	2	2	-	2	2	1	1	2	2	3
CO4	1	2	2	2	-	2	2	1	1	2	2	3
C05	1	2	2	2	-	2	2	1	1	2	2	3

- Introductory Aspects: Free electron theory and its features, Idea of band structure metals, insulators and semiconductors. Density of state in one, two, and three dimensional bands and its variation with energy, Effect of crystal size on density of states and band gap. Examples of nanomaterials. (Lectures 8)
- 2. Synthesis of Nanomaterials: Bottom up: Cluster beam evaporation, ion beam deposition, chemical bath deposition with capping techniques and Top down: Ball Milling.

(Lectures 8)

- 3. General Characterization Techniques: Determination of particle size, study of texture and microstructure, Increase in x-ray diffraction peaks of nanoparticles, shift in photo luminescence peaks, variation in Raman spectra of nanomaterials, photoemission microscopy, scanning force microscopy. (Lectures 8)
- Quantum Dots: Electron confinement in infinitely deep square well, confinement in one and two-dimensional wells, idea of quantum well structure, Examples of quantum dots, spectroscopy of quantum dots. (Lectures 8)
- Carbon based Nanomaterials: Synthesis, structural, and electronics properties of fullerenes, carbon nanotubes, and graphene, Functionalisation of carbon Nanomaterials, Applications of carbon based Nanomaterials.

Text Books:

- 1. Nanotechnology-Molecularly Designed Materials: G.M. Chow & K.E. Gonsalves (American Chemical Society), 1996.
- 2. Nanotechnology Molecular Speculations on Global Abundance: B.C. Crandall (MIT Press), 1996.

Reference Books:

- 1. Quantum Dot Heterostructures: D. Bimerg, M. Grundmann and N.N. Ledentsov (Wiley), 1998.
- Introduction to Nanotechnology, Charles P. Poole Jr., Frank J. Owens, Wiley Student edition, John Wiley & Sons Inc. Publishes (2003).
- 3. Nanotechnology: A gentle introduction to the next Big Idea, Mark Ratner & Daniel Ratner, LPE, Pearson Education (2002).
- 4. Nanostructures and Nanomaterials: Synthesis: Properties and Applications, G. Cao, Imperial College Press 2nd edition (2011).
- 5. NANO: The Essentials "Understanding Nanoscience and Nanotechnology": T. Pradeep, Tata McGraw-Hill Publishing Company Limited, New Delhi (2007).
- 6. Advanced Micro- & Nanosystems, CMOS-MEMS: O. Brand and G K. Fedder, Wiley-VCH (2008)
- 7. Nanophotonics: Paras N. Prasad, Wiley- Interscience (2004).
- 8. Biomedical Nanotechnology: NH Malsch, Taylor & Francis Group (2005).

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 61 of 73

Elective Subject -III

MSPI	H-542-2	21	Experimental Techniques in Nuclear and Particle PhysicsL-3, T-1, P-04 Credit								Credit	s	
Pre-re	equisite	e: Cours	e on Nu	clear an	d Partic	le Physi	ics						
Cours Nucle of diff	se Obje ar and ferent ec	ectives: Particl quipmer	The a e Physi at and m	im and cs is to ethods	objecti expose used in t	ve of t the stud he field	he cour ents of s of nuc	se on H M.Sc. st lear phys	Experin udents t sics and	nental ' to experi l particle	Fechniq imental physics	jues ir aspects s.	
Cours	se Outc	omes: A	At the er	nd of the	course,	the stud	dent wil	l be able	to				
(C O 1	Unc radi	lerstand ations w	various with mat	experin ter.	nental te	echnique	es for de	scribing	; interact	tion of		
(CO2	Use	Use error analysis for experimental data.										
(03	Knowledge about the different types of the radiation detectors.											
(CO4	Apply the knowledge of detectors for various applications									-		
(05	Equ vari	ipped w ous labo	ith the boratories	basic kn across	owledge the worl	e about t ld.	he exper	imenta	l method	ls used i	n the	
		М	apping	of cour	se outc	omes wi	ith the j	orogram	outcor	nes			
_	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	-	2	-	1	-	-	1	-	1	1	1	
CO2	-	-	-	3	-	-	-	3	1	1	1	1	
CO3	-	-	1	2	3	-	1	3	2	2	2	2	
CO4	-	-	1	3	3	1	1	2	2	2	2	2	
CO5	-	-	1	3	1	1	1	2	2	2	2	2	
CO4 CO5	-	-	1	3	3	1	1	2	2 2 2	2 2 2		2	

- 1. **Detection of radiations:** Interaction of gamma-rays, electrons, heavy charged particles, neutrons, neutrinos and other particles with matter (Qualitative description only). General properties of Radiation detectors, energy resolution, detection efficiency and dead time, Error propagation in experimental data. (Lectures 8)
- Detectors: Introduction to Gas-filled detectors, Proportional counters, space charge effects, energy resolution, time characteristics of signal pulse, position-sensitive proportional counters, Multiwire proportional chambers, Drift chamber. Organic and inorganic scintillators and their characteristics, light collection and coupling to photomultiplier tubes, Semiconductor detectors, Ge and Si(Li) detectors, Charge production and collection processes, Pulse height spectrum. (Lectures 16)
- 3. Applications of Detectors: Description of electron and gamma ray spectrum from detector, semiconductor detectors in X- and gamma-ray spectroscopy, Semiconductor detectors for charged particle spectroscopy and particle identification. *(Lectures 8)*
- 4. Experimental methods: Large gamma and charge particle detector arrays, heavy-ion reaction analysers, production of radioactive ion beams. Detector systems for high energy experiments: Collider physics (brief account), Particle Accelerators (brief account), Modern Hybrid experiments- CMS. (Lectures 8)

Text Books:

1. Techniques in Nuclear and particle Experiments by W.R. Leo (Springer), 1994.

Reference Books:

- 1. Radiation detection and measurement by Glenn F. Knoll (Wiley), 2010.
- 2. Introduction to Experimental Particle Physics by Richard Fernow (Cambridge University Press), 2001.
- 3. Detectors for particle radiation by Konrad Kleinknecht (Cambridge University Press), 1999.

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 63 of 73

Elective Subject -III

MSPH	1-543-2	1 Sup Tem	ercondi iperatu	uctivity re Phys	and Lov ics	w	L	-3, T-1,	P-0	4	Credit	5
Pre-re	equisite	course	in Con	densed N	Matter Pl	hysics						
Cours Physic superc trends import achiev backgr	e Obje es is t conducti- in the o tant too rable ten round of	ctives: o build vity. Stu experim l to exp nperatur `low ter	The obd d fundation udents we ental te blore ric re now in mperatu	jective amental will not chnique ch physi is close re techn	of the c as we only lea s as wel ics of su to few µ iques as	course ell as rn theo ll. Low upercon K. Stud well as	on Supe advanc retical a tempera ductivit dents wi the high	erconduc ed und aspects b ature is y. With Il also b h-Tc sup	ctivity erstand out also one of latest be introd bercond	and Low ing in acquair the most technolo duced to uctors.	v Temp the finted wit st versat ogy the the the	erature eld of h latest ile and lowest oretical
Cours		The state of the s			course, I			be able	10			
C	201	Theo	oretical	understa	anding of	t the co	ncept of	superco	onductiv	vity.		
C	202	Corr supe	elate ol rconduc	bserved ctivity.	experim	nental p	propertie	es of su	percon	ductors	with or	igin of
C	CO3	Desc supe	cribe a rconduc	appropri ctors.	ate the	eoretica	il moc	lel for	desc	cribing	behavi	or of
C	CO4	Prov unde	ide exp erstandii	osure to	High To v temper	e class o rature te	of supero	conducto	ors and	theoretic	cal	
C	205	Prov supe	ide exp rconduc	osure ab ctivity.	out the e	experim	iental te	chnique	s for me	easurem	ent of	
		M	apping	of cours	se outco	mes wi	th the p	rogram	outco	mes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	2	2	2	2	1	2	2	1	2
CO3	1	2	2	2	2	2	2	1	2	2	-	2
CO3	1	2	2	2	2	2	2	-	2	2	3	2
CO4	1	2	2	2	2	2	2	-	2	2	2	2
												1.770

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 64 of 73

- 1. Superconductivity: Introduction, Thermodynamics, The London Equations, penetration depth, Superconductors in magnetic field, Ginzberg-Landau Theory, Type I and II superconductors, BCS theory, second quantization, Cooper Pairing, energy gap Tunnelling, Josephson effects and SIS tunneling. (Lectures 10)
- Preparation and measurement techniques: Single crystal growth: Optical image furnace, seeded melt growth, Thin film deposition: Pulsed laser deposition, sputtering, Resistivity measurements, magnetic measurements, Point contact spectroscopy, scanning tunneling microscopy and spectroscopy. (Lectures 10)
- 3. Cryogenics: Thermal and electrical properties of different materials at low temperatures, Cooling methods above 1K, Joule-ThomPOn, Gifford-McMohan, Evaporation cooling, Liquefication of Helium, Cooling methods below 1K, dilution refrigeration, adiabatic demagnetisation. (Lectures 10)
- 4. Introduction to high-Tc superconductors: Discovery of high-Tc superconductors, Mechanisms of superconductivity in high-Tc superconductors, Introduction to high-Tc superconducting compound like YBCO, Synthesis, Structure and properties, Electronics and applications. (Lectures 10)

Text Books:

1. Introduction to superconductivity: Michael Tinkham, Courier Corporation, 2004.

Reference Books:

- 1. Introduction to superconductivity: A.C. Rose-Innes and E.H. Rhoderick, Pergamon Press, 2004.
- 2. Experimental techniques in low temperature physics: G.K. White and P.J. Meeson, Oxford Univ. Press, 2001.
- 3. Experimental low temperature physics: A. Kent, MacMillan Press, 1992.
- 4. The theory of superconductivity in high-TC Cuprates: P.W. Anderson, Princeton Series Publications.

