

Agenda for the Board of Studies (Physical Sciences, Nano science and Engineering), IKGPTU to be held on 16th September 2021 at Department of Physical Sciences IK Gujral, Punjab Technical University, Kapurthala at 11:00 AM

Item No.	Item	Annexure
	To consider the Dreater outcomes (DOs) and Course	10.11
7.1	To consider the Program outcomes (POs) and Course outcomes of Ph.D. courses	I & II
7.2	Adoption of study scheme, course codes, and revision of syllabus of B.Sc. (Hons.) Physics	III & IV
7.3	Revision of study scheme, course codes, and syllabus of M.Sc. (Physics)	V & VI
7.4	Revision of marks distribution in internal and external examination of M.Sc. Physics scheme	V
7.5	Revision of study scheme, course codes, and syllabus of various physics courses in B. Tech. programs	VII & VIII
	To discuss any other agenda with the permission of Chair	
7.6	Regarding preparation of syllabus of Bridge Courses of Physical Sciences.	IX and X

Contents

Xleetilo

Agenda 7.1 To consider the Program outcomes (POs) and Course outcomes (COs) of Ph.D. courses.

The scheme and syllabus of Pre-PhD course work is already approved by the Department of Research and Development and recently a new course on Research and Publication ethics is introduced as per UGC guidelines (letter No.D.O.No.F.1-112018 (Journal/CARE). Approved copy of syllabus is attached herewith for your information. Further, directions have been received from R&D Department to frame the Program outcomes (POs) and Course outcomes of Ph.D. courses as per the requirement of NAAC. The draft of CO and PO is enclosed for consideration.

Agenda 7.2 Revision of study scheme, course codes for B.Sc. (Hons) physics

University has formed a common BOS for university campuses and affiliated colleges accordingly the uniform course scheme from 2021-22 is to be followed. Study scheme and syllabus of B.Sc. (Hons) Physics is enclosed for consideration.

Agenda 7.3 Revision of study scheme, course codes, and syllabus of M.Sc. (Physics)

Study scheme and syllabus of M.Sc. Physics was revised in BoS during 2017- 2018 and scheme was implemented in 2018 for IKGPTU Main campus and affiliated campuses. Then, minor changes were carried out in few courses by the Main/constituent campuses BoS in 2019. Now there is a combined BoS for the University campus and affiliated colleges, accordingly, the scheme for M.Sc. Physics in line with the changes carried out by the University campus BoS is placed for consideration and adoption uniformly.

Agenda 7.4 Revision of study scheme, course codes, and syllabus of various physics courses in B. Tech. programs

As per the feedback received from the various stake holders, we plan to revise the syllabus of courses on, Mechanics of Solids (BTPH-101-18), Semiconductor Physics (BTPH-104-18) and Semiconductor and Opto-electronics Physics (BTPH-105-18). Further the syllabus of Lab courses also needs minor revision. Accordingly, the course codes and syllabus of Physics courses will be updated.

Agenda 7.5 Revision of marks distribution in internal and external examination of M.Sc. Physics scheme.

Presently, we are following a 70-30 marking scheme for the internal and external evaluation for the theory courses in the University campus and affiliated campuses. We wish to change this scheme to 40-60 as the same scheme is followed in all the B.Tech. and M. Tech. courses at IKGPTU. Revised examination pattern is attached herewith.

To discuss any other agenda with the permission of Chair

Table Agenda 7.6: Regarding preparation of syllabus of Bridge Courses ofPhysical Sciences.

The University has received the Punjab Govt. Notification No. TECH-TE-2013/4/ 2021-4TE2/1/229119/2021 and No.TECH-TE-2013/4/2021-4TE2/1/229120/2021 dated 13.08.2021, in which the Punjab Govt. has notified the criteria of B.Tech. 1st year and LEET Students admission (copies of notification are attached as Annexure IX). The relevant portion is as under:-

All those candidates who have passed the 10+2 examination from a board recognized or established by central/state government through a legislation and a member of Council of Boards of School Education (COBSE), New Delhi with Physics/Mathematics/Chemistry /Computer Science/Electronics/ Information Technology/Biology/Informatics Practices/ Biotechnology /Technical Vocational Subject /Agriculture/ Engineering Graphics / Business Studies / Entrepreneurship. (any of three)

Obtained atleast 45% marks (40% marks in case of candidates belonging to reserved category) in the above subject taken together.

OR

Those candidates who have passed diploma in any Engineering Trade from Punjab State Board of Technical Education & Industrial Training, Chandigarh or Sant Longowal Institute of Engineering and Technology, Longowal (SLIET), or any such examination from any other recognized State Board of Technical Education with at least 45% marks (40% marks in case of candidates belonging to reserved category)

(The Universities will offer suitable bridge courses such as Mathematics, Physics, Engineering drawing, etc., for the students coming from diverse backgrounds to achieve desired learning outcomes of the programme)

OR

The candidates who have passed two years certificate course from Sant Longowal Institute of Engineering and Technology, Longowal (SLIET) shall be eligible.

Therefore, syllabus for bridge course for Physical Sciences is required to be prepared by BoS. AICTE has proposed the content of lecture-based module for Bridge course in Physics. The content of bridge course comprises of nine modules in Classical Mechanics, Mechanical Properties of Solids and Fluids, Waves and Oscillations, Electricity and Magnetism, Electromagnetic Signal, Wave Optics, Semiconductor Electronics, Modern Physics, Atomic and Nuclear Physics. Copy of AICTE notification is attached here as Annexure X.

Items are placed for kind consideration and approval.

Page 4 of 4

I.K. GUJRAL PUNJAB TECHNICAL UNIVERSITY

Estd. Under Punjab Technical University Act, 1996 (Punjab Act No. 1 of 1997)

Ref. No. : IKGPTU/REG/NF/2172

Dated : 2-07.2021

NOTIFICATION

Sub: Ph.D Course work structure and criteria for assessment.

As approved by Vice Chancellor, I. K. Gujral Punjab Technical University has adopted the following Ph.D course work structure and criteria for assessment during the Ph.D degree:

Sr. No.	Nature of Course	Name of Course	Credits	Hours per week	Maximum Marks	External Marks	Internal Marks	External Assessment	Internal assessment
1	Core	Research Methodology	4	4	100	60	40	3 hours exam	MSTs, Assignments/ presentations
2	Core	Subject related theory paper	4	4	100	60	40	3 hours exam	MSTs, Assignments/ presentations
3	Core	Presentation/ Seminar	3	3	75	0	75		Seminar and technical report writing
4	Inter- disciplinary	Elective	4	4	100	60	40	3 hours exam	MSTs, Assignments/ presentations
5	For all streams	Research and Publication Ethics (RPE)	2	2	50	30	20	3 hours exam	MST, Assignments/ presentations
	1	A server and an a first server shows a						•	

Endst. No. IKGPTU/REG/NF/2173-2178

A copy of the above is forwarded to the following for information and necessary action please.

- 1. I/C VC Secretariat for kind information of Hon'ble Vice-Chancellor
- 2. Dean (R&D), IKGPTU
- 3. Director (Main Campus): To inform all Deputy Dean (Faculty), HoDs (Teaching) and Director/Incharge, Constituent Campuses
- 4. Controller of Examination, IKGPTU
- 5. Director/Principal, colleges authorized for Ph.D course work
- 6. In-charge (ITS): for upload of notice in the Notice Board of University website and Ph.D admissions link also

(Sandeep Kumar Kazal) Registrar

(Sandeep Kumar Kazal)

27.07.2021

Registrar

I. K. Gujral Punjab Technical University, Jalandhar Jalandhar Kapurthala Highway, Near Pushpa Gujral Science City, Kapurthala - 144 603 Ph. No. 01822 - 282521, 282501, Email: registrar@ptu.ac.in

I.K. GUJRAL PUNJAB TECHNICAL UNIVERSITY

Estd. Under Punjab Technical University Act, 1996 (Punjab Act No. 1 of 1997)

Ref. No. : IKGPTU/Reg/N/

Dated :

NOTIFICATION

Sub: Regarding Pre-Ph.D Course work.

This is for information of all concerned that Pre-Ph.D course work from 2016-17 will be conducted in the IKGPTU main campus Kapurthala in regular mode. The PhD course work will consists of minimum 15 credits. The structure of the course work is as under.

Sr. No.	Nature of course	Name of course	Credits	Remarks
1.	Core	1.Research Methodology	4	The syllabus of RM should be formulated faculty wise such as Engineering, Science, Management/ Humanities and Life sciences
		2.Subject related theory paper	4	Discipline specific related to advancements in theoretical methods for research
	1	3. Presentation	3	Discipline specific
2.	Interdisciplinary	4. Elective	4	From list of subjects from allied fields
	Total Minimum	credits	15	

Registrar

Endorsement No: IKGPTU/REG/N/ 4244-4251

Dated: 22.08.2016

- 1. Secretary to Vice Chancellor: For kind information of Vice Chancellor
- 2. Dean (P&D)
- 3. Dean (RIC)
- 4. Dean (Academics)
- 5. Finance Officer
- 6. Controller of Examination
- 7. DR (Computers): For uploading on website
- 8. File Copy

I. K. Gujral Punjab Technical University, Jalandhar Jalandhar Kapurthala Highway, Near Pushpa Gujral Science City, Kapurthala - 144 603 Ph. No. 01822 - 662521. 662501 Fax No. : 01822-255506. 662526. Email : registrar@ptu.ac.in

SCHEME OF COURSES

S.NO.	Name Course	Code	L-T-P	Credits
1	Research Methodology	PHS900	3-1-0	4
2	Theoretical methods in Physics	PHS901	3-1-0	4
3	Techniques in Experimental Physics	PHS902	3-1-0	4
4	Advanced Condensed Matter Physics	PHS903	3-1-0	4
5	Computational Physics	PHS904	3-1-0	4
6	Nano Materials	PHS905	3-1-0	4

how

Page 2 of 8

PHS900 Research Methodology

Physics

- 1. Introduction to Research, Objectives of research, motivation in research, types of research, significance of research, research methods vs methodology, research process in flow chart, criteria of good research, problems encountered by researchers in India.
- Difference between TEX and LATEX, basics of using latex, latex input files, input file structures, layout of the document, titles, chapter and sections, cross references, foot note, environments, typesetting, building blocks of a mathematical formula, matrices, tables, including encapsulated postscript graphics, bibliography, downloading and installing LATEX packages.
- Introduction to origin, basics of importing and exporting data, working with Microsoft excel, graphing, statistics in origin, hypothesis testing, power and sample size, basic linear regression and curve fitting.
- 4. Error Analysis and Basic Statistics Measuring errors, uncertainties, parent and sample distributions, mean and standard deviation of distribution, types of probability distribution, instrumental and statistical uncertainties, propagation of errors, specific error formulas, method of least square fitting.
- Multivariate analysis: Multiple regression, multiple discriminant analysis, multiple analysis of variance, canonical correlation analysis, Factor analysis cluster analysis, path analysis. Computational techniques.
- 6. Survey of literature: The students will be required to review literature in their respective disciplines and submit an assignment for evaluation.

References:

1. Research Methods for Science by Michael P. Marde

2. The not so short introduction to LATEX by TobianOetiker, Hubert Partl, Hrene Hyna and Elisabeth Schlegl

3. T.Veerarajan and T. Ramachandran "Numerical methods" Tata McGraw Hill, New Delhi, 2008

4. Data reduction and error analysis for physical sciences by Philip R. Bevington and D. Keith Robinson

Page 3 of 8

PHS901 Theoretical methods in Physics

1. Theoretical Techniques in Condensed Matter Physics: Theory of NMR techniques, Theory of Anharmonic solids, Theory of Liquid state and Density functional theory.

2. Advanced Quantum Techniques: Review of electronic properties, Density Functional Theory, Hohenberg- Kohn theorems, Kohn-Sham ansatz, Intricacies for exchange & correlation, Solving Kohn-Sham equations, Norm conserving pseudopotentials, Unscreening and core corrections, Transferability and hardness of pseudopotentials.

3. Theoretical Techniques in Particle Physics:Classification of fundamental forces; Elementary particles (quarks, baryons, mesons, leptons); Spin and parity assignments, isospin, strangeness; Gell-Mann-Nishijima formula; C, P, and T invariance and applications of symmetry arguments to particle reactions, parity non-conservation in weak interaction; Relativistic kinematics

4. Theoretical Techniques in Nuclear Physics: Review of static properties, binding energy, density, nuclear forces, and potentials, shell model, collective models and energy levels, Hartree - Fock theory of nuclear shape and states with good J Quantum number and applications, correlations in nuclear matter and exclusive principle correlations, Bethe-Goldstone equation and G-matrix, heavy-ion physics at low and intermediate energies, simulations and QMD model, hot and dense matter and multi fragmentation.

Books recommended:

- 1. Solitons an Introduction by P.G. Drazin and R.S. Johan (Cambridge Univ. Press, 1989)
- 2. Chaos in Dynamical Systems by E. Ott (Cambridge Univ., Press, 1993)
- 3. Gauge theory of Elementary Particles by T.P. Cheng and Li (Oxford)2000
- 4. Structure of the Nucleus by M.A. Preston and R.K. Bhadhuri.
- 5. Quantum Theory of Solids by C. Kittel
- 6. Liquid State Physics by N.H. March and M.P. Tosi
- 7. Quantum field theory by Lahiri and Pal

Page 4 of 8

Electives

PHS902 Techniques in Experimental Physics

Light/Optical Microscopy: Optical Microscope – basic principles & components, different examination modes (bright field illumination, oblique illumination, dark field illumination, phase contrast, polarized light, hot stage, interference techniques), stereomicroscopy, photo-microscopy.

Surface Analysis: Atomic force microscopy, Scanning, Tunneling microscopy, Secondary ion mass spectrometry, Auger electron spectroscopy, X-ray photoelectron spectroscopy, image analysis.

Thermal Analysis: Differential thermal analysis, Differential scanning calorimetry and Thermo-grayimetric analysis. Fourier transform infrared spectroscopy. Ultraviolet visible spectrophotometer.

Electron Microscopy: Interaction of electrons with solids, Scanning Electron Microscopy and specimen preparation techniques, Wavelength dispersive spectroscopy.

Diffraction Methods: Generation and detection of X-rays, Diffraction of X-rays, X-ray diffraction techniques, X-ray methods of analysis including powder diffraction, Wavelength and energy dispersive X-ray fluorescence (XRF).

Radiation analysis: Raman analysis and spectroscopy, Photo luminance, Photo multiplier tube, LINAC.

Experimental methods for probing nuclear structure: Experimental methods for gamma-ray, conversion-electron and charged-particle spectroscopy associated with nuclear reactions and Coulomb excitation, Compton suppressed Ge detectors, multiplicity filter, Neutron detectors, Sector field electron spectrometer.

Recommended Books:

- 1. Materials Characterisation, Metals Hand Book, 9th edition, Vol 10.
- Cullity, B.D., "Elements of X-ray Diffraction", Addision Wesley Publishingh Co., Massachusetts, 1968.
- 3. Phillips, V.A., "Modern metallographic techniques and their applications", Wiley Interscience, 1971.
- 4. Cherepin and Malik, "Experimental Techniques in Physical Metallurgy:, Asia Publishing Co. Bombay, 1968.
- 5. Brandon D.G., "Modern Techniques in Metallography", VonNostrand Inc. NJ. USA, 1986.
- 6. Thomas G., "Transmission electron microscopy of metals", John Wiley, 1996.
- 7. Weinberg F., "Tools and Techniques in Physical Metallurgy", Volume I & II, Marcel and Decker.

Page 5 of 8

PHS903 Advanced Condensed Matter Physics

1. Transport Properties: Boltzmann equations, Electrical Conductivity, Calculation of relaxation time, Impurity scattering, Ideal resistance, Carrier mobility, General Transport coefficients, Thermal conductivity, Thermoelectric effects, Lattiice conduction, Phonon drag, Hall effect, Two Band Model- Magneto resistance.

2. Mesoscopic Systems: Low-dimensional systems; characteristic lengths; transverse mode or magneto-electric sub-bands; resistance of a ballistic conductor; Landauer formula; reformulation of Ohm's law; Landauer-Buttiker formula; transmission function and Sconductance fluctuations.

Quantum Hall Effect : Classical Hall effect; integral quantum Hall effect (IQHE); fractional quantum Hall effect (FQHE) and Laughlin's theory.

3. Material at Nanoscale: Synthesis and Fabrication methods (Physical and chemical approaches), characterization methods (microscopy, diffraction, spectroscopy techniques), surface analysis and depth profiling, techniques for physical property measurement, processing and properties of inorganic nanomaterials, special nanomaterials, Thermodynamics and statistical mechanics of small systems, Nucleation and growth of nanocrystals; kinetics of phase transformations. Effects of nanometer length scales, self assembling nanostructures molecular materials and devices, applications of nanomaterials: molecular electronics and nanoelectronics; nano-biotechnology; quantum devices; nanomagnetic materials and devices : magnetism, nanomagnetic materials, magnetoresistance; nanomechanics

4. Defects and Dislocation- Lattice Vaccancies, Diffusions, Color- Centers, Dislocations and their types, Strength of Alloys, Dislocation and crystal growth, Hardness of materials.

Recommended Books

- 1. Introduction to Solid State Physics : C. Kittel (Wiley, New York) 2005.
- 2. Quantum Theory of Solids : C. Kittel (Wiley, New York) 1987.
- 3. Principles of the Theory of Solids : J. Ziman (Cambridge University Press) 1972.

Page 6 of 8

PHS904 Computational Physics

1. Introduction to simulation approach: Introduction to modeling and simulation, Methods of performance evaluation-simulation approach- Advantages and limitations, various type models and simulations, System model steps and its types involved in simulation study, Deterministic and Stochastic process, Introduction to random variables - univariate models and multi-variate models.

2. Numerical methods for differential equations: Euler's method, Runge - Kutta method for ordinary differential equations: stability and convergence. Partial differential equations using matrix method for difference equation, relaxation method, initial value problems, stability, convergence and qualitative properties and qualitative properties. Random numbers, Monte Carlo Integral methods, Importance sampling, Fast Fourier Transform.

3. Simulation Techniques: Monte Carlo methods, molecular dynamics, simulation methods for the Ising model and atomic fluids, simulation methods for quantum-mechanical problems, time-dependent Schrödinger equation, discussion of selected problems in Physics, nonlinear dynamics, diffusion-limited aggregation and transport properties, etc. Introduction to parallel computation, Physical Simulations: N body methods and particle simulations,

Books Recommended:

- 1. Fortran Programming V. Rajaraman
- 2. Numerical Methods: A Computer Oriented Approach, BPB Publ. 1996 R.S. Salaria
- 3. Computer based Numerical Methods 3rd Ed. Prentice Hall India 1980, V.Rajaraman
- 4. Mathematica, S. Wolfram, Addison. Wesley
- 5. Application of the Monte Carlo Method, K. Binder, Springer Veriag
- 6. An Introduction to Computer Simulation Methods, H.Gould and J. Toobochnlik, Addison Wesley, 1996.
- 7. Computational Physics by S.E. Koonin And Meredith

Page 7 of 8

PHS905 Nano Material

Synthesis and processing: Nano particles from low- pressure, Low temperature plasmas and its applications, Low temperature compaction of nanosize powders, Nanofabrications with atom optics, Processing of nanocrystalline materials. Vapour processing of nanostructured materials.

Electrical properties: Quantized states in low-dimensional systems, Self-consistent treatment of oneand two- dimensional problems, Quantum wires- magnetosize effects and weak localization; magnetophonon reaonances; vertical tunneling, Quantum dots- fabricated quantum dots; impurity dot system; energy states, Current-voltage characteristics, Vertical transport through quantum dots.

Magnetic properties: Magnetic field profile, quantum motion in nonhomogeneous magnetic fields, Diffusive transport of electrons through magnetic barriers, One- and two- dimensional magnetic modulation, Hall effect devices, Nanoscale magnets.

Optical properties: Photo refractive quantum well structures and its optical properties, electronic transport and grating formation, Diffraction - Raman-Nath diffraction; nondegenerate four-wave mixing; two- wave mixing, Photorefractive effects and applications, Non-linear optical properties, Non-linear phenomenon – theoretical treatment of optical nonlinearities.

Books Recommended:

- 1. Nalwa, H.S. "Handbook of Nanostructured Materials and Nanotechnology", Vol.1, 3 and 4, Academic Press 2000.
- 2. Ying.J.Y. " Nanostructured materials", Academic Press, U.S.A., 2001.

Page 8 of 8

प्रो. रजनीश जैन सचिव Prof. Rajnish Jain Secretary

विश्वविद्यालय अनुदान आयोग University Grants Commission

(मानव संसाधन विकास मंत्रालय, भारत सरकार) (Ministry of Human Resource Development, Govt. of India)

बहादुरशाह जफ़र मार्ग, नई दिल्ली-110002 Bahadur Shah Zafar Marg, New Delhi-110002

> Ph :. 011-23236288/23239337 Fax : 011-2323 8858 E-mail : secy.ugc@nic.in

D.O.No.F.1-1/2018(Journal/CARE)

Respected Sir/Madam,

University Grants Commission in its 543rd meeting held on 9th August, 2019 approved two Credit Courses for awareness about publication ethics and publication misconducts entitled **"Research and Publication Ethics (RPE)"** to be made compulsory for all Ph.D. students for pre-registration course work (attached as Annexure).

In view of the above, you are requested to ensure that the above two Credit courses may be made compulsory for all Ph.D. students for pre-registration course work undertaken in your University from the forthcoming academic session.

With regards,

Yours sincerely, (Rajnish Jain)

TO THE VICE-CHANCELLORS OF ALL UNIVERSITIES

December, 2019

ANNEXURE

Course Title:

• **Research and Publication Ethics (RPE)**-Course for awareness about the publication ethics and publication misconducts.

Course Level:

• 2 Credit course (30 hrs.)

Eligibility:

• M.Phil., Ph.D. students and interested faculty members (It will be made available to post graduate students at later date)

Fees:

As per University Rules

Faculty:

Interdisciplinary Studies

Qualifications of faculty members of the course:

• Ph.D. in relevant subject areas having more than 10 years' of teaching experience

About the course

Course Code: CPE- RPE

S. Andrew

Overview

• This course has total 6 units focusing on basics of philosophy of science and ethics, research integrity, publication ethics. Hands-on-sessions are designed to identify research misconduct and predatory publications. Indexing and citation databases, open access publications, research metrics (citations, h-index, Impact Factor, etc.) and plagiarism tools will be introduced in this course.

Pedagogy:

• Class room teaching, guest lectures, group discussions, and practical sessions.

Evaluation

• Continuous assessment will be done through tutorials, assignments, quizzes, and group discussions. Weightage will be given for active participation. Final written examination will be conducted at the end of the course.

Course structure

• The course comprises of six modules listed in table below. Each module has 4-5 units.

Modules	Unit title	Teaching hours
Theory	•	
RPE 01	Philosophy and Ethics	4
RPE 02	Scientific Conduct	4
RPE 03	Publication Ethics	7
Practice		
RPE 04	Open Access Publishing	4
RPE 05	Publication Misconduct	4
RPE 06	Databases and Research Metrics	7
9	Total	30

Syllabus in detail

THEORY

• RPE 01: PHILOSOPHY AND ETHICS (3 hrs.)

- 1. Introduction to philosophy: definition, nature and scope, concept, branches
- 2. Ethics: definition, moral philosophy, nature of moral judgements and reactions

• RPE 02: SCIENTIFICCONDUCT (5hrs.)

- 1. Ethics with respect to science and research
- 2. Intellectual honesty and research integrity
- 3. Scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP)
- 4. Redundant publications: duplicate and overlapping publications, salami slicing
- 5. Selective reporting and misrepresentation of data

• RPE 03: PUBLICATION ETHICS (7 hrs.)

- 1. Publication ethics: definition, introduction and importance
- 2. Best practices / standards setting initiatives and guidelines: COPE, WAME, etc.
- 3. Conflicts of interest
- 4. Publication misconduct: definition, concept, problems that lead to unethical behavior and vice versa, types
- 5. Violation of publication ethics, authorship and contributorship
- 6. Identification of publication misconduct, complaints and appeals
- 7. Predatory publishers and journals

PRACTICE

• RPE 04: OPEN ACCESS PUBLISHING(4 hrs.)

- 1. Open access publications and initiatives
- 2. SHERPA/RoMEO online resource to check publisher copyright & self-archiving policies
- 3. Software tool to identify predatory publications developed by SPPU
- 4. Journal finder / journal suggestion tools viz. JANE, Elsevier Journal Finder, Springer Journal Suggester, etc.

• RPE 05: PUBLICATION MISCONDUCT (4hrs.)

A. Group Discussions (2 hrs.)

- 1. Subject specific ethical issues, FFP, authorship
- 2. Conflicts of interest
- 3. Complaints and appeals: examples and fraud from India and abroad

B. Software tools (2 hrs.)

Use of plagiarism software like Turnitin, Urkund and other open source software tools

• RPE 06: DATABASES AND RESEARCH METRICS (7hrs.)

A. Databases (4 hrs.)

- 1. Indexing databases
- 2. Citation databases: Web of Science, Scopus, etc.

B. Research Metrics (3 hrs.)

- 1. Impact Factor of journal as per Journal Citation Report, SNIP, SJR, IPP, Cite Score
- 2. Metrics: h-index, g index, i10 index, altmetrics

References

Bird, A. (2006). Philosophy of Science. Routledge.

MacIntyre, Alasdair (1967) A Short History of Ethics. London.

P. Chaddah, (2018) Ethics in Competitive Research: Do not get scooped; do not get plagiarized, ISBN:978-9387480865

National Academy of Sciences, National Academy of Engineering and Institute of Medicine. (2009). On Being a Scientist: A Guide to Responsible Conduct in Research: Third Edition. National Academies Press.

Resnik, D. B. (2011). What is ethics in research & why is it important. *National Institute of Environmental Health Sciences*, 1–10. Retrieved from <u>https://www.niehs.nih.gov/research/resources/bioethics/whatis/index.cfm</u> Beall, J. (2012). Predatory publishers are corrupting open access. Nature, 489(7415), 179–179. https://doi.org/10.1038/489179a

Indian National Science Academy (INSA), Ethics in Science Education, Research and Governance(2019), ISBN:978-81-939482-1-7. <u>http://www.insaindia.res.in/pdf/Ethics_Book.pdf</u>

Pre- Ph.D.

Course Structure and Syllabus (Based on Choice Based Credit System) 2021 onwards

PROGRAM OUTCOMES: At the end of the program, the student will be able to:

PO1	Apply the scientific knowledge to solve the complex physics problems.
PO2	Identify, formulate, and analyze advanced scientific problems reaching substantiated conclusions using first principles of physics, physical, and natural sciences.
PO3	Design solutions for advanced scientific problems and design system components or processes that meet the specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal consideration.
PO4	Use research-based knowledge and methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Create, select, and apply appropriate techniques, resources, and modern scientific tools to complex physics problems with an understanding of the limitations.
PO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional scientific practice.
PO7	Understand the impact of the scientific solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Apply ethical principles and commit to the norms of scientific practice.
PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communicate effectively on scientific activities with the Scientific/Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Demonstrate knowledge and understanding of the scientific principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of scientific and technological change.

SCHEME OF Pre-Ph.D. COURSE WORK

Course Code	Course Title		Load ocati			rks bution	Total Marks	Credits
		L	T	P	Internal	External		
PHS900	Research Methodology	3	1	-	40	60	100	4
PHS901	Theoretical methods in	3	1	-	40	60	100	4
	Physics							
PHS902	Techniques in Experimental	3	1	-	40	60	100	4
	Physics							
PHS903	Advanced Condensed	3	1	-	40	60	100	4
	Matter Physics							
PHS904	Computational Physics	3	1	-	40	60	100	4
PHS905	Nano Materials	3	1	-	40	60	100	4
PHS906	Advanced Particle Physics	3	1	-	40	60	100	4
PHS907	Renewable Energy	3	1	-	40	60	100	4
	Resources							

CORE COURSE

PHS 90)0 F	Researc	h Meth	odolog	У		L-3	, T-1, I	P-0	4 Cred	lits	
Pre-req	uisite: U	Underst	anding	ofpost	graduate	level phy	ysics					
students	with the nt in dif	e researo ferent o	ch meth courses	odologi	ies and te	chniques	that he	/she nee	eds for	understa	equip th anding th hooses to	eoretical
Course	Outcon	nes: At	the end	of the o	course, th	ne studen	t will be	e able to)			
CO1					earch and		5			ics prob	lems	
CO2	Work	with di cate var	fferent	types o	f docume	ents, orga	nize th	em into	differe	nt secti	ons, subs lae using	
CO3		le data, Origin	plot gra	aphs, dr	aw flow	charts, si	urvey re	esearch	related	probler	ns and in	fer data
CO4	identi		define a	ppropri	ate resea	rch prob	lem and	l prepar	e a rese	arch pr	oposal	
CO5	docur tools.		esearch	paper,	thesis, or	r a resear	ch prop	osal usi	ing the	scientif	ic docum	entation
Mappin	g of cou	irse ou	tcomes	with th	e progra	am outco	omes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	3	3	2	2	2	1	1	2	2	1	1	2
CO2	3	3	2	1	2	1	1	2	2	1	1	2
CO3	3	3	2	2	2	1	1	2	2	1	1	2
CO4	3	3	2	2	2	1	1	2	2	1	1	2
CO5	3	3	2	2	3	1	3	3	3	3	3	3

- 1. Introduction to Research, Objectives of research, motivation in research, types of research, significance of research, research methods vs methodology, research process in flow chart, criteria of good research, problems encountered by researchers in India.
- 2. Difference between TEX and LATEX, basics of using latex, latex input files, input file structures, layout of the document, titles, chapter and sections, cross references, foot note, environments, typesetting building blocks of a mathematical formula, matrices, tables, including encapsulated postscript graphics, bibliography, downloading and installing LATEX packages.
- 3. Introduction to origin, basics of importing and exporting data, working with Microsoft excel, graphing, statistics in origin, hypothesis testing power and sample size, basic linear regression and curve fitting.
- 4. Error Analysis and Basic Statistics: Measuring errors, uncertainties, parent and sample distributions, mean and standard deviation of distribution, types of probability distribution, instrumental and statistical uncertainties, propagation of errors, specific error formulas, method of least square fittings.
- 5. Multivariate analysis: Multiple regression, multiple discriminant analysis, multiple analysis of variance, canonical correlation analysis, Factor analysis cluster analysis, path analysis. Computational techniques.
- 6. Survey of literature: The students will be required to review literature in their respective disciplines and submit an assignment for evaluation.