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 65 of 73

Elective Subject -IV

equisite se Obje arize the conducti	ctives:	se on Co									
se Obje arize the	ctives.		ndensed	d Matter	Physic	s				_	
the rele	e M.Sc vity, n vant te	The ob c. studer nagnetic chnique	jective its with resonar s in thei	of the c relative nce tech ir later c	course o ely adva iniques a career.	n Adva nced top and disc	nced Co pics like ordered s	ondense optical solids so	d Matte propert that the	er Phys ies, mag ey are c	ics is t gnetism onfiden
se Outco	omes:	At the e	nd of the	e course	e, the stu	dent wi	ll be abl	e to			
CO1	Con	mpreher croscopi	nd and c theori	descri es.	ibe the	Optic	al proj	perties	of sol	ids em	ploying
202	Exp	olain var relation	ious typ with th	bes of m e applic	agnetic ations.	phenom	enon in	solids,	underlyi	ng phys	ics, and
203	Und	derstand	and rea	lize the	use of N	MR me	ethods f	or descr	ibing so	lids.	_
CO4	Inte	rpret the	e phenor	mena, b	ehavior	and app	lication	s of sup	ercondu	ctors.	
05	Fig soli	ure out a ds	and perc	eive the	e effect o	of defor	mation	and diso	rder on	the beha	avior of
	M	apping	of cour	se outc	omes w	ith the j	orogran	1 outco	mes		
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
2	1	2	2	2	2	1	1	2	2	2	3
2	2	2	2	1	2	1	2	2	1	2	3
3	2	2	2	2	1	2	2	2	2	1	2
2	2	2	2	2	2	2	1	2	2	2	2
3	2	2	2	1	2	2	2	2	1	2	3
	e Outco O1 O2 O3 O4 O5 PO1 2 2 3 2 3	e Outcomes: A O1 Con made O2 Exp corri O3 Und O4 Inte O5 Figu solid M PO1 PO2 2 1 2 2 3 2 2 2 3 2	e Outcomes: At the end O1 Comprehen- macroscopi O2 Explain var- correlation O3 Understand O4 Interpret the O5 Figure out a solids Mapping PO1 PO2 PO3 2 1 2 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2	e Outcomes: At the end of theO1Comprehend and macroscopic theoriO2Explain various type correlation with thO3Understand and readO4Interpret the phenoriO5Figure out and percessPO1PO2PO3PO1PO2PO3PO1PO22222322	e Outcomes: At the end of the courseO1Comprehend and descr macroscopic theories.O2Explain various types of m correlation with the applicO3Understand and realize theO4Interpret the phenomena, bO5Figure out and perceive the solidsPO1PO2PO3PO4PO1PO2PO3PO4O322221222222322232223222322232223222	e Outcomes: At the end of the course, the sture'O1Comprehend and describe the macroscopic theories.'O2Explain various types of magnetic correlation with the applications.O3Understand and realize the use of NO4Interpret the phenomena, behaviorO5Figure out and perceive the effect of solidsPO1PO2PO3PO4PO5PO1PO2PO3PO4PO5PO6212221322212322212322212	e Outcomes: At the end of the course, the student wi'O1Comprehend and describe the Optic macroscopic theories.'O2Explain various types of magnetic phenom correlation with the applications.O3Understand and realize the use of NMR me O4O4Interpret the phenomena, behavior and app O5O5Figure out and perceive the effect of deform solidsPO1PO2PO3PO4PO5PO6PO72122212322212232221223222122	e Outcomes: At the end of the course, the student will be ableO1Comprehend and describe the Optical propositionO2Explain various types of magnetic phenomenon in correlation with the applications.O3Understand and realize the use of NMR methods for the phenomena, behavior and applicationsO4Interpret the phenomena, behavior and applicationsO5Figure out and perceive the effect of deformation a solidsMapping of course outcomes with the programP01P02P03P04P05P06P07P082122122322212232221223222122	e Outcomes: At the end of the course, the student will be able toO1Comprehend and describe the Optical properties macroscopic theories.O2Explain various types of magnetic phenomenon in solids, a correlation with the applications.O3Understand and realize the use of NMR methods for describe Interpret the phenomena, behavior and applications of supe O5O4Interpret the phenomena, behavior and applications of supe solidsD3Wapping of course outcomes with the program outcomes solidsP01P02P03P04P05P06P07P08P092122211232221222322212223222122232221222	e Outcomes: At the end of the course, the student will be able toO1Comprehend and describe the Optical properties of sol macroscopic theories.O2Explain various types of magnetic phenomenon in solids, underlyi correlation with the applications.O3Understand and realize the use of NMR methods for describing so O4O4Interpret the phenomena, behavior and applications of superconduct ooldsO5Figure out and perceive the effect of deformation and disorder on solidsMapping of course outcomes with the program outcomesPO1PO2PO3PO4PO5PO6PO7PO8PO9PO1021221122322212213222122232221221	e Outcomes: At the end of the course, the student will be able toO1Comprehend and describe the Optical properties of solids em macroscopic theories.O2Explain various types of magnetic phenomenon in solids, underlying phys correlation with the applications.O3Understand and realize the use of NMR methods for describing solids.O4Interpret the phenomena, behavior and applications of superconductors.O5Figure out and perceive the effect of deformation and disorder on the beha solidsMapping of course outcomes with the program outcomesPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO112122211222322212221222212222322212222322212222322212221232221222122322212221223222122212232221222122322212<
Detailed Syllabus:

- Optical Properties: Macroscopic theory; Reflectance and Transmittance of a slab; generalized susceptibility, Kramers- Kronig relations, Brillouin scattering, Raman effect in crystals; interband transitions. (Lectures 8)
- Magnetism: Dia and para-magnetism in materials; Langevin theory of diamagnetism, quantum theory of diamagnetism and paramagnetism, Exchange interaction. Heisenberg Hamiltonian; Hubbard model; mean field theory; Ferro-, ferri- and antiferromagnetism; Magnons: spin waves, thermal excitation of magnons; Bloch T2/1 law. (Lectures 8)
- Nuclear Magnetic Resonance in Solids: Origin of NMR in solids- equations of motion, line width, motional narrowing, Knight shift. (Lectures 8)
- 4. Superconductivity: Experimental Survey; Basic phenomenology; Vortex state of a Type II superconductors; BCS pairing mechanism and nature of BCS ground state; Flux quantization; Tunneling Experiments; High Tc superconductors; Ginzburg-Landau theory; Greens functions at zero temperature; Applications of Greens functions to superconductivity. (Lectures 8)
- Disordered Solids: Basic concepts in point defects and dislocations; Noncrystalline solids: diffraction pattern, Glasses, Amorphous semiconductors and Ferromagnets, Heat capacity and Thermal conductivity of amorphous solids; Quasicrystals. (Lectures 8)

Text Books:

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, New York) 2005.
- 2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.

Reference Books:

- 1. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1971.
- 2. Solid State Physics: H. Ibach and H. Luth (Springer, Berlin), 3rd. ed. 2001.
- 3. A Quantum Approach to Solids: P.L. Taylor (Prentice-Hall, Englewood Cliffs), 1970.
- 4. Intermediate Quantum Theory of Solids: A.O.E. Animalu (East-West Press, New Delhi), 1991.
- 5. Solid State Physics : Ashcroft and Mermin (Reinhert& Winston, Berlin), 1976.

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 67 of 73

I. K. Gujral Punjab Technical University, Kapurthala

Elective Subject -IV

MSP	H-545-	21	Advar	ced Pa	rticle P	hysics	I	3, T-1,	P-0	4	Credit	s
Pre-r	equisit	e: cours	e on par	ticle ph	ysics					_		
Cour studen field schem high e	se Object nts of N theory, nes so the energy p	ectives: 1.Sc. cla standard nat they ohysics.	The ob ass to th d model underst	jective of e relative of part and these	of the covery advised ticle physics aspectively advised by the second se	ourse or anced to vsics, Q ts prope	opics rel CD and crly and	ated Pa ated to s quark a are well	rticle P symmet model, equipp	hysics i ry break and vari ed to pu	s to exp ing in q ous uni rsue a c	oose th uantur ficatio areer i
Cour	se Outc	omes: /	At the er	nd of the	e course.	, the stu	dent wil	l be able	e to			-
(C O 1	Und acti	derstand on, sym	various metry b	s global reaking,	and loc and Hi	al gaug ggs mec	e symm hanism.	etries o	f system	i, invari	ance o
(02	Nee of C	ed for sta QCD.	andard 1	model o	f particl	e physic	es and its	s limitat	tions and	the pro	pertie
(03	Def	ine the pormalisation	problem tion me	of dive thods.	rgencies	in quar	ntum fiel	d theor	ies and t	he	
(04	Asy non	mptotic -abelian	freedor gauge t	n and in theory o	frared s f strong	lavery o interact	f the run ions -QC	ining co CD.	oupling c	onstant	in
(05	Giv	en expo	sure abc	out the p	hysics t	eyond t	he Stanc	lard Mo	del.		
		M	apping	of cour	se outco	omes wi	ith the j	orogram	outcor	nes		
-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	2	2	-	2	2	2	2
CO2	2	1	1	2	2	2	2	-	2	2	2	2
CO3	1	2	1	2	2	2	2	-	2	2	1	2
CO4	1	1	2	1	2	2	2	-	1	2	1	2
005	1	2	2	1	2	2	2	-	2			

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 68 of 73

Detailed Syllabus:

- 1. Symmetries and Symmetry Breaking in QFT: Continuous groups: Lorentz group SO(1,2) and its representations, Unitary groups and Orthogonal groups and their representations, Discrete symmetries: Parity, Charge Conjugation and Time reversal Invariance, CP, CPT. (Lectures 10)
- Global and Local invariances of the Action: Approximate symmetries, Noethers theorem, Spontaneous breaking of symmetry and Goldstone theorem, Higgs mechanism, Abelian and Non-Abelian gauge fields, Lagrangian and gauge invariant coupling to matter fields. (Lectures 10)
- 3. Standard Model of Particle Physics: SU(2) x SU(1) x U(1) gauge theory, Coupling to Higgs and Matter fields of 2 generations, Gauge boson and fermion mass generation via spontaneous symmetry breaking, CKM matrix, Low energy Electroweak effective theory, Elementary electroweak scattering processes. (Lectures 10)
- 4. QCD and quark model: Asymptotic freedom and Infrared slavery, confinement hypothesis, Approximate flavor symmetries of the QCD lagrangian, Classification of hadrons by flavor symmetry: SU(1) and SU(2) multiplets of Mesons and Baryons, Chiral symmetry and chiral symmetry breaking, Sigma model, Parton model and Deep inelastic scattering structure functions. (Lectures 10)

Text Books:

- 1. Gauge Theory of Elementary Particle Physics: T.P Cheng & L.F. Li (Oxford).
- 2. An Introductory Course of Particle Physics: Palash Pal (CRC Press).