- 1. Michael P. Marde. "Research Methods for Science", Cambridge University Press, 2011.
- 2. Tobian Oetiker, Hubert Partl, Hrene Hyna and Elisabeth Schlegl, "The not so short introduction to LATEX"
- 3. T. Veerarajan and T. Ramachandran "Numerical methods", Tata McGraw Hill, New Delhi, 2008.
- 4. Philip R. Bevington and D. Keith Robinson, "Data reduction and error analysis for physical sciences" McGraw-Hill Education, 2002.

PHS	901 ′	Theoret	ical me	thods i	n Physic	S	L-3	, T-1, P	- -0	4 Cred	its				
Pre-ro	equisit	e: Unde	rstandii	ng of po	ost gradua	ate level p	hysics								
Ph.D. treatm	studei ient in	e Objectives: The objective of the course on Theoretical methods in Physics is to equip the students with the mathematical techniques that he/she needs for understanding theoretical ent in different courses taught in this class and for developing a strong background if he/she is to pursue research in physics as a career.													
Cours	se Out	e Outcomes: At the end of the course, the student will be able to													
CO1	unde	rstand va	arious t	heoretic	cal metho	ods used ir	n advar	nce cou	rses in	physics	now a da	ays.			
CO2	unde	rstand N	MR an	d relate	d technic	ues and d	ensity	functio	nal theo	ory.					
CO3	unde	rstand a	nd solve	e the Ko	ohn-Shan	n equation	s and t	theorem	is in co	ndensed	l matter p	physics.			
CO4	unde	rstand el	ementa	ry parti	cle physi	cs and rel	ativist	ic kiner	natics.						
CO5						ucture mo									
Mapp	oing of	course	outcom	es with	the pro	gram out	comes	6							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12			
CO1	3	3	2	2	2	1	1	2	2	1	1	2			
CO2	3	3	2	1	2	1	1	2	2	1	1	2			
CO3	3	3	2	2	2	1	1	2	2	1	1	2			
CO4	3	3	2	2	2	1	1	2	2	1	1	2			
CO5	3	3	2	2	3	1	3	3	3	3	3	3			

- 1. Theoretical Techniques in Condensed Matter Physics: Theory of NMR techniques, Theory of Anharmonic solids, Theory of Liquid state and Density functional theory.
- 2. Advanced Quantum Techniques: Review of electronic properties, Density Functional Theory, Hohenberg- Kohn theorems, Kohn-Sham ansatz, Intricacies for exchange & correlation, Solving Kohn-Sham equations, Norm conserving pseudopotentials, Unscreening and core corrections, Transferability and hardness of pseudopotentials.
- 3. Theoretical Techniques in Particle Physics: Classification of fundamental forces; Elementary particles (quarks, baryons, mesons, leptons); Spin and parity assignments, isospin, strangeness; Gell-Mann-Nishijima formula; C, P, and T invariance and applications of symmetry arguments to particle reactions, party, nonconservation in weak interaction; Relativistic kinematics
- 4. Theoretical Techniques in Nuclear Physics: Review of static properties, binding energy, density, nuclear forces, and potentials, shell model, collective models and energy levels, Hartree Fock theory of nuclear shape and states with good J Quantum number and applications, correlations in nuclear matter and exclusive principle correlations, Bethe- Goldstone equation and G-matrix, heavy-ion physics at low and intermediate energies, simulations and QMD model, hot and dense matter and multi fragmentation.

- 1. Solitons an Introduction by P.G. Drazin and R.S. Johan (Cambridge Univ. Press, 1989)
- 2. Chaos in Dynamical Systems by E. Ott (Cambridge Univ., Press, 1993)
- 3. Gauge theory of Elementary Particles by T.P. Cheng and Li (Oxford)2000
- 4. Structure of the Nucleus by M.A. Preston and R.K Bhadhuri.
- 5. Quantum Theory of Solids by C. Kittel
- 6. Liquid State Physics by N.H. March and M.P. Tosi
- 7. Quantum field theory by Lahiri and Pal, Narosa Publishing house

PHS	902	Гechniq	ues in]	Experi	mental P	hysics	L-3	, T-1, P	-0	4 Cred	its	
Pre-ro	equisit	e: Unde	rstandii	ng of po	ost gradua	ate level p	hysics					
the Ph treatm choose	n.D.stud nent in es to pr	dents wi differen ursue res	th the n t course search i	nathem es taugh n physi	atical tec it in this cs as a ca		hat he/ for de	she nee velopin	ds for u g a stro	indersta	nding the	eoretical
Cours						, the stud						
CO1	Unde matte		various	experir	nental te	chniques	for de	scribing	g intera	ction o	f radiatio	ons with
CO2			alysis fo	r exper	imental d	lata.						
CO3	Knov	vledge a	bout th	e differ	ent types	of the rac	liation	detecto	rs.			
CO4	Appl	y the kn	owledg	e of det	ectors fo	r various	applica	tions				
CO5		pped wi atories a				e about th	ne expe	erimenta	al meth	ods use	ed in the	various
Mapp						gram out	tcomes	5				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	3	3	2	2	2	1	1	2	2	1	1	2
CO2	3	3	2	1	2	1	1	2	2	1	1	2
CO3	3	3	2	2	2	2	2	2	2	1	1	2
CO4	3	3	2	2	2	1	1	2	2	1	1	2
CO5	3	3	2	2	3	1	3	3	3	3	3	3

- 1. Light/Optical Microscopy: Optical Microscope basic principles & components, different examination modes (bright field illumination, oblique illumination, dark field illumination, phase contrast, polarized light, hot stage, interference techniques), stereomicroscopy, photo-microscopy.
- 2. Surface Analysis: Atomic *force* microscopy, Scanning Tunneling microscopy, Secondary ion mass spectrometry, Auger electron spectroscopy, X-ray photoelectron spectroscopy, image analysis.
- 3. Thermal Analysis: Differential thermal analysis, Differential scanning calorimetry and Thermo-grayometric analysis. Fourier transform infrared spectroscopy. Ultraviolet visible spectrophotometer.
- 4. Electron Microscopy: Interaction of electrons with solids, Scanning Electron Microscopy and specimen preparation techniques, Wavelength dispersive spectroscopy.
- 5. Diffraction Methods: Generation and detection of K-rays, Diffraction of X-rays, X-ray diffraction techniques, X-ray methods of analysis including powder diffraction, Wavelength and energy dispersive X-ray fluorescence (XRF).
- 6. Radiation analysis: Raman analysis and spectroscopy, Photo luminance, Photo multiplier tube, Experimental methods for probing nuclear structure: Experimental methods for gamma-ray, conversion-electron and charged-particle spectroscopy associated with nuclear reactions and Coulomb excitation, Compton suppressed Ge detectors, multiplicity filter, Neutron detectors, Sector field electron spectrometer.

- 1. Materials Characterization, Metals Hand Book, 9th edition, Vol 10.
- 2. Cullity, B.D., "Elements of X-ray Diffraction", Addison Wesley Publishing Co., Massachusetts, 1968.
- 3. Phillips, V.A., 'Modern metallographic techniques and their applications", Wiley Interscience, 1971.
- 4. Cherepin and Malik, "Experimental Techniques in Physical Metallurgy:, Asia Publishing Co. Bombay, 1968.
- 5. Brandon D.G., "Modern Techniques in Metallography", Von Nostrand Inc. NJ. USA, 1986.
- 6. Thomas G., "Transmission electron microscopy of metals", John Wiley, 1996.
- 7. Weinberg F., "Tools and Techniques in Physical Metallurgy", Volume I & II, Marcel and Decker.

PHS	903 A	Advance	ed Con	densed	Matter 1	Physics	L-3	, T-1, F	P-0	4 Cred	its	
Pre-ro	equisit	e: Unde	rstandii	ng of po	ost gradua	ate level p	hysics					
equip lattice	the Ph. vibrat	D. stude ions, di	ents wit electric	h the teo proper	chniques ties, ene	ourse on in Transp rgy band gating the	ort, op theory	tical pro	operties ansport	in Mes theory	oscopic S so that	Systems, they are
Cours	se Outo	comes:	At the e	end of th	ne course	, the stud	ent wil	l be abl	e to			
CO1	Com	orehend	and de	scribe t	he Optica	al properti	es of s	olids er	nployin	ig macro	oscopic t	heories
CO2		in vario		s of ma	gnetic ph	enomeno	n in sol	ids, uno	lerlying	g physic	s, and co	rrelation
CO3				ize the u	use of de	fects and	disloca	tions				
CO4						nd applica						
CO5						deformat			ler on th	ne behav	vior of sc	olids
wapp	oing oi	course	outcom	ies with	i the pro	gram out	comes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	3	3	2	2	2	1	1	2	2	1	1	2
CO2	3	3	2	1	2	1	1	2	2	1	1	2
CO3	3	3	2	2	2	1	1	2	2	1	1	2
CO4	3	3	2	2	2	1	1	2	2	1	1	2
CO5	3	3	2	2	3	1	3	3	3	3	3	3

- Transport Properties: Boltzmann equations, Electrical Conductivity, Calculation of relaxation time, Impurity scattering, Ideal resistance, Carrier mobility, General Transport coefficients, Thermal conductivity, Thermoelectric effects, Lattice conduction, Phonon drag, Hall effect, Two Band Model- Magneto resistance.
- 2. Mesoscopic Systems: Low-dimensional systems; characteristic lengths; transverse mode or magneto-electric sub-bands; resistance of a ballistic conductor; Landauer formula; reformulation of Ohm's law; Landauer-Buttiker formula; transmission function and S-conductance fluctuations.
- 3. Quantum Hall Effect : Classical Hall effect; integral quantum Hall effect (IQHE); fractional quantum Hall effect (FQHE) and Laughlin's theory.
- 4. Material at Nanoscale: Synthesis and Fabrication methods (Physical and chemical approaches), characterization methods (microscopy, diffraction, spectroscopy techniques), surface analysis and depth profiling, techniques for physical property measurement, processing and properties of inorganic nanomaterials, special nanomaterials, Thermodynamics and statistical mechanics of small systems, Nucleation and growth of nanocrystals; kinetics of phase transformations. Effects of nanometer length scales, self assembling nanostructures molecular materials and devices, applications of nanomaterials: molecular electronics and nanoelectronics; nano-biotechnology; quantum devices; nanomagnetic materials and devices: magnetism, nanomagnetic materials, magnetoresistance; nano mechanics.
- 5. Defects and Dislocation: Lattice Vacancies, Diffusions, Color- Centers, Dislocations and their types, Strength of Alloys, Dislocation and crystal growth, Hardness of materials.

Recommended Books:

- 1. Introduction to Solid State Physics : C. Kittel (Wiley, New York) 2005.
- 2. Quantum Theory of Solids : C. Kittel (Wiley, New York) 1987.
- 3. Principles of the Theory of Solids : J. Ziman (Cambridge University Press) 1972.

PHS	904	Comput	ational	Physic	2S		L-3	, T-1, P	-0	4 Cred	its			
Pre-r	equisit	t e: Unde	rstandir	ng of po	ost gradua	ate level p	hysics							
the stu using physic	udents any hig es prob	of Ph.D gh level lems.	. studer languag	nts with ge such	the num as Fortra	of the cours nerical me n, C++, et	thods c., so t	used in hat they	compu 7 can us	tation a	nd progr	amming		
CO1 CO2 CO3 CO4 CO5	 Programme with the C++ or any other high level language. Use various numerical methods in solving physics problems. Analyze the outcome of the algorithm/program graphically. 													
Mapp	oing of	course	outcom	es with	the pro	gram out	comes	5						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12		
CO1	3	3	2	2	2	1	1	2	2	1	1	2		
CO2	3	3	2	1	2	1	1	2	2	1	1	2		
CO3	3	3	2	2	2	1	1	2	2	1	1	2		
CO4	3	3	2	2	2	1	1	2	2	1	1	2		
CO5	3	3	2	2	3	1	3	3	3	3	3	3		

- 1. Introduction to simulation approach: Introduction to modeling and simulationMethods of performance evaluation-simulation approach- Advantages and limitations, various type models and simulations, System model steps and its types involved in simulation study, Deterministic and Stochastic process, Introduction to random variables univariate models and multi-narrate models.
- Numerical methods for differential equations: Euler's method, Runge Kutta method for ordinary differential equations: stability and convergence. Partial differential equations using matrix method for difference equation, relaxation method, initial value problems, stability, convergence and qualitative properties and qualitative properties. Random numbers, Monte Carlo Integral methods, Importance sampling, Fast Fourier Transform.
- 3. Simulation Techniques: Monte Carlo methods, molecular dynamics, simulation methods for the lsing model and atomic fluids, simulation methods for quantummechanical problems, time-dependent Schrodinger equation, discussion of selected problems in Physics, nonlinear dynamics, diffusion-limited aggregation and transport properties, etc. Introduction to parallel computation, Physical Simulations: N body methods and particle simulations.

- 1. Fortran Programming, V. Rajaraman
- 2. Numerical Methods: A Computer Oriented Approach, BPB Publ. 1996.
- 3. R.S. Salaria and Rajaraman, Computer based Numerical Methods 3rd Ed. Prentice Hall India, 1980.
- 4. Mathematica, S. Wolfram, Addison. Wesley,
- 5. Application of the Monte Carlo Method, K. Binder, Springer Veriag
- 6. An Introduction to Computer Simulation Methods, H.Gould and J. Toobochnlik, Addison Wesley, 1996.
- 7. Computational Physics, S.E. Koonin and Meredith, Westview Press, 1998.

PHS	904	Comput	ational	Physic	es		L-3	, T-1, I	P-0	4 Credits				
Pre-re	equisit	e: Unde	rstandiı	ng of po	ost gradua	ate level p	hysics							
studen in diff	nts with Terent c	n the ma	themati aught ii	cal tech n this cl	niques th ass and f	ourse on I nat he/she for develog	needs	for und	erstand	ling the	oretical ti	reatment		
Cours	se Out	comes:	At the e	end of th	ne course	, the stude	ent wil	l be abl	e to					
CO1	Appl	y basics	knowle	edge of	computa	tional phy	sics in	solving	g the ph	iysics p	roblems.			
CO2	Prog	ramme v	vith the	C++ or	r any oth	er high lev	vel lan	guage.						
CO3	Use	Use various numerical methods in solving physics problems.												
CO4	Anal	yze the o	outcom	e of the	algorith	n/program	ı grapl	nically.						
CO5	1			2	U	simulation								
Mapp	ing of	course	outcom	es with	n the pro	gram out	comes	5						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12		
CO1	3	3	2	2	2	1	1	2	2	1	1	2		
CO2	3	3	2	1	2	1	1	2	2	1	1	2		
CO3	3	3	2	2	2	1	1	2	2	1	1	2		
CO4	3	3	2	2	2	1	1	2	2	1	1	2		
CO5	3	3	2	2	3	1	3	3	3	3	3	3		

- 1. Synthesis and processing: Nano particles from low- pressure, Low temperature plasmas and its applications, Low temperature compaction of nanosize powders, Nanofabrication atomic optics, Processing of nanocrystalline materials. Vapour processing of nanostructured materials.
- 2. Electrical properties: Quantized states in low-dimension systems, Self-consistent treatment of one- and two- dimensional problems, Quantum wires- metasized effects and weak localization; magnetophonon resonances; vertical tunneling, Quantum dots-fabricated quantum dots; impurity dot system; energy states, Current-voltage characteristics Vertical transport through quantum dots.
- 3. Magnetic properties: Magnetic field profile, quantum moon in nonhomogeneous magnetic fields, Diffusive transport of electrons through magnetic barrel, One- and two- dimensional magnetic modulation, Hall effect devices, Nanoscale magnets.
- 4. Optical properties: Photo refractive quantum well structures and its optical properties, electronic transport and grating formation, Diffraction Raman N diffraction; nondegenerate four-wave mixing two- wave mixing, Photorefractive effects and applications, Non-linear optical properties, Non-linear phenomenon theoretical treatment of optical on linearities.

- 1. Nalwa HS. "Handbook of Nanostructured Materials and Nanotechnology", Vol.1, 3 and 4 Academic Press 2000.
- 2. Ying J.Y. 'Nanostructured materials' Academic Press, U.S.A ,2001.

PHS906	Advanced Particle Physics	L-3, T-1, P-0	4 Credits

Pre-requisite: Knowledge of particle physics

Course Objectives: The objective of the course on **Advanced Particle Physics** is to expose the students of Ph.D. to the relatively advanced topics related to symmetry breaking in quantum field theory, standard model of particle physics, QCD and quark model, and various unification schemes so that they understand these aspects properly and are well equipped to pursue a career in high energy physics.

CO1		Understanding of various global and local gauge symmetries of system, invariance										
		of action, symmetry breaking, and Higgs mechanism.										
CO2		Need for standard model of particle physics and its limitations and the properties of										
		QCD.										
CO3		The problem of divergencies in quantum field theories and the renormalisation methods.										
CO4		Asymptotic freedom and infrared slavery of the running coupling constant in non- abelian gauge theory of strong interactions -QCD.										
CO5		Physic	s beyor	nd the S	tandard	Model	Physics.					
Mapp	oing of	course	outcon	nes witł	1 the pr	ogram	outcome	es				
Марр	PO1	course	outcom	nes with	h the pr	ogram	outcome PO7	PO8	PO9	PO10	PO11	PO12
Mapp CO1		1	1	1	•		1		PO9 2	PO10	PO11 1	PO12 2
	PO1	PO2	PO3	PO4	PO5		1	PO8		PO10 1 1	PO11 1 1	
CO1	PO1 3	PO2 3	PO3 2	PO4	PO5 2	PO6	PO7 1	PO8 2	2	1	1	2
<u>CO1</u> CO2	PO1 3 3	PO2 3 3	PO3 2 2	PO4 2 1	PO5 2 2	PO6 1 1	PO7 1 1	PO8 2 2	2 2	1	1	2 2

- 1. Symmetries and Symmetry Breaking in QFT: Continuous groups: Lorentz group SO(1,2) and its representations, Dirac, Weyl and Majorana fermions, Unitary groups and Orthogonal groups and their representations, Discrete symmetries: Parity, Charge Conjugation and Time reversal Invariance, CP, CPT. (Lectures 10)
- 2. Global and Local invariances of the Action: Approximate symmetries, Noethers theorem, Spontaneous breaking of symmetry and Goldstone theorem, Higgs mechanism, Abelian and Non-Abelian gauge fields, Lagrangian and gauge invariant coupling to matter fields. (Lectures 10)
- 3. **Standard Model of Particle Physics:** SU(2) x SU(1) x U(1) gauge theory, Coupling to Higgs and Matter fields of 2 generations, Gauge boson and fermion mass generation via spontaneous symmetry breaking, CKM matrix, Low energy Electroweak effective theory and Decoupling, Elementary electroweak scattering processes. (Lectures 10)
- 4. **QCD and quark model:** Asymptotic freedom and Infrared slavery, confinement hypothesis, Approximate flavor symmetries of the QCD lagrangian, Classification of hadrons by flavor symmetry: SU(1) and SU(2) multiplets of Mesons and Baryons, Chiral symmetry and chiral symmetry breaking, Parton model and Deep inelastic scattering structure functions.

(Lectures 10)

Text Books:

- 1. Gauge Theory of Elementary Particle Physics: T.P Cheng & L.F. Li (Oxford).
- 2. An Introductory Course of Particle Physics: Palash Pal (CRC Press).

Reference Books:

- 1. First Book of Quantum Field Theory: A. Lahiri & P. Pal, Narosa, New Delhi.
- 2. Introduction to Quantum Field Theory: M. Peskin & D.V. Schroeder. (Levant Books).
- 3. Dynamics of the Standard Model: J.F. Donoghue (Cambridge University Press).

PHS9	07	Ren	Renewable Energy Resources					, T-1, P	-0	4 Credits				
Pre-re	equisite	: Under	standing	g of sem	iconduc	tor phys	sics							
	e the Ph					of the co alternat								
Cours	se Outc	omes: A	t the en	d of the	course,	the stud	lent will	be able	to					
CO1			Understand the energy demand of world & distinguish between traditional and alternative form of energy.											
CO2		Des	Describe the concept of solar energy radiation and thermal applications.											
CO3		Ana	lyze ma	king of	solar ce	ll and its	s types.							
CO4						v source,								
CO5			A			e energy		ean ther	mal ene	ergy con	version.			
Mapp	ing of c	course o	utcome	s with t	he prog	gram ou	tcomes							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2		
CO1	3	3	2	2	-	1	1	-	2	1	1	2		
CO2	3	3	2	1	-	1	1	-	2	1	1	2		
CO3	3	3	2	2	-	1	1	-	2	1	1	2		
CO4	3	3	2	2	-	1	1	-	2	1	1	2		
				1	1	1	1	1		+	_	3		

- 1. **Introduction**: Production and reserves of energy sources in the world and in India, need for alternatives, renewable energy sources. (Lectures 8)
- Solar Energy: Thermal applications, solar radiation outside the earth's atmosphere and at the earth's surface, Principal of working of solar cell, Performance characteristics of solar cell. Types of solar cell, crystalline silicon solar cell, Thin film solar cell, multijunction solar cell, Elementary ideas of perovskite solar cell, dye synthesized solar cell and Tandem solar cell, PV solar cell, module array, and panel, Applications. (Lectures 11)
- 3. Hydrogen Energy: Environmental considerations, solar hydrogen through photo electrolysis and photocatalytic process, physics of material characteristics for production of solar hydrogen. Storage processes, solid state hydrogen storage materials, structural and electronic properties of storage materials, new storage modes, safety factors, use of hydrogen as fuel; use in vehicles and electric generation, fuel cells. (Lectures 10) Page 7 of 4

4. Other sources: Nature of wind, classification and descriptions of wind machines, power coefficient, energy in the wind, wave energy, ocean thermal energy conversion (OTEC), system designs for OTEC, basic idea about biogas, biofuel, and biodiesel.

(Lectures 8)

Text Books:

1. Solar Energy: S.P. Sukhatme (Tata McGraw-Hill, New Delhi), 2008.

Reference Books:

- 1. Solar Cell Devices: Fonash (Academic Press, New York), 2010.
- 2. Fundamentals of Solar Cells, Photovoltaic Solar Energy: Fahrenbruch and Bube (Springer, Berlin), 1982.
- 3. Photoelectrochemical Solar Cells: Chandra (New Age, New Delhi).

PHS 90	1	Researc	ch and Publication ethics				L-3, 1	<u>-1, P-0</u>	4	Credits		
Pre-requ	Pre-requisite: Understanding of post graduate level physics and research											
Course (the Ph.D theoretic backgrou	D. stud al trea and if h	ents wi tment i le/she cl	th the n diffe hooses	mather rent co to purs	matical ourses t ue resea	techni taught arch in	ques th in this physics	nat he/s class a s as a ca	she nee and for areer.	eds for	underst	anding
Course (1	liarizin										
	Falli	IIaIIZIII	g with i	inorar p	intosop	my of r	Cescale.	n Lune	5			
CO2		cquire 1 viour in		•	definit	tion, co	ncept a	and pro	blems	that le	ad to un	ethical
CO3	The s	students	will u	nderstai	nd pred	atory p	ublishe	rs and j	ournals	5		
CO4	Stude		learn	how to	search	relevar	ıt journ	als and	researc	ch pape	ers using	online
CO5	Ident	ify the	challen	ging pr	oblems	in rese	arch in	tegrity a	and inte	ellectua	l honesty	у.
Mapping	g of co	urse ou	tcomes	s with t	he pro	gram o	utcom	es				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO1 2
CO1	3	3	2	2	2	1	1	2	2	1	1	2
CO2	3	3	2	1	2	1	1	2	2	1	1	2
CO3	3	3	2	2	2	1	1	2	2	1	1	2
CO4	3	3	2	2	2	1	1	2	2	1	1	2
CO5	3	3	2	2	2	1	3	2	3	3	3	3

Detailed syllabus as per UGC guidelines (letter No.D.O.No.F.1-112018 (Journal/CARE)

B.Sc. (Hons.) Physics

Course Structure and Syllabus (Based on Choice Based Credit System) 2019 onwards

Scheme & Syllabus (B.Sc. Hons. Physics) Batch 2019 & Onwards

Page 1 of 49

Bachelor of Sciences (Hons) Physics Program

Duration: 3 Years (Semester System)

Eligibility: The prospective student must have 10+2 or equivalent with minimum 50% marks or equivalent in aggregate with Physics as one of the main subjects. A relaxation for the minimum marks will be as per Punjab government regulations.

PROGRAM EDUCATIONAL OBJECTIVES: At the end of the program, the student will be able to:

PEO1	Apply principles of basic science concepts in understanding, analysis and prediction of physical systems.
PEO2	Develop human resource with knowledge, abilities and insight in Physics and related fields required for career in academia and industry.
PEO3	Engage in lifelong learning and adapt to changing professional and societal needs.

PROGRAM OUTCOMES: At the end of the program, the student will be able to:

PO1	Apply the knowledge gained to solve the scientific problems.
PO2	Identify, formulate, and analyze scientific problems reaching substantiated conclusions using first principles of mathematical, physical, and chemical sciences.
PO3	Design solutions for physics problems that meet the specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal consideration.
PO4	Use research-based knowledge and methods including design of experiments, analysis, interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Create, select, and apply appropriate techniques, resources, and modern scientific tools to physics problems with an understanding of the limitations.
PO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues, and the consequent responsibilities relevant to the professional scientific practice.
PO7	Understand the impact of the scientific solutions in societal and environmental

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2019 & Onwards

	contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Apply ethical principles and commit to the norms of scientific practice.
PO9	Function effectively as an individual, and as a member or leader in diverse teams,
	and in multidisciplinary settings.
PO10	Communicate effectively on scientific activities with the Scientific/Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Demonstrate knowledge and understanding of the scientific principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of scientific and technological change.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Understand the concepts of different branches of physics.
PSO2	Demonstrate expertise to conduct wide range of scientific experiments.
PSO3	Apply the concepts of physics in areas of mechanics, electromagnetism, solid state, nuclear, etc., in industry, academia, and day-to-day life.