Reference Books:

- 1. First Book of Quantum Field Theory: A. Lahiri & P. Pal, Narosa, New Delhi.
- 2. Introduction to Quantum Field Theory: M. Peskin & D.V. Schroeder. (Levant Books).
- 3. Dynamics of the Standard Model: J.F. Donoghue (Cambridge University Press).

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 69 of 73

I. K. Gujral Punjab Technical University, Kapurthala

Elective Subject -IV

MSF	РН-546-	21	Env	ironme	ntal Ph	ysics		L-3, T-1	, P-0		4 Credi	ts
Pre-	requisit	e: Knov	vledge o	fclassi	cal phys	ics						
Cour of M prope	rse Obj Sc phy erly and	ectives: ysics to are wel	The ain the rec l equipp	n of the ent advi- ed to pu	course i ancemen irsue a c	n Envir nts in tl career in	onmen nis field enviror	tal Phys so that ment pl	they unysics an	xpose the nderstan	e studer d these related	its to aspect fields.
Cour	se Outo	comes:	At the e	nd of the	e course	, the stu	dent wi	ll be abl	e to			
	CO1	Un	derstand	the diff	ferent ty	pes of p	ollution	that oc	cur in th	e Earth'	s enviro	nment
	CO2	App	oly the l	aws of r	adiatior	n to Sola	r and T	errestria	l Radiat	ion		
•	CO3	Des exp	scribe th lain the	e main i challen	reservoi ges invo	rs and e lved in	xchange	es in the g CO2 e	global c mission	carbon c	ycle and	1
(C O 4	App	lication	in the I	Renewal	ble sour	ces of e	nergy				
(C O 5	Des from	cribe ho	ow poll cal envir	ution an	nd climato to the g	ate are dobal E	modelle arth syst	d on di em.	fferent	scales,	ranging
		М	apping	of cour	se outc	omes w	ith the j	program	n outco	mes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C O 1	2	2	2	2	2	2	2	2	2	1	2	3
C O 2	2	1	2	2	2	2	2	2	2	2	2	2
C O 3	2	2	2	2	2	2	2	2	2	1	2	2
CO4	1	2	1	2	2	2	2	2	2	2	-	3

Detailed syllabus:

- 1. Essentials of Environmental Physics: Structure and thermodynamics of the atmosphere, Composition of air, Greenhouse effect, Transport of matter, energy and momentum in nature, Stratification and stability of atmosphere, Lass of motion, hydrostatic equilibrium, General circulation of the topics, Elements of weather and climate of India.
- Solar and Terrestrial Radiation: Physics of radiation, Interaction of light with matter, tayleigh and Mie scattering, Laws of radiation (Kirchoffs law, Planck's law, Beer's law, Wien's displacement law, etc.), Solar and terrestrial spectra, UV radiation, Ozone depletion problem, IR absorption energy balance of the earth atmosphere system.
- Environmental Pollution and degradation: Elementary fluid dynamics, Diffusion, Turbulence and turbulent diffusion, Factors governing air, Water and noise pollution, Air and water quality standards, Waste disposal, Heat island effect, Land and sea breeze, Puffs and plumes, Gaseous and particulate matters, Wet and dry deposition.
- 4. Environmental Changes and remote sensing: Energy sources and combustion processes, Renewable sources of energy, Solar energy, Wind energy, bioenergy, hydropower, fuel cells, nuclear energy, Forestry and bioenergy.
- Global and Regional Climate: Elements of weather and climate, Stability and vertical motion of air, Horizontal motion of air and water, Pressure gradient forces, Viscous forces, Reynolds number, Enhanced Greenhouse Effect, Energy balance-a Zero-dimensional Greenhouse model, Global climate models.

Suggested Readings/Books :

- 1. Egbert Boeker & Rienk Van Groundelle: Environmental Physics (John Wiley).
- 2. J. T Hougtion: The Physics of atmosphere (Cambridge University Press, 1977).
- 3. J Twidell and J Weir: Renewable energy Resources (Elbs, 1988).
- Sol Wieder: An introduction t solar energy for scientists and Engineers (John Wiley, 1982)
- 5. R. N. Keshavamurthy and M. Shanker Rao: The Physics of Monsoons (Allied Publishers, 1992).
- 6. G.J. Haltiner and R.T. Williams: Numerical Weather Prediction (John Wiley, 1980).

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 71 of 73

I. K. Gujral Punjab Technical University, Kapurthala

MSPH	H-547-2	1		Dissert	ation		L-	0, T-12	P-0	12	Credit	S
Pre-re	equisite	: Know	ledge of	specific	e branch	of phys	sics					-
Cours studen Physic develo Cours	se Obje its to pr cs. Stuc opment of se Outco	ctives: Trelimina lents ge of a labo	The aim ries and et the coratory e at the en	of the l metho opportur experim d of the	M.Sc. F dology nity to ent. course,	Research of resea particip the stuc	rch in ate in dent will	t work of Theoreti some of be able	or Disse cal Phy ngoing to	rtation is rsics and researc	s to exp I Experi n activi	ose the imental ty and
(CO1	Exp in th	lain the ne wider	signific commu	ance an inity.	d value	of prob	lem in J	physics,	both sc	ientifica	lly and
(CO2	Des resu	ign and lts of ex	carry perime	out scie nts.	entific e	xperime	ents as	well as	accurat	ely reco	ord the
(03	Crit appr	ically ar opriate	alyse an for ansv	nd evalu vering s	ate expe pecific o	erimenta question	al strateg s.	gies, and	l decide	which is	s most
(CO4	Reso to co elec	earch an ondense tronic fo	d comm d matter ormats to	nunicate physic o both s	scientif s/Nuclea cientists	ic know ar/High and the	ledge ir Energy public	the cor Physics at large.	ntext of a , in oral,	a topic r written	elated and
(05	Exp tech	lore ne nology.	w areas	s of res	search i	n physi	ics and	allied	fields c	of scien	ce and
		M	apping	of cour	se outco	omes wi	th the p	orogran	n outcoi	mes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	3	1	2	2	2	2	3	2	3
CO2	3	3	3	2	2	2	1	2	2	2	2	2
CO3	2	2	2	2	2	2		2	2	2	1	3
CO4	1	1	-	1		2	2	2	2	3	1	3
C05		2	2	1	-	1	-	2	2		2	2

Guidelines for the Dissertation:

The aim of project work in M.Sc. 4th semesters is to expose the students to preliminaries and methodology of research and as such it may consist of review of some research papers, development of a laboratory experiments, fabrication of a device, working out some problem, participation in some ongoing research activity, analysis of data, etc.. Project work can be based upon Experimental Physics, Theoretical Physics, or Simulation (quantum based softwares, HPCC, etc.) in the thrust as well as non-thrust research areas of the Department.

A student opting for this course will be attached to one teacher of the Department before the end of the 3rd semester. A report about the work done in the project (typed on both the sides of the paper and properly bound) will be submitted by a date to be announced by the Head of Department.

Assessment of the work done under the project will be carried out by a committee on the basis of effort put in the execution of the project, interest shown in learning the methodology, report prepared, grasp of the problem assigned and viva-voce/seminar, etc. as per course guidelines.

N

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 73 of 73

Bachelor of Technology (B. Tech. 1st Year)

Annexure IV

Study Scheme & Syllabus of Bachelor of Technology (1st and 2nd semester)

Batch 2021 onwards

By

fleeld

Department of Physical Sciences IK Gujral Punjab Technical University

5r. No.	Branch	Related Branches	Course codes	Course title	Credits
1	Civil Engineering	1. Civil Engineering	BTPH101-21	Mechanics of	4
		2.Construction Engineering & Management	BTPH111-21	solids Mechanics of solids Lab	1.5
2	Electrical Engineering	1.Electrical Engineering	BTPH102-18	Optics and Modern	4
	2	2.Automation & Robotics		Physics	
	4	3.Electrical & Electronics Engineering	BTPH112-21	Optics and Modern	1.5
		4.Electronics & Electrical Engineering		Thysics Lab	
		5.Electrical Engineering & Industrial Control			
		6.Instrumentation & Control Engineering			
3	Mechanical Engineering	1.Mechanical Engineering	BTPH103-18	Electromagnetism	4
	Lingineering	2.Marine Engineering			
		3.Production Engineering	BTPH113-21	Electromagnetism Lab	1.5
		4.Industrial Engineering		240	
		5.Tool Engineering			
		6.Automobile Engineering			
		7.Aerospace Engineering			
		8.Aeronautical Engineering			
4	Computer Science	1.Computer Engineering	BTPH104-21	Semiconductor Physics	4
	Engineering	2.Computer Science Engineering		Semiconductor	
		3.Information Technology	BTPH114-21	Physics Lab	1.5
		4.3D Animation Engineering			

2 | Page

B. Tech. 1³¹ Year Batch 2021 onwards

5	Electronics and communication Engineering	I.Electronics & Communication Engineering	BTPH105-21	Semiconductor and Optoelectronics Physics	4
		2.Electronics & Computer Engineering			
		3.Electronics & Instrumentation Engineering	-BTPH115-21	Semiconductor and Optoelectronics Physics Lab	1.5
		4.Electronics & Telecomm Engineering			
		5.Electronics Engineering			
6	Chemical	1.Chemical Engineering	BTPH106-18	Optics and Electromagnetism	4
		2.Petrochem & Petroleum Refinery Engineering	BTPH116-21	Optics and Electromagnetism	1.5
		3.Textile Engineering		Lab	
		4.Food Technology			
7	Bio-Technology	Bio-Technology	BTPH107-21	Introduction to Modern Physics	4
			BTPH117-21	Physics Lab	1.5

Hall

B.Tech. 1st Year Batch 2021 onwards

3 | Page

BTPH101-21	Mechanics of Solids	L-3, T-1, P-0	4 Credits
Pre-requisites	(if any): High-school education with Phy	sics as one of the subject.	
Course Object	ives: The aim and objective of the course he formal structure of vector mechanics	on Mechanics of Solids is	s to introduce the students
they can use the	ese in Engineering as per their requiremen	it.	rechances of solids so that
they can use the Course Outcom	ese in Engineering as per their requirement mes: At the end of the course, the student	will be able to	incentances of solides so that
they can use the Course Outcom	mes: At the end of the course, the student Understand the vector mechanics for a	will be able to classical system.	incentances of solides so that
they can use the Course Outcourse CO1 CO2	mes: At the end of the course, the student Understand the vector mechanics for a Identify various types of forces in natu	will be able to classical system. re, frames of references, and	nd conservation laws
they can use the Course Outcon CO1 CO2 CO3	mes: At the end of the course, the student Understand the vector mechanics for a Identify various types of forces in natu Know the simple harmonic, damped, ar system.	will be able to classical system. re, frames of references, and d forced simple harmonic of	nd conservation laws.
they can use the Course Outcourse CO1 CO2 CO3 CO4	 mess in Engineering as per their requirement mess: At the end of the course, the student Understand the vector mechanics for a Identify various types of forces in natu Know the simple harmonic, damped, ar system. Analyze the planar rigid body dynamic 	will be able to classical system. re, frames of references, and d forced simple harmonic of cs for a mechanical system.	nd conservation laws.