SEMESTER FIRST

Course Code	Course TitleType of courseLoad Allocation			Marks Dis	Total Marks	Cr			
			L	Т	P	Internal	External		
UC-BSHP- 111-19	Optics	Core Course Theory and	4	-	-	40	60	100	4
UC-BSHP- 112-19	Electricity and Magnetism	– Practical	4	-	-	40	60	100	4
UC-BSHP- 113-19	Physics Lab-I		-	-	4	30	20	50	2
UC-BSHM 104-19	Calculus-I	General Elective and Practical	4	1	-	40	60	100	4
UC-BHCL-I- 101-19	Inorganic Chemistry	– Practical	4	1	-	40	60	100	4
UC-BHCP-I- 102-19	Chemistry Lab-I		-	-	4	30	20	50	2
UC-BSHL- 105-19	Communicative English -I	Ability Enhancement	2	-	-	20	30	50	2
06A/106B- Con	Punjabi Compulsory-I or Mudhli Punjabi-I	Compulsory Course	2	-	-	20	30	50	2
TOTAL			16	4	8	260	340	600	24

L: Lectures T: Tutorial P: Practical Cr: Credits

SEMESTER SECOND

Course Code	Course Title	Type of course		Load Marks Distribution Allocation				Total Marks	Cr
			L	T	P	Internal	External		
UC-BSHP- 121-19	Waves and Vibrations	Core Course Theory and	4	-	-	40	60	100	4
UC-BSHP- 122-19	Mechanics	- Practical	4	-	-	40	60	100	4
UC-BSHP- 123-19	Physics Lab-II	-	-	-	4	30	20	50	2
UC-BSHM- XXX-19	Mathematics	General Elective and	4	1	-	40	60	100	4
UC-BSHC- XXX-19	Organic Chemistry	- Practical	4	1	-	40	60	100	4
UC-BSHC- XXX-19	Chemistry Lab-II		-	-	4	30	20	50	2
UC-BSHX- XXX-19	Communicative English -II	Ability Enhancement	2	-	-	20	30	50	2
UC-BSHX- Punjabi XXX-19 Compulsory -II or Mudhli Punjabi-II		- Compulsory Course	2	-	-	20	30	50	2
,	ГОТАL		16	4	8	260	340	600	24

L: Lectures T: Tutorial P: Practical Cr: Credits

Annexure-IV

B.Sc. (Hons.) Physics

Study Scheme (Based on Choice Based Credit System) 2021 onwards

Scheme & Syllabus (B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 1 of 3

Course Code	Course Title	Type of course	A	Load llocat		Marks Di	Total Marks	Cr	
			L	Т	P	Internal	External		
BSHP-111- 21	Optics	Core Course Theory and	3	1	-	40	60	100	4
BSHP-112- 21	Electricity and Magnetism	- Practical	3	1	-	40	60	100	4
BSHP-113- 21	Physics Lab-I	-	-	-	4	30	20	50	2
BSHM-114- 21	Calculus	General Elective and	3	1	-	40	60	100	4
BSHC-112- 21	Inorganic Chemistry	- Practical	3	1	-	40	60	100	4
BSHC-113- 21	Chemistry Lab-I	-	-	-	4	30	20	50	2
BHHL-105- 21	Communicative English -I	Ability Enhancement	2	-	-	20	30	50	2
BHHL- 106A-21 BHH-106B- 21	Punjabi Compulsory-I or Mudhli Punjabi-I	– Compulsory Course	2	-	-	20	30	50	2
,	TOTAL		16	4	8	260	340	600	24

SEMESTER FIRST

L: Lectures T: Tutorial P: Practical Cr: Credits

Course Code	Course Title	Type of course		Load Marks Distril Allocation		istribution	Total Marks	Cr	
			L	T	P	Internal	External		
BSHP-121- 21	Waves and Vibrations	Core Course Theory and	3	1	-	40	60	100	4
BSHP-122- 21	Mechanics	- Practical	3	1	-	40	60	100	4
BSHP-123- 21	Physics Lab-II	-	-	-	4	30	20	50	2
BSHM-204- 21	Mathematics	General Elective and Practical	3	1	-	40	60	100	4
BSHC-102- 21	Organic Chemistry		3	1	-	40	60	100	4
BSHC-102- 21	Chemistry Lab-II		-	-	4	30	20	50	2
BHHL-205- 21	Communicative English -II	Ability Enhancement	2	-	-	20	30	50	2
BHHL- 206A-21	Punjabi Compulsory	Compulsory Course	2	-	-	20	30	50	2
BHHL- 206A-21	-II or Mudhli Punjabi-II								
TOTAL			16	4	8	260	340	600	24

SEMESTER SECOND

L: Lectures T: Tutorial P: Practical Cr: Credits

M.Sc. Physics

Course Structure and Syllabus (Based on Choice Based Credit System) 2018 onwards

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Page 1 of 73

IK Gujral Punjab Technical University

VISION

To be an institution of excellence in the domain of higher technical education that serves as the fountainhead for nurturing the future leaders of technology and techno- innovation responsible for the techno-economic, social, cultural and environmental prosperity of the people of the State of Punjab, the Nation and the World

MISSION

- To provide seamless education through the pioneering use of technology, in partnership with industry and society with a view to promote research, discovery and entrepreneurship and
- To prepare its students to be responsible citizens of the world and the leaders of technology and techno-innovation of the 11st Century by developing in them the desirable knowledge, skill and attitudes base for the world of work and by instilling in them a culture for seamlessness in all facets of life.

OBJECTIVES

- To offer globally-relevant, industry-linked, research-focused, technology- enabled seamless education at the graduate, postgraduate and research levels in various areas of engineering & technology and applied sciences keeping in mind that the manpower so spawned is excellent in quality, is relevant to the global technological needs, is motivated to give its best and is committed to the growth of the Nation;
- To foster the creation of new and relevant technologies and to transfer them to industry for effective utilization;
- To participate in the planning and solving of engineering and managerial problems of relevance to global industry and to society at large by conducting basic and applied research in the areas of technologies;

- To develop and conduct continuing education programmes for practicing engineers and managers with a view to update their fundamental knowledge base and problem-solving capabilities in the various areas of core competence of the University;
- To develop strong collaborative and cooperative links with private and public sector industries and government user departments through various avenues such as undertaking of consultancy projects, conducting of collaborative applied research projects, manpower development programmes in cutting-edge areas of technology, etc;
- To develop comprehensive linkages with premier academic and research institutions within the country and abroad for mutual benefit;
- To provide leadership in laboratory planning and in the development of instructional resource material in the conventional as well as in the audio-visual, the video and computer-based modes;
- To develop programmes for faculty growth and development both for its own faculty as well as for the faculty of other engineering and technology institutions;
- To anticipate the global technological needs and to plan and prepare to cater to them;
- To interact and participate with the community/society at large with a view to inculcate in them a feel for scientific and technological thought and endeavour; and
- To actively participate in the technological development of the State of Punjab through the undertaking of community development programmes including training and education programmes catering to the needs of the unorganized sector as well as that of the economically and socially weaker sections of society.

ACADEMIC PHILOSOPHY

The philosophy of the education to be imparted at the University is to awaken the "deepest potential" of its students as holistic human beings by nurturing qualities of selfconfidence, courage, integrity, maturity, versatility of mind as well as a capacity to face the challenges of tomorrow so as to enable them to serve humanity and its highest values in the best possible way.

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Page 3 of 73

DEPARTMENT OF PHYSICAL SCIENCES

VISION

To be a knowledge nerve center in Physical Sciences, Pure and Applied Research and industry requirements for creating sustainable infrastructure and enhancing quality of life

MISSION

- To offer globally-relevant, industry-linked, research-focused, technology-enabled seamless education at the graduate, postgraduate and research levels in various areas of Physical sciences keeping in mind that the manpower so spawned is excellent in quality, is relevant to the global scientific and technological needs, is motivated to give its best and is committed to the growth of the Nation;
- 2. To develop and conduct continuing education programmes for Science graduates with a view to update their fundamental knowledge base and problem-solving capabilities in the various areas of core specialization of the University;
- 3. To develop comprehensive linkages with premier academic and research institutions within the country and abroad for mutual benefit.

M.Sc. (Physics) Program

Duration: 2 Years (Semester System)

This M.Sc. (Physics) Program includes various core, electives, and other interdisciplinary courses. The diverse lab experiments allow students to understand the fundamental aspects of the subject. A choice of advanced elective courses offers a glimpse in the frontier areas of research and allow students to work on research project as an integral part of their M.Sc. program. The program also provides adequate exposure to the students for pursuing higher education in the field of technology, research and development in Physics and related areas (M.Phil./Ph.D.) and other job opportunities in academia and industry.

Eligibility:

Pass B.Sc. with 50% marks having Physics as one of the subject. A relaxation of 5% is given in case of candidates belonging to SC/ST category.

PROGRAM EDUCATIONAL OBJECTIVES: At the end of the program, the student will be able to:

PEO1	Apply principles of basic scientific concepts in understanding, analysis, and
	prediction of physical systems.
PEO2	To develop human resource with specialization in theoretical and experimental
	techniques required for career in academia, research and industry.
PEO3	Engage in lifelong learning and adapt to changing professional and societal needs.

	AM OUTCOMES: At the end of the program, the student will be able to:
PO1	Apply the scientific knowledge to solve the complex physics problems.
PO2	Identify, formulate, and analyze advanced scientific problems reaching substantiated
	conclusions using first principles of mathematics, physical, and natural sciences.
PO3	Design solutions for advanced scientific problems and design system components or
	processes that meet the specified needs with appropriate attention to health and safety
	risks, applicable standards, and economic, environmental, cultural and societal
	consideration.
PO4	Use research-based knowledge and methods including design of experiments,
	analysis and interpretation of data, and synthesis of the information to provide valid
	conclusions.
PO5	Create, select, and apply appropriate techniques, resources, and modern scientific
	tools to complex physics problems with an understanding of the limitations.
PO6	Apply reasoning informed by the contextual knowledge to assess societal, health,
	safety, legal and cultural issues, and the consequent responsibilities relevant to the
	professional scientific practice.
PO7	Understand the impact of the scientific solutions in societal and environmental
	contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Apply ethical principles and commit to the norms of scientific practice.
PO9	Function effectively as an individual, and as a member or leader in diverse teams,
	and in multidisciplinary settings.
PO10	Communicate effectively on scientific activities with the Scientific/Engineering
	community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give
	and receive clear instructions.
PO11	Demonstrate knowledge and understanding of the scientific principles and apply
	these to one's own work, as a member and leader in a team, to manage projects and in
	multidisciplinary environments.
PO12	Recognize the need for, and have the preparation and ability to engage in independent
	and life-long learning in the broadest context of scientific and technological change.

PROGRAM OUTCOMES: At the end of the program, the student will be able to:

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Understand the basic and advance concepts of different branches of physics.
PSO2	Perform and design experiments in the areas of electronics, atomic, nuclear, condensed matter, and computational physics.
PSO3	Apply the concepts of physics in specialized areas of condensed, nuclear, renewable energies, particle physics, etc., in industry, academia, research and day today life.

Course Code	Course Title		Load ocat		-	rks bution	Total Marks	Credits
		L	T	P	Internal	External		
MSPH411-18	Mathematical Physics-I	3	1	-	30	70	100	4
MSPH412-18	Classical Mechanics	3	1	-	30	70	100	4
MSPH413-18	Quantum Mechanics-I	3	1	-	30	70	100	4
MSPH414-18	Electronics	3	1	-	30	70	100	4
MSPH415-18	Computational Physics	3	1	-	30	70	100	4
MSPH416-18	Electronics Lab	-	-	6	50	25	75	3
MSPH417-18	Computational Physics Lab-I	-	-	6	50	25	75	3
	15	5	12	250	400	650	26	

SEMESTER FIRST

SEMESTER SECOND

Course Code	Course Title	Load Allocation				rks bution	Total Marks	Credits
		L	Τ	P	Internal	External		
MSPH421-18	Mathematical Physics-II	3	1	-	30	70	100	4
MSPH422-18	Statistical Mechanics	3	1	-	30	70	100	4
MSPH423-18	Quantum Mechanics-II	3	1	-	30	70	100	4
MSPH424-18	Classical Electrodynamics	3	1	-	30	70	100	4
MSPH425-18	Atomic and Molecular Physics	3	1	-	30	70	100	4
MSPH426-18	Atomic, Nuclear, and Particle Physics Lab	-	-	6	50	25	75	3
MSPH427-18	Computational Physics Lab-II	-	-	6	50	25	75	3
	TOTAL	15	5	12	250	400	650	26

L: Lectures T: Tutorial P: Practical

Course Code	Course Title]	Load		Marks D	istribution	Total	Credits
		All	Allocation				Marks	
		L	T	P	Internal	External		
MSPH531-18	Condensed Matter Physics	3	1	-	30	70	100	4
MSPH532-18	Nuclear Physics	3	1	-	30	70	100	4
MSPH533-18	Particle Physics	3	1	-	30	70	100	4
MSPH534-18	Elective Subject-I	3	1	-	30	70	100	4
MSPH535-18								
MSPH536-18								
MSPH537-18	Elective Subject-II	3	1	-	30	70	100	4
MSPH538-18								
MSPH539-18								
MSPH540-18	Condensed Matter Physics	-	-	6	50	25	75	3
	Lab							
	TOTAL	15	5	6	200	375	575	23

SEMESTER THIRD

SEMESTER FOURTH

Course Code	Course Title	Load Allocation		Marks Di	istribution	Total Marks	Credits	
		L	Т	Р	Internal	External		
MSPH541-18 MSPH542-18 MSPH543-18	Elective Subject-III	3	1	-	30	70	100	4
MSPH544-18 MSPH545-18 MSPH546-18	Elective Subject-IV	3	1	-	30	70	100	4
MSPH547-18	Dissertation		12		200	100	300*	12
	6	14		260	240	500	20	

*Evaluation criteria as per IKGPTU norms.

TOTAL NUMBER OF CREDITS = 95

LIST OF DEPARTMENTAL/INTERDISCIPLINARY ELECTIVES

Elective Subject-I

S. No.	Name of the Subject	Code
1	Fibre optics and non-linear optics	MSPH534-18
2	Radiation Physics	MSPH535-18
3	Nonlinear Dynamics	MSPH536-18

Elective Subject -II

S.No.	Name of the Subject	Code
1	Plasma Physics	MSPH537-18
2	Structures, Spectra and Properties of Biomolecules	MSPH538-18
3	Science of Renewable Source of Energy	MSPH539-18

Elective-III

S.No.	Name of the Subject	Code
1	Physics of Nanomaterials	MSPH541-18
2	Experimental Techniques in Nuclear and Particle Physics	MSPH542-18
3	Superconductivity and Low Temperature Physics	MSPH543-18

Elective-IV

	Name of the Subject	Code
1	Advanced Condensed Matter Physics	MSPH544-18
2	Advanced Particle Physics	MSPH545-18
3	Environment Physics	MSPH546-18

Examination and Evaluation

Theory			
S. No.	Evaluation criteria	Weightage in Marks	Remarks
1	Mid term/sessional Tests	20	Internal evaluation (20 Marks)
2	Attendance	5	MSTs, Quizzes, assignments, attendance, etc., constitute internal
3	Assignments	5	evaluation. Average of two mid semester test will be considered for evaluation.
4	End semester examination	70	External evaluation (70 Marks) Conduct and checking of the answer sheets will at the Department level in case of University teaching Department or Autonomous institutions. For other colleges examination will be conducted at the University level.
5	Total	100	Marks may be rounded off to nearest integer.
Practic	al		
1	Evaluation of practical record/ Viva Voice	30	Internal evaluation (50 Marks)
2	Attendance	5	_
3	Seminar/Presentation	15	-
4	Final Practical Performance + Viva Voice	25	External evaluation (25 Marks)
5	Total	75	Marks may be rounded off to nearest integer.

Internal Assessment									
	Communica presenta		Re	sponse to queries	Maximum Marks	Evaluated by			
Departmental Presentation	20			30	50	Committee Member: 1.Head 2.Supervisor 3.One of Faculty Member			
Dissertation	<u> </u>								
	25	70	25 External	30 Assessment					
External Examiner			Subject Ma 50	tter	50				
	Communi and Preser			sponse to queries		Committee Member:			
Viva Voce	20			30	50	1.Head 2.External Expert 3.Supervisor 4. Director (MC) nominee			
		300							

Evaluation Process:

- 1. The subject matter evaluation can further be defined on the basis of Title, Review of literature/Motivation, Objectives, Methodology, Results and discussions, and Conclusion.
- 2. The usage of language and the subject matter shall be evaluated by the supervisor. Out of 300 marks, 95 marks are to be evaluated by the concerned supervisor.
- 3. Total 15% Plagiarism is admissible for submission of the dissertation. For (0-5)% of plagiarism, candidate should be awarded 25 marks. For >5%-10% candidate should be awarded 15 marks and for the range of > 10% to < 15%, candidate should be awarded 5 marks.
- 4. For publication candidate should be awarded full 30 marks and for presenting the work related to dissertation, candidate should be awarded 25 marks.

MSPI	H411-	18	MATHI	EMATI	CAL PI	HYSIC	S-I	L-3, 7	Г-1, Р-0)	4 Credits	
Pre-re	Pre-requisite: Understanding of graduate level mathematics											
student in diffe	s with erent c	ectives: T the math ourses tau och in phy	ematica	l technich his class	ques that s and for	t he/she	needs f	for unde	rstandin	g theore	tical tre	atment
Course	e Outo	comes: A	t the end	l of the	course, t	he stude	ent will	be able	to			
CO	1	Use com	plex var	iables fo	or solvir	ng defini	ite integ	ral.				
CO	2	Use the I	Delta an	d Gamn	na functi	ions for	describi	ng phys	ical syst	tems.		
CO	3	Solve par	rtial diff	erential	equatio	ns using	g bounda	ıry value	e proble	ms.		
CO		Describe	special	function	ns and re	ecurrenc	e relation	ons to se	lve the	physics	problem	ns.
CO	5	Use stati			-		-					
		M	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	2	2	-	1	1	-	2	1	1	2
CO2	3	3	2	1	-	1	1	-	2	1	1	2
CO3	3	3	2	2	-	1	1	-	2	1	1	2
CO4	3	3	2	2	-	1	1	-	2	1	1	2
CO5	3	3	2	3	-	2	1	-	2	1	1	2

- 1. **Complex Variables**: Introduction, Cauchy-Riemann conditions, Cauchy's Integral formula, Laurent expansion, singularities, calculus of residues, evaluation of definite integrals, Dispersion relation. *(Lectures 10)*
- 2. **Delta and Gamma Functions:** Dirac delta function, Delta sequences for one dimensional function, properties of delta function, Gamma function, factorial notation and applications, Beta function. *(Lectures 7)*
- 3. **Differential Equations:** Partial differential equations of theoretical physics, boundary value, problems, Neumann & Dirichlet Boundary conditions, separation of variables, singular points, series solutions, second solution. *(Lectures 8)*
- 4. **Special Functions:** Bessel functions of first and second kind, Generating function, integral representation and recurrence relations for Bessel's functions of first kind, orthogonality. Legendre functions: generating function, recurrence relations and special properties, orthogonality, various definitions of Legendre polynomials, Associated Legendre functions: recurrence relations, parity and orthogonality, Hermite functions, Laguerre functions.

(Lectures 10)

5. **Elementary Statistics:** Introduction to probability theory, random variables, Binomial, Poisson and Normal distribution. *(Lectures 5)*

Text Books:

1. Mathematical Methods for Physicists: G. Arfken and H.J. Weber (Academic Press, SanDiego) 7th edition, 2011.

- 1. Mathematical Physics: P.K. Chattopadhyay (Wiley Eastern, New Delhi), 2004.
- 2. Mathematical Physics: A.K. Ghatak, I.C. Goyal and S.J. Chua (MacMillan, India, Delhi), 1986.
- 3. Mathematical Methods in the Physical Sciences M.L. Boas (Wiley, New York) 2rd edition, 2007.
- 4. Special Functions: E.D. Rainville (MacMillan, New York), 1960.
- 5. Mathematical Methods for Physics and Engineering: K.F. Riley, M.P. Hobson and S.J. Bence (Cambridge University Press, Cambridge) 2rd ed., 2006.

MSPI	1412- 2	18	CLAS	SICAL	MECH	IANICS	5	L-3, 7	Г-1, Р-0)	4 Cred	its
Pre-re	quisit	e: Unders	standing	of grad	uate leve	el physi	cs					
student in the 1	ts of N noder	ectives: 7 I.Sc. stud n branche cs, Astrop	ents in t s of phy	he Lagr sics suc	angian a	and Han	niltonian	formal	isms so	that they	y can us	e these
Cours	e Outo	comes: A	t the end	d of the	course, 1	the stud	ent will	be able	to			
CO	1	Understa	and the r	necessity	of Acti	on, Lag	rangian,	and Ha	miltonia	an forma	ılism.	
CO	2		Use d'Alambert principle and calculus of variations to derive the Lagrange equations of motion.									
CO	3	Describe	the mot	tion of a	mechar	nical sys	tem usi	ng Lagra	ange-Ha	milton f	formalis	m.
CO	4	Apply e periodic					-				central	force,
CO	5	Apprecia physics mechanic	e.g., mo	olecular	spectra	, acous	tics, vił		-			
		M	apping	of cours	se outco	omes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	2	1	1	-	2	2	2	2
CO2	3	2	2	2	2	1	1	-	2	2	2	2
CO3	3	2	2	2	2	1	1	-	2	2	2	2
CO4	3	2	2	2	1	1	1	_	2	2	2	2
CO5	3	2	2	2	1	1	1	-	2	2	2	2

1. **Lagrangian Formulation:** Mechanics of a system of particles; constraints of motion, generalized coordinates, d'Alembert Principle and Lagrange's velocity-dependent forces and the dissipation function, Applications of Lagrangian formulation.

(Lectures 7)

2. **Hamilton's Principles:** Calculus of variations, Hamilton's principle, Lagrange's equation from Hamilton's principle, extension to nonholonomic systems, advantages of variational principle formulation, symmetry properties of space and time and conservation theorems.

(Lectures 7)

3. **Hamilton's Equations:** Legendre Transformation, Hamilton's equations of motion, Cyclic coordinates, Hamilton's equations from variational principle, Principle of least action.

(Lectures 7)

- 4. Canonical Transformation and Hamilton-Jacobi Theory: Canonical transformation and its examples, Poisson's brackets, Equations of motion, Angular momentum, Poisson's Bracket relations, infinitesimal canonical transformation, Conservation Theorems. Hamilton- Jacobi equations for principal and characteristic functions, Action-angle variables for systems with one-degree of freedom. (Lectures 10)
- **5. Rigid Body Motion:** Independent co-ordinates of rigid body, orthogonal transformations, Eulerian Angles and Euler's theorem, infinitesimal rotation, Rate of change of a vector, Coriolis force, angular momentum and kinetic energy of a rigid body, the inertia tensor, principal axis transformation, Euler equations of motion, Torque free motion of rigid body, motion of a symmetrical top. *(Lectures 10)*

Text Books:

- 1. Classical Mechanics: *H. Goldstein, C.Poole and J.Safko (Pearson Education Asia, New Delhi),* 2rd ed 2001.
- 2. Mechanics by L.D. Landau & E.M. Lifschz (Pergamon), 1976.

- 3. Classical Mechanics of Particles and Rigid Bodies: K.C. Gupta (Wiley Eastern, New Delhi), 1988.
- 4. Classical Mechanics- J. W. Muller- Kirsten (World Scientific) 2008.
- 5. Advanced Classical & Quantum Dynamics by W. Dittrich, W. And M Reuter, M. (Springer) 1991.
- 6. Classical mechanics by T.W.B. Kibble and Frank H. Berkshire (Imperial College Press) 2004.
- 7. Mathematical Methods of Classical Mechanics by V. I. Arnold, (Springer) 1978.

MSPH	[413-18	Quan	Quantum Mechanics-IL-3, T-1, P-04 Credits											
D	····•	Desiel		C		1 1		1						
	-			-			-	n mecha						
the stu technic	idents of y	of M.Sc vector s	. class t paces, a	to the fingular i	ormal s noment	tructure um, per	of the turbatio	Quantur subject n theory requiren	and to , and sc	equip	them w	ith the		
Cours	e Outco	mes: A	t the end	d of the	course,	the stude	ent will	be able	to					
C	CO1 Understand the need for quantum mechanical formalism and its basic principles.										ples.			
C	02			-			-	on of v uncertai	-			tet bra		
C	03	mome	entum fo	or a syst	em of p	articles.		al found						
C	04	Solve	Schrod	inger eq	uation f	or vario	us QM	systems	using ap	oproxim	ate met	hods.		
C	05	Apply	y perturl	oation th	eory to	scatterii	ng matri	ix and pa	artial wa	ve analy	ysis.			
		M	apping	of cours	se outco	omes wi	th the p	orogram	outcon	ies				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
C01	3	2	2	2	2	2	1	1	2	3	2	2		
CO2	3	2	2	2	2	2	1	1	2	2	2	2		
CO3	3	2	2	2	2	2	1	2	1	3	2	2		
CO4	3	2	2	2	2	2	2	2	2	2	2	2		
CO5	3	2	2	2	2	2	1	1	2	3	2	2		

- 1. Linear Vector Space and Matrix Mechanics: Vector spaces, Schwarz inequality, Orthonormal basis, Operators: Projection operator, Hermitian and Unitary operators, change of basis, Eigenvalue and Eigenvectors of operators, Dirac's bra and ket notation, commutators, Simultaneous eigenvectors, Postulates of quantum mechanics, uncertainty relation, Harmonic oscillator in matrix mechanics, Time development of states and operators, Heisenberg, Schroedinger and Interaction representations, Exchange operator and identical particles, Density Matrix and Mixed Ensemble. (Lectures 12)
- 2. Angular Momentum: Angular part of the Schrödinger equation for a spherically symmetric potential, orbital angular momentum operator. Eigen values and eigenvectors of L^2 and Lz. Spin angular momentum, General angular momentum, Eigen values and eigenvectors of J^2 and Jz. Representation of general angular momentum operator, Addition of angular momenta, C.G. coefficients. *(Lectures 7)*
- 3. **Stationary State Approximate Methods:** Non-Degenerate and degenerate perturbation theory and its applications, Variational method with applications to the ground states of harmonic oscillator and other sample systems. *(Lectures 7)*
- 4. **Time Dependent Perturbation:** General expression for the probability of transition from one state to another, constant and harmonic perturbations, Fermi's golden rule and its application to radiative transition in atoms, Selection rules for emission and absorption of light.

(Lectures 7)

5. Scattering Theory: Scattering Cross-section and scattering amplitude, partial wave analysis, Low energy scattering, Green's functions in scattering theory, Born approximation and its application to Yukawa potential and other simple potentials. Optical theorem, Scattering of identical particles. (Lectures 7)

Text Books:

- 1. A Text book of Quantum Mechanics: P.M. Mathews and K. Venkatesan (Tata McGraw Hill, New Delhi) 1nd edition, 2004.
- 2. Quantum Mechanics: V.K. Thankappan (New Age, New Delhi), 2004.

- 1. Quantum Mechanics: M.P. Khanna, (Har Anand, New Delhi), 2006.
- 2. Modern Quantum Mechanics: J.J. Sakurai (Addison Wesley, Reading), 2004.
- 3. Quantum Mechanics: J.L. Powell and B. Crasemann (Narosa, New Delhi), 1995.
- 4. Quantum Physics: S. Gasiorowicz (Wiley, New York), 2rd ed. 2002.
- 5. Quantum Physics: Concepts and Applcations: Nouredine Zettili (Wiley, New York), 2nd ed. 2009.

MSPH	[414-18	Ele	ElectronicsL-3, T-1, P-04 Credits									
Pre-re	quisite:	Basic	knowled	lge abou	it electro	onics						
studen of sen analog of phys	ts of M. niconduc circuits sics as p	Sc. clar ctor ph and in er their	The air ss to the sysics, b troduction r require At the en	formal a basic cir on to dig ment.	structure cuit ana gital elec	e of the alysis, f ctronics	subject ïrst-ord so that	and to e er nonli they can	quip the near ci use the	em with rcuits, (the kno DPAMP	wledge based
CO1 Understand working of Different Semiconductor devices (Constr Working Principles and V-I characteristics) and their applications.											ruction,	
CO2 Explain the construction and working of Thyristors and us various applications.									nd use	Thyrist	ors for	
(CO3	De	sign Ana	alog and	Digital	Instrum	ents and	d their a	pplicati	ons.		
(CO4	Ap	ply Bool	lean algo	ebra and	l Karnau	ıgh map	s.				
(CO5	De	sign the	Sequent	ial and	Integrate	ed circu	its.				
		M	apping	of cours	se outco	omes wi	th the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	2	2	1	2	1	2	2	2
CO2	3	3	2	1	2	2	1	2	1	2	2	2
CO3	2	2 3 2 2 2 1 2 1 2							2	2	2	
CO4	3	3	3 2 1 2 2 1 2 1							2	2	2
C05	2	2	2	2	2	2	1	2	1	2	2	2

1. Semiconductor Devices and applications: Direct and indirect semiconductors, Drift and diffusion of carriers, Photoconductors, Semiconductor junctions, Metal-semiconductor junctions - Ohmic and rectifying contacts, Zener diode, Schottky diode, Switching diodes, Tunnel diode, Light emitting diodes, Photodiodes, Solar cell, Liquid crystal displays.

(Lectures 7)

- 2. UJTs and Thyristors: Operational Principle of UJT: UJT Relaxation Oscillator circuit; PNPN Diode: Characteristics- As a Relaxation Oscillator-Rate Effect; SCR: V-I Characteristics-Gate Triggering Characteristics; DIAC and TRIAC; Thyristors: Basic Parameters- As Current Controllable Devices- Thyristors in Series and in Parallel; Applications of Thyristors- as a Pulse Generator, Bistable Multivibrator, Half and Full Wave Controlled Rectifier, TRIAC based AC power control, SCR based Crowbar Protection; Gate Turn-Off Thyristors; Programmable UJT. (Lectures 10)
- 3. **Analog and Digital Instruments:** OPAMP and its applications, Time Base; 555 Timer, Basic Digital Frequency Meter System; Reciprocal Counting Technique; Digital Voltmeter System.

(Lectures 8)

- 4. **Digital circuits:** Boolean algebra, de Morgans theorem, Karnaugh maps. (Lectures 5)
- 5. **Sequential circuits:** Flip-Flops RS, JK, D, COcked, preset and clear operation, race around conditions in JK Flip-flops, master-slave JK flip-flops, Switch contact bounce circuit. Shift registers, Asynchronous and Synchronous counters, Counter design and applications.

(Lectures8)

6. Integrated Circuits as Digital System Building Blocks: Binary Adders: Half Adder-Parallel Operation-Full Adder-MSI Adder-Serial Operation; Decoder/Demultiplexer: BCD to Decimal Decoder-4-to-16 line Demultiplexer; Data Selector/Multiplexer:16-to-1 Multiplexer; Encoder; ROM: Code Converters-Programming the ROM-Applications; RAM:Linear Selection-Coincident Selection-Basic RAM Elements Bipolar RAM-Static and Dynamic MOS RAM; Digital to Analog Converters: Ladder Type D/A Converter-Multiplying D/A Converter; Analog to Digital Converters: Successive Approximation A/D Converter.

(Lectures 8)

Text Books:

- 1. Text Book of Electronics: S. Chattopadhyay, New Central Book Agency P.Ltd., Kolkata, 2006.
- 2. Digital Principles and Applications: A.P. Malvino and D.P. Leach, Tata McGraw-Hill, Publishing Co., New Delhi.

- 1. Electronics Principles and Applications: *A.B. Bhattacharya*, New Central Book Agency P.Ltd., Kolkata, 2007.
- 2. Integrated Electronics Analog and Digital Circuits and Systems: *J. Millman, C.C Halkins and C. Parikh*, 1nd Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2010.

MSPH	1415-18	Com	putatio	nal Phy	vsics		L-	3, T-1,]	P-0	4	Credits	5
Pre-re	quisite:	Unders	tanding	of grad	uate lev	el physi	cs					
familia progra in solv	e Object wrize the mming u ing simp e Outco	studen Ising ar Ie phys	ts of M ny high sics prob	.Sc. stu level la blems.	dents w nguage	ith the such as	numeric Fortran	cal meth	ods use etc., so t	d in co	mputati	on and
	01	Appl								solving	g the p	ohysics
	 CO2 Programme with the C++ or any other high level language. CO3 Use various numerical methods in solving physics problems. 											
	04							am grap				
C	05	Simu	late the	physica	al system	ns using	simulat	tions.				
		Ma	apping (of cours	se outco	mes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	1	2	3	2	3	2
CO2	3	3	3	1	2	1	1	1	3	2	3	2
CO3	3	3	3 3 2 2 1 1 2 2									2
CO4	3	3	3	3	2	2	2	2	2	2	2	2
CO5	3	3	3	3	2	2	1	2	2	2	2	2

- 1. **Introduction to Computational Physics:** Need and advantages of high level language in physics, programming in a suitable high level language (Matlab/Mathematica/Scilab/Octave), input/output, interactive input, loading and saving data, loops branches and control flow, Matrices and Vectors, Matrix and array operations, Graphic tools: Gnuplots, Origin, Sigmaplot, Visual Molecular Dynamics, Mathematica, etc. (*Lectures 11*)
- 2. **Programming with C++:** Introduction to the Concept of Object Oriented Programming; Advantages of C++ over conventional programming languages; Introduction to Classes, Objects; C++ programming syntax for Input/Output, Operators, Loops, Decisions, simple and inline functions, arrays, strings, pointers; some basic ideas about memory management in C+. (Lectures 15)
- **3. Numerical methods:** Computer algorithms, interpolations-cubic spline fitting, Numerical differentiation Lagrange interpolation, Numerical integration by Simpson and Weddle's rules, Random number generators, Numerical solution of differential equations by Euler, predictor-corrector and Runge-Kutta methods, eigenvalue problems, Monte Carlo simulations.

(Lectures15)

Text Books:

- 1. Numerical Mathematical Analysis, J.B. Scarborough (Oxford & IBH Book Co.) 6th ed., 1979.
- 2. A first course in Computational Physics: P.L. DeVries (Wiley) 1nd edition, 2011.

- 1. Computer Applications in Physics: S. Chandra (Narosa) 1nd edition, 2005.
- 2. Computational Physics: R.C. Verma, P.K. Ahluwalia and K.C. Sharma (New Age) 2000.
- 3. Object Oriented Programming with C++: Balagurusamy, (Tata McGrawHill) 4th edition 2008.

MSPI	H416-18	Elec	Electronics LabL-3, T-1, P-04 Credits										
Pre-re	equisite:	Unders	standing	of grad	luate lev	el physi	ics elect	ronics e	xperime	ents			
studen	ts of M ngs read	Sc. clas	ss to ex	perimen	tal tech	niques i	n electr	y on Ele onics so op confi	that th	ey can v	verify so	ome of	
Cours	e Outco	mes: A	t the en	d of the	course,	the stud	lent will						
C	201	Acq	uire han	ds on ex	perienc	e of han	dling ar	nd buildi	ng elec	tronics c	ircuits.		
	CO2	Be familiar with the various components such as resistors, capacitor, inductor, IC chips and how to use these components in circuits.											
C	CO3 Be able to understand the construction, working principles and V-I characteri of various devices such as PN junction diodes, UJT, TRIAC, etc.									eristics			
C	CO4	Capa	able of u	ising co	mponen	ts of dig	gital elec	etronics	for vario	ous appl	ications	•	
C	205			0	perforn lts of ex		-	eriments	s as we	ll as acc	curately	record	
		M	apping	of cours	se outco	omes wi	th the p	orogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
C01	2	2	2	1	1	2	1	2	2	2	2	2	
CO2	2	1	2	2	2	2	1	2	2	2	2	2	
CO3	1	1	1 2 2 1 1 1 2 2 2 2								2		
CO4	2	2	2	2	2	3	1	2	2	2	2	2	
CO5	3	2	3	3	2	3	1	2	2	2	2	2	

Note: Students are expected to perform atleast 10 experiments out of following list.

- 1. Study the forward and reverse characteristics of a Semiconctor/Zener diode.
- 2. Construction of adder, subtracter, differentiator and integrator circuits using the given OP-Amp.
- 3. Study the static and drain characteristics of a JFET.
- 4. Construction of an Astable multivibrator circuit using transistor.
- 5. Construction of a single FET amplifier with common source configuration.
- 6. To study the operation of Analog to Digital convertor.
- 7. To study the operation of Digital to Analog convertor.
- 8. Construction of a low-pass filter circuit and study its output performance.
- 9. Construction of a high-pass filter circuit and study its output performance.
- 10. To verify the Dmorgan's law using Logic Gates circuit.
- 11. To study the Characteristics of Tunnel Diode.
- 12. To study Amplitude Modulation.
- 13. To study Frequency Modulation.
- 14. To study the Characteristics of SCR.
- 15. To study the Characteristics of MOSFET.
- 16. To study the Characteristics of UJT.
- 17. To study the Characteristics of TRIAC.
- 18. To verify the different Logic and Arithmetic operations on ALU system.
- 19. To study the operation of Encoders and Decoders.
- 20. To study the operation of Left and right shift registers.
- 21. To study the operation of Counters, Ring counters.
- 22. To determine the thermal coefficient of a thermistor.
- 23. To study the operation of an Integrated Circuit Timer.

Text Books:

- 1. Text Book of Electronics: S. Chattopadhyay, New Central Book Agency P.Ltd., Kolkata, 2006.
- 2. Digital Principles and Applications: A.P. Malvino and D.P. Leach, Tata McGraw-Hill, Publishing Co., New Delhi.

- 1. Electronics Principles and Applications: *A.B. Bhattacharya*, New Central Book Agency P.Ltd., Kolkata, 2007.
- 2. Integrated Electronics Analog and Digital Circuits and Systems: *J. Millman, C.C Halkins and C. Parikh*, 1ndEdition, Tata McGraw Hill Education Private Limited, New Delhi, 2010.

MSPH	I417-18	C	Computational Physics Lab-IL-3, T-1, P-04 Credits									5
Pre-re	quisite:	Unders	standing	of grad	uate lev	el nume	rical me	ethods				
familia prograt to phys	e Objec arize the mming u sics. e Outco	e of N using C	A.Sc. s ++ lang	tudents uage so	with t that the	he nun y can us	nerical se these	methods in solvin	s used ng simp	in cor	nputatio	on and
	01	App						Physic		ving va	rious pl	hysical
	202 203							level lan g/solvin		cs probl	ems.	
C	04	Solv						ical reas				ientific
C	05					experime omes wi		ta. • rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	2	2	2	1	1	2	3	2	3	2
CO2	3	3	3	1	2	1	1	1	3	2	3	2
CO3	3	3	3	2	2	1	1	2	1	2	2	2
CO4	3	3	2	2	3	1	1	1	1	1	1	1
CO5	1	3	3	3	1	1	1	1	2	1	2	2

Note: Students are expected to perform atleast 10 experiments out of following list.

- 1. To find the standard deviation, mean, variance, moments etc. of at least 15 entries.
- 2. To choose a set of 10 values and find the least squared fitted curve.
- 3. Find y for a given x by fitting a set of values with the help of cubic spline fitting technique.
- 4. To find the Roots of an Algebraic Equation by Bisection method and secant method
- 5. To find the Roots of an Algebraic Equation by Newton-Raphson Method.
- 6. To find the Roots of Linear Equations by Gauss Elimination Method.
- 7. To find the Roots of Linear Equations by Gauss-Seidal Iterative Method.
- 8. Find first order derivative at given x for a set of values with the help of Lagrange interpolation.
- 9. To perform numerical integration of a function by Trapezoidal Rule.
- 10. To perform numerical integration of a function by Simpson's Rule.
- 11. To perform numerical integration of a function by Weddle's rule.
- 12. To solve a Differential Equation by Euler's method and Modified Euler's Method.
- 13. To solve a Differential Equation by Runge Kutta method.
- 14. To find the determinant of a matrix and its eigenvalues and eigenvectors.
- 15. To generate random numbers between (i) 1 and 0, (ii) 1 and 100.

Text Books:

- 1. Numerical Mathematical Analysis, J.B. Scarborough (Oxford & IBH Book Co.) 6th ed., 1979.
- 2. A first course in Computational Physics: P.L. DeVries (Wiley) 1nd edition, 2011.

- 1. Computer Applications in Physics: S. Chandra (Narosa) 1nd edition, 2005.
- 2. Computational Physics: R.C. Verma, P.K. Ahluwalia and K.C. Sharma (New Age) 2000.
- 3. Object Oriented Programming with C++: Balagurusamy, (Tata McGrawHill) 4th edition 2008.

MSPH	H421-18		Mathematical Physics-IIL-3, T-1, P-04 Credits										
Pre-re	quisite:	Unders	standing	of grad	uate lev	el mathe	ematics						
the M theoret backgr	Sc. Studies Studie	udents atment he/she	with th in diff chooses	ne math ferent c to pursu	ematica ourses ie reseau	l techn taught rch in pł	iques t in this tysics as	Mather hat he/s class a s a caree	she nee and for	eds for	underst	anding	
			erstand	d of the the	,			oup theo	ory in al	l the bra	nches of	f	
CO2 Use Fourier series and transformations as an aid for analyzing physical prob										blems.			
	203							tical pro		-			
C	CO4			nd expre ransforn		ysical la	w in ter	ms of te	nsors ai	nd simpl	ify it by	use of	
C	205	Dev	elop ma	thematio	cal skills	s to solv	e quanti	tative p	roblems	in phys	ics.		
		M	apping	of cours	se outco	omes wi	th the p	orogram	outcor	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	2	-	1	1	-	2	1	1	2	
CO2	3	3	2	2	-	1	1	-	2	1	1	2	
CO3	3	3	2	2	-	1	1	-	2	1	1	2	
CO4	3	3	2 2 - 1 1 - 2 1 1								1	2	
CO5	3	3	2	2	-	1	1	-	2	1	1	2	

- 1. **Group Theory:** What is a group? Multiplication table, conjugate elements and classes, subgroups, Isomorphism and Homomorphism, Definition of representation and its properties, Reducible and irreducible representations, Schur's lemmas (only statements), characters of a representation. Example of C4v, Topological groups and Lie groups, three dimensional rotation group, special unitary groups SU(1) and SU(2). *(Lectures 10)*
- 2. **Tensors:** Introduction, definitions, contraction, direct product. Quotient rule, Levi-Civita symbol, Noncartesian tensors, metric tensor, Covariant differentiation.

(Lectures 7)

- 3. Fourier Series and Integral Transforms: Fourier series, Dirichlet conditions, General properties, Advantages and applications, Gibbs phenomenon, Fourier transforms, Development of the Fourier integral, Inversion theorem, Fourier transforms of derivatives; Momentum representation. Laplace transforms, Laplace transforms of derivatives, Properties of Laplace transform, Inverse Laplace transformation. *(Lectures 15)*
- 4. **Integral Equations:** Definitions and classifications, integral transforms and generating functions. Neumann series, Separable Kernels, Hilbert-Schmidt theory, Green's functions in one dimension. *(Lectures 10)*

Text Books:

- 1. Group Theory for Physicists: A.W. Joshi (Wiley Eastern, New Delhi) 2011.
- 2. Mathematical Methods for Physicists: G. Arfken and H.J. Weber, (Academic Press, San Diego) 7th edition, 2011.

- 1. Matrices and Tensors in Physics: A.W. Joshi (Wiley Eastern, New Delhi) 2005.
- 2. Numerical Mathematical Analysis: J.B. Scarborough (Oxford Book Co., Kolkata) 4th edition.
- 3. A First Course in Computational Physics: P.L. Devries (Wiley, New York) 1994.
- 4. Mathematical Physics: P.K. Chatopadhyay (Wiley Eastern, New Delhi) 2011.
- 5. Introduction to Mathematical Physics: C. Harper (Prentice Hall of India, New Delhi) 2006.

MSPI	1422-18		Stati	stical N	Iechani	cs	L	• 3, T-1,]	P-0	4	Credits	6
Pre-re	quisite:	Unders	standing	of grad	uate lev	el statis	tical me	chanics				
M.Sc. unders constit	student tand the uents.	with the macr	e techn oscopic	iques o proper	f statisti ties of	the m	emble thatter in	Statisti heory so bulk be able	o that he term	e/she ca	n use tl	hese to
	201				-			chanics		modyna	mics	
C	202	Use	ensemb	le theor	y to exp	lain the	behavio	or of Phy	sical sy	stems		
C	203	-	ain the applica		cal beha	vior of	Bose-E	instein	and Fer	mi-Dira	c syster	ns and
C	CO4	Wor	k with r	nodels o	of phase	transitio	ons and	thermo-	dynami	cal fluct	uations.	
C	205	Desc	cribe ph	ysical p	roblems	using q	uantum	statistic	s.			
		M	apping	of cours	se outco	omes wi	th the p	orogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	-	-	-	-	-	1	1	-	-	-
CO2	3	3	3	1	3	2	1	2	2	1	1	1
CO3	3	3	3	1	2	2	1	2	2	1	1	1
CO4	3	3	3	1	2	2	1	2	2	1	1	1
CO5	3	3	3	1	2	2	1	2	2	1	1	1

- 1. **The Statistical Basis of Thermodynamics:** The macroscopic and microscopic states, contact between statistics and thermodynamics, classical ideal gas, Gibbs paradox and its solution. *(Lectures 7)*
- 2. **Ensemble Theory:** Phase space and Liouville's theorem, the microcanonical ensemble theory and its application to ideal gas of monatomic particles; The canonical ensemble and its thermodynamics, partition function, classical ideal gas in canonical ensemble theory, energy fluctuations, equipartition and virial theorems, a system of quantum harmonic oscillators as canonical ensemble, statistics of paramagnetism; The grand canonical ensemble and significance of statistical quantities, classical ideal gas in grand canonical ensemble theory, density and energy fluctuations. (*Lectures 10*)
- 3. **Quantum Statistics of Ideal Systems:** Quantum states and phase space, an ideal gas in quantum mechanical ensembles, statistics of occupation numbers; Ideal Bose systems: basic concepts and thermodynamic behaviour of an ideal Bose gas, Bose-Einstein condensation, discussion of gas of photons (the radiation fields) and phonons (the Debye field); Ideal Fermi systems: thermodynamic behaviour of an ideal Fermi gas, discussion of heat capacity of a free electron gas at low temperatures, Pauli paramagnetism.

(Lectures 10)

- 4. **Elements of Phase Transitions:** Introduction, a dynamical model of phase transitions, Ising model in zeroth approximation. *(Lectures 8)*
- **5. Fluctuations:** Thermodynamic fluctuations, random walk and Brownian motion, introduction to non-equilibrium processes, diffusion equation.

(Lectures 5)

Text Books:

1. Statistical Mechanics: R.K. Pathria and P.D. Beale (Butterworth-Heinemann, Oxford), 2rd edition, 2011.

- 1. Statistical Mechanics: K. Huang (Wiley Eastern, New Delhi), 1987.
- 2. Statistical Mechanics: B.K. Agarwal and M. Eisner (Wiley Eastern, New Delhi) Ind edition, 2011.
- 3. Elementary Statistical Physics: C. Kittel (Wiley, New York), 2004.
- 4. Statistical Mechanics: S.K. Sinha (Tata McGraw Hill, New Delhi), 1990.

MSPH	[423-18		Quan	tum Me	chanics	s–II	L·	• 3, T-1,]	P-0	4	Credits	\$
Pre-re	quisite:	Prelim	inary co	ourse of	Quantu	m Mech	anics					
introdu technic these i	uce the liques of n variou	M.Sc. s Relativ s branc	tudents istic qu hes of p	to the f antum r hysics a	formal s nechani s per his	tructure cs and s/her rec	of the Quantur Juireme		and to e theory s	quip hi	m/her w	ith the
	201	Defi	ne the r		ic QM a	s the co		be able formulat		Juantum	mechar	nics
C	202		the signarticles		e of Kle	ein Gord	on and	Dirac eq	uation a	and exist	tence of	
C	203	App	ly the sy		-	-	d Noeth	er's theo	orem in	calculat	ing the	
C	°O4	Dem field		e the sec	cond qua	antizatio	n for sc	alar, Dir	ac, and	electron	nagnetic	;
C	205	-		origin o les for e	•	-		d apply	the Fey	nman ru	les to de	erive
		M	apping	of cours	se outco	omes wi	th the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	1	1	1	2	2	1	2	2
CO2	2	2	3	1	1	1	-	1	2	1	2	2
CO3	2	2	2	2	1	1	1	1	2	1	2	2
CO4	2	2	2	2	1	1	1	2	2	1	2	2
CO5	2	2	3	2	1	1	2	2	2	1	2	2

1. **Relativistic Quantum Mechanics-I:** Klein-Gordon equation, Dirac equation and its plane wave solutions, significance of negative energy solutions, spin angular momentum of the Dirac particle, the non-relativistic limit of Dirac equation.

(Lectures 10)

2. **Relativistic Quantum Mechanics-II:** Electron in electromagnetic fields, spin magnetic moment, spin-orbit interaction, Dirac equation for a particle in a central field, fine structure of hydrogen atom, Lamb shift.

(Lectures 10)

- 3. **Quantum Field Theory:** Resume of Lagrangian and Hamiltonian formalism of a classical field, Noether theorem, Quantization of real scalar field, complex scalar field, Dirac field and electromagnetic field, Covariant perturbation theory, Wick's theorem, Scattering matrix. *(Lectures 10)*
- 4. **Feynman diagrams**: Feynman rules, Feynman diagrams and their applications, Yukawa field theory, calculations of scattering cross-sections, decay rates with examples, Quantum Electrodynamics, calculations of matrix elements for first order and second order.

(Lectures 10)

Text Books:

- 1. Relativistic quantum Mechanics, J D Bjorken and S D Drell, (Tata McGraw Hill, New Delhi) 2012.
- 2. A first book of Quantum Field Theory, A. Lahiri & P. Pal, (Narosa Publishers, New Delhi), 1st ed. 2005.
- 3. Introduction to Quantum Field Theory, M. Peskin & D.V. Schroeder. (Levant Books) 2015.

- 1. Quantum Field Theory in a Nutshell: A Zee (University Press), 2012.
- 2. Lecture on Quantum Field Theory, A. Das (World Scientific), 2008.
- 3. Text Book of Quantum Mechanics-P.M. Mathews & K. Venkatesan (Tata McGraw Hill, New Delhi), 2004.
- 4. Quantum Field Theory: H. Mandl and G. Shaw (Wiley, New York), 2010.
- 5. Advance Quantum Mechanics: J.J. Sakurai (Addison- Wesley, Reading), 2004.

MSPH	1424-18	B Clas	sical E	lectrody	vnamics		L	3, T-1,]	P-0	4	Credits	5
Pre-re	quisite	: Under	standing	g of grad	luate lev	el electi	ricity an	d magne	etism			
Magne electro time va	etostatic magnet arying s	s inclu ic wave ources.	iding I is in die	Maxwell electrics;	equat EM wa	ions, a aves in	nd the bounded	course ir appl d media be able	ications , waveg	to p	ropagati	on of
C	201			and app forms ar	•			nagnetisi	m and ı	ise Max	well eq	uations
C	202	-		dynam tromagr		-	bodies	and ra	adiation	from	localize	d time
C	203			tion to the charge		-	ave pro	blems fo	or variou	is bound	lary con	ditions
C	CO4			e propag dia type			U	ic wave	s and it	s propa	gation t	hrough
C	205		-	an unde		-	t the w	aveguide	es, and	propaga	ation of	waves
		Μ	apping	of cours	se outco	omes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	2	1	2	1	1	1	2	3
CO2	2	2	1	1	1	1	1	1	1	3	2	3
CO3	2	2	2	2	2	2	1	1	1	2	2	3
CO4	2	2	1	2	1	2	1	1	1	3	2	3
CO5	1	2	1	2	1	1	1	2	2	3	2	3

1. **Electrostatics:** Laplace and Poisson's equations, Electrostatic potential and energy density of the electromagnetic field, Multipole expansion of the scalar potential of a charge distribution, dipole moment, quadrupole moment, Multipole expansion of the energy of a charge distribution in an external field, Static fields in material media, Polarization vector, macroscopic equations, classification of dielectric media, Molecular polarizability and electrical susceptibility, Clausius-Mossetti relation, Models of Molecular polarizability, energy of charges in dielectric media (Maxwell stress tensor).

(Lectures 10)

2. **Magnetostatics:** The differential equations of magnetostatics, vector potential, magnetic fields of a localized current distribution, Singularity in dipole field, Fermi-contact term, Force and torque on a localized current distribution. (Magnetic stress tensor)

(Lectures 8)

- 3. **Boundary value problems:** Uniqueness theorem, Dirichlet and Neumann Boundary conditions, Earnshaw theorem, Green's (reciprocity) theorem, Formal solution of electrostatic boundary value problem with Green function, Method of images with examples, Magnetostatic boundary value problems. *(Lectures 8)*
- 4. **Time varying fields and Maxwell equations:** Faraday's law of induction, displacement current, Maxwell equations, scalar and vector potential, Gauge transformation, Lorentz and Coulomb gauges, Hertz potential, General expression for the electromagnetic fields energy, conservation of energy, Poynting Theorem, Conservation of momentum.

(Lectures 8)

5. Electromagnetic Waves: wave equation, plane waves in free space and isotropic dielectrics, polarization, energy transmitted by a plane wave, Poynting theorem for a complex vector field, waves in conducting media, skin depth, Reflection and refraction of e.m. waves at plane interface, Fresnel's amplitude relations, Reflection and Transmission coefficients, polarization by reflection, Brewster's angle, Total internal reflection, Stoke's parameters, EM wave guides, Cavity resonators, Dielectric waveguide, optical fibre waveguide. (Lectures 10)

Text Books:

- 1. Classical Electrodynamics: S.P. Puri (Narosa Publishing House) 2011.
- 2. Classical Electrodynamics: J.D. Jackson, (New Age, New Delhi) 2009.
- 3. Introduction to Electrodynamics: D.J. Griffiths (Prentice Hall India, New Delhi) 4th ed., 2011.

- 1. Classical Electromagnetic Radiation: J.B. Marion and M.A. Heald(Saunders College Publishing House) 2nd edition, 1995.
- 2. Electromagnetic Fields, Ronald K. Wangsness (John Wiley and Sons) 1nd edition, 1986.
- 3. Electromagnetic Field Theory Fundamentals: Bhag Singh Guru and H.R. Hiziroglu

MSPI	1425-18		tomic a	nd Mole	ecular I	Physics	L	• 3, T-1,]	P-0	4	Credits	5
Pre-re	quisite	Unders	standing	of grad	uate lev	el spect	roscopy	,				
the stu	idents of	of M.Sc	c. Physic		o equip			n Atomi e knowl				
Cours	e Outco	mes: A	t the en	d of the	course,	the stud	ent will	be able	to			
C	201		e the ba atom	sic knov	wledge	of Bohr	's- Som	merfeld	Quantu	m theor	y of hy	drogen
C	202		erstand ecules	classica	al/quant	um des	cription	of ele	ctronic	spectra	of ato	m and
C	203	Use	microw	ave and	Raman	Spectro	scopy fo	or analys	sis of kr	iown mo	olecules	
С	204			frared cription	-	copic i	nformat	ion of	known	molecu	les witl	h their
С	205	Unde analy		Spin Re	sonance	e Spectro	oscopy v	with focu	us on N	MR for	molecul	ar
		Ma	apping	of cours	se outco	omes wi	th the p	orogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	2	2	1	1	2	2	3	1	2
CO2	2	2	3	3	2	1	2	2	2	3	1	1
CO3	2	2	3	3	2	1	2	2	2	3	1	3
CO4	2	2	3	3	2	1	2	2	2	3	1	3
CO5	2	2	3	3	2	1	2	2	2	3	1	3

- Electronic Spectroscopy of Atoms: Bohr-Sommerfeld model of atomic structure, Electronic wave function and atomic quantum numbers – hydrogen spectrum – orbital, spin and total angular momentum - fine structure of hydrogen atom – many electron spectrum: Lithium atom spectrum, angular momentum of many electrons – term symbols – the spectrum of helium and alkaline earths – equivalent and non-equivalent electrons –X-ray photoelectron spectroscopy. (Lectures 8)
- Electronic Spectroscopy of Molecules: Diatomic molecular spectra: Born-Oppenheimer approximation – vibrational spectra and their progressions – Franck-Condon principle – dissociation energy and their products –rotational fine structure of electronic-vibration transition - molecular orbital theory – the spectrum of molecular hydrogen – change of shape on excitation – chemical analysis by electronic spectroscopy – reemission of energy – fundamentals of UV photoelectron spectroscopy. (Lectures 9)
- Microwave and Raman Spectroscopy: Rotation of molecules and their spectra diatomic molecules intensity of line spectra the effect of isotropic substitution non-rigid rotator and their spectra polyatomic molecules (linear and symmetric top molecules) Classical theory of Raman effect pure rotational Raman spectra (linear and symmetric top molecules). (Lectures 8)
- 4. **Infra-red and Raman Spectroscopy:** The energy of diatomic molecules Simple Harmonic Oscillator the Anharmonic oscillator the diatomic vibrating rotator vibration-rotation spectrum of carbon monoxide –breakdown of Born-Oppenheimer approximation the vibrations of polyatomic molecules –influence of rotation on the spectra of polyatomic molecules (linear and symmetric top molecules) Raman activity of vibrations vibrational Raman spectra vibrations of Spherical top molecules.

(Lectures 8)

Spin Resonance Spectroscopy Spin and magnetic field interaction – Larmor precession – relaxation time – spin-spin relaxation - spin–lattice relaxation - NMR chemical shift - coupling constants – coupling between nuclei – chemical analysis by NMR – NMR for nuclei other than hydrogen – ESR spectroscopy - fine structure in ESR. (Lectures 8)

Text Books:

- 1. Fundamentals of Molecular Spectroscopy: Colin N. Banwell and Elaine M. McCash (Tata McGraw-Hill Publishing Company limited).
- 2. Physics of Atoms and Molecules: B. H. Bransden and C. J. Joachain.

- 1. Physical method for Chemists (Second Edition): Russell S. Drago (Saunders College Publishing).
- 2. Introduction to Atomic Spectra: H.E. White-Auckland McGraw Hill, 1924.
- 3. Spectroscopy Vol. I, II & III: Walker & Straughen
- 4. Introduction to Molecular spectroscopy: G.M. Barrow-Tokyo McGraw Hill, 1961.
- 5. Spectra of diatomic molecules: Herzberg-New York, 1944.

MSPI	H426-18	A	tomic, I	Nuclear Physics	·	article	L	• 3, T-1,]	P-0	4	Credits	5
Pre-re	equisite	Unders	standing	of grad	uate lev	vel atomi	ic spect	roscopy	and nuc	lear phy	vsics	
to exposed to expose the to expose so that sophis	ose the s t they ca ticated e	students an verif equipme	s of M.S y some ent.	c. stude of the	ents to e results o	xperime obtained	ntal tec in theo	bmic, Nu hniques bry and be able	in atom develop	ic and n	uclear p	ohysics
	201	Acq		ds on ex	xperienc			cle dete		ch as G	M coun	ter and
	202 203			1				ious inp		output si	gnals.	
C	CO4	Perference	orm sci lts of nu	entific clear ex	experim perimer	ients as its.	well a	s accura	ately re			
	205							l thinkin program	-		l reason	ing.
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	2	2	2	2	2	2	2
CO2	1	1	1	2	1	2	1	2	2	2	2	2
CO3	1	1	1	2	1	2	1	2	2	2	2	2
CO4	1	2	2	2	1	2	2	2	2	2	2	2
CO5	1	2	2	2	1	2	2	2	2	2	2	2

Note: Students are expected to perform atleast 10 experiments out of following list.

- 1. Determination of e/m of electron by Normal Zeeman Effect using Febry Perot interferometer.
- 2. To verify the existence of Bohr's energy levels with Frank-Hertz experiments.
- 3. Determination of Lande's factor of DPPH using Electron-spin resonance (E.S.R.) spectrometer.
- 4. Determination of ionization Potential of Lithium.
- 5. Analysis of pulse height of gamma ray spectra.
- 6. To study the characteristics of G.M. tube.
- 7. To verify the inverse square law using GM counter.
- 8. To determine the dead time of G.M. counter.
- 9. To study absorption of beta particles is matter using GM counter.
- 10. To study Gaussian distribution using G.M. counter.
- 11. To estimate the efficiency of GM detector for Gamma and Beta source.
- 12. Determination of Planck's constant using Photocell and interference filters.
- 13. Verification of Inverse square law using Photocell.
- 14. To study Gaussian distribution using scintillation counter.
- 15. To study absorption of gamma radiation by scintillation counter.
- 16. To estimate the efficiency of Scintillator counter.

Text Books:

- 1. Fundamentals of Molecular Spectroscopy: Colin N. Banwell and Elaine M. McCash (Tata McGraw-Hill Publishing Company limited).
- 2. Physics of Atoms and Molecules: B. H. Bransden and C. J. Joachain.

- 1. Physical method for Chemists (Second Edition): Russell S. Drago (Saunders College Publishing).
- 2. Introduction to Atomic Spectra: H.E. White-Auckland McGraw Hill, 1924.
- 3. Spectroscopy Vol. I, II & III: Walker & Straughen
- 4. Introduction to Molecular spectroscopy: G.M. Barrow-Tokyo McGraw Hill, 1961.
- 5. Spectra of diatomic molecules: Herzberg-New York, 1944.