Detailed Syllabus:

PART-A

UNIT I: Vector mechanics (10 lectures)

Introduction to Cartesian, spherical and cylindrical coordinate system; unit vectors, velocity, acceleration and line elements, gradient, divergence and curl and their physical significance. Potential energy function, F = - Grad V, Newton's laws and its completeness in describing particle motion, Conservative and non-conservative forces, curl of a force field; Central forces; properties of space and time, Conservation of Angular Momentum and Energy, Inertial and Non-inertial frames of reference; Rotating coordinate system :- Centripetal and Coriolis force, accelerations, Forces in Nature.

UNIT II: Simple harmonic motion, damped and forced simple harmonic oscillator (10 lectures)

Mechanical simple harmonic oscillators: simple pendulum, mass-string system in vertical and horizontal oscillations, damped oscillations, damped harmonic oscillator- heavy, critical and light damping, energy decay in a damped harmonic oscillator, logarithmic decrement, relaxation time, quality factor, Forced mechanical oscillators, resonance.

PART-B

UNIT III: Planar rigid body mechanics (10 lectures)

Definition and motion of a rigid body in plane; Rotation in the plane, Angular momentum about a point of a rigid body in planar motion; inertia tensor, center of mass, moment of inertia, theorems of moment of inertia, inertia of plane lamina, circular ring, moment of force, couple, Euler's laws of motion.

B. Tech. 181

Year Batch 2021 onwards

4 | Page

UNIT IV: Elasticity and Friction (10 lectures)

Friction: Definitions: Types of friction, Laws of static friction, Limiting friction, Angle of friction, angle of repose; motion on horizontal and inclined planes. Methods of reducing friction, Concept of stress and strain at a point; Concepts of elasticity, plasticity, strain hardening, failure (fracture/yielding), one dimensional stress-strain curve; Generalized Hooke's law. Force analysis — axial force, shear force, bending moment and twisting moment. Bending stress; Shear stress; Concept of strain energy; Yield criteria.

Reference books and suggested reading:

- 1. Engineering Mechanics, 2nd ed. MK Harbola, Cengage Learning India, 2013.
- 2. Introduction to Mechanics MK Verma, CRC Press Book, 2009.
- 3. Mechanics- DS Mathur, S Chand Publishing, 1981.
- 4. An Introduction to Mechanics D Kleppner & R Kolenkow, Tata McGraw Hill 2009.
- 5. Principles of Mechanics JL Synge & BA Griffiths, Nabu Press, 2011.
- 6. Mechanics JP Den Hartog, Dover Publications Inc, 1961.
- 7. Engineering Mechanics- Dynamics, 7th ed. JL Meriam, Wiley.
- 8. Theory of Vibrations with Applications -WT Thomson, Pearson.
- 9. An Introduction to the Mechanics of Solids, 2nd ed. with SI Units-SH Crandall, NC Dahl & TJ Lardner
- 10. Classical Mechanics- H. Goldstein, Pearson Education, Asia.
- 11. Classical mechanics of particles and rigid bodies K.C Gupta, Wiley eastern, New Delhi.
- 12. Engineering Physics-Malik and Singh, Tata McGraw Hill.
- 13. Engineering Mechanics: Statics- 7th ed.-JL Meriam, Wiley, 2011.
- 14. Analytical Mechanics-Satish K Gupta, Modern Publishers.
- 15. https://nptel.ac.in/courses/122102004/

BTPH111-21	Mechanics of Solids Lab	L-0, T-0, P-3	1.5 Credits
Pre-requisites	(if any): High-school education with Phy	sics lab as one of the subje	ect.
Course Object students of B. T per their require	ives: The aim and objective of the Lab ech to the formal structure of Mechanics ment.	course on Mechanics of solids so that they can us	Solids is to introduce the se these in Engineering as
Course Outcon	nes: At the end of the course, the student	will be	
CO1	Able to understand the concepts learne	d in the mechanics of solid	s.
CO2	Learning the skills needed to verify sor	ne of the concepts of theor	v courses.
CO3	Trained in carrying out precise measure	ements and handling sensit	ive equinment
CO4	Able to understand the principles of error	or analysis and develop skil	ls in experimental design.
CO5	Able to document a technical report wh and concise manner.	nich communicates scientif	ic information in a clear

Detailed Syllabus:

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- Measurements of length (or diameter) using vernier caliper, screw gauge, and travelling microscope. Use of Plumb line and Spirit level.
- 2. To find out the frequency of AC mains using electric-vibrator.
- 3. To determine the horizontal and vertical distance between two points using a Sextant.
- 4. To determine the height of an inaccessible object using a Sextant.
- 5. To determine the angular diameter of the sun using the sextant.
- 6. To determine the angular acceleration α , torque τ , and Moment of Inertia of flywheel.
- 7. To study the Motion of a Spring and calculate (a) Spring Constant (b) Value of g and (c) Modulus of rigidity.
- 8. To determine the time period of a simple pendulum for different lengths and acceleration due to gravity.
- 9. To study the variation of time period with distance between centre of suspension and centre of gravity for a compound pendulum and to determine: (i) Radius of gyration of the bar about an axis through its C.G. and perpendicular to its length. (ii) The value of g in the laboratory.
- 10. To determine the Young's Modulus of a Wire by Optical Lever Method.
- 11. To determine the Elastic Constants/Young's Modulus of a Wire by Searle's method.
- 12. To determine the Modulus of Rigidity of a Wire by Maxwell's needle.
- 13. To find the moment of inertia of an irregular body about an axis through its C.G with the torsional pendulum.
- 14. To determine g by Kater's Pendulum.
- 15. To determine g and velocity for a freely falling body using Digital Timing Technique.
- Demonstration of collision behaviour for elastic and inelastic type and calculation of the Momentum, Kinetic energy, and Velocity after collision.

6 | Page

Reference book and suggested readings:

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- Laboratory Experiments in College Physics, C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 7. Practical Physics, G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 8. Experiments in Modern Physics, A.C. Melissinos, Academic Press, N.Y., 1966.
- 9. Practical Physics, C L Arora. S. Chand & Company Ltd.
- 10. http://www.vlab.co.in

7 | Page

5

B.Tech. 1st Year Batch 2021 onwards

BTPH102-18	Optics and Modern Physics	L-3, T-1, P-0	4 Credits
Pre-requisite (if any):		
 High-so Mathem 	chool education with physics as one of the natical course on differential equations.	e subject.	
Course Object students of B.T they can use the	ives: The aim and objective of the course ech. to the subjects of wave optics, Quan ese in Engineering as per their requiremen	on Optics and Modern I tum Mechanics, Solids, ar t.	Physics is to introduce the ad Semiconductors so that
Course Outcor	nes: At the end of the course, the student	will be able to	

C01	Identify and illustrate physical concepts and terminology used in optics and other wave phenomena.
CO2	Understand optical phenomenon, such as, interference, diffraction etc. in terms of wave model.
CO3	Understand the importance of wave equation in nature and appreciate the mathematical formulation of the same.
CO4	Appreciate the need for quantum mechanics, wave particle duality, uncertainty principle etc. and their applications.
CO5	Understand some of the basic concepts in the physics of solids and semiconductors.
Detailed Sy	vllabus:

PART-A

UNIT I: Waves and Oscillations (10 lectures)

Mechanical simple harmonic oscillators, damped harmonic oscillator, forced mechanical oscillators, impedance, steady state motion of forced damped harmonic oscillator, Transverse wave on a string, wave equation on a string, reflection and transmission of waves at a boundary, impedance matching, standing waves, longitudinal waves and their wave equation, reflection and transmission of waves at a boundary.

UNIT II: Optics and LASERS (10 lectures)

Optics: Light as an electromagnetic wave, reflectance and transmittance, Fresnel equations (Qualitative idea), Brewster's angle, total internal reflection: Interference: Huygens' principle, superposition of waves and interference of light by wavefront splitting and amplitude splitting; Young's double slit experiment, Michelson interferometer. Diffraction: Farunhofer diffraction from a single slit and a circular aperture, Diffraction gratings and their resolving power; LASERS: Spontaneous and stimulated emission, Einstein's theory of matter radiation interaction and A and B coefficients; population inversion, pumping, various modes, properties of laser beams, types of lasers: gas lasers (He-Ne), solid-state lasers (ruby), and its applications.

8 | Page

B. Tech. 1st Year Batch 2021 onwards

PART-B

UNIT III: Introduction to Quantum Mechanics (10 lectures)

Wave nature of Particles, Free-particle wave function and wave-packets, probability densities, Expectation values, Uncertainty principle, Time-dependent and time-independent Schrodinger equation for wave function, Born interpretation, Solution of stationary-state Schrodinger equation for one dimensional problems: particle in a box, linear harmonic oscillator.

UNIT IV: Introduction to Solids and Semiconductors (10 lectures)

Free electron theory of metals, Fermi level, density of states in 1, 2 and 3 dimensions, Bloch's theorem for particles in a periodic potential, Origin of energy bands (Qualitative idea); Types of electronic materials: metals, semiconductors, and insulators, Intrinsic and extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature (equilibrium carrier statistics), Carrier generation and recombination, Carrier transport: diffusion and drift, p-n junction.