MSPI	1427-18		omputa	tional H	Physics	Lab-II	L	- 3, T-1,]	P-0	4	Credits	5
Pre-re	quisite:	Unders	standing	g of grad	uate lev	el nume	rical me	ethods a	nd C++			
studen as C+- physic proble	ts of M. ⊦ langua al data, ms.	Sc. clas age for so that	s in unc simulati they ar	lerstand on of re e well o	ing num esults fo equippe	erical m or differe d in the	ethods, ent phys use of	the usag sics prol comput	ge of hig blems a er for s	hysics-I gh level nd grapl olving p	languag hic anal	ge such ysis of
	e Outco	Und		and app	-			be able		nethods	in solvi	ng the
	202	Writ	e progra	amme w			•	r high le			11	
	203 204	Solv						-		g physic: thinking	-	
C	205			outationa allied fi		cs in fr	ontier a	reas of	pure ar	nd appli	ed resea	arch in
		M	apping	of cours	se outco	omes wit	th the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	2	1	1	1	3	2	3	2
CO2	3	3	3	2	2	1	1	2	1	2	2	2
CO3	1	2	1	3	1	2	1	1	1	1	1	1
CO4	3	3	2	2	3	1	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1	3	2	1	1

- 1. Write a program to study graphically the EM oscillations in a LCR circuit (use Runge-Kutta Method). Show the variation of (i) Charge vs Time and (ii) Current vs Time.
- 2. Study graphically the motion of falling spherical body under various effects of medium (viscous drag, buoyancy and air drag) using Euler method.
- 3. Study graphically the path of a projectile with and without air drag using FN method. Find the horizontal and maximum height in either case. Write your comments on the findings.
- 4. Study the motion of an artificial satellite.
- 5. Study the motion of (a) 1-D harmonic oscillator (without and with damping effects).(b) two coupled harmonic oscillators. Draw graphs showing the relations: i) Velocity vs Time, ii) Acceleration vs Time iii) Position vs Time, also compare the numerical and analytical results.
- 6. To obtain the energy eigenvalues of a quantum oscillator using the Runge-Kutta method.
- 7. Study the motion of a charged particle in: (a) Uniform electric field, (b) Uniform Magnetic field, (c) in combined uniform electric and magnetic fields. Draw graphs in each case.
- 8. Use Monte Carlo techniques to simulate phenomenon of (i) Nuclear Radioactivity. Do the cases in which the daughter nuclei are also unstable with half life greater/lesser than the parent nucleus. (ii) to determine solid angle in a given geometry. (iii) simulate attenuation of gamma rays/neutron in an absorber and (iv) solve multiple integrals and compare results with Simpson's method.
- 9. To study phase trajectory of a Chaotic Pendulum.
- 10. To study convection in fluids using Lorenz system.

Text Books:

- 1. Numerical Recipes in C++ The Art of Scientific Computing, William H. Press, Saul, A.Teukolsky, William T. Vetterling, and Brian P. Flannery, (Cambridge), 1nd ed. 2001.
- 2. A First Course in Computational Physics: P.L. DeVries (John Wiley) 2000.

- 1. An introduction to Computational Physics: Tao Pang (Cambridge), 1nd ed. 2006.
- 2. Computer Applications in Physics: S. Chandra (Narosa), 2006.
- 3. Computational Physics: R.C. Verma, P.K.Ahluwalia and K.C. Sharma (New Age), 2005.
- 4. Object Oriented Programming with C++: Balagurusamy, (Tata McGrawHill), 5th ed. 2011.

MSPI	1531-18	6	Conder	nsed Ma	atter Ph	ysics	L	-3, T-1,	P-0	4	Credits	5
Pre-re	quisite	Unders	standing	g of grad	luate lev	el solid	state pł	nysics				
expose proper used ir	the stu ties, ene investi	dents of ergy bar gating t	f M.Sc. nd theor hese asj	class to y and tr pects of	o the top ansport the mate	pics like	elastic so that ndensec	constan they are l phase.	ts, lattic equipp	Matter evibrat ed with	ions, die	electric
C	01					bout the their elements				ystal str	ucture v	ia
C	202					ous lattieties of cr				r lattice	dynam	ics and
C	203		erstand		tron mo	tion in p	eriodic	solids a	nd origi	n of ene	rgy ban	ds in
C	204	To e in so	-	he basic	transpo	ort theory	y for un	derstand	ling the	transpor	rt pheno	omenon
C	205		•	ous moo f insulat		molecu	lar pol	arizabili	ty, und	lerstand	the die	electric
		M	apping	of cour	se outco	omes wi	th the p	orogran	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1	2	1	2	2	2	1	2
CO2	2	2	2	2	2	2	2	2	2	2	2	2
CO3	2	2	1	2	1	2	2	2	1	2	1	2
CO4	2	2	1	2	2	2	1	2	1	2	2	2
CO5	2	1	1	2	2	2	2	2	1	2	2	2

1. **Crystal binding and Elastic constants:** Binding in solids; Cohesive energy, Crystals of Inert gases, ionic crystal, Covalent Crystals, Analysis of elastic strains: dilation, stress components; Elastic Compliance and Stiffness: elastic constants, elastic waves in cubic crystals.

(Lectures 6)

- 2. Lattice Dynamics and Thermal Properties: Vibrations of crystal with monatomic and two atom per primitive Basis; Quantization of Elastic waves, Phonon momentum; Inelastic scattering by phonons, Phonon Heat Capacity, Planck Distribution, normal modes; Density of states, Debye T2 model; Einstein Model; anharmonic crystal interactions; thermal conductivity expansion. (Lectures 9)
- 3. **Energy Band Theory:** Electrons in a periodic potential: Bloch theorem, Nearly free electron model; Kronig Penney Model; Electron in a periodic potential; tight binding method; Wigner-Seitz Method Semiconductor Crystals, Band theory of pure and doped semiconductors; effective mass elementary idea of semiconductor superlattices.

(Lectures 9)

4. **Transport Theory:** Electronic transport from classical kinetic theory; Introduction to Boltzmann transport equation; electrical and thermal conductivity of metals; thermoelectric effects; Hall effect and magneto resistance.

(Lectures 8)

5. **Dielectrics and Ferro Electrics:** Polarization mechanisms, Dielectric function from oscillator strength, Clausius-Mosotti relation; piezo, pyro- and ferro-electricity; Dipole theory of ferroelectricity; thermodynamics of ferroelectric transition.

(Lectures 8)

Text Books:

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, New York), 8th ed. 2005.
- 2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.

- 1. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1971
- 2. Solid State Theory: Walter A. Harrison (Tata McGraw-Hill, New Delhi) 1970.
- 3. Liquid Crystals: S. Chandrasekhar (Cambridge University), 1nd ed. 1991.

MSPI	4532-18	3	N	uclear I	Physics		L	• 3, T-1,]	P-0	4	Credits	5
Pre-re	equisite:	Unders	standing	of grad	uate lev	el physi	cs					
studen radioad with th	ts of M ctive dec ne techni	.Sc. cla cays, nu iques us	ss to th clear fo ed in stu	e basic rces, nu udying t	aspects clear m hese thi	of Nuc odels, an ngs.	clear Ph nd nucle	Nuclea hysics lil ear react be able	ke statio ions so	c proper	ties of	nuclei,
					,							
	201		erstand a ear mod		ipare nu	clear mo	odels an	id explai	n nucle	ar prope	erties usi	ng
C	202	Und	erstand	structur	e and sta	atic prop	erties o	f nuclei.				
C	203	Anal	lyse vari	ous dec	ay mod	e of nuc	leus.					
C	204		nucleon ear force		n scatter	ring and	deutero	on proble	em to ex	plain na	ature of	
C	205	Desc	cribe var	rious typ	pes of nu	iclear re	actions	and thei	r prope	rties.		
		M	apping	of cours	se outco	mes wit	th the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	1	1	2	1	1	2	1	2	2	2
CO2	3	3	1	1	2	1	1	2	1	2	2	2
CO3	3	3	1	1	2	1	1	2	1	2	2	2
CO4	3	3	1	1	2	1	1	2	1	2	2	2
CO5	3	3	1	1	2	1	1	2	1	2	2	2

- 1. **Nuclear Models:** Liquid drop model, Binding energy; fission and fusion, Experimental evidence for shell effects, Shell Model, Spin-Orbit coupling, Magic numbers, Application of Shell Model like Angular momenta and parities of nuclear ground states, Collective model-nuclear vibrations spectra and rotational spectra. *(Lectures 8)*
- 2. **Static properties of nucleus:** Nuclear radii and measurements, nuclear binding energy (review), nuclear moments and systematic, wave-mechanical properties of nuclei, hyperfine structure. *(Lectures 5)*
- 3. **Nuclear decay:** Review of barrier penetration of alpha decay & Geiger-Nuttal law. Beta decays, Fermi theory, Kurie plots and comparative half-lives, Allowed and forbidden transitions, Experimental evidence for Parity-violation in beta decay, Electron capture probabilities, Neutrino, detection of neutrinos, Multipolarity of gamma transitions, internal conversion process. *(Lectures 10)*
- **4.** Nuclear forces: Evidence for saturation of nuclear density and binding energies (review), types of nuclear potential, Ground and excited states of deuteron, dipole and quadrupole moment of deuteron, single and triplet potentials, meson theory of nuclear forces.

(Lectures 10)

5. Nuclear reactions: Nuclear reactions and cross-sections, Resonance, Breit- Wigner dispersion formula for l=0 and higher values, compound nucleus, Direct reactions, Transfer reactions. *(Lectures 7)*

Text Books:

- 1. Nuclear Physics: Irving Kaplan (Narosa), 2001.
- 2. Theory of Nuclear Structure: R.R. Roy and B.P. Nigam (New Age, New Delhi) 2005.

- 1. Basic Ideas and Concepts in Nuclear Physics : K. Hyde (Institute of Physics) 2004.
- 2. Nuclear physics: Experimental and Theoretical, H.S. Hans (New Academic Science) 1nd ed (2011).
- 3. Nuclear Physics and its applications: John Lile
- 4. Nuclear Physics: V. Devnathan

MSPH	1533-18		P	article l	Physics		L	3, T-1,]	P-0	4	Credits	;	
Pre-re	quisite:	course	on Qua	ntum M	echanic	s and Qu	uantum	field Th	eory				
invaria static c particle	m and ob ince prin juark mo es in pro e Outco	ciples a odel of l per per	and cons hadrons spective	servation and we e.	n laws, l ak intera	nadron-h actions s	adron i that that th	nteractioney gras	ons, rela p the ba	tivistic	kinemat	ics,	
C	01		rview th lopmen	-	ele spect	rum, the	eir inter	action a	nd maj	or histor	rical and	l latest	
C	02				plication physic		arious	invarian	ce prin	ciples a	and syn	nmetry	
C	03			ivistic k rocesses		cs for c	omputa	tions of	outcom	ne of van	rious re	actions	
C	:04	Prop	erties of	f baryon	is and m	esons in	terms o	of naive	nonrela	tivistic o	quark m	odel.	
C	05	Wea deca		ction in	ı quarks	and le	ptons a	nd how	that thi	is is res	ponsible	e for β	
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcor	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1	1	2	2	1	1	2	1	2	1	3	
CO2	1	1	1	2	2	1	1	2	2	2	2	3	
CO3	1	1	1	2	2	1	1	2	2	2	_	1	
CO4	1	1	1 2 2 1 2 2 2 2 2										
CO5	1	1	1	2	2	1	2	1	3	2	-	2	

1. **Introduction:** Fermions and bosons, particles and antiparticles, quarks and leptons, interactions and fields in particle physics, classical and quantum pictures, Yukawa picture, types of interactions - electromagnetic, weak, strong and gravitational, units.

(Lectures 7)

- 2. **Invariance Principles and Conservation Laws:** Invariance in classical mechanics and quantum mechanics, Parity, Pion parity, Charge conjugation, Positronium decay, Time reversal invariance, CPT theorem. *(Lectures 7)*
- 3. **Hadron-Hadron Interactions:** Cross section and decay rates, Pion spin, Isospin, Two nucleon system, Pion-nucleon system, Strangeness and Isospin, G-parity, Total and Elastic cross section, Particle production at high energy. *(Lectures 7)*
- 4. Relativistic Kinematics and Phase Space: Introduction to relativistic kinematics, particle reactions, Lorentz invariant phase space, two-body and three-body phase space, dalitz plots, K-2p-decay, t-θ puzzle, dalitz plots for dissimilar particles, Breit-Wigner resonance formula, Mandelstem variables. (Lectures 7)
- **5. Static Quark Model of Hadrons:** The Baryon decuplet, quark spin and color, baryon octer, quark-antiquark combination. (*Lectures 7*)
- **6. Weak Interactions:** Classification of weak interactions, Fermi theory, Parity non conservation in β-decay, experimental determination of parity violation, helicity of neutrino, K-decay, CP violation in K- decay and its experimental determination.

(Lectures 7)

Text Books:

- 1. Introduction to High Energy Physics: D.H. Perkins (Cambridge University Press), 2000.
- 2. Gauge Theory of Elementary Particle Physics: T.P Cheng & L.F. Li (Oxford).
- 3. An Introductory Course of Particle Physics: Palash Pal (CRC Press).

- 1. Elementary Particles : I.S. Hughes (Cambridge University Press), 2rded. 1991.
- 2. Introduction to Quarks and Partons : F.E. CLose (Academic Press, London), 1979.
- 3. Introduction to Particle Physics : M.P. Khanna (Prentice Hall of India, New Delhi), 2004.
- 4. Dynamics of the Standard Model: J.F. Donoghue (Cambridge University Press).
- 5. First Book of Quantum Field Theory: A. Lahiri & P. Pal, Narosa, New Delhi.
- 6. Introduction to Quantum Field Theory: M. Peskin & D.V. Schroeder. (Levant Books).

Elective Subject -I

MSPI	1534-18	Fibr	e Optic	s and N	on-line	ar optic	s L-	3, T-1,]	P-0	4	Credits	
Pre-re	equisite:	Unders	standing	of grad	uate lev	el optics	5					
and N	onlinea	r Optio	es is to	expose	the M.S	ne aim a bc. stude ar optics	nts to t					-
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to			
C	201	Und	erstand	the struc	cture of	optical f	iber and	l describ	e prope	rties of	optical f	fibers.
C	202	Iden	tify and	compar	e the va	rious pro	ocesses	of fibers	s fabrica	tion		
C	203	Desc	ribe the	optics	of aniso	tropic m	edia					
C	CO4	Ana	yze the	electro-	optic an	d acoust	to-optic	effects	in fibers	5		
C	205	anal	yze non-	linear e	ffects in	optical	fibers.					
		M	apping	of cours	se outco	omes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	1	-	1	-	1	-	3	-	1
CO2	3	2	1	1	1	1	-	1	-	3	-	1
CO3	2	2	-	1	-	1	-	1	-	3	-	1
CO4	3	2	1	1	1	-	-	1	-	3	-	1
CO5	3	2	1	1	1	-	-	1	-	3	-	1

- 1. **Optical fibre and its properties:** Introduction, basic fibre construction, propagation of light, modes and the fibre, refractive index profile, types of fibre, dispersion, data rate and band width, attenuation, leaky modes, bending losses, cut-off wavelength, mode field diameter, other fibre types. *(Lectures 7)*
- 2. **Fiber fabrication and cable design:** Fibre fabrication, mass production of fiber, comparison of the processes, fiber drawing process, coatings, cable design requirements, typical cable design, testing. *(Lectures 5)*
- 3. **Optics of anisotropic media:** Introduction, the dielectric tensor, stored electromagnetic energy in anisotropic media, propagation of monochromatic plane waves in anisotropic media, directions of D for a given wave vector, angular relationships between D, E, H, k and Poynting vector S, the indicatrix, uniaxial crystals, index surfaces, other surfaces related to the uniaxial indicatrix, Huygenian constructions, retardation, biaxial crystals, intensity through polarizer/waveplate/ polarizer combinations. *(Lectures 10)*
- 4. Electro-optic and acousto-otpic effects and modulation of light beams: Introduction to the electro-optic effects, linear electro-optic effect, quadratic electro-optic effects, longitudinal electro-optic modulation, transverse electro optic modulation, electro optic amplitude modulation, electro-optic phase modulation, high frequency wave guide, electro-optic modulator, strain optic tensor, calculation of LM for a logitudinal acoustic wave in isotropic medium, Raman-Nath diffraction, Raman-Nath acousto-optic modulator.

(Lectures 10)

5. **Non-linear optics/processes**: Introduction, anharmonic potentials and nonlinear polarization, non-linear susceptibilities and mixing coefficients, parametric and other nonlinear processes, macroscopic and microscopic susceptibilities. *(Lectures 8)*

Text Books:

1. The Elements of Fibre Optics: S.L. Wymer and Meardon (Regents/Prentice Hall), 1992.

- 1. Lasers and Electro-Optics: C.C. Davis (Cambridge University Press), 1996.
- 2. Optical Electronics: Gathak & Thyagarajan (Cambridge Univ. Press), 1989.
- 3. The Elements of Non-linear Optics: *P.N. Butcher & D. Cotter (Cambridge University Press),* 1991.

										Elective	Subjec	t -I
MSPH	[535-18		Ra	diation	Physics	5	L·	- 3, T-1, 1	P-0	4	Credits	1
Pre-re	quisite	Unders:	standing	g of grad	luate lev	vel nucle	ear phys	ics				
studen that the	ts of M. ey unde	Sc. clas	s to the he detai	relative ls of the	ly advar underly	nced top ying asp	ics Radi	n Radia iation Ph 1 can use	nysics a	nd nucle	ar react	ions so
		1						be able				
C	201			various icles wi			teraction	n of el	ectroma	gnetic 1	adiation	ns and
С	202	Dist	inguish	various	types of	f radiatio	ons base	d on the	ir intera	iction wi	ith matt	er.
C	203	Lear	n and u	nderstan	id about	differen	nt detect	ors and	their us	e for spe	ctrosco	ру.
С	204			-		nnique s esonance		KRF, PIX oscopy.	KE, neut	tron acti	vation	
С	205	Desi	gn expe	riments	to analy	yze effe	cts of ra	diation of	on vario	us objec	ts.	
		M	apping	of cours	se outco	omes wi	th the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	-	1	1	1	1	1	2	1	2
CO2	1	1	1	-	1	2	2	1	2	2	2	2
CO3	2	1	2	2	2	2	2	2	2	2	2	2
CO4	2	2	2	2	2	3	3	2	2	2	2	2
	3	2	2	3	3	3	3	2	2	2	2	2

1. **Interaction of electromagnetic radiations with Matter:** Different photon interaction processes viz. photoelectric effect, Compton scattering and pair production. Minor interaction processes, Energy and Z dependence of partial photon interaction processes. Attenuation coefficients, Broad and narrow beam geometries. Multiple scattering.

(Lectures 8)

2. **Interaction of charged particles with Matter:** Elastic and inelastic collisions with electrons and atomic nucleus. Energy loss of heavy charged particles. Range-energy relationships, Straggling. Radiative collisions of electrons with atomic nucleus.

(Lectures 8)

3. **Nuclear Detectors and Spectroscopy:** General characteristics of detectors, Gas filled detectors, Organic and inorganic scintillation detectors, Semi-conductor detectors [Si(Li), Ge(Li) HPGe]. Room temperature detectors, Gamma ray spectrometers. Gamma ray spectrometry with NaI(Tl) scintillation and semiconductor detectors.

(Lectures 8)

- 4. Nuclear spectrometry and applications: Analysis of nuclear spectrometric data, Measurements of nuclear energy levels, spins, parities, moments, internal conversion coefficients, Angular correlation, Perturbed angular correlation, Measurement of g-factors and hyperfine fields. (Lectures 8)
- **5. Analytical Techniques:** Principle, instrumentation and spectrum analysis of XRF, PIXE and neutron activation analysis (NAA) techniques. Theory, instrumentation and applications of electron spin resonance spectroscopy (ESR). Experimental techniques and applications of Mossbauer effect, Rutherford backscattering. Applications of elemental analysis, Diagnostic nuclear medicine, Therapeutic nuclear medicine.

(Lectures 8)

Text Books:

- 1. The Atomic Nucleus: R.D. Evans, Tata Mc Graw Hill, New Delhi.
- 2. Nuclear Radiation Detectors: S. S. Kapoor and V. S. Ramamurthy, New Age, International, New Delhi.

- 1. Radiation Detection and Measurements: G. F. Knoll, Wiley & Sons, New Delhi.
- 2. Introductory Nuclear Physics: K. S. Krane, Wiley & Sons, New Delhi.
- 3. An Introduction to X-ray Spectrometry: Ron Jenkin, Wiley.
- 4. Techniques for Nuclear and Particle Physics Experiments: W. R. Leo, Narosa Publishing House, New Delhi.
- 5. Introduction to experimental Nuclear Physics: R.M. Singru, Wiley & Sons, New Delhi.

Elective Subject -I

MSPI	1536-18	3	Non	linear I)ynami	CS	L	3, T-1,]	P-0	4	Credits	;
Pre-re	equisite	: Unders	standing	of grad	uate lev	el physi	ics					
the M. Hamilt	Sc. stud tonian s	lents wit ystems.	th the ba	asics of	the rece	ntly em	erging r	Nonline esearch be able	field of			
	201		erstand		-			ynamics		enomen	ology o	f
C	CO2	App	ly the to	ols of d	ynamica	al system	ns theor	y in con	text to r	nodels.		
C	203	Lear meth		by solvi	ng prob	lems on	solving	, nonline	ear prob	lems usi	ng num	erical
C	CO4	Und	erstand	Hamilto	on appro	ach for	describi	ng vario	us phys	ical syst	em.	
C	205	Qua	ntify cla	ssical cl	naos and	d Quanti	um chao	s.				
		M	apping	of cours	se outco	omes wi	th the p	orogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	1	-	1	2	1	2	2	2	2
CO2	2	2	1	2	1	1	1	1	1	2	1	1
CO3	3	2	-	2	1	1	2	1	1	2	1	1
CO4	2	2	-	2	1	1	2	1	1	2	1	1
CO5	2	2	_	2	1	1	2	1	1	2	1	1

- Phenomenology of Chaos: Linear and nonlinear systems, A nonlinear electrical system, Biological population growth model, Lorenz model; determinism, unpredictability and divergence of trajectories, Feigenbaum numbers and size scaling, self similarity, models and universality of chaos. (Lectures 8)
- 2. **Dynamics in State Space:** State space, autonomous and nonautonomous systems, dissipative systems, one dimensional state space, Linearization near fixed points, two dimensional state space, dissipation and divergence theorem. Limit cycles and their stability, Bifurcation theory, Heuristics, Routes to chaos. Three-dimensional dynamical systems, fixed points and limit cycles in three dimensions, Lyapunov exponents and chaos. Three dimensional iterated maps, U-sequence. (Lectures 10)
- 3. **Hamiltonian System**: Non-integrable systems, KAM theorem and period doubling, standard map. Applications of Hamiltonian Dynamics, chaos and stochasticity.

(Lectures 8)

4. **Quantifying Chaos**: Time series, Lyapunov exponents. Invariant measure, Kolmogorov - Sinai entropy. Fractal dimension, Statistical mechanics and thermodynamic formalism.

(Lectures 7)

5. **Quantum Chaos**: Quantum Mechanical analogies of chaotic behaviour, Distribution of energy eigenvalue spacing, chaos and semi-classical approach to quantum mechanics.

(Lectures 7)

Text Books:

1. Chaos and Non Linear Dynamics: R.C. Hilborn (Oxford Univ. Press), 2001.

- 1. Chaos in Dynamical Systems: E. Ott (Cambridge Univ. Press), 2001.
- 2. Applied Nonlinear Dynamics: A.H. Nayfeh and B. Balachandran (Wiley), 1995.
- 3. Chaos in Classical and Quantum Mechanics: M.C. Gutzwiller (Springer-Verlag), 1990.

Elective Subject -II

MSPH	1537-18		Pl	asma P	hysics		L-	3, T-1,]	P-0	4	Credits	6
Pre-re	quisite:	Course	on Elec	etrodyna	amics							
	•					of the g resear					to expo	ose the
Course	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to			
CO1 Understand the origin of plasma, conditions of plasma formation and propertie of plasma.												perties
C	02		-			ingle pa					ch and	kinetic
C	03		Classify propagation of electrostatic and electromagnetic waves in magnetized and non-magnetized plasmas									
С	04	Describe the basic transport phenomena such as plasma resistivity, diffusion and mobility for both magnetized and non-magnetized plasmas.										
С	05	therr				for de		- I				
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	-	1	1	1	1	2	2	1	2
CO2	1	1	1	-	1	1	1	1	2	2	1	2
CO3	1	1	1	_	1	1	1	1	2	2	1	2
CO4	1	1	1	-	1	1	1	1	2	2	1	2
CO5	1	3	2	2	2	2	1	1	2	2	1	2

- 1. **Introduction:** Plasma State, elementary concepts and definitions of temperature and other parameters, occurrence and importance of plasma for various applications, Production of Plasma in the laboratory, Physics of glow discharge, electron emission, ionization, breakdown of gases, Paschen's laws and different regimes of E/p in a discharge, Townsend discharge and the evolution of discharge. *(Lectures 8)*
- 2. **Plasma diagnostics:** Probes, energy analyzers, magnetic probes and optical diagnostics, preliminary concepts. *(Lectures 5)*
- 3. **Single particle orbit theory:** Drifts of charged particles under the effect of different combinations of electric and magnetic fields, Crossed electric and magnetic fields, Homogenous electric and magnetic fields, spatially varying electric and magnetic fields, time varying electric and magnetic fields, particle motion in large amplitude waves.

(Lectures 8)

- 4. Fluid description of plasmas: distribution functions and Liouville's equation, macroscopic parameters of plasma, two and one fluid equations for plasma, MHD approximations commonly used in one fluid equations and simplified one fluid and MHD equations. dielectric constant of field free plasma, plasma oscillations, space charge waves of warm plasma, dielectric constant of a cold magnetized plasma, ion- acoustic waves, Alfven waves, Magnetosonic waves. (Lectures 10)
- 5. Stability of fluid plasma: The equilibrium of plasma, plasma instabilities, stability analysis, two stream instability, instability of Alfven waves, plasma supported against gravity by magnetic field, energy principle. microscopic equations for my body system: Statistical equations for many body systems, Vlasov equation and its properties, drift kinetic equation and its properties. (Lectures 7)

Text Books:

1. Introduction to Plasma Physics, F.F. Chen

- 1. Principles of Plasma Physics, *Krall and Trievelpice*
- 2. Introduction to Plasma Theory, D.R. Nicholson
- 3. The Plasma State, J.L. Shohet
- 4. Introduction to Plasma Physics, M. Uman
- 5. Principles of Plasma Diagnostic, I.H. Hutchinson

Elective Subject-II

MSPH	1538-18		Structures, Spectra and Properties of Biomolecules						L-3, T-1, P-0 4 Credits					
Pre-re	quisite	Under	standing	of grad	luate lev	vel chem	istry and	d physic	s					
of Bio	molecu	les is t	o famili	arize th	ne M.Sc	of the co c. studen ctra and	ts with	the bas	sics of	the rece				
Cours	e Outco	omes: A	t the en	d of the	course,	the stud	ent will	be able	to					
C	201	Desc	cribe va	rious str	uctural	and cher	nical bo	onding a	spects o	f Biomo	lecules			
C	CO2 Understand structure and theoretical techniques and their applicat Biomolecules.									ion to				
CO3 Understand use of various spectroscopic techniques and their application Biomolecules.									olication	to the				
С	CO4	Und	erstand	the strue	cture-Fu	nction r	elations	hip and	modelir	ng of bic	molecu	les.		
C	205	Outl	ine and	correlat	e for pro	oviding	solution	to inter	discipli	nary pro	blem.			
		M	apping	of cour	se outco	omes wit	h the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2	1	2	2	1	2	1	2	2	1	2		
CO2	2	2	1	2	2	2	2	-	2	2	1	2		
CO3	2	2	1	2	1	2	2	-	2	2	1	2		
CO4	2	2	1	2	2	2	2	-	2	2	1	2		
	2	2	1	2	2	1	2	1	2	2	1	2		

- 1. **Structure Aspects of Biomolecule:** Conformational Principles, Conformation and Configuration Isomers and Derivatives, Structure of Polynucleotides, Structure of Polypeptides, Primary, Secondary, Tertiary and Quaternary Structure of Proteins, Structure of Polysaccharides. *(Lectures10)*
- 2. Theoretical Techniques and Their Application to Biomolecules: Hard Sphere Approximation, Ramachandran Plot, Potential Energy Surface, Outline of Molecular Mechanics Method, Brief ideas about Semi-empirical and Ab initio Quantum Theoretical Methods, Molecular Charge Distribution, Molecular Electrostatic Potential and Field and their uses. (Lectures 10)
- 3. **Spectroscopic Techniques and their Application to Biomolecules:** Use of NMR in Elucidation of Molecular Structure, Absorption and Fluorescence Spectroscopy, Circular Dichroism, Laser Raman Spectroscopy, IR spectroscopy, Photoacoustic Spectroscopy, Photo-biological Aspects of Nucleic Acids. *(Lectures 10)*
- **4. Structure-Function Relationship and Modeling:** Molecular Recognition, Hydrogen Bonding, Lipophilic Pockets on Receptors, Drugs and Their Principles of Action, Lock and Key Model and Induced fit Model. *(Lectures 10)*

Text Books:

1. Srinivasan & Pattabhi: Structure Aspects of Biomolecules.

- 1. Govil & Hosur: Conformations of Biological Molecules
- 2. *Price:* Basic Molecular Biology
- 3. *Pullman:* Quantum Mechanics of Molecular Conformations
- 4. Lehninger: Biochemistry
- 5. Mehler & Cordes: Biological Chemistry
- 6. *Smith and Hanawait:* molecular Photobiology, Inactivation and Recovery

Elective Subject - II

MSPI	4539-18		Science of Renewable source of EnergyL-3, T-1, P-04 Credits									
Pre-re	quisite:	Unders	standing	of grad	uate lev	el semio	conducto	or physic	cs			
Source	e Objectes is to early hydrog	expose	the M.S									
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to			
C	CO1 Understand the energy demand of world & distinguish between traditional a alternative form of energy.											al and
C	202	Desc	ribe the	concep	t of sola	r energy	/ radiati	on and t	hermal	applicati	ions.	
C	203	Anal	Analyze making of solar cell and its types.									
C	CO4	Iden	tify hyd	rogen as	s energy	source,	its stora	age and	transpoi	tation n	nethods.	
C	205	Com	pare wi	nd energ	gy, wave	e energy	and oc	ean ther	nal ene	rgy conv	version.	
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	1	-	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	-	2	1	1	2	1	1	3	1	1
CO4	2	2	-	2	1	1	2	1	1	3	1	1
CO5	2	2	-	2	1	1	2	1	1	3	1	1

- 1. **Introduction**: Production and reserves of energy sources in the world and in India, need for alternatives, renewable energy sources. (*Lectures 8*)
- 2. **Solar Energy**: Thermal applications, solar radiation outside the earth's atmosphere and at the earth's surface, Principal of working of solar cell, Performance characteristics of solar cell. Types of solar cell, crystalline silicon solar cell, Thin film solar cell, multijunction solar cell, Elementary ideas of perovskite solar cell, dye synthesized solar cell and Tandem solar cell, PV solar cell, module array, and panel, Applications.

(Lectures 11)

3. **Hydrogen Energy**: Environmental considerations, solar hydrogen through photo electrolysis and photocatalytic process, physics of material characteristics for production of solar hydrogen. Storage processes, solid state hydrogen storage materials, structural and electronic properties of storage materials, new storage modes, safety factors, use of hydrogen as fuel; use in vehicles and electric generation, fuel cells.

(Lectures 10)

4. Other sources: Nature of wind, classification and descriptions of wind machines, power coefficient, energy in the wind, wave energy, ocean thermal energy conversion (OTEC), system designs for OTEC, basic idea about biogas, biofuel, and biodiesel.

(Lectures 8)

Text Books:

1. Solar Energy: S.P. Sukhatme (Tata McGraw-Hill, New Delhi), 2008.

- 1. Solar Cell Devices: Fonash (Academic Press, New York), 2010.
- 2. Fundamentals of Solar Cells, Photovoltaic Solar Energy: Fahrenbruch and Bube (Springer, Berlin), 1982.
- 3. Photoelectrochemical Solar Cells : Chandra (New Age, New Delhi).

MSPH	1540-18	Co	ondense	d Matte	er Physi	cs Lab	L-	3, T-1,]	P-0	4	Credits	5
Pre-re	quisite:	Unders	tanding	of grad	uate lev	el solid	state ph	ysics ex	perimer	nts		
to train physics	n the st s so th	udents at they	of M.So can ii	c. class ivestiga	to adva	anced e ous rele	xperime	n Cond ental tec spects a	hniques	in con	densed	matter
Course	e Outco	mes: A	t the end	l of the	course,	the stud	ent will	be able	to			
C	01				•	•		o-dynan				
C	02							behavio				
C	03	Desc relati		lattice	dynami	cs of si	mple lat	ttice stru	uctures	in terms	s of disp	persion
С	04		0	•	out scier f experi		perimer	nts as w	vell as	accurate	ely reco	rd and
C	05		-					alytical		-		
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	1	-	-	2	2	2	2	2
CO2	2	1	1	1	1	-	-	2	2	2	2	2
CO3	1	1	1	1	1	-	-	2	2	2	2	2
CO4	2	2	2	2	2	2	2	2	2	2	2	2
CO5	3	3	2	2	3	2	2	2	2	2	2	2

Note: Students are expected to perform atleast ten experiments out of following list.

- 1. To study temperature dependence of conductivity of a given semiconductor crystal using four probe method.
- 2. Verification of curie-weiss law for the electrical susceptibility of a ferroelectric material.
- 3. To determine charge carrier density and Hall coefficient by Hall effect.
- 4. To determine magnetic susceptibility of material using Quink 's tube method.
- 5. To determine energy gap and resistivity of the semiconductor using four probe method.
- 6. To study the B-H loop characteristics.
- 7. To determine dielectric constant of a material with Microwave set up.
- 8. To measure the Curie temperature of a given PZT sample.
- 9. To measure the velocity of ultrasonic wave in liquids.
- 10. To study dispersion relation for Mono-atomic and Diatomic lattices using Lattice dynamic kit.
- 11. To study the properties of crystals using X-Ray Apparatus.

Text Books:

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, New York), 8th ed. 2005.
- 2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.

- 1. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1971
- 2. Solid State Theory: Walter A. Harrison (Tata McGraw-Hill, New Delhi) 1970.
- 3. Liquid Crystals: S. Chandrasekhar (Cambridge University), 1nd ed. 1991.

Elective Subject -III

MSPI	1541-18	B Phys	sics of N	Nanoma	terials		L	- 3, T-1,]	P-0	4	Credits	5
Pre-re	quisite	: Conde	nsed ma	atter phy	vsics							
familia study o as care	arize the of differ eer.	e studen rent proj	ts of M. perties o	Sc. to the second secon	ne vario naterials	e of the us aspec s so that the stud	ts relate they ca	ed to pre an pursu	eparation e this e	n, chara	cterizati	on and
C	201		•	knowled nd semi	-	ree elec ors.	tron the	eory to	the ban	d struct	ure of a	metals,
C	202	Acq	uire kno	wledge	of basic	e approa	ches to s	synthesi	ze the ir	norganic	nanopa	rticles
C	203	Describe the use of unique optical properties of nanoscale metallic structures for analytical and biological applications										
C	204			-	•	and che materia	-	propertie	es of c	arbon 1	nanotub	es and
C	205				-	operty r arger ler		-	nanoma	aterials	as well	as the
		Μ	apping	of cours	se outco	omes wit	th the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	2	-	1	2	1	1	2	2	3
CO2	1	2	2	2	-	2	2	1	1	2	2	3
CO3	1	2	2	2	-	2	2	1	1	2	2	3
CO4	1	2	2	2	-	2	2	1	1	2	2	3
CO5	1	2	2	2	-	2	2	1	1	2	2	3

- Introductory Aspects: Free electron theory and its features, Idea of band structure metals, insulators and semiconductors. Density of state in one, two, and three dimensional bands and its variation with energy, Effect of crystal size on density of states and band gap. Examples of nanomaterials. (Lectures 8)
- 2. **Preparation of Nanomaterials:** Bottom up: Cluster beam evaporation, ion beam deposition, chemical bath deposition with capping techniques and Top down: Ball Milling.

(Lectures 8)

- **3. General Characterization Techniques:** Determination of particle size, study of texture and microstructure, Increase in x-ray diffraction peaks of nanoparticles, shift in photo luminescence peaks, variation in Raman spectra of nanomaterials, photoemission microscopy, scanning force <u>(Lectures 8)</u>
- 4. Quantum Dots: Electron confinement in infinitely deep square well, confinement in one and two-dimensional wells, idea of quantum well structure, Examples of quantum dots, spectroscopy of quantum dots. (Lectures 8)
- **5. Other Nanomaterials:** Properties and applications of carbon nanotubes and nanofibres, Nanosized metal particles, Nanostructured polymers, Nanostructured films and Nano structured semiconductors. (*Lectures 8*)

Text Books:

- 1. Nanotechnology-Molecularly Designed Materials: G.M. Chow & K.E. Gonsalves (American Chemical Society), 1996.
- 2. Nanotechnology Molecular Speculations on Global Abundance: B.C. Crandall (MIT Press), 1996.

- 1. Quantum Dot Heterostructures: D. Bimerg, M. Grundmann and N.N. Ledentsov (Wiley), 1998.
- 2. Nanoparticles and Nanostructured Films–Preparation, Characterization and Application: J.H.Fendler (Wiley), 1998.
- 3. Nanofabrication and Bio-system: H.C. Hoch, H.G. Craighead and L. Jelinski (Cambridge Univ. Press), 1996.
- 4. Physics of Semiconductor Nanostructures: K.P. Jain (Narosa), 1997.
- 5. Physics of Low-Dimension Semiconductors: J.H. Davies (Cambridge Univ. Press) 1998.
- 6. Advances in Solid State Physics (Vo.41): B. Kramer (Ed.) (Springer), 2001.

Elective Subject -III

MSPH	1542-18		-		'echniqu rticle P		L	-3, T-1, 1	P-0	4	Credits	5
Pre-re	quisite	Course	on Nuc	clear and	l Particl	e Physic	cs					
Nuclea	ar and l	Particle	Physic	s is to e	expose the	he stude	nts of N	se on E M.Sc. stu ear phys	idents to	o experi	mental a	aspects
Cours	e Outco	omes: A	t the en	d of the	course,	the stud	ent will	be able	to			
C	01			various ith matt	-	iental teo	chnique	s for des	scribing	interact	ion of	
C	202	Use	various	statistic	al meth	ods for e	experim	ental dat	ta.			
С	CO3 Knowledge about the different types of the radiation detectors and applications.									l their		
C	O4	Intro	duced t	o neutro	on physio	cs, meth	ods to c	letector	slow an	d fast ne	utrons.	
C	05	_				owledge he world		he exper	imental	method	s used i	n the
		M	apping	of cours	se outco	omes wit	th the p	orogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	2	-	1	-	-	1	-	1	1	1
CO2	-	-	-	3	-	-	-	3	1	1	1	1
CO3	-	-	- 1 2 3 - 1 3 2 2 2 2									2
CO4	-	-	1	3	3	1	1	2	2	2	2	2
CO5	-	-	1	3	1	1	1	2	2	2	2	2

- 1. **Detection of radiations:** Interaction of gamma-rays, electrons, heavy charged particles, neutrons, neutrinos and other particles with matter. General properties of Radiation detectors, energy resolution, detection efficiency and dead time. Statistics and treatment of experimental data. (Lectures 8)
- 2. **Detectors:** Gas-filled detectors, Proportional counters, space charge effects, energy resolution, time characteristics of signal pulse, position-sensitive proportional counters, Multiwire proportional chambers, Drift chamber, Time projection chamber. Organic and inorganic scintillators and their characteristics, light collection and coupling to photomultiplier tubes and photodiodes, Semiconductor detectors, Ge and Si(Li) detectors, Charge production and collection processes, Pulse height spectrum, General background and detector shielding.

(Lectures 16)

3. **Applications of Detectors:** Description of electron and gamma ray spectrum from detector, semiconductor detectors in X- and gamma-ray spectroscopy, Compton-suppressed, Semiconductor detectors for charged particle spectroscopy and particle identification.

(Lectures 8)

4. **Experimental methods:** Large gamma and charge particle detector arrays, heavy-ion reaction analysers, production of radioactive ion beams. Detector systems for high energy experiments: Collider physics (brief account), Particle Accelerators (brief account), Modern Hybrid experiments- CMS . (Lectures 8)

Text Books:

1. Techniques in Nuclear and particle Experiments by W.R. Leo (Springer), 1994.

- 1. Radiation detection and measurement by Glenn F. Knoll (Wiley), 2010.
- 2. Introduction to Experimental Particle Physics by Richard Fernow (Cambridge University Press), 2001.
- 3. Detectors for particle radiation by Konrad Kleinknecht (Cambridge University Press), 1999.

Elective Subject -III

MSPH	1543-18	-	ercondu peratur	-	and Lo ^v ics	w	L-	3, T-1,]	P-0	4	Credits	5			
Pre-re	quisite:	course	in Cond	lensed N	Aatter P	hysics									
Physica superco trends import achieva backgr	e Objects is to onductive in the e ant tool able tem ound of e Outco	b build vity. Stu xperime to exp peratur low ten	funda idents w ental tec lore ric e now is nperatur	mental vill not o chniques h physi s close t e techni	as we only lea s as wel cs of su to few µ iques as	ell as rn theor ll. Low upercon K. Stud well as	advance retical a tempera ductivity ents will the high	ed und spects b ature is y. With Il also b n-Tc sup	erstandi out also one of latest e introd percondu	ng in acquain the mos technolo uced to	the fid ted with t versations ogy the	eld of n latest ile and lowest			
C	01	Theo	Theoretical understanding of the concept of superconductivity.												
	02	Corr		served	-		-	es of su		-	with or	igin of			
C	03	Desc supe	ribe a rconduc		ate th	eoretica	l mod	lel for	desc	ribing	behavi	or of			
С	04		-		High To v temper		-	conducto es.	ors and t	theoretic	cal				
C	05		ide expo rconduc		out the	experim	ental teo	chniques	s for me	asureme	ent of				
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	1	2	2	2	2	2	2	1	2	2	1	2			
CO3	1	2	2	2	2	2	2	1	2	2	-	2			
CO3	CO3 1 2 2 2 2 2					2	2	-	2	2	3	2			
CO4	1	2	2	2	2	2	2	-	2	2	2	2			
CO5	1	2	2	2	2	2	2	1	2	1	3	2			

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

- 1. **Superconductivity:** Introduction, Thermodynamics, The London Equations, penetration depth, Superconductors in magnetic field, Ginzberg-Landau Theory, Type I and II superconductors, BCS theory, second quantization, Cooper Pairing, energy gap Tunnelling, Josephson effects and SIS tunneling. (Lectures 10)
- 2. **Preparation and measurement techniques:** Single crystal growth: Optical image furnace, seeded melt growth, Thin film deposition: Pulsed laser deposition, sputtering, Resistivity measurements, magnetic measurements, Point contact spectroscopy, scanning tunneling microscopy and spectroscopy. (Lectures 10)
- 3. Cryogenics: Thermal and electrical properties of different materials at low temperatures, Cooling methods above 1K, Joule-ThomPOn, Gifford-McMohan, Evaporation cooling, Liquefication of Helium, Cooling methods below 1K, dilution refrigeration, adiabatic demagnetisation. (Lectures 10)
- 4. Introduction to high-Tc superconductors: Discovery of high-Tc superconductors, Mechanisms of superconductivity in high-Tc superconductors, Introduction to high-Tc superconducting compound like YBCO, Synthesis, Structure and properties, Electronics and applications. (Lectures 10)

Text Books:

1. Introduction to superconductivity: Michael Tinkham, Courier Corporation, 2004.

- 1. Introduction to superconductivity: A.C. Rose-Innes and E.H. Rhoderick, Pergamon Press, 2004.
- 2. Experimental techniques in low temperature physics: G.K. White and P.J. Meeson, Oxford Univ. Press, 2001.
- 3. Experimental low temperature physics: A. Kent, MacMillan Press, 1992.
- 4. The theory of superconductivity in high-TC Cuprates: *P.W. Anderson*, Princeton Series Publications.

Elective Subject -IV

MSPH	[544-18	Adv Phys		Condens	sed Mat	tter	L	•3, T-1,	P-0	4	Credits	5			
Pre-re	quisite:	course	on Con	densed	Matter I	Physics									
familia superc	arize the	M.Sc. vity, ma	student gnetic 1	s with r	elatively e techn	y advano iques ar	ced topi	cs like	optical	l Matter propertion that the	es, mag	netism,			
Cours	e Outco	mes: A	t the en	d of the	course,	the stud	ent will	be able	to						
C	201		Comprehend and describe the Optical properties of solids employing macroscopic theories.												
C	202		Explain various types of magnetic phenomenon in solids, underlying physics, and correlation with the applications.												
C	203	Und	erstand	and real	ize the u	use of N	MR me	thods fo	r descri	bing sol	ids.				
C	CO4	Inter	pret the	phenon	nena, be	havior a	ind appl	ications	of supe	rconduc	ctors.				
C	205	Figu solic		nd perce	eive the	effect o	f deform	nation a	nd disor	rder on t	the beha	vior of			
		M	apping	of cours	se outco	omes wi	th the p	orogram	outcor	nes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	1	2	2	2	2	1	1	2	2	2	3			
CO2	2	2	2	2	1	2	1	2	2	1	2	3			
CO3	CO3 3 2 2 2 2 1						2	2	2	2	1	2			
CO4	204 2 2 2 2 2 2		2	2	1	2	2	2	2						
CO5	CO5 3 2 2 2 1 2					2	2	2	2	1	2	3			

- 1. **Optical Properties:** Macroscopic theory; Reflectance and Transmittance of a slab; generalized susceptibility, Kramers- Kronig relations, Brillouin scattering, Raman effect in crystals; interband transitions. (Lectures 8)
- 2. **Magnetism:** Dia and para-magnetism in materials; Langevin theory of diamagnetism, quantum theory of diamagnetism and paramagnetism, Exchange interaction. Heisenberg Hamiltonian; Hubbard model; mean field theory; Ferro-, ferri- and antiferromagnetism; Magnons: spin waves, thermal excitation of magnons; Bloch T2/1 law. (Lectures 8)
- 3. Nuclear Magnetic Resonance in Solids: Origin of NMR in solids– equations of motion, line width, motional narrowing, Knight shift. (Lectures 8)
- 4. **Superconductivity:** Experimental Survey; Basic phenomenology; Vortex state of a Type II superconductors; BCS pairing mechanism and nature of BCS ground state; Flux quantization; Tunneling Experiments; High Tc superconductors; Ginzburg-Landau theory; Greens functions at zero temperature; Applications of Greens functions to superconductivity. (Lectures 8)
- 5. **Disordered Solids:** Basic concepts in point defects and dislocations; Noncrystalline solids: diffraction pattern, Glasses, Amorphous semiconductors and Ferromagnets, Heat capacity and Thermal conductivity of amorphous solids; Quasicrystals. (Lectures 8)

Text Books:

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, New York) 2005.
- 2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.

- 1. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1971.
- 2. Solid State Physics: H. Ibach and H. Luth (Springer, Berlin), 2rd. ed. 2001.
- 3. A Quantum Approach to Solids: P.L. Taylor (Prentice-Hall, Englewood Cliffs), 1970.
- 4. Intermediate Quantum Theory of Solids: A.O.E. Animalu (East-West Press, New Delhi), 1991.
- 5. Solid State Physics : Ashcroft and Mermin (Reinhert & Winston, Berlin), 1976.

Elective Subject -IV

MSPI	1545-18		Advano	ced Part	ticle Ph	vsics	L	3, T-1,	P-0	4	Credits	5			
					·			, ,							
Pre-re	quisite:	course	on part	icle phy	sics		I								
studen field tl schem	ts of M. neory, s	Sc. clas tandard at they u	ss to the model	relative of parti	ely adva cle phys	nced top sics, QC	oics rela	ced Par ted to sy quark n tre well	ymmetry nodel, a	y breaki nd vario	ng in qu ous unif	antum			
Cours	e Outco	mes: A	t the en	d of the	course,	the stud	ent will	be able	to						
C	01		Understand various global and local gauge symmetries of system, invariance of action, symmetry breaking, and Higgs mechanism.												
C	02	Need of Q		ndard n	nodel of	particle	physic:	s and its	limitati	ions and	the pro	perties			
C	03		-	roblem tion met		gencies	in quan	tum fiel	d theori	es and th	ne				
C	04	-	-				-	f the run ons -QC	-	upling c	onstant	in			
C	05	Give	en expos	sure abo	ut the pl	nysics b	eyond th	ne Stand	ard Mo	del.					
		Μ	apping	of cours	se outco	omes wi	th the p	orogram	outcon	nes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	2	2	2	2	2	2	-	2	2	2	2			
CO2	2	1	1	2	2	2	2	-	2	2	2	2			
CO3	1	2	1	2	2	2	2	-	2	2	1	2			
CO4	CO4 1 1 2 1 2 2		2	2	-	1	2	1	2						
CO5	1	2	2	1	2	2	2	-	2	2	3	2			

- 1. **Symmetries and Symmetry Breaking in QFT:** Continuous groups: Lorentz group SO(1,2) and its representations, Unitary groups and Orthogonal groups and their representations, Discrete symmetries: Parity, Charge Conjugation and Time reversal Invariance, CP, CPT. (Lectures 10)
- 2. Global and Local invariances of the Action: Approximate symmetries, Noethers theorem, Spontaneous breaking of symmetry and Goldstone theorem, Higgs mechanism, Abelian and Non-Abelian gauge fields, Lagrangian and gauge invariant coupling to matter fields. (Lectures 10)
- 3. **Standard Model of Particle Physics:** SU(2) x SU(1) x U(1) gauge theory, Coupling to Higgs and Matter fields of 2 generations, Gauge boson and fermion mass generation via spontaneous symmetry breaking, CKM matrix, Low energy Electroweak effective theory, Elementary electroweak scattering processes. (Lectures 10)
- 4. **QCD and quark model:** Asymptotic freedom and Infrared slavery, confinement hypothesis, Approximate flavor symmetries of the QCD lagrangian, Classification of hadrons by flavor symmetry: SU(1) and SU(2) multiplets of Mesons and Baryons, Chiral symmetry and chiral symmetry breaking, Sigma model, Parton model and Deep inelastic scattering structure functions. (Lectures 10)

Text Books:

- 1. Gauge Theory of Elementary Particle Physics: T.P Cheng & L.F. Li (Oxford).
- 2. An Introductory Course of Particle Physics: Palash Pal (CRC Press).

- 1. First Book of Quantum Field Theory: A. Lahiri & P. Pal, Narosa, New Delhi.
- 2. Introduction to Quantum Field Theory: M. Peskin & D.V. Schroeder. (Levant Books).
- 3. Dynamics of the Standard Model: J.F. Donoghue (Cambridge University Press).

Elective Subject -IV

MSPI	1546-18	;	Envir	onment	al Phys	sics	L-	•3, T-1,	P-0	4	Credits	5				
Pre-re	equisite:	Knowl	edge of	classica	l physic	cs										
of M a proper	e Objec Sc phys ly and a e Outco	ics to t re well	he recer equippe	nt advar d to pur	ncement sue a ca	ts in thi reer in e	s field s environr	so that nent phy	they un ysics and	derstand	l these	aspects				
C	201	Und	erstand	the diffe	erent typ	bes of po	ollution	that occ	ur in the	Earth's	enviror	nment				
C	CO2	App	Understand the different types of pollution that occur in the Earth's environment Apply the laws of radiation to Solar and Terrestrial Radiation													
С	203	Describe the main reservoirs and exchanges in the global carbon cycle and explain the challenges involved in reducing CO2 emissions														
C	CO4	App	lication	in the R	enewab	le sourc	es of en	ergy								
C	205			*			te are r lobal Ea			fferent s	scales, r	anging				
		M	apping	of cours	se outco	omes wi	th the p	orogram	outcor	nes						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	2	2	2	2	2	2	2	2	2	1	2	3				
CO2	2	1	2	2	2	2	2	2	2	2	2	2				
CO3	CO3 2 2 2 2 2 2 2 2					2	2	2	2	1	2	2				
CO4	CO4 1 2 1		1	2	2	2	2	2	2	2	-	3				
CO5	CO5 1 2 2 2 2 2				2	2	2	2	2	2	2					

- 1. **Essentials of Environmental Physics**: Structure and thermodynamics of the atmosphere, Composition of air, Greenhouse effect, Transport of matter, energy and momentum in nature, Stratification and stability of atmosphere, Lass of motion, hydrostatic equilibrium, General circulation of the topics, Elements of weather and climate of India.
- 2. Solar and Terrestrial Radiation: Physics of radiation, Interaction of light with matter, tayleigh and Mie scattering, Laws of radiation (Kirchoffs law, Planck's law, Beer's law, Wien's displacement law, etc.), Solar and terrestrial spectra, UV radiation, Ozone depletion problem, IR absorption energy balance of the earth atmosphere system.
- 3. Environmental Pollution and degradation: Elementary fluid dynamics, Diffusion, Turbulence and turbulent diffusion, Factors governing air, Water and noise pollution, Air and water quality standards, Waste disposal, Heat island effect, Land and sea breeze, Puffs and plumes, Gaseous and particulate matters, Wet and dry deposition.
- 4. **Environmental Changes and remote sensing:** Energy sources and combustion processes, Renewable sources of energy, Solar energy, Wind energy, bioenergy, hydropower, fuel cells, nuclear energy, Forestry and bioenergy.
- 5. Global and Regional Climate: Elements of weather and climate, Stability and vertical motion of air, Horizontal motion of air and water, Pressure gradient forces, Viscous forces, Reynolds number, Enhanced Greenhouse Effect, Energy balance-a Zero-dimensional Greenhouse model, Global climate models.

Suggested Readings/Books :

- 1. Egbert Boeker & Rienk Van Groundelle: Environmental Physics (John Wiley).
- 2. J. T Hougtion: The Physics of atmosphere (Cambridge University Press, 1977).
- 3. J Twidell and J Weir: Renewable energy Resources (Elbs, 1988).
- Sol Wieder: An introduction t solar energy for scientists and Engineers (John Wiley, 1982)
- 5. R. N. Keshavamurthy and M. Shanker Rao: The Physics of Monsoons (Allied Publishers, 1992).
- 6. G.J. Haltiner and R.T. Williams: Numerical Weather Prediction (John Wiley, 1980).

MSPI	1547-18			Dissert	ation		L-	0, T-12,	P-0	12	Credit	S			
Pre-re	quisite:	Know	edge of	specific	c branch	of phys	ics								
studen Physic develo	ts to press. Stude pment o	elimina ents ge f a labo	ries and t the contact of the second second second second	l metho opportur experime	dology hity to ent.	Research of resear participa the stude	rch in 7 ate in 7	Theoreti some of	cal Phy ngoing	sics and	l Experi	mental			
CO1 Explain the significance and value of problem in physics, both scientifically and in the wider community.															
C	202		Design and carry out scientific experiments as well as accurately record the results of experiments.												
C	203		•	•		ate expe pecific q		0	ies, and	l decide	which is	s most			
С	204	to co	ondense	d matter	physics	scientifi s/Nuclea cientists	r/High	Energy 1	Physics	, in oral,	-				
C	CO5	_	lore ne nology.	w areas	of res	earch ir	n physi	cs and	allied	fields o	f scien	ce and			
		Μ	apping	of cour	se outco	omes wit	th the p	orogram	outco	mes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	2	1	3	1	2	2	2	2	3	2	3			
CO2	3	3	3	2	2	2	1	2	2	2	2	2			
CO3	3 2 2 2 2 2 2 2		2		2	2	2	1	3						
CO4	1 1 - 1 2		2	2	2	2	3	1	3						
CO5	D5 - 2 2 1 - 1					2	2		2	2					

Guidelines for the Dissertation:

The aim of project work in M.Sc. 4th semesters is to expose the students to preliminaries and methodology of research and as such it may consist of review of some research papers, development of a laboratory experiments, fabrication of a device, working out some problem, participation in some ongoing research activity, analysis of data, etc.. Project work can be based upon Experimental Physics, Theoretical Physics, or Simulation(quantum based softwares, HPCC, etc.) in the thrust as well as non-thrust research areas of the Department.

A student opting for this course will be attached to one teacher of the Department before the end of the 3rd semester. A report about the work done in the project (typed on both the sides of the paper and properly bound) will be submitted by a date to be announced by the Head of Department.

Assessment of the work done under the project will be carried out by a committee on the basis of effort put in the execution of the project, interest shown in learning the methodology, report prepared, grasp of the problem assigned and viva-voce/seminar, etc. as per course guidelines.

I. K. Gujral Punjab Technical University, Kapurthala

Annexure-VI

M.Sc. Physics

Course Structure and Syllabus (Based on Choice Based Credit System) 2021 onwards

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 1 of 73

M.Sc. (Physics) Program

Duration: 2 Years (Semester System)

This M.Sc. (Physics) Program includes various core, electives, and other interdisciplinary courses. The diverse lab experiments allow students to understand the fundamental aspects of the subject. A choice of advanced elective courses offers a glimpse in the frontier areas of research and allow students to work on research project as an integral part of their M.Sc. program. The program also provides adequate exposure to the students for pursuing higher education in the field of technology, research and development in Physics and related areas (M.Phil./Ph.D.) and other job opportunities in academia and industry.

Eligibility:

Pass B.Sc. with 50% marks having Physics as one of the subject. A relaxation of 5% is given in case of candidates belonging to SC/ST category.

PROGRAM EDUCATIONAL OBJECTIVES: At the end of the program, the student will be able to:

PEO1	Apply principles of basic scientific concepts in understanding, analysis, and
	prediction of physical systems.
PEO2	Develop human resource with specialization in theoretical and experimental
	techniques required for career in academia, research and industry.
PEO3	Engage in lifelong learning and adapt to changing professional and societal needs.

PO1	AM OUTCOMES: At the end of the program, the student will be able to: Apply the scientific knowledge to solve the complex physics problems.
PO2	Identify, formulate, and analyze advanced scientific problems reaching substantiated conclusions using first principles of mathematics, physical, and natural sciences.
PO3	Design solutions for advanced scientific problems and design system components or processes that meet the specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal consideration.
PO4	Use research-based knowledge and methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Create, select, and apply appropriate techniques, resources, and modern scientific tools to complex physics problems with an understanding of the limitations.
PO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional scientific practice.
PO7	Understand the impact of the scientific solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Apply ethical principles and commit to the norms of scientific practice.
PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communicate effectively on scientific activities with the Scientific/Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Demonstrate knowledge and understanding of the scientific principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of scientific and technological change.