Reference books and suggested reading:

- 1. I. G. Main, "Vibrations and waves in physics", Cambridge University Press, 1993.
- 2. H. J. Pain, "The physics of vibrations and waves", Wiley, 2006.
- 3. E. Hecht, "Optics", Pearson Education, 2008.
- 4. A. Ghatak, "Optics", McGraw Hill Education, 2012.
- 5. O. Svelto, "Principles of Lasers", Springer Science & Business Media, 2010.
- 6. D. J. Griffiths, "Quantum mechanics", Pearson Education, 2014.
- 7. R. Robinett, "Quantum Mechanics", OUP Oxford, 2006.
- D.A. Neamen, "Semiconductor Physics and Devices", Times Mirror High Education Group, Chicago, 1997.
- 9. E.S. Yang, "Microelectronic Devices", McGraw Hill, Singapore, 1988.
- 10. B.G. Streetman, "Solid State Electronic Devices", Prentice Hall of India, 1995.
- 11. HK Malik and AK Singh, Engineering Physics, 2nd ed., Tata McGraw Hill, 2018.
- 12. S. Sharma and J. Sharma, Engineering Physics, Pearson, 2018.
- 13. https://nptel.ac.in/courses/117108037/3
- 14. https://nptel.ac.in/courses/115102023/

91Page Hut

B. Fech. 1st Year Batch 2021 onwards

- -

BTPH112-21	Optics and Modern Physics Lab	L-0, 1-0, P-3	1.5 Credits
Pre-requisite (If	fany): High-school education with physics as or	ne of the subject.	
Course Objectiv	ves: The aim and objective of the lab on Opti-	c and Modern Phy	vsics is to introduce the
students of B.Teo	ch. class to the formal structure of wave and opti	ics, Quantum Mecha	anics and semiconductor
physics so that th	ney can use these in Engineering branch as per th	eir requirement.	
Course Outcom	es: At the end of the course, the student will be a	able to	
C01	Verify some of the theoretical concepts learnt i	in the theory courses	š.
CO2	Trained in carrying out precise measurements a	and handling sensitiv	ve equipment.
CO3	Introduced to the methods used for estimating and systematic errors.	and dealing with ex	perimental uncertainties
CO4	Learn to draw conclusions from data and devel	lop skills in experim	ental design.
C05	Write a technical report which communicates s manner.	scientific information	n in a clear and concise
Detailed Syllabu Note: Students minimum of 6-7 List of experime 1. To study the 2. To Study of 0 3. To study lase 4. To determine 5. To determine 6. To determine	are expected to perform about 8-10 experi from the Physical Lab and 2-3 from the Virt ents: laser beam characteristics like; wavelength using diffraction using laser beam and thus to determiner interference using Michelson's Interferometer e the numerical aperture of a given optic fibre an e attenuation & propagation losses in optical fibre e the grain size of a material using optical micros	iments from the for ual lab. g diffraction grating the the grating element of hence to find its a res.	ollowing list, selecting aperture & divergence. nt. cceptance angle.
7. To find the r	efractive index of a material/glass/liquid using spice	pectrometer.	
8. To find the v	elocity of ultrasound in liquid.		
9. To study the	characteristic of different p-n junction diode - G	ie and Si.	
10. To analyze th	he suitability of a given Zener diode as voltage ro	egulator.	
12. To find out t	he frequency of AC mains using electric-vibrato	LED. r	
13. To find the re	esolving power and the angle of prism.		
14. To determine	e the wavelength of the given source using Newt	on's rings method.	
15. To understar function of fi	nd the phenomenon Photoelectric effect and d requency of incident radiation.	raw kinetic energy	of photoelectrons as a
16. To determine	e the Planck's constant from kinetic energy versu	is frequency graph.	
17. To determine	e the stopping potential from the photocurrent ve	ersus applied potenti	al graph.
	>1		
	110.7		
	Alle		64
	J		
		in the second second	

10 | Page opwards B.Tech. 1st Year Batch 2021

Reference books and suggested reading:

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 6. Laboratory Experiments in College Physics, C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 7. Practical Physics, G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 8. Experiments in Modern Physics, A.C. Melissinos, Academic Press, N.Y., 1966.
- 9. Practical Physics, C L Arora. S. Chand & Company Ltd.
- 10. http://www.vlab.co.in

11 | Page onwards B.Tech, Ist Year Batch 2021

BIFHI05-18	Electromagnetism	L-3, T-1, P-0	4 Credits
Pre-requisites 1. High-s 2. Mathematical distribution of the second seco	(if any): chool education with physics as one of the sinatical course on vector calculus.	ubject.	
Course Objec	tives: The aim and objective of the course i	s to expose the students	to the formal structure of
electromagneti	sm so that they can use these in Engineering	as per their requiremen	t.
electromagneti Course Outco	sm so that they can use these in Engineering mes: At the end of the course, the student w	as per their requiremen ill be able to	t.
electromagneti Course Outco CO1	sm so that they can use these in Engineering mes: At the end of the course, the student w Specify the constitutive relationships for	as per their requiremen ill be able to fields and understand th	t. eir important.
electromagneti Course Outco CO1 CO2	 sm so that they can use these in Engineering mes: At the end of the course, the student w Specify the constitutive relationships for Describe the static and dynamic electric structures. 	as per their requiremen ill be able to fields and understand th and magnetic fields for	t. leir important. technologically important
electromagneti Course Outco CO1 CO2 CO3	 sm so that they can use these in Engineering mes: At the end of the course, the student w Specify the constitutive relationships for Describe the static and dynamic electric structures. Measure the voltage induced by time var 	as per their requiremen ill be able to fields and understand th and magnetic fields for ying magnetic flux.	t. Teir important. technologically important
electromagneti Course Outco CO1 CO2 CO3 CO4	 sm so that they can use these in Engineering mes: At the end of the course, the student w Specify the constitutive relationships for Describe the static and dynamic electric structures. Measure the voltage induced by time var acquire the knowledge of Maxwell e propagation and reception of electro-mas 	as per their requiremen ill be able to fields and understand th and magnetic fields for ying magnetic flux. equation and electroms gnetic wave systems.	t. teir important. technologically important agnetic field theory and

PART-A

UNIT I: Electrostatics in vacuum and linear dielectric medium (10 lectures)

Calculation of electric field and electrostatic potential for a charge distribution; Divergence and curl of electrostatic field; Laplace's and Poisson's equations for electrostatic potential; Uniqueness theorem (Definition); examples: Faraday's cage; Boundary conditions of electric field; Energy of a charge distribution and its expression in terms of electric field. Electrostatic field and potential of a dipole. Bound charges due to electric polarization in Dielectrics; Electric displacement; Solving simple electrostatics problems in presence of dielectrics – Point charge at the centre of a dielectric sphere, charge in front of a dielectric slab.

UNIT II: Magnetostatics in linear magnetic medium (10 lectures)

Bio-Savart law, Divergence and curl of static magnetic field; Concept of vector potential, Magnetization and associated bound currents; auxiliary magnetic field \vec{H} ; Boundary conditions on \vec{B} and \vec{H} . Solving for magnetic field due to bar magnet; magnetic susceptibility and ferromagnetic, paramagnetic and diamagnetic materials; magnetic domains, hysteresis and B-H curve.

12 | Page onwards

PART-B

UNIT III: Faraday's law and Maxwell's equations (10 lectures)

Faraday's law; equivalence of Faraday's law and motional EMF; Lenz's law; Electromagnetic breaking and its applications; Differential form of Faraday's law; energy stored in a magnetic field. Continuity equation for current densities; Modifying equation for the curl of magnetic field to satisfy continuity equation; displacement current and magnetic field arising from time-dependent electric field; Maxwell's equation in vacuum and non-conducting medium; Flow of energy and Poynting vector and Poynting theorem.

UNIT IV: Electromagnetic waves (10 lectures)

Wave equation for electromagnetic waves in free space and conducting medium, Uniform plane waves and general solution of uniform plane waves, relation between electric and magnetic fields of an electromagnetic wave their transverse nature.; Linear, circular and elliptical polarization, Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence.

Text and Reference Books:

- 1. D. Griffiths, Introduction to Electrodynamics, Pearson Education India; 4th ed. (2015).
- 2. J D Jackson, Classical Electrodynamics, John Wiley and Sons (1999).
- 3. Halliday and Resnick, Fundamentals of Physics, Wiley (2011).
- 4. W. Saslow, Electricity, Magnetism and Light, Academic Press (2002).
- 5. HK Malik and AK Singh, Engineering Physics, 2nd ed., Tata McGraw Hill (2018).

13 | Page

B.Tech. I ** Year Batch 2021

BTPH113-21	Electromagnetism Lab	L-0, T-0, P-3	1.5 Credits
Pre-requisite (I	f any): High-school education		
Course Objecti of B. Tech. class engineering as p	ves: The aim and objective of the lab coust to the formal structure of electromagne er their requirement.	arse on Electromagnetism is a state of the second s	s to introduce the students ese in various branches of
Course Outcom	es: At the end of the course, the studen	t will be able to	
CO1	Able to verify some of the theoretical	concepts learnt in the theor	v courses
CO2	Trained in carrying out precise measu	rements and handling sensit	tive equipment.
CO3	understand the methods used for estim systematic "errors."	ating and dealing with expe	rimental uncertainties and
CO4	Learn to draw conclusions from data a	and develop skills in experi	mental design
CO5	Write a technical report which commu- manner.	unicates scientific informati	on in a clear and concise
Detailed Syllab Note: Students minimum of 6-7	us: are expected to perform about 8-1 7 from the Physical Lab and 2-3 from	0 experiments from the the Virtual lab.	following list, selecting
List of experim	ents:		
 Use a Mult Capacitance To study the To study B-I To find out t To find out t 	imeter for measuring (a) Resistances s, and (e) Checking electrical fuses. magnetic field of a circular coil carryin H curve for a ferromagnetic material usi he frequency of AC mains using electric polarizability of a dielectric substance.	, (b) AC and DC Voltag g current. ng CRO. c-vibrator.	es, (c) DC Current, (d)

- 6. Determine a high resistance by leakage method using Ballistic Galvanometer.
- 7. To study the characteristics of a Series RC Circuit.
- 8. To study the series LCR circuit and determine its (a) Resonant Frequency, (b) Quality.
- 9. To study a parallel LCR circuit and determine its (a) Anti-resonant frequency (b) Quality factor Q.
- 10. To determine the value of self-inductance by Maxwell Inductance Bridge and Capacitance Bridge.
- 11. To determine the mutual inductance of two coils by Absolute method.
- 12. To study the induced emf as a function of the velocity of magnet and to study the phenomenon of electromagnetic damping.
- 13. To determine unknown capacitance by flashing and quenching method.
- 14. To study the field pattern of various modes inside a rectangular waveguide.
- 15. To determine charge to mass ratio (e/m) of an electron by helical method or Thomson method.
- 16. To find out the horizontal component of earth's magnetic field (B_h).