PROGRAM OUTCOMES: At the end of the program, the student will be able to:

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Understand the basic and advance concepts of different branches of physics.
PSO2	Perform and design experiments in the areas of electronics, atomic, nuclear, condensed matter, and computational physics.
PSO3	Apply the concepts of physics in specialized areas of condensed, nuclear, renewable energies, particle physics, etc., in industry, academia, research and day today life.

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Course Code	Course Title	Load Allocation				ırks bution	Total Marks	Credits
		L	Т	P	Internal	External		
MSPH-411-21	Mathematical Physics-I	3	1	-	40	60	100	4
MSPH-412-21	Classical Mechanics	3	1	-	40	60	100	4
MSPH-413-21	Quantum Mechanics-I	3	1	-	40	60	100	4
MSPH-414-21	Electronics	3	1	-	40	60	100	4
MSPH-415-21	Computational Physics	3	1	-	40	60	100	4
MSPH-416-21	Electronics Lab	-	-	6	50	25	75	3
MSPH-417-21	Computational Physics Lab-I	-	-	6	50	25	75	3
	FOTAL	15	5	12	300	350	650	26

SEMESTER FIRST

SEMESTER SECOND

Course Code	Course Title		Loac ocat			rks bution	Total Marks	Credits
		L	T	P	Internal	External		
MSPH-421-21	Mathematical Physics-II	3	1	-	40	60	100	4
MSPH-422-21	Statistical Mechanics	3	1	-	40	60	100	4
MSPH-423-21	Quantum Mechanics-II	3	1	-	40	60	100	4
MSPH-424-21	Classical Electrodynamics	3	1	-	40	60	100	4
MSPH-425-21	Atomic and Molecular Physics	3	1	-	40	60	100	4
MSPH-426-21	Atomic, Nuclear, and Particle Physics Lab	-	-	6	50	25	75	3
MSPH-427-21	Computational Physics Lab-II	-	-	6	50	25	75	3
	TOTAL	15	5	12	300	350	650	26

L: Lectures T: Tutorial P: Practical

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Course Code	Course Title		Load ocat		Marks D	istribution	Total Marks	Credits
		L	T	P	Internal	External		
MSPH-531-21	Condensed Matter Physics	3	1	-	40	60	100	4
MSPH-532-21	Nuclear Physics	3	1	-	40	60	100	4
MSPH-533-21	Particle Physics	3	1	-	40	60	100	4
MSPH-534-21 MSPH-535-21 MSPH-536-21	Elective Subject-I	3	1	-	40	60	100	4
MSPH-537-21 MSPH-538-21 MSPH-539-21	Elective Subject-II	3	1	-	40	60	100	4
MSPH-540-21	Condensed Matter Physics Lab	-	-	6	50	25	75	3
TC	DTAL	15	5	6	250	325	575	23

SEMESTER THIRD

SEMESTER FOURTH

Course Code	Course Title		Load ocati		Marks Di	Marks Distribution		Credits
		L	T	Р	Internal	External		
MSPH-541-21	Elective Subject-	3	1	-	40	60	100	4
MSPH-542-21	III							
MSPH-543-21								
MSPH-544-21	Elective Subject-	3	1	-	40	60	100	4
MSPH-545-21	IV							
MSPH-546-21								
MSPH-547-21	Dissertation		12		200	100	300*	12
ТОТА	L	6	14		280	220	500	20

*Evaluation criteria as per IKGPTU norms.

TOTAL NUMBER OF CREDITS = 95

LIST OF DEPARTMENTAL/INTERDISCIPLINARY ELECTIVES

Elective Subject-I

S. No.	Name of the Subject	Code
1	Fibre optics and non-linear optics	MSPH-534-21
2	Radiation Physics	MSPH-535-21
3	Nonlinear Dynamics	MSPH-536-21

Elective Subject -II

S. No.	Name of the Subject	Code
1	Plasma Physics	MSPH-537-21
2	Structures, Spectra and Properties of Biomolecules	MSPH-538-21
3	Science of Renewable Source of Energy	MSPH-539-21

Elective-III

S. No.	Name of the Subject	Code
1	Physics of Nanomaterials	MSPH-541-21
2	Experimental Techniques in Nuclear and Particle Physics	MSPH-542-21
3	Superconductivity and Low Temperature Physics	MSPH-543-21

Elective-IV

	Name of the Subject	Code
1	Advanced Condensed Matter Physics	MSPH-544-21
2	Advanced Particle Physics	MSPH-545-21
3	Environment Physics	MSPH-546-21

Examination and Evaluation

Theory							
S. No.	Evaluation criteria	Weightage in Marks	Remarks				
1	Mid term/sessional Tests	24	Internal evaluation (30 Marks)				
2	Attendance	6	MSTs, Quizzes, assignments, attendance, etc., constitute internal				
3	Assignments	10	evaluation. Average of two mid semester test will be considered for evaluation.				
4	End semester examination	60	External evaluation (70 Marks)				
5	Total	100	Marks may be rounded off to nearer integer.				
Practic	al						
1	Evaluation of practical record/ Viva Voice	30	Internal evaluation (50 Marks)				
2	Attendance	5	_				
3	Seminar/Presentation	15	-				
4	Final Practical Performance + Viva Voice	25	External evaluation (25 Marks)				
5	Total	75	Marks may be rounded off to nearest integer.				

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 7 of 73

Instructions for End semester Paper-Setter in M. Sc. Physics

A. Scope

- 1. The question papers should be prepared strictly in accordance with the prescribed syllabus and pattern of question paper of the University.
- 2. The question paper should cover the entire syllabus uniformly covering each chapter thoroughly with proper distribution.
- 3. Each unit of course/syllabus carries weightage according to the number of lectures mentioned in syllabus. (1 Lecture ~ 2 Marks)
- 4. The language of questions should be simple, direct, and documented clearly and unequivocally so that the candidates may have no difficulty in appreciating the scope and purpose of the questions. The length of the expected answer should be specified as far as possible in the question itself.
- 5. The distribution of marks to each question/answer should be indicated in the question paper properly.

B. Type and difficulty level of question papers

- 1. Questions should be framed in such a way as to test the students intelligent grasp of broad principles and understanding of the applied aspects of the subject. The weightage of the marks as per the difficulty level of the question paper shall be as follows:
 - i) Easy question 30%
 - ii) Average questions 50%
 - iii) Difficult questions 20%
- 2. The numerical content of the question paper should be up to 20%.

C. Format of question paper

- 1. Paper code and Paper-ID should be mentioned properly.
- 2. The question paper will consist of three sections: Sections-A, B, and C.
- 3. Section-A is COMPULSORY consisting of TEN SHORT questions carrying two marks each (total 20 marks) covering the entire syllabus.
- 4. The Section-B consists of five questions of five marks each covering the entire syllabus.
- 5. The Section-C consists of THREE questions of ten marks each covering the entire syllabus.
- 6. Attempt any FOUR questions from Section-B and any TWO from Section-C.

Course:

Time: 1 hour 30 minutes

Question paper pattern for MST:

Course Code:

Maximum Marks: 24

Roll No:	No of pages:							
IK Gujral Punjab Technical University- Jalandhar								
Department of Physica	Sciences							
Academic Sessio	n:							
Mid-Semester Test: I/II/III (Regular/reappear)	Date:							
Programme: M.Sc. Physics	Semester:							

♦ <u>Note: Section A is compulsory; Attempt any two questions from Section B and one question from Section C.</u>

Sec	tion: A	Marks	COs
1		2	
2		2	
3		2	
4		2	
Sec	tion: B		
5		4	
6		4	
7		4	
Sec	tion: C		
8		8	
9		8	

Details of Course Objectives

COI	
CO2	
CO3	
<i>CO4</i>	
<i>CO5</i>	

			Intern	al Assessment		
	Communica presenta		Maximum Marks	Evaluated by		
Departmental Presentation	20			30	50	Committee Member: 1.Head 2.Supervisor 3.One of Faculty Member
Dissertation	Plagiarism	Publication/Presentation in Conference	150			
	25	70	25 External	30 Assessment		
External Examiner			Subject Ma		50	
	Communi and Preser			sponse to queries		Committee Member:
Viva Voce	20			30	50	1.Head 2.External Expert 3.Supervisor 4. Director (MC) nominee
		То	otal		300	

Guidelines for the evaluation of Dissertation:

Evaluation Process:

- 1. The subject matter evaluation can further be defined on the basis of Title, Review of literature/Motivation, Objectives, Methodology, Results and discussions, and Conclusion.
- 2. The usage of language and the subject matter shall be evaluated by the supervisor. Out of 300 marks, 95 marks are to be evaluated by the concerned supervisor.
- 3. Total 15% Plagiarism is admissible for submission of the dissertation. For (0-5)% of plagiarism, candidate should be awarded 25 marks. For >5%-10% candidate should be awarded 15 marks and for the range of > 10% to < 15%, candidate should be awarded 5 marks.
- 4. For publication candidate should be awarded full 30 marks and for presenting the work related to dissertation, candidate should be awarded 25 marks.

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

MSPH	I-411-	-21	MATHI	EMATI	CAL PI	HYSIC	S-I	L-3,	Г-1, Р-0		4 Cred	its
Pre-requisite: Understanding of graduate level mathematics Course Objectives: The objective of the course on Mathematical Physics-I is to equip the M.Sc.												
student in diffe pursue	ts with erent c reseau	the math ourses tau ch in phy	ematica aght in t sics as a	ll technio his class a career.	ques tha s and for	t he/she r develo	needs f ping a s	or unde trong ba	rstandin ickgroui	g theore	tical tre	atment
		comes: A										
CO		Use com				<u> </u>						
CO	2	Use the I	Delta an	d Gamn	na functi	ions for	describi	ng phys	ical syst	tems.		
CO	3	Solve pa	rtial diff	ferential	equation	ns using	g bounda	ary value	e proble	ms.		
CO	4	Describe	special	function	ns and re	ecurrenc	e relation	ons to sc	olve the	physics	problem	ıs.
CO	5	Use stati	stical m	ethods to	o analys	e the ex	perimen	ital data				
		Μ	apping	of cours	se outco	mes wi	th the p	rogram	outcon	ies		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	2	2	-	1	1	-	2	1	1	2
CO2	3	3	2	1	-	1	1	-	2	1	1	2
CO3	3	3	2	2	-	1	1	-	2	1	1	2
CO4	3	3	2	2	-	1	1	-	2	1	1	2
CO5	3	3	2	3	-	2	1	-	2	1	1	2

- 1. **Complex Variables**: Introduction, Cauchy-Riemann conditions, Cauchy's Integral formula, Laurent expansion, singularities, calculus of residues, evaluation of definite integrals, Dispersion relation. *(Lectures 10)*
- Delta and Gamma Functions: Dirac delta function, Delta sequences for one dimensional function, properties of delta function, Gamma function, factorial notation and applications, Beta function. (Lectures 7)
- 3. **Differential Equations:** Partial differential equations of theoretical physics, boundary value, problems, Neumann & Dirichlet Boundary conditions, separation of variables, singular points, series solutions, second solution. *(Lectures 8)*
- 4. **Special Functions:** Bessel functions of first and second kind, Generating function, integral representation and recurrence relations for Bessel's functions of first kind, orthogonality. Legendre functions: generating function, recurrence relations and special properties, orthogonality, various definitions of Legendre polynomials, Associated Legendre functions: recurrence relations, parity and orthogonality, Hermite functions, Laguerre functions.

(Lectures 10)

5. **Elementary Statistics:** Introduction to probability theory, random variables, Binomial, Poisson and Normal distribution. *(Lectures 5)*

Text Books:

1. Mathematical Methods for Physicists: G. Arfken and H.J. Weber (Academic Press, SanDiego) 7th edition, 2011.

- 1. Mathematical Physics: P.K. Chattopadhyay (Wiley Eastern, New Delhi), 2004.
- 2. Mathematical Physics: A.K. Ghatak, I.C. Goyal and S.J. Chua (MacMillan, India, Delhi), 1986.
- 3. Mathematical Methods in the Physical Sciences M.L. Boas (Wiley, New York) 3rd edition, 2007.
- 4. Special Functions: E.D. Rainville (MacMillan, New York), 1960.
- 5. Mathematical Methods for Physics and Engineering: K.F. Riley, M.P. Hobson and S.J. Bence (Cambridge University Press, Cambridge) 3rd ed., 2006.

MSPH	[-412-2	21	CLAS	SICAL	MECH	IANICS	5	L-3, 7	Г-1, Р-0		4 Cred	its	
Pre-re	quisite	e: Unders	standing	of grad	uate leve	el physi	cs						
student in the r Matter	ts of M noderr Physic	ectives: 7 I.Sc. stud n branche cs, Astrop	ents in t s of phy physics,	he Lagr sics suc etc.	angian a h as Qu	and Ham antum N	niltonian Aechanio	ı formali cs, Quar	isms so ntum Fie	that they	y can us	e these	
Course	e Outc	omes: A	t the end	l of the	course, 1	the stude	ent will	be able	to				
CO	1	Understa	and the r	ecessity	of Acti	ion, Lag	rangian,	and Ha	miltonia	an forma	alism.		
CO		Use d'Al of motio		principl	e and ca	alculus o	of variat	ions to	derive tl	he Lagra	ange eq	uations	
CO	3	Describe	the mot	tion of a	mechar	nical sys	tem usi	ng Lagra	ange-Ha	milton f	formalis	ism.	
CO		Apply essential features of a classical physics problem (like motion under central force, periodic motions, etc.) to set up and solve the appropriate physics problems.											
CO		Apprecia physics mechanie	e.g., me	olecular	spectra	i, acous	tics, vił		-				
		M	apping	of cours	se outco	omes wi	th the p	rogram	outcon	ies			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	2	2	1	1	-	2	2	2	2	
CO2	3	2	2	2	2	1	1	-	2	2	2	2	
CO3	3	2	2	2	2	1	1	-	2	2	2	2	
CO4	3	2	2	2	1	1	1	-	2	2	2	2	
~ ~ -		_									-		

-

CO5

1. Lagrangian Formulation: Mechanics of a system of particles; constraints of motion, generalized coordinates, d'Alembert Principle and Lagrange's velocity-dependent forces and the dissipation function, Applications of Lagrangian formulation.

(Lectures 7)

2. **Hamilton's Principles:** Calculus of variations, Hamilton's principle, Lagrange's equation from Hamilton's principle, extension to nonholonomic systems, advantages of variational principle formulation, symmetry properties of space and time and conservation theorems.

(Lectures 7)

3. **Hamilton's Equations:** Legendre Transformation, Hamilton's equations of motion, Cyclic coordinates, Hamilton's equations from variational principle, Principle of least action.

(Lectures 7)

- 4. Canonical Transformation and Hamilton-Jacobi Theory: Canonical transformation and its examples, Poisson's brackets, Equations of motion, Angular momentum, Poisson's Bracket relations, infinitesimal canonical transformation, Conservation Theorems. Hamilton- Jacobi equations for principal and characteristic functions, Action-angle variables for systems with one-degree of freedom. (Lectures 10)
- 5. Rigid Body Motion: Independent co-ordinates of rigid body, orthogonal transformations, Eulerian Angles and Euler's theorem, infinitesimal rotation, Rate of change of a vector, Coriolis force, angular momentum and kinetic energy of a rigid body, the inertia tensor, principal axis transformation, Euler equations of motion, Torque free motion of rigid body, motion of a symmetrical top. (Lectures 10)

Text Books:

- 1. Classical Mechanics: H. Goldstein, C.Poole and J.Safko (Pearson Education Asia, New Delhi), 3rd ed 2001.
- 2. Mechanics by L.D. Landau & E.M. Lifschz (Pergamon), 1976.

- 1. Classical Mechanics of Particles and Rigid Bodies: K.C. Gupta (Wiley Eastern, New Delhi), 1988.
- 2. Classical Mechanics- J. W. Muller- Kirsten (World Scientific) 2008.
- 3. Advanced Classical & Quantum Dynamics by W. Dittrich, W. And M Reuter, M. (Springer) 1991.
- 4. Classical mechanics by T.W.B. Kibble and Frank H. Berkshire (Imperial College Press) 2004.
- 5. Mathematical Methods of Classical Mechanics by V. I. Arnold, (Springer) 1978.

MSPH 21	[-413-	Quan	itum M	echanic	s-I			L-3, T-	-1, P-0	2	l Credit	ts	
Pre-re	Pre-requisite: Basic knowledge of wave mechanical quantum mechanics												
the stu technic they ca	idents of v ques of v in use th	f M.Sc vector s ese in v	. class paces, a various b	to the f ngular f oranches	formal s moment s of phys	structure um, per sics as p	of the turbation of t	Quantum e subject on theory requiren	and to , and sc nent.	equip	them w	ith the	
C	01	Unde	rstand tł	ne need	for quar	ntum me	chanic	al formal	ism and	its basi	c princij	oles.	
C	02	· · ·	Appreciate the importance and implication of vector spaces, Dirac ket bra notations, eigen value problem.										
C	03	Unde	rstand th	ne impli	cations	of gener	alized	uncertain	ty princ	iple in (QM.		
	04	mome	entum fo	or a syst	em of p	articles.		cal foundations of spin and angular A systems using approximate methods.					
								program	• •				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	2	2	2	1	1	2	3	2	2	
CO2	3	2	2	2	2	2	1	1	2	2	2	2	
CO3	3	2	2	2	2	2	1	2	1	3	2	2	
CO4	3	2	2	2	2	2	2	2	2	2	2	2	
CO5	3	2	2	2	2	2	1	1	2	3	2	2	

- Linear Vector Space and Matrix Mechanics: Vector spaces, Schwarz inequality, Orthonormal basis, Operators: Projection operator, Hermitian and Unitary operators, change of basis, Eigenvalue and Eigenvectors of operators, Dirac's bra and ket notation, commutators, Simultaneous eigenvectors, Postulates of quantum mechanics, uncertainty relation, Harmonic oscillator in matrix mechanics, Time development of states and operators, Heisenberg, Schroedinger and Interaction representations, Exchange operator and identical particles, Density Matrix and Mixed Ensemble. (Lectures 15)
- Angular Momentum: Angular part of the Schrödinger equation for a spherically symmetric potential, orbital angular momentum operator. Eigen values and eigenvectors of L² and Lz. Spin angular momentum, General angular momentum, Eigen values and eigenvectors of J² and Jz. Representation of general angular momentum operator, Addition of angular momenta, C.G. coefficients. (Lectures 10)
- 3. Stationary State Approximate Methods: Non-Degenerate and degenerate perturbation theory and its applications, Variational method with applications to the ground states of harmonic oscillator and other sample systems. *(Lectures 8)*
- 4. **Time Dependent Perturbation:** General expression for the probability of transition from one state to another, constant and harmonic perturbations, Fermi's golden rule and its application to radiative transition in atoms, Selection rules for emission and absorption of light.

(Lectures 7)

Text Books:

- 1. A Text book of Quantum Mechanics: P.M. Mathews and K. Venkatesan (Tata McGraw Hill, New Delhi) 2nd edition, 2004.
- 2. Quantum Mechanics: V.K. Thankappan (New Age, New Delhi), 2004.

- 1. Quantum Mechanics: M.P. Khanna (Har Anand, New Delhi), 2006.
- 2. Modern Quantum Mechanics: J.J. Sakurai (Addison Wesley, Reading), 2004.
- 3. Quantum Mechanics: J.L. Powell and B. Crasemann (Narosa, New Delhi), 1995.
- 4. Quantum Physics: S. Gasiorowicz (Wiley, New York), 3rd ed. 2002.
- 5. Quantum Physics: Concepts and Applications: Nouredine Zettili (Wiley, New York), 2nd ed. 2009.

MSPH	[-414-2]	Ele	Electronics					-3, T-1,	P-0	4	Credits	8	
Pre-re	Pre-requisite: Basic knowledge about electronics												
studen of sen analog of phy	ts of M. niconduo circuits sics as p	Sc. clas etor ph and in er their	The air ss to the sysics, b troduction require at the end	formal asic cir asic cir on to dia ment.	structure cuit ana gital elec	e of the s alysis, fi ctronics	subject rst-ordo so that	and to e er nonli they can	quip the near cin use the	em with rcuits, (the kno [.] DPAMP	wledge based	
CO1 Understand working of Different Semiconductor devices (Constru Working Principles and V-I characteristics) and their applications.													
CO2 Explain the construction and working of Thyristors and use The various applications.										Thyrist	ors for		
(C O3	De	sign Ana	log and	Digital	Instrum	ents and	d their a	pplication	ons.			
(C O 4	Ap	ply Bool	ean algo	ebra and	Karnau	gh map	s.					
(C O 5	De	sign the	Sequent	ial and I	Integrate	d circu	its.					
		M	apping	of cours	se outco	omes wit	h the p	orogram	outcor	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	1	2	2	1	2	1	2	2	2	
CO2	3	3	2	1	2	2	1	2	1	2	2	2	
CO3	2	2	3	2	2	2	1	2	1	2	2	2	
CO4	3	3	2	1	2	2	1	2	1	2	2	2	
CO5	2	2	2	2	2	2	1	2	1	2	2	2	

 Semiconductor Devices and applications: Direct and indirect semiconductors, Drift and diffusion of carriers, Photoconductors, Semiconductor junctions, Metal-semiconductor junctions - Ohmic and rectifying contacts, Zener diode, Schottky diode, Switching diodes, Tunnel diode, Light emitting diodes, Photodiodes, Solar cell, Liquid crystal displays.

(Lectures 7)

- 2. UJTs and Thyristors: Operational Principle of UJT: UJT Relaxation Oscillator circuit; PNPN Diode: Characteristics- As a Relaxation Oscillator-Rate Effect; SCR: V-I Characteristics-Gate Triggering Characteristics; DIAC and TRIAC; Thyristors: Basic Parameters- As Current Controllable Devices- Thyristors in Series and in Parallel; Applications of Thyristors- as a Pulse Generator, Bistable Multivibrator, Half and Full Wave Controlled Rectifier, TRIAC based AC power control, SCR based Crowbar Protection; Gate Turn-Off Thyristors; Programmable UJT. (Lectures 10)
- 3. Analog and Digital Instruments: OPAMP and its applications, Time Base; 555 Timer, Basic Digital Frequency Meter System; Reciprocal Counting Technique; Digital Voltmeter System.

(Lectures 8)

4. **Digital and Sequential circuits:** Boolean algebra, de Morgans theorem, Karnaugh maps, Flip-Flops – RS, JK, D, COcked, preset and clear operation, race around conditions in JK Flipflops, master-slave JK flip-flops, Switch contact bounce circuit. Shift registers, Asynchronous and Synchronous counters, Counter design and applications.

(Lectures 8)

5. Integrated Circuits as Digital System Building Blocks: Binary Adders: Half Adder-Parallel Operation-Full Adder-MSI Adder-Serial Operation; Decoder/Demultiplexer: BCD to Decimal Decoder-4-to-16 line Demultiplexer; Data Selector/Multiplexer:16-to-1 Multiplexer; Encoder; ROM: Code Converters-Programming the ROM-Applications; RAM:Linear Selection-Coincident Selection-Basic RAM Elements Bipolar RAM-Static and Dynamic MOS RAM; Digital to Analog Converters: Ladder Type D/A Converter-Multiplying D/A Converter; Analog to Digital Converters: Successive Approximation A/D Converter.

(Lectures 8)

Text Books:

- 1. Text Book of Electronics: S. Chattopadhyay, New Central Book Agency P.Ltd., Kolkata, 2006.
- 2. Digital Principles and Applications: A.P. Malvino and D.P. Leach, Tata McGraw-Hill, Publishing Co., New Delhi.

- 1. Electronics Principles and Applications: *A.B. Bhattacharya*, New Central Book Agency P.Ltd., Kolkata, 2007.
- 2. Integrated Electronics Analog and Digital Circuits and Systems: *J. Millman, C.C Halkins and C. Parikh*, 2nd Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2010.

MSPH	[-415-21	Computational Physics						3, T-1,]	P-0	4	Credits	5	
Pre-re	Pre-requisite: Understanding of graduate level physics												
familia progran in solv	nrize the mming u ing simp	studen using ar ble phys	ts of M ny high sics prob	.Sc. stu level la: lems.	dents w nguage	e of the rith the r such as	numeric Fortran	cal meth , C++, e	ods use etc., so 1	ed in co	mputati	on and	
	e Outco	Appl			-	the stude				solving	g the p	physics	
	CO2Programme with the C++ or any other high level language.CO3Use various numerical methods in solving physics problems.												
CO4 Analyze the outcome of the algorithm/program graphically.													
	05				-	ns using mes wit			outcor	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	2	2	1	1	2	3	2	3	2	
CO2	3	3	3	1	2	1	1	1	3	2	3	2	
CO3	3	3	3	2	2	1	1	2	1	2	2	2	
CO4	3	3	3	3	2	2	2	2	2	2	2	2	
CO5	3	3	3	3	2	2	1	2	2	2	2	2	

- 1. Introduction to Computational Physics: Need and advantages of high level language in physics, programming in a suitable high level language, input/output, interactive input, loading and saving data, loops branches and control flow, Matrices and Vectors, Matrix and array operations, need for Graphic tools. *(Lectures 11)*
- Programming with C++: Introduction to the Concept of Object Oriented Programming; Advantages of C++ over conventional programming languages; Introduction to Classes, Objects; C++ programming syntax for Input/Output, Operators, Loops, Decisions, simple and inline functions, arrays, strings, pointers; some basic ideas about memory management in C+. (Lectures 15)
- **3.** Numerical methods: Computer algorithms, interpolations-cubic spline fitting, Numerical differentiation Lagrange interpolation, Numerical integration by Simpson and Weddle's rules, Random number generators, Numerical solution of differential equations by Euler, predictor-corrector and Runge-Kutta methods, eigenvalue problems, Monte Carlo simulations.

(Lectures 15)

Text Books:

- 1. Numerical Mathematical Analysis, J.B. Scarborough (Oxford & IBH Book Co.) 6th ed., 1979.
- 2. A first course in Computational Physics: P.L. DeVries (Wiley) 2nd edition, 2011.

- 1. Computer Applications in Physics: S. Chandra (Narosa) 2nd edition, 2005.
- 2. Computational Physics: R.C. Verma, P.K. Ahluwalia and K.C. Sharma (New Age) 2000.
- 3. Object Oriented Programming with C++: Balagurusamy, (Tata McGraw Hill) 4th edition 2008.

MSPH	I-416-21	Elec	tronics	Lab			L	- 3, T-1,]	P-0	4	Credits	
Pre-re	equisite:	Under	standing	of grad	uate lev	el physi	cs elect	ronics ex	kperime	nts		
studen	ts of M. ngs read	Sc. cla	ss to exp	perimen	tal tech	niques i	n electr	y on Ele onics so op confi	that th	ey can v	verify so	ome of
Cours	e Outco	mes: A	t the en	d of the	course,	the stud	ent will					
CO1 Acquire hands on experience of handling and building electronics circuits.												
	CO2 Be familiar with the various components such as resistors, capacitor, inductor, I chips and how to use these components in circuits.											
CO3Be able to understand the construction, working principles and V-I c of various devices such as PN junction diodes, UJT, TRIAC, etc.												
C	204	Capa	able of u	ising co	mponen	ts of dig	ital elec	ctronics t	for vario	ous appl	ications	•
C	205			-	-	n scienti aperimer	-	eriments	as we	ll as acc	curately	record
		M	apping	of cours	se outco	omes wit	th the p	orogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2	2	2	1	1	2	1	2	2	2	2	2
CO2	2	1	2	2	2	2	1	2	2	2	2	2
CO3	1	1	2	2	1	1	1	2	2	2	2	2
CO4	2	2	2	2	2	3	1	2	2	2	2	2
CO5	3	2	3	3	2	3	1	2	2	2	2	2

Note: Students are expected to perform atleast 10 experiments out of following list.

- 1. Study the forward and reverse characteristics of a Semiconctor/Zener diode.
- 2. Construction of adder, subtracter, differentiator and integrator circuits using the given OP-Amp.
- 3. Study the static and drain characteristics of a JFET.
- 4. Construction of an Astable multivibrator circuit using transistor.
- 5. Construction of a single FET amplifier with common source configuration.
- 6. To study the operation of Analog to Digital convertor.
- 7. To study the operation of Digital to Analog convertor.
- 8. Construction of a low-pass filter circuit and study its output performance.
- 9. Construction of a high-pass filter circuit and study its output performance.
- 10. To verify the Dmorgan's law using Logic Gates circuit.
- 11. To study the Characteristics of Tunnel Diode.
- 12. To study Amplitude Modulation.
- 13. To study Frequency Modulation.
- 14. To study the Characteristics of SCR.
- 15. To study the Characteristics of MOSFET.
- 16. To study the Characteristics of UJT.
- 17. To study the Characteristics of TRIAC.
- 18. To verify the different Logic and Arithmetic operations on ALU system.
- 19. To study the operation of Encoders and Decoders.
- 20. To study the operation of Left and right shift registers.
- 21. To study the operation of Counters, Ring counters.
- 22. To determine the thermal coefficient of a thermistor.
- 23. To study the operation of an Integrated Circuit Timer.

Text Books:

- 1. Text Book of Electronics: S. Chattopadhyay, New Central Book Agency P.Ltd., Kolkata, 2006.
- 2. Digital Principles and Applications: A.P. Malvino and D.P. Leach, Tata McGraw-Hill, Publishing Co., New Delhi.

- 1. Electronics Principles and Applications: *A.B. Bhattacharya*, New Central Book Agency P.Ltd., Kolkata, 2007.
- 2. Integrated Electronics Analog and Digital Circuits and Systems: *J. Millman, C.C Halkins and C. Parikh*, 2nd Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2010.