14 | Page

Reference books and suggested reading:

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 6. Laboratory Experiments in College Physics, C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 7. Practical Physics, G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 8. Experiments in Modern Physics, A.C. Melissinos, Academic Press, N.Y., 1966.
- 9. Practical Physics, C L Arora, S. Chand & Company Ltd.
- 10. http://www.vlab.co.in

15 | Page onwards B.Tech. 1st Year Batch 2021

BTPH104-21	Semiconductor Physics	L-3, T-1, P-0	4 Credits
Prerequisite (i	f any): Introduction to Quantum Mechan	ics desirable	
Course Object students of B. Engineering as	ives: The aim and objective of the cou Tech. class to the formal structure of se per their requirement.	arse on Semiconductor Phy emiconductor physics so that	vsics is to introduce the at they can use these in
Course Outcor	nes: At the end of the course, the student	will be able to	
C01	Understand and explain the fundamental principles and properties of electronic materials and semiconductors		
CO2	Understand and describe the interaction of light with semiconductors in terms of ferm golden rule.		
CO3	Understand and describe the impact of solid-state device capabilities and limitations or electronic circuit performance.		
CO4	Understand the design, fabrication, semiconductor materials.	and characterization tech	iniques of Engineered
C05	Develop the basic tools with which the other semiconductor applications.	y can study and test the newly	y developed devices and

Detailed Syllabus:

PART-A

UNIT I Quantum Mechanics: (10 lectures)

Need and origin of Quantum Concept, Wave-particle duality, Matter waves, Group and Phase velocities, Concept of Uncertainty Principle and its application: nonexistence of electron in the nucleus, Born interpretation of wave function & its significance, normalization of wave function, Eigen functions & Eigen values, Schrodinger wave equation: time independent and dependent, application in particle in a box in 1-D problem.

UNIT II: Electronic materials (10 lectures)

Free electron theory of metals, Density of states in 1D, 2D, and 3D, Bloch's theorem for particles in a periodic potential, Energy band diagrams, Kronig-Penny model (to introduce origin of band gap), Energy bands in solids, E-k diagram, Direct and indirect bandgaps, Types of electronic materials: metals, semiconductors, and insulators, Occupation probability, Fermi level, Effective mass, phonons.

16 | Page onwards

PART-B

UNIT III: Semiconductors (10 lectures)

Intrinsic and extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature (equilibrium carrier statistics), Carrier generation and recombination, Carrier transport: diffusion and drift, pn junction diode, zener diode, working principle and I-V characteristics, Metal-semiconductor junction (Ohmic and Schottky), Measurements for resistivity and hall coefficient using Four-point probe and van der Pauw method.

UNIT-IV Semiconductor Laser and Fibre Optics (10 lectures)

LASERS: Einstein's theory of matter radiation interaction and A and B coefficients; population inversion, components of laser system, properties of laser beams, types of lasers: gas lasers (He-Ne), solid-state lasers (ruby), Semiconductor laser, applications of laser, Fibre Optics: Introduction, total internal reflection, components of fibre, numerical aperture and various fibre parameters, losses associated with optical fibres, step and graded index fibres, application of optical fibres.

Reference books and suggested reading:

- 1. J. Singh: Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc. (1995).
- 2. B. E. A. Saleh and M. C. Teich: Fundamentals of Photonics, John Wiley & Sons, Inc., (2007).
- 3. S. M. Sze: Semiconductor Devices: Physics and Technology, Wiley (2008).
- 4. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press, New York (2007).
- 5. P. Bhattacharya: Semiconductor Optoelectronic Devices, Prentice Hall of India (1997).
- 6. Ben G. Streetman: Solid State Electronics Devices, Pearson Prentice Hall.
- 7. D.A. Neamen, "Semiconductor Physics and Devices", Times Mirror High Education Group, Chicago, 1997.
- 8. E.S. Yang, "Microelectronic Devices", McGraw Hill, Singapore, 1988.
- 9. Online course: "Semiconductor Optoelectronics" by M R Shenoy on NPTEL.
- 10. Online course: "Optoelectronic Materials and Devices" by Monica Katiyar and Deepak Gupta on NPTEL.
- 11. Satayaparkash, 'Quantum Mechanics'.
- 12. A. Ghatak and Lokanathan, 'Quantum Mechanics'.

17 | Page onwards

B.Tech. Lat Year Batch 2021

BTPH114-21	Semiconductor Physics Lab	L-0, T-0, P-3	1.5 Credits
Pre-requisite (if	any): (i) High-school education		
Course Objective students of B.Te Engineering as p	ves: The aim and objective of the Lab cour ech. class to the formal structure of semi er their requirement.	se on Semiconductor P conductor physics so th	hysics is to introduce the at they can use these in
Course Outcom	es: At the end of the course, the student wi	ll be able to	
CO1	Able to verify some of the theoretical con	cents learnt in the theor	L COURSES
CO2	Trained in carrying out precise measurem	ents and handling sensit	ive equipment
CO3	Introduced to the methods used for estim and systematic "errors."	ating and dealing with e	xperimental uncertainties
CO4	Learn to draw conclusions from data and	develop skills in experin	nental design
C05	Write a technical report which communic manner.	ates scientific information	on in a clear and concise
Detailed Syllabu	IS:		
List of experime 1. To study 2. To analy regulation 3. To find o	from the Physical Lab and 2-3 from the nts: the static current-voltage (I-V) characterist ze the suitability of a given Zener diode as n. ut the intensity response of a solar cell/Pho	Virtual lab.	on diode-Ge and Si. measure its line and load
 To deterr To study To study with diffe 	nine the band gap and resistivity of a semic the Hall effect for the determination of cha voltage regulation and ripple factor for a erent filters.	conductor by four probe rge current densities. half-wave and a full-wa	method. ave rectifier without and
 To study To find o To study 	the magnetic field of a circular coil carryin ut polarizability of a dielectric substance. B-H curve of a ferro-magnetic material usi	g current.	
10. To find o 11. To find th	ut the frequency of AC mains using electric ne velocity of ultrasound in liquid.	c-vibrator/sonometer/tun	ing fork.
13. Verificati 14. To study diffractio 15. To study	on of the curie Weiss law for the electrical the laser beam characteristics like; wa n grating aperture. laser interference using Michelson's Interfi	susceptibility of a ferror ve length, divergence,	e. magnetic material. grating element, using
16. Verificati	on and design of combinational logic using	, AND, OR, NOT, NAN	D and XOR gates.

18 | Page onwards

B.Tech. 1st Year Batch 2021

Reference books and suggested reading:

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 6. Laboratory Experiments in College Physics, C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 7. Practical Physics, G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 8. Experiments in Modern Physics, A.C. Melissinos, Academic Press, N.Y., 1966.
- 9. Practical Physics, C L Arora, S. Chand & Company Ltd.

10. http://www.vlab.co.in

19 | Page onwards B.Tech. 1st Year Batch 2021

BTPH105-21	Semiconductor and Optoelectronics Physics	L-3, T-1, P-0	4 Credits
Prerequisite (i	f any): "Introduction to Quantum Mechanics"	Desirable	
Course Object is to introduce to Optoelectronics	ives: The aim and objective of the course on S he students of B. Tech. class to the formal strusts so that they can use these in Engineering as pres: At the end of the course, the student will	Semiconductor and C acture of semiconduct per their requirement.	Optoelectronics Physics or physics and
CO1	Understand and explain the fundamental p	rinciples and properti	es of electronic materials
CO2	and semiconductors. Understand and describe the interaction of light with semiconductors in terms of ferm		
CO3	Understand and describe the impact of solid-state device capabilities and limitations or electronic circuit performance.		
CO4	Understand the design, fabrication, characterization techniques, and measurements of Engineered semiconductor materials.		
CO5	Learn the basics of the optoelectronic devices, LEDs, semiconductor lasers, and photo detectors.		
Detailed Syllal	ous:		

PART-A

UNIT I Quantum Mechanics (10 lectures)

Need and origin of Quantum Concept, Wave-particle duality, Matter waves, Group and Phase velocities, Concept of Uncertainty Principle and its application: nonexistence of electron in the nucleus, Born interpretation of wave function & its significance, normalization of wave function, Eigen functions & Eigen values, Schrodinger wave equation: time independent and dependent, application in particle in a box in 1-D problem.

UNIT II: Electronic materials (10 lectures)

Free electron theory of metals, Density of states in 1D, 2D, and 3D, Bloch's theorem for particles in a periodic potential, Energy band diagrams, Kronig-Penny model (to introduce origin of band gap), Energy bands in solids, E-k diagram, Direct and indirect bandgaps, Types of electronic materials: metals, semiconductors, and insulators, Occupation probability, Fermi level, Effective mass, phonons.

20 | Page onwards

PART-B

UNIT III: Semiconductor and Optoelectronic devices (10 lectures)

Radiative and non-radiative recombination mechanisms in semiconductors, Semiconductor materials of interest for optoelectronic devices; Semiconductor light emitting diodes (LEDs): light emitting materials, device structure, characteristics; Optical transitions in bulk semiconductors, Photovoltaics: Types of semiconductor photo detectors-p-n junction, PIN, zener diode, working principle and I-V characteristics, Measurements for resistivity and hall coefficient using Four point probe and van der Pauw method.

UNIT-IV Semiconductor Laser and Fibre Optics (10 lectures)

LASERS: Einstein's theory of matter radiation interaction and A and B coefficients; population inversion, components of laser system, properties of laser beams, types of lasers: gas lasers (He-Ne), solid-state lasers (ruby), Semiconductor laser, applications of laser, Fibre Optics: Introduction, total internal reflection, components of fibre, numerical aperture and various fibre parameters, losses associated with optical fibres, step and graded index fibres, application of optical fibres.

Reference books and suggested reading:

1. J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc. (1995).

- 2. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc. (2007).
- 3. S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley (2008).
- 4. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press, New York (2007).
- 5. P. Bhattacharya: Semiconductor Optoelectronic Devices, Prentice Hall of India (1997).
- 6. Solid state electronics devices: Ben. G. Streetman Pearson Prentice Hall.
- 7. D.A. Neamen: "Semiconductor Physics and Devices", Times Mirror High Education Group, Chicago, 1997.
- 8. E.S. Yang: "Microelectronic Devices", McGraw Hill, Singapore, 1988.
- 9. Online course: "Semiconductor Optoelectronics" by M R Shenoy on NPTEL.
- 10. Online course: "Optoelectronic Materials and Devices" by Monica Katiyar and Deepak Gupta on NPTEL.

21 | Page

B.Tech. Ist Year Batch 2021

BTPH115-21	Semiconductor and Optoelectronics Physics Lab	L-0, T-0, P-3	1.5 Credits
Pre-requisite (if any): High-school education		
Course Object Physics is to in that they can us Course Outcor	tives: The aim and objective of the Lab controduce the students of B.Tech. class to the for e these in Engineering as per their requirement mes: At the end of the course, the student will	urse on Semiconduc ormal lab structure of t. be able to	tor and Optoelectronics semiconductor physics so
C01	Able to verify some of the theoretical conce	epts learnt in the theor	V courses
CO2	Trained in carrying out precise measurements and handling sensitive equipment.		
CO3	Introduced to the methods used for estimating and dealing with experimental uncertainties and systematic "errors."		
CO4	Learn to draw conclusions from data and develop skills in experimental design.		
CO5	Write a technical report which communicates scientific information in a clear and concise manner.		

Detailed Syllabus:

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. To study the static current-voltage (I-V) characteristic of different PN junction diode-Ge and Si.
- 2. To analyze the suitability of a given Zener diode as a power regulator and measure its line and load regulation.
- 3. To find out the intensity response of a solar cell/Photo diode/LED.
- 4. To determine the band gap and resistivity of a semiconductor by four probe method.
- 5. To study the Hall effect for the determination of charge current densities.
- 6. To study voltage regulation and ripple factor for a half-wave and a full-wave rectifier without and with different filters.
- 7. To study the magnetic field of a circular coil carrying current.
- 8. To find out polarizability of a dielectric substance.
 9. To study B-H curve of a ferro-magnetic material using CRO.
- 10. To find out the frequency of AC mains using electric-vibrator/sonometer/tuning fork.
- 11. To find the velocity of ultrasound in liquid.
- 12. To compare various capacitance and verify the law of addition of capacitance.
- 13. Verification of the curie Weiss law for the electrical susceptibility of a ferromagnetic material.
- 14. To study the laser beam characteristics like; wave length, divergence, grating element, using diffraction grating aperture.
- 15. To study laser interference using Michelson's Interferometer.

22 | Page onwards

Reference books and suggested reading:

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 6. Laboratory Experiments in College Physics, C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 7. Practical Physics, G.L. Squires, Cambridge University Press, Cambridge, 1985.
- Experiments in Modern Physics, A.C. Melissinos, Academic Press, N.Y., 1966.
 Practical Physics, C L Arora, S. Chand & Company LTD.
- 10. http://www.vlab.co.in

23 | Page onwards B.Tech. Ist Year Batch 2021

BTPH106-18	Optics and Electromagnetism	L-3, T-1, P-0	4 Credits
Prerequisite	(if any): Introduction to Quantum Mechanic	s desirable	
Course Obje the students o and quantum	ctives: The aim and objective of the course of B.Tech. class to the basic concepts of opti physics, so that they can use these in Enginee	on Optics and Electroma ics and its applications, ele ering as per their requireme	gnetism is to introduce ctricity and magnetism, ent.
COI	Identify and illustrate physical concepts and	terminology used in optics	and other wave
CO2	Understand optical phenomena such as polarization, birefringence, interference, and diffraction in terms of the wave model.		
CO3	Understand the importance of wave equation in nature and appreciate the mathematica formulation of the same		
CO4	Acquire knowledge about the Maxwell equat	tion and magnetic propertie	es of materials.
C05	Appreciate the need for quantum mechanics,	wave particle duality, unco	ertainty principle etc.

Detailed syllabus:

PART-A

Unit I: Wave Optics (8 lectures)

Diffraction: Introduction to interference and example; concept of diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer diffraction at single slit, double slit, and multiple slits; diffraction grating, characteristics of diffraction grating and its applications; Polarization: Introduction to polarization, polarisation by reflection, polarisation by double refraction, scattering of light, circular and elliptical polarisation, optical activity.

UNIT-II: Fibre Optics and LASERS (12 lectures)

Fibre Optics: Introduction, optical fibre as a dielectric wave guide: total internal reflection, numerical aperture and various fibre parameters, losses associated with optical fibres, step and graded index fibres, application of optical fibres; LASERS: Spontaneous and stimulated emission, Einstein's theory of matter radiation interaction and A and B coefficients; population inversion, pumping, various modes, properties of laser beams, types of lasers: gas lasers (He-Ne), solid-state lasers (ruby), applications.

24 | Page onwards

PART-B

UNIT-III: Electromagnetism and Magnetic Properties of Materials (10 lectures)

Laws of electrostatics: Coulomb and Gauss Law, electric current and the continuity equation, laws of magnetism: Ampere's and Faraday's laws. Maxwell's equations (derivation and physical significance), Dielectric polarisation, permeability and dielectric constant, polar and non-polar dielectrics, internal fields in a solid, Clausius-Mossotti equation, applications of dielectrics; Magnetisation, permeability and susceptibility, classification of magnetic materials, ferromagnetism, magnetic domains and hysteresis, applications.

Unit IV: Quantum Mechanics (10 lectures)

Introduction to quantum physics, black body radiation, explanation using the photon concept, photoelectric effect, Compton effect, de Broglie hypothesis, wave-particle duality, Born's interpretation of the wave function, Davisson and Germer experiment: verification of matter waves, uncertainty principle, Schrodinger wave equation: particle in 1-dimensional box.

Reference books and suggested reading:

- 1. "Fundamentals of Physics", 6th Ed., D. Halliday, R. Resnick and J. Walker, John Wiley and Sons, Inc., New York, 2001.
- 2. "Physics", M. Alonso and E.J. Finn, Addison Wesley, 1992.
- 3. "Fundamentals of Optics", 4th Ed., F.A. Jenkins and H.E. White, McGraw-Hill Book Co., 1981.
- 4. "Optics", A Ghatak, Tata-McGraw Hill, New Delhi, 1992.
- 5. "Vibration and Waves", A.P. French, Arnold-Heinemann, New Delhi, 1972.
- 6. "Vibrations and waves in physics", I. G. Main, Cambridge University Press, 1993.
- 7. "The physics of vibrations and waves", H. J. Pain, Wiley, 2006.
- 8. "Optics", E. Hecht, Pearson Education, 2008.
- 9. "Optics", A. Ghatak, McGraw Hill Education, 2012.
- 10. "Principles of Lasers", O. Svelto, Springer Science & Business Media, 2010.
- 11. "Quantum mechanics", D. J. Griffiths, Pearson Education, 2014.
- 12. "Quantum Mechanics", R. Robinett, OUP Oxford, 2006.
- "Semiconductor Physics and Devices", D.A. Neamen, Times Mirror High Education Group, Chicago, 1997.
- 14. "Microelectronic Devices", E.S. Yang, McGraw Hill, Singapore, 1988.
- 15. "Solid State Electronic Devices", B.G. Streetman, Prentice Hall of India, 1995.
- 16. HK Malik and AK Singh, Engineering Physics, 2nd ed., Tata McGraw Hill (2018).
- 17. https://nptel.ac.in/courses/117108037/3
- 18. https://nptel.ac.in/courses/115102023/

25 | Page

B.Tech. 1º Year Batch 2021

BTPH116-21	Optics and Electromagnetism Lab	L-0, T-0, P-3	1.5 Credits
Pre-requisite (if	any): High-school education		
Course Objective the firsthand exp these in their brack	ves: The aim and objective of the lab on Opt erience of verifying various theoretical conce nch of Engineering as per their requirement.	ics and Electromagnet epts learnt in theory co	tism is to provide students ourses so that they can use
Laboratory Out	comes: At the end of the course, students wi	ll be	
C01	Able to verify some of the theoretical conce	pts learnt in the theor	v courses.
CO2	Trained in carrying out precise measurements and handling sensitive equipment		
CO3	Introduced to the methods used for estimating and dealing with experimental uncertainties and systematic "errors."		
CO4	Learn to draw conclusions from data and develop skills in experimental design.		
C05	Write a technical report which communicates scientific information in a clear and concise manner.		
Detailed Syllab	IS:		
Note: Students minimum of 6-7	are expected to perform about 8-10 ex from the Physical Lab and 2-3 from the V	periments from the 'irtual lab.	following list, selecting
List of experime	ents:		
 To study the To Study of 	laser beam characteristics like; wavelength u diffraction using laser beam and thus to deter	sing diffraction gratin mine the grating elem	g aperture & divergence. ent.
3. To study lase	er interference using Michelson's Interferome	eter.	
 To determine To determine 	e the numerical aperture of a given optic fibre e attenuation & propagation losses in optical	and hence to find its fibres.	acceptance angle.

- To determine the grain size of a material using optical microscope.
 To find the refractive index of a material/glass/liquid using spectrometer.
 To find the velocity of ultrasound in liquid.
 To study the characteristic of different p-n junction diode Ge and Si.

- 10. To analyze the suitability of a given Zener diode as voltage regulator.
- 11. To find out the intensity response of a solar cell/Photo diode/LED.
- 12. To find out the frequency of AC mains using electric-vibrator/sonometer/tuning fork.
- 13. To find the resolving power and the angle of prism.
- 14. To determine the wavelength of the given source using Newton's rings method.
- 15. To understand the phenomenon Photoelectric effect and draw kinetic energy of photoelectrons as a function of frequency of incident radiation.
- 16. To determine the Planck's constant from kinetic energy versus frequency graph.
- 17. To determine the stopping potential from the photocurrent versus applied potential graph.
- 18. To study the magnetic field of a circular coil carrying current.
- 19. To study B-H curve of a ferromagnetic material using CRO.

26 | Page onwards B.Tech. 1st Year Batch 2021

Reference books and suggested reading:

- "Fundamentals of Physics", 6th Ed., D. Halliday, R. Resnick and J. Walker, John Wiley and Sons, Inc., New York, 2001.
- 2. "Physics", M. Alonso and E.J. Finn, Addison Wesley, .1992.
- 3. "Fundamentals of Optics", 4th Ed., F.A. Jenkins and H.E. White, McGraw-Hill Book Co., 1981.
- 4. "Optics", A Ghatak, Tata-McGraw Hill, New Delhi, 1992
- 5. "Vibration and Waves", A.P. French, Arnold-Heinemann, New Delhi, 1972.
- 6. "Students Reference Manual for Electronic Instrumentation Laboratories",
- "Laboratory Experiments in College Physics", C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 8. "Practical Physics", G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 9. "Experiments in Modern Physics", A.C. Melissinos, Academic Press, N.Y., 1966.
- 10. "Practical Physics", C L Arora. S. Chand & Company LTD.
- 11. http://www.vlab.co.in

27 | Page onwards

B.Tech. 1st Year Batch 2021

BTPH107-21	Introduction to Modern Physics	L-3, T-1, P-0	4 Credits
Prerequisite (i	f any): High School knowledge		
Course Object introduce the st magnetic mater in Engineering Course Outcor	ives: The aim and objective of the course of udents of B. Tech. class to the basic concep ial, superconductivity and a brief introduction as per their requirement. mes: At the end of the course, the student with	on Introduction to Phys ts and applications of La on to quantum physics, Il be able to	ics in Biotechnology is to asers, fibre optics, X-rays, so that they can use these
CO1	Identify and illustrate physical concepts and terminology used in Lasers, fibre optics an other wave phenomena.		
CO2	Understand the X-Rays and their applications to the ultrasounds.		
CO3	Understand the importance of wave equation in nature and appreciate the mathematica formulation of the same		
CO4	Appreciate the need for quantum mechanics, wave particle duality, uncertainty principl etc.		
CO5	Understand the properties of magnetic magnetic	aterials and superconduc	ctivity.

Detailed Syllabus:

PART-A

UNIT I: LASERS and Fibre Optics (10 lectures)

Principles and working of laser: population inversion, pumping, threshold population inversion, types of laser: solid state (Ruby), gas (He-Ne); application of lasers (Medical/Industrial Applications); Fibre Optics: Introduction, optical fibre as a dielectric wave guide, total internal reflection, step and graded index fibres, numerical aperture and various fibre parameters, losses associated with optical fibres, application of optical fibres.

UNIT II: Magnetic Materials and Superconductivity (10 lectures)

Origin of magnetism, Basic idea of Diamagnetic, Paramagnetic, Ferromagnetic, Ferrimagnetic and Ferrite materials, Soft and Hard Magnetic materials, magnetostriction, magnetic anisotropy, applications of magnetic materials; Superconductivity, properties of superconducting state, Meissner Effect, Type-I and Type-II superconductors, Introduction to BCS theory (Qualitative idea), applications in medical industry.

PART-B

UNIT III: X-rays and Ultrasounds (10 lectures)

X-rays, Production of X-rays, Continuous and Characteristic X-Rays, Absorption of X-rays, Bragg's law, Adverse effects of X-rays, X-ray radiography; Ultrasounds: Ultra sound generators, properties of ultrasound-waves and its propagation in biological tissues, Pulse echo techniques, Doppler principle, involvement in design of medical instruments, Adverse effects of ultrasound waves.

28 | Page onwards
IK Gujral Punjab Technical University Bachelor of Technology (B. Tech. 1st Year)

UNIT IV: Quantum Theory and Nano-Materials ((10 lectures)

Photoelectric effect, Compton effect and de-Broglie waves; Wave-particle duality, concept of Electron microscopy; Nano-materials, surface to volume ratio, electron confinement (qualitative description), top-down and bottom-up method of synthesis, qualitative idea of quantum well, quantum wire and quantum dot. Carbon nanotubes: types, properties and applications.

Text and Reference Books:

- 1. Engineering Physics, Malik; HK, Singh; AK, Tata McGraw Hill.
- 2. Concepts of Modern Physics, Beiser; A., Tata McGraw Hill.
- 3. Introduction to Solids, Azaroff LV, Tata Mc Graw Hill.

fler

- 4. Engineering Physics, D.K. Bhattacharya, Poonam Tondon, Oxford University Press.
- 5. Optical Fibre system, Technology, Design & Applications, Kao; CK, McGraw Hill.

6. Laser Theory & Applications, Thygrajan; K, Ghatak; AK, Mc Millan India Ltd.

29 | Page onwards B.Tech. 1º* Year Batch 2021

IK Gujral Punjab Technical University Bachelor of Technology (B. Tech. 1st Year)

BTPH117-21	Physics lab	L-0, T-0, P-3	1.5 Credits
Pre-requisite	e (if any): High-school education		-
Course Obje verifying var their requiren	ctives: The aim and objective of the ous theoretical concepts learnt in the	Physics lab is to provide students ory courses so that they can use t	the firsthand experience of hese in Engineering as per
	ient.		
Laboratory	Outcomes: At the end of the course,	students will be	
Laboratory CO1	Outcomes: At the end of the course, Able to verify some of the the	students will be oretical concepts learnt in the the	Dry courses.
Laboratory CO1	Outcomes: At the end of the course, Able to verify some of the the Trained in carrying out precise	students will be oretical concepts learnt in the theo e measurements and handling sen	ory courses. sitive equipment.
Laboratory CO1 CO2 CO3	Outcomes: At the end of the course, Able to verify some of the the Trained in carrying out precise Introduced to the methods use uncertainties and systematic e	students will be oretical concepts learnt in the theo e measurements and handling sen d for estimating and dealing with prors.	ory courses. sitive equipment. experimental
Laboratory CO1 CO2 CO3 CO4	Dutcomes: At the end of the course, Able to verify some of the the Trained in carrying out precise Introduced to the methods use uncertainties and systematic e Learn to draw conclusions from	students will be oretical concepts learnt in the theo e measurements and handling sen: d for estimating and dealing with rrors. m data and develop skills in exper	ory courses. sitive equipment. experimental rimental design.

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. To study the laser beam characteristics like; wavelength using diffraction grating aperture & divergence.
- 2. To Study of diffraction using laser beam and thus to determine the grating element.
- 3. To study laser interference using Michelson's Interferometer.
- 4. To determine the numerical aperture of a given optic fibre and hence to find its acceptance angle.
- 5. To determine attenuation & propagation losses in optical fibres.
- 6. To determine the grain size of a material using optical microscope.
- 7. To find the refractive index of a material/glass/liquid using spectrometer.
- 8. To find the velocity of ultrasound in liquid.
- 9. To study the characteristic of different p-n junction diode Ge and Si.
- 10. To analyze the suitability of a given Zener diode as voltage regulator.
- 11. To find out the intensity response of a solar cell/Photo diode/LED.
- 12. To find out the frequency of AC mains using electric-vibrator/sonometer/tuning fork.
- 13. To find the resolving power and the angle of prism.
- 14. To determine the wavelength of the given source using Newton's rings method.

15. To understand the phenomenon Photoelectric effect and draw kinetic energy of photoelectrons as a function of frequency of incident radiation.

- 16. To determine the Planck's constant from kinetic energy versus frequency graph.
- 17. To determine the stopping potential from the photocurrent versus applied potential graph.
- 18. To study the magnetic field of a circular coil carrying current.
- 19. To study B-H curve of a ferromagnetic material using CRO.

B.Tech. 1st Year Batch 2021

30 | Page onwards

Annexure V

Content of Bridge Course in Physics:

Module	Lecture Required
1. Mechanics	02
2. Mechanical Properties of Solids and Fluids	03
3. Waves and Oscillations	03
4. Electricity and Magnetism	03
5. Electromagnetic Signal	02
6. Optics	02
7. Semiconductor Electronics	03
8. Modern Physics	02
9. Atomic and Nuclear Physics	02

UNIT I: Classical Mechanics: Centre of Mass, Motion of Centre of mass, Pure Translational and Inertia, Torque and angular momentum, Principle of moments (Moment of Inertia), Radius of Gyration, Generalized Motion, Kinematics of rotational motion about a fixed axis.

UNIT II: Mechanical Properties of Solids and Fluids: Elastic behaviors of solids, Hooke's Law, Young's Modulus, Shear Modulus, Bulk Modulus, Applications of Elastic behaviors of materials, Compressibility, Viscosity, Relative density, Pascal's Law, Streamline Flow, Bernoulli's Principle, Surface Tension, Drops and Bubbles

UNIT III: Waves and Oscillations: Rectilinear motion, Oscillations or Vibrations, Simple Harmonic Motion, Damped Harmonic motion: Real oscillatory system, Forced or Driven oscillation, TYPES OF WAVES, Superposition of Waves, Reflection and Refraction, Standing Waves and Normal Modes, Beats, Resonance, Doppler's Effect

UNI IV: Electricity and Magnetism: Physical concepts of gradient, divergence, and curl; Laplacian, operator, Concept of electricity and magnetism, Coulomb's law, Electrostatics, Magnetostatics, Lorentz force, Maxwell's equations.

UNIT V: Electromagnetic Signal: Introduction to Maxwell's equations, The dynamical magnetic field, The dynamical electric field, Electromagnetic Waves

Hall

UNIT VI: Wave Optics: Interference of light, Photons, Young's Double Slit Experiment, Huygens's Principle, Diffraction, Diffraction grating, Polarization

UNIT VII: Semiconductor Electronics: Classification of metals, conductors and semiconductors, Fermi Level, Intrinsic Semiconductor, Extrinsic Semiconductor, p-n junction, Semiconductor diode, Half wav rectifier, Full-wave rectifier, Zener diode, photo diode, Light emitting diode, Junction Transistor,

UNIT VIII: Modern Physics: Wave nature of light, Particle nature of light: the photon, De Broglie Hypothesis, Experimental confirmation of de Broglie hypothesis (Davisson and Germer's Experiment)

UNIT IX: Atomic and Nuclear Physics: Matters, Atoms, Atomic Theory: Atomic Theory by John Dalton, Atomic theory by J. J. Thomson, Atomic theory by Ernest Rutherford, Atomic theory by James Chadwick, Discovery of Neutron, Bohr postulates, Proton, Neutron, Electron, Limitations of Bohr Theory.

Stuth