MSPH	[-417-2]	Computational Physics Lab-I					L-	- 3 , T-1,	P-0	4	Credits		
Pre-re	Pre-requisite: Understanding of graduate level numerical methods												
familia program to phys	rize the mming t sics.	e of M using C	A.Sc. s ++ lang	tudents uage so	with t that the	of the co he num y can us the stude	erical e these	method in solvin	s used ng simp	in cor	nputatio	n and	
Course Outcomes: At the end of the course, the student will be able to CO1 Apply basics knowledge of computational Physics in solving various physical problems.												hysical	
C	CO2Programme with the C++ or any other high level language.CO3Use various numerical methods in describing/solving physics problems.												
	04	prob	lems.	-		king and	·		soning a	as applie	ed to se	ientific	
	CO5 Analyse and reproduce the experimental data. Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	2	2	1	1	2	3	2	3	2	
CO2	3	3	3	1	2	1	1	1	3	2	3	2	
CO3	3	3	3	2	2	1	1	2	1	2	2	2	
CO4	3	3	2	2	3	1	1	1	1	1	1	1	
CO5	1	3	3	3	1	1	1	1	2	1	2	2	

Note: Students are expected to perform atleast 10 experiments out of following list using C++ and Gnuplot.

- 1. To find the standard deviation, mean, variance, moments etc. of at least 15 entries.
- 2. To choose a set of 10 values and find the least squared fitted curve.
- 3. Find y for a given x by fitting a set of values with the help of cubic spline fitting technique.
- 4. To find the Roots of an Algebraic Equation by Bisection method and secant method
- 5. To find the Roots of an Algebraic Equation by Newton-Raphson Method.
- 6. To find the Roots of Linear Equations by Gauss Elimination Method.
- 7. To find the Roots of Linear Equations by Gauss-Seidal Iterative Method.
- 8. Find first order derivative at given x for a set of values with the help of Lagrange interpolation.
- 9. To perform numerical integration of a function by Trapezoidal Rule.
- 10. To perform numerical integration of a function by Simpson's Rule.
- 11. To perform numerical integration of a function by Weddle's rule.
- 12. To solve a Differential Equation by Euler's method and Modified Euler's Method.
- 13. To solve a Differential Equation by Runge Kutta method.
- 14. To find the determinant of a matrix and its eigenvalues and eigenvectors.
- 15. To generate random numbers between (i) 1 and 0, (ii) 1 and 100.

Text Books:

- 1. Numerical Mathematical Analysis, J.B. Scarborough (Oxford & IBH Book Co.) 6th ed., 1979.
- 2. A first course in Computational Physics: P.L. DeVries (Wiley) 2nd edition, 2011.

- 1. Computer Applications in Physics: S. Chandra (Narosa) 2nd edition, 2005.
- 2. Computational Physics: R.C. Verma, P.K. Ahluwalia and K.C. Sharma (New Age) 2000.
- 3. Object Oriented Programming with C++: Balagurusamy, (Tata McGrawHill) 4th edition 2008.

MSPH	I-421-2	1	Mathematical Physics-II					-3, T-1,	P-0	4	Credits	5		
Pre-re	quisite	Under	standing	of grad	uate lev	el mathe	ematics							
the M theoret backgr	Sc. St tical tre ound if	udents eatment he/she	with th in diff chooses	ne math ferent c to pursi	iematica ourses ie resear	ll techn taught rch in pl	iques t in this nysics as	Mathen hat he/s class a s a caree	she nee and for	ds for	underst	anding		
Cours	e Outco	omes: A	t the en	d of the	course,	the stud	ent will	able to						
CO1 Understand the basics and aplications of group theory in all the branches of Physics.											f			
C	202	Use	Fourier	series a	nd trans	formatio	ons as ai	n aid for	analyzi	ng phys	physical problems.			
CO3 Apply integral transform to solve mathematical problems of Physic									f Physic	ics interest.				
C	204			nd expro ransform		ysical la	w in ter	ms of te	nsors ar	nd simpl	ify it by	use of		
C	205	Dev	elop ma	themation	cal skills	s to solv	e quanti	itative p	roblems	in phys	ics.			
		Μ	apping	of cour	se outco	omes wi	th the p	orogram	outcor	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	2	2	-	1	1	-	2	1	1	2		
CO2	3	3	2	2	-	1	1	-	2	1	1	2		
CO3	3	3	2	2	-	1	1	-	2	1	1	2		
CO4	3	3	2	2	-	1	1	-	2	1	1	2		
CO5	3	3	2	2	-	1	1	-	2	1	1	2		

- 1. **Group Theory:** What is a group? Multiplication table, conjugate elements and classes, subgroups, Isomorphism and Homomorphism, Definition of representation and its properties, Reducible and irreducible representations, Schur's lemmas (only statements), characters of a representation. Example of C4v, Topological groups and Lie groups, three dimensional rotation group, special unitary groups SU(1) and SU(2). *(Lectures 10)*
- 2. **Tensors:** Introduction, definitions, contraction, direct product. Quotient rule, Levi-Civita symbol, Noncartesian tensors, metric tensor, Covariant differentiation.

(Lectures 7)

- 3. Fourier Series and Integral Transforms: Fourier series, Dirichlet conditions, General properties, Advantages and applications, Gibbs phenomenon, Fourier transforms, Development of the Fourier integral, Inversion theorem, Fourier transforms of derivatives; Momentum representation. Laplace transforms, Laplace transforms of derivatives, Properties of Laplace transform, Inverse Laplace transformation. *(Lectures 15)*
- 4. **Integral Equations:** Definitions and classifications, integral transforms and generating functions. Neumann series, Separable Kernels, Hilbert-Schmidt theory, Green's functions in one dimension. *(Lectures 10)*

Text Books:

- 1. Group Theory for Physicists: A.W. Joshi (Wiley Eastern, New Delhi) 2011.
- 2. Mathematical Methods for Physicists: G. Arfken and H.J. Weber, (Academic Press, San Diego) 7th edition, 2011.

- 1. Matrices and Tensors in Physics: A.W. Joshi (Wiley Eastern, New Delhi) 2005.
- 2. Numerical Mathematical Analysis: J.B. Scarborough (Oxford Book Co., Kolkata) 4th edition.
- 3. A First Course in Computational Physics: P.L. Devries (Wiley, New York) 1994.
- 4. Mathematical Physics: P.K. Chatopadhyay (Wiley Eastern, New Delhi) 2011.
- 5. Introduction to Mathematical Physics: C. Harper (Prentice Hall of India, New Delhi) 2006.

MSPH	I-422-2 1	1	Stati	stical N	lechani	cs	L	- 3, T-1,]	P-0	4	Credits	5	
Pre-re	equisite:	Under	standing	; of grad	uate lev	el statist	ical me	chanics					
M.Sc. unders constit	student tand th tuents.	with the mac	ne techn coscopic	iques o proper	f statisti ties of	of the cou ical ense the ma	mble t tter in	heory so bulk i	that hein term	e/she ca	n use tl	nese to	
						the stude				ma o da mo			
	$\frac{101}{202}$					n Statisti					unies		
	CO2Use ensemble theory to explain the behavior of Physical systemsCO3Explain the statistical behavior of Bose-Einstein and Fermi-Dirac systems and												
	203		ain the applica		al beha	vior of	Bose-E	instein a	and Fer	mi-Dira	c syster	ns and	
C	CO4	Wor	k with n	nodels o	of phase	transitio	ns and	thermo-	dynami	cal fluct	uations.		
C	205	Dese	cribe ph	ysical p	roblems	using qu	lantum	statistic	s.				
		M	apping	of cours	se outco	omes wit	h the p	orogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	1	-	-	-	-	-	1	1	-	-	-	
CO2	3	3	3	1	3	2	1	2	2	1	1	1	
CO3	3	3	3	1	2	2	1	2	2	1	1	1	
CO4	3	3	3	1	2	2	1	2	2	1	1	1	
CO5	3	3	3 1 2 2 1 2 1 1 1										

- 1. The Statistical Basis of Thermodynamics: The macroscopic and microscopic states, contact between statistics and thermodynamics, classical ideal gas, Gibbs paradox and its solution. *(Lectures 7)*
- 2. Ensemble Theory: Phase space and Liouville's theorem, the microcanonical ensemble theory and its application to ideal gas of monatomic particles; The canonical ensemble and its thermodynamics, partition function, classical ideal gas in canonical ensemble theory, energy fluctuations, equipartition and virial theorems, a system of quantum harmonic oscillators as canonical ensemble, statistics of paramagnetism; The grand canonical ensemble and significance of statistical quantities, classical ideal gas in grand canonical ensemble theory, density and energy fluctuations. *(Lectures 10)*
- 3. Quantum Statistics of Ideal Systems: Quantum states and phase space, an ideal gas in quantum mechanical ensembles, statistics of occupation numbers; Ideal Bose systems: basic concepts and thermodynamic behaviour of an ideal Bose gas, Bose-Einstein condensation, discussion of gas of photons (the radiation fields) and phonons (the Debye field); Ideal Fermi systems: thermodynamic behaviour of an ideal Fermi gas, discussion of heat capacity of a free electron gas at low temperatures, Pauli paramagnetism.

(Lectures 10)

- 4. Elements of Phase Transitions: Introduction, a dynamical model of phase transitions, Ising model in zeroth approximation. *(Lectures 8)*
- **5.** Fluctuations: Thermodynamic fluctuations, random walk and Brownian motion, introduction to non-equilibrium processes, diffusion equation.

(Lectures 5)

Text Books:

1. Statistical Mechanics: R.K. Pathria and P.D. Beale (Butterworth-Heinemann, Oxford), 3rd edition, 2011.

- 1. Statistical Mechanics: K. Huang (Wiley Eastern, New Delhi), 1987.
- 2. Statistical Mechanics: B.K. Agarwal and M. Eisner (Wiley Eastern, New Delhi) 2nd edition, 2011.
- 3. Elementary Statistical Physics: C. Kittel (Wiley, New York), 2004.
- 4. Statistical Mechanics: S.K. Sinha (Tata McGraw Hill, New Delhi), 1990.

MSPH	[-423-2]	l	Quan	tum Me	chanics	-II	L-	-3, T-1,	P-0	4	Credits	6	
Pre-re	quisite:	Prelim	inary co	ourse of	Quantur	n Mecha	inics						
introdu technic these i	uce the l ques of n variou	M.Sc. s Relativ s branc	tudents istic qu hes of p	to the f antum r hysics a	formal s nechani s per his	e of the tructure cs and (s/her req	of the s Quantur uiremen	subject a n field nt.	and to e theory s	quip hi	m/her w	ith the	
	e Outco 201	Defi	ne the r	elativist	ic QM a	the stude				luantum	mechar	nics	
and need for quantum field theory CO2 Give the significance of Klein Gordon and Dirac equation and explain the existence of antiparticles. CO3 Apply the symmetries principles and Noether's theorem in calculating the													
CO3 Apply the symmetries principles and Noether's theorem in calculating conserved currents and charges.											ing the		
C	204	field	s.		•	ntization		-			•		
C	205					an diagr		d apply	the Fey	nman ru	les to de	erive	
		M	apping	of cours	se outco	omes wit	h the p	orogram	outcor	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	2	1	1	1	1	2	2	1	2	2	
CO2	2	2	2 3 1 1 1 - 1 2 1 2 2										
CO3	2	2	2	2	1	1	1	1	2	1	2	2	
CO4	2	2	2	2	1	1	1	2	2	1	2	2	
CO5	2	2	3	2	1	1	2	2	2	1	2	2	

1. **Relativistic Quantum Mechanics-I:** Klein-Gordon equation, Dirac equation and its plane wave solutions, significance of negative energy solutions, spin angular momentum of the Dirac particle, the non-relativistic limit of Dirac equation.

(Lectures 10)

2. **Relativistic Quantum Mechanics-II:** Electron in electromagnetic fields, spin magnetic moment, spin-orbit interaction, Dirac equation for a particle in a central field, fine structure of hydrogen atom, Lamb shift.

(Lectures 10)

- 3. Quantum Field Theory: Resume of Lagrangian and Hamiltonian formalism of a classical field, Noether theorem, Quantization of real scalar field, complex scalar field, Dirac field and electromagnetic field, Covariant perturbation theory, Wick's theorem, Scattering matrix. *(Lectures 10)*
- 4. **Feynman diagrams**: Feynman rules, Feynman diagrams and their applications, Yukawa field theory, calculations of scattering cross-sections, decay rates with examples, Quantum Electrodynamics, calculations of matrix elements for first order and second order.

(Lectures 10)

Text Books:

- 1. Relativistic quantum Mechanics, J D Bjorken and S D Drell, (Tata McGraw Hill, New Delhi) 2012.
- 2. A first book of Quantum Field Theory, A. Lahiri & P. Pal, (Narosa Publishers, New Delhi), 1st ed. 2005.
- 3. Introduction to Quantum Field Theory, M. Peskin & D.V. Schroeder. (Levant Books) 2015.

- 1. Quantum Field Theory in a Nutshell: A Zee (University Press), 2012.
- 2. Lecture on Quantum Field Theory, A. Das (World Scientific), 2008.
- 3. Text Book of Quantum Mechanics-P.M. Mathews & K. Venkatesan (Tata McGraw Hill, New Delhi), 2004.
- 4. Quantum Field Theory: H. Mandl and G. Shaw (Wiley, New York), 2010.
- 5. Advance Quantum Mechanics: J.J. Sakurai (Addison-Wesley, Reading), 2004.

MSPH	I-424-2	1 Clas	sical El	ectrody	mamics		L-	• 3, T-1,]	P-0	4	Credits		
Pre-re	equisite	Unders	standing	of grad	uate lev	el electi	ricity an	d magne	etism				
Magne electro time v	etostatic omagnet arying s	s inclu ic wave ources.	ding N s in die	Aaxwell lectrics;	equat EM wa	ions, a aves in	nd the bounded	course ir appl d media be able	ications , waveg	to p	ropagati	on of	
	201	Und		the co				multipo		ansion	and die	electric	
CO2 Explain the magnetic scalar, vector potential and boundary conditions on magnetic fields. CO3 Provide solution to various boundary value problems.													
CO3Provide solution to various boundary value problems.													
C	204							and diff Igh diffe			d descr	ibe the	
C	205			alytical re guide		solve p	oroblems	s related	to proj	pagation	of EM	waves	
		Ma	apping	of cours	se outco	omes wi	th the p	rogram	outcor	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	2	1	2	1	2	1	1	1	2	3	
CO2	2	2	1	1	1	1	1	1	1	3	2	3	
CO3	2	2	2	2	2	2	1	1	1	2	2	3	
CO4	2	2	1	2	1	2	1	1	1	3	2	3	
C05	1	2	1	2	1	1	1	2	2	3	2	3	

1. Electrostatics: Electrostatic potential and potential of a charge distribution, dipole moment, Electric Quadrupole and multipoles, Multipole expansion of the scalar potential, Dielectric polarization and its types, Polarization vector, Relation between electric displacement, electric field and Polarisation, Electrostatic energy and energy density in free space and dielectric, Boundary conditions at the interface of two dielectrics.

(Lectures 10)

- Magnetostatics: Current density, magnetic induction, Force on a current element: Ampere's Force law, Divergence of magnetic induction, Magnetic scalar and vector potential, Boundary conditions on magnetic fields. (Lectures 6)
- 3. **Boundary value problems:** Uniqueness theorem, Green's theorem, Green's reciprocation theorem, Solution of electrostatic boundary value problem with Green function, Method of images with examples; Point charge near an infinite grounded conducting plane; Dielectric slab of infinite face in front of a point charge, Laplace and Poisson's equations in different coordinates, Solution of Laplace equation. *(Lectures 8)*
- 4. **Maxwell equations and Electromagnetic Waves:** Maxwell equations, Concept of displacement current, Maxwell's equations for free space, static fields and in Phasor notation, Wave equations in free space, non-conducting and conduction medium (Phasor form), Propagation characteristics of EM waves in free space, non-conducting and conducting media, conductors and dielectrics, depth of penetration, Poynting vector, Poynting theorem, Poynting theorem in complex form, Polarisation, Reflection of waves by a perfect conductor-normal and oblique incidence, Reflection and transmission of waves by a perfect dielectric-normal and oblique incidence, Brewster's angle, Total internal reflection, Gauge transformation, Lorentz and Coulomb gauges, Hertz potential,

(Lectures 10)

5. Wave Guides: Wave guides, Derivation of field equations in rectangular wave guides, Transverse magnetic (TM) waves, Transverse Electric (TE) waves, Propagation characteristics of TM and TE waves, Lowest possible mode in TM and TE waves, Dominant mode, Evanescent mode, Degenerate mode, Transverse electromagnetic (TEM) waves and characteristics, Difference between Transmission lines and wave guides, Definition, function and properties of an antenna, Retarded vector potential.

(Lectures 10)

Text Books:

- 1. Classical Electrodynamics: S.P. Puri (Narosa Publishing House) 2011.
- 2. Classical Electrodynamics: J.D. Jackson, (New Age, New Delhi) 2009.
- 3. Introduction to Electrodynamics: D.J. Griffiths (Prentice Hall India, New Delhi) 4th ed., 2011.

- 1. Classical Electromagnetic Radiation: J.B. Marion and M.A. Heald(Saunders College Publishing House) 2nd edition, 1995.
- 2. Electromagnetic Fields, Ronald K. Wangsness (John Wiley and Sons) 2nd edition, 1986.
- 3. Electromagnetic Field Theory Fundamentals: Bhag Singh Guru and H.R. Hiziroglu

MSPH	[-425-2]	l A	tomic a	nd Mol	ecular I	Physics	L·	-3, T-1,	P-0	4	Credits	5		
Pre-re	quisite	Under	standing	g of grad	luate lev	el spect	roscopy	r						
the stu		of M.S	c. Phys	ics is t	o equip			n Atomi e know						
Cours	e Outco	mes: A	t the en	d of the	course,	the stud	ent will	be able	to					
C	201		e the ba atom	sic knov	wledge	of Bohr	's- Som	merfeld	Quantu	im theor	ry of hy	drogen		
C	CO2Understand classical/quantum description of electronic spectra of atom and moleculesCO3Use microwave and Raman Spectroscopy for analysis of known molecules													
CO3 Use microwave and Raman Spectroscopy for analysis of known molecules														
C	204		elate in sical des		-	scopic i	nformat	ion of	known	molecu	les wit	h their		
C	205	Und anal		Spin Re	sonance	Spectro	oscopy v	with foc	us on N	MR for	molecul	ar		
		M	apping	of cours	se outco	omes wi	th the p	orogram	outcor	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2	3	2	2	1	1	2	2	3	1	2		
CO2	2	2	3	3	2	1	2	2	2	3	1	1		
CO3	2	2	3	3	2	1	2	2	2	3	1	3		
CO4	2	2	3	3	2	1	2	2	2	3	1	3		
C05	2	2	3	3	2	1	2	2	2	3	1	3		

- Electronic Spectroscopy of Atoms: Bohr-Sommerfeld model of atomic structure, Electronic wave function and atomic quantum numbers – hydrogen spectrum – orbital, spin and total angular momentum - fine structure of hydrogen atom – many electron spectrum: Lithium atom spectrum, angular momentum of many electrons – term symbols – the spectrum of helium and alkaline earths – equivalent and non-equivalent electrons –X-ray photoelectron spectroscopy. (Lectures 8)
- Electronic Spectroscopy of Molecules: Diatomic molecular spectra: Born-Oppenheimer approximation – vibrational spectra and their progressions – Franck-Condon principle – dissociation energy and their products –rotational fine structure of electronic-vibration transition - molecular orbital theory – the spectrum of molecular hydrogen – change of shape on excitation – chemical analysis by electronic spectroscopy – reemission of energy – fundamentals of UV photoelectron spectroscopy. (Lectures 9)
- Microwave and Raman Spectroscopy: Rotation of molecules and their spectra diatomic molecules intensity of line spectra the effect of isotropic substitution non-rigid rotator and their spectra polyatomic molecules (linear and symmetric top molecules) Classical theory of Raman effect pure rotational Raman spectra (linear and symmetric top molecules). (Lectures 8)
- 4. Infra-red and Raman Spectroscopy: The energy of diatomic molecules Simple Harmonic Oscillator the Anharmonic oscillator the diatomic vibrating rotator vibration-rotation spectrum of carbon monoxide –breakdown of Born-Oppenheimer approximation the vibrations of polyatomic molecules –influence of rotation on the spectra of polyatomic molecules (linear and symmetric top molecules) Raman activity of vibrations vibrational Raman spectra vibrations of Spherical top molecules.

(Lectures 8)

5. Spin Resonance Spectroscopy Spin and magnetic field interaction – Larmor precession – relaxation time – spin-spin relaxation - spin-lattice relaxation - NMR chemical shift - coupling constants – coupling between nuclei – chemical analysis by NMR – NMR for nuclei other than hydrogen – ESR spectroscopy - fine structure in ESR. *(Lectures 8)*

Text Books:

- 1. Fundamentals of Molecular Spectroscopy: Colin N. Banwell and Elaine M. McCash (Tata McGraw-Hill Publishing Company limited).
- 2. Physics of Atoms and Molecules: B. H. Bransden and C. J. Joachain.

- 1. Physical method for Chemists (Second Edition): Russell S. Drago (Saunders College Publishing).
- 2. Introduction to Atomic Spectra: H.E. White-Auckland McGraw Hill, 1924.
- 3. Spectroscopy Vol. I, II & III: Walker & Straughen
- 4. Introduction to Molecular spectroscopy: G.M. Barrow-Tokyo McGraw Hill, 1961.
- 5. Spectra of diatomic molecules: Herzberg-New York, 1944.

MSPH	I-426-2	I A	tomic, I	Nuclear Physics	-	article	L-	-3, T-1, I	P-0	4	Credits	\$				
Pre-re	equisite	Under	standing	of grad	uate lev	el atomi	c specti	roscopy	and nuc	lear phy	vsics					
to exposed to expose the to expose the to expose the total source of total source	ose the t they c ticated e	students an verif equipme	of M.S y some ent.	c. stude of the	ents to entresults of	f the lab xperiment obtained the stude	ntal tecl in theo	hniques ory and	in atom develop	ic and n	uclear p	physics				
										1 0						
	201	^	uire han tillation		•	e of usin	ng parti	cle dete	ctors su	ch as G	M coun	ter and				
C	202	Han	Handle oscilloscope for visualisation of various input and output signals. Understand the basic of nuclear safely management.													
C	203	Und	erstand	the basi	c of nuc	lear safe	ly mana	agement	•							
C	204		orm sci lts of nu			ents as nts.	well a	s accura	ately re	cord an	d analy	ze the				
C	205	Solv	e applie	d nuclea	ar proble	ems with	n critica	l thinkin	g and a	nalytica	l reason	ing.				
		Μ	apping	of cours	se outco	omes wit	h the p	rogram	outcon	nes						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	1	1	1	1	1	2	2	2	2	2	2	2				
CO2	1	1	1 2 1 2 1 2													
CO3	1	1	1	2	1	2	1	2	2	2	2	2				
CO4	1	2	2	2	1	2	2	2	2	2	2	2				
CO5	1	2	2	2	1	2	2	2	2	2	2	2				

Note: Students are expected to perform atleast 10 experiments out of following list.

- 1. Determination of e/m of electron by Normal Zeeman Effect using Febry Perot interferometer.
- 2. To verify the existence of Bohr's energy levels with Frank-Hertz experiments.
- 3. Determination of Lande's factor of DPPH using Electron-spin resonance (E.S.R.) spectrometer.
- 4. Determination of ionization Potential of Lithium.
- 5. Analysis of pulse height of gamma ray spectra.
- 6. To study the characteristics of G.M. tube.
- 7. To verify the inverse square law using GM counter.
- 8. To determine the dead time of G.M. counter.
- 9. To study absorption of beta particles is matter using GM counter.
- 10. To study Gaussian distribution using G.M. counter.
- 11. To estimate the efficiency of GM detector for Gamma and Beta source.
- 12. Determination of Planck's constant using Photocell and interference filters.
- 13. Verification of Inverse square law using Photocell.
- 14. To study Gaussian distribution using scintillation counter.
- 15. To study absorption of gamma radiation by scintillation counter.
- 16. To estimate the efficiency of Scintillator counter.

Text Books:

- 1. Fundamentals of Molecular Spectroscopy: Colin N. Banwell and Elaine M. McCash (Tata McGraw-Hill Publishing Company limited).
- 2. Physics of Atoms and Molecules: B. H. Bransden and C. J. Joachain.

- 1. Physical method for Chemists (Second Edition): Russell S. Drago (Saunders College Publishing).
- 2. Introduction to Atomic Spectra: H.E. White-Auckland McGraw Hill, 1924.
- 3. Spectroscopy Vol. I, II & III: Walker & Straughen
- 4. Introduction to Molecular spectroscopy: G.M. Barrow-Tokyo McGraw Hill, 1961.
- 5. Spectra of diatomic molecules: Herzberg-New York, 1944.

		1	
MSPH-427-21	Computational Physics Lab-II	L-3, T-1, P-0	4 Credits
	I J	, , ,	

Pre-requisite: Understanding of graduate level numerical methods and C++

Course Objectives: The aim and objective of the lab on **Computational Physics-II** is to train the students of M.Sc. class in understanding numerical methods, the usage of high level language such as C++ language for simulation of results for different physics problems and graphic analysis of physical data, so that they are well equipped in the use of computer for solving physics related problems.

Cours	e Outco	omes: A	t the end	d of the	course,	the stud	lent will	be able	to			
C	201		erstand sics prob		oly basi	cs knov	wledge	of nume	erical m	ethods	in solvi	ing the
C	202	Writ	e progra	amme w	ith the (C++ or a	any othe	r high le	evel lang	guage.		
C	203	Lear	n use of	graphic	al meth	ods in d	lata anal	ysis and	solving	g physics	s proble	ms.
C	CO4 Solve physical problem, enabling development of critical thinking and analytical reasoning.											alytical
CO5 Apply computational physics in frontier areas of pure and applied physics and allied fields.											ed resea	arch in
		M	apping	of cours	se outco	omes wi	th the p	orogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	2	1	1	1	3	2	3	2
CO2	3	3	3 2 2 1 1 2 1 2							2	2	2
CO3	1	2	1	3	1	2	1	1	1	1	1	1
CO4	3	3	2	2	3	1	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1	3	2	1	1

Note: Students are expected to perform atleast 10 experiments out of following list using C++ and Gnuplot.

- 1. Write a program to study graphically the EM oscillations in LCR circuit (use Runge-Kutta Method). Show the variation of (i) Charge vs Time and (ii) Current vs Time.
- 2. Study graphically the motion of falling spherical body under various effects of medium (viscous drag, buoyancy and air drag) using Euler method.
- 3. Study graphically the path of a projectile with air drag using FN method. Find the horizontal and maximum height in either case. Write your comments on the findings.
- 4. Study graphically the path of a projectile without air drag using FN method. Find the horizontal and maximum height in either case. Write your comments on the findings.
- 5. Study the motion of an artificial satellite.
- Study the motion of 1-D harmonic oscillator (without and with damping effects). Draw graphs showing the relations: i) Velocity vs Time, ii) Acceleration vs Time iii) Position vs Time, also compare the numerical and analytical results.
- Study the motion of two coupled harmonic oscillators. Draw graphs showing the relations: i) Velocity vs Time, ii) Acceleration vs Time iii) Position vs Time, also compare the numerical and analytical results.
- 8. To obtain the energy eigenvalues of a quantum oscillator using the Runge-Kutta method.
- 9. Study the motion of a charged particle in uniform electric field.
- 10. Study the motion of a charged particle in uniform Magnetic field.
- 11. Study the motion of a charged particle in combined uniform electric and magnetic fields.
- 12. Use Monte Carlo techniques to simulate phenomenon of Nuclear Radioactivity. Do the cases in which the daughter nuclei are also unstable with half life greater/lesser than the parent nucleus.
- 13. Use Monte Carlo techniques to simulate phenomenon to determine solid angle in a given geometry.
- 14. Use Monte Carlo techniques to simulate phenomenon to simulate attenuation of gamma rays/neutron in an absorber.
- 15. Use Monte Carlo techniques to simulate phenomenon to solve multiple integrals and compare results with Simpson's method.

- 16. To study phase trajectory of a Chaotic Pendulum.
- 17. To study convection in fluids using Lorenz system.

Text Books:

- 1. Numerical Recipes in C++ The Art of Scientific Computing, William H. Press, Saul, A.Teukolsky, William T. Vetterling, and Brian P. Flannery, (Cambridge), 2nd ed. 2001.
- 2. A First Course in Computational Physics: P.L. DeVries (John Wiley) 2000.

- 1. An introduction to Computational Physics: Tao Pang (Cambridge), 2nd ed. 2006.
- 2. Computer Applications in Physics: S. Chandra (Narosa), 2006.
- 3. Computational Physics: R.C. Verma, P.K. Ahluwalia and K.C. Sharma (New Age), 2005.
- 4. Object Oriented Programming with C++: Balagurusamy, (Tata McGraw Hill), 5th ed. 2011.

MSPH	I-531-21	l	Conder	ised Ma	tter Ph	ysics	L-	-3, T-1,	P-0	4	Credits	5				
Pre-re	equisite:	Unders	standing	of grad	uate lev	el solid s	state ph	ysics								
expose proper used ir	e the stu ties, ene n investi	dents or ergy bar gating t	f M.Sc. nd theor hese asp	class to y and tr pects of	o the top ansport the matt	of the construction of the stude of the st	elastic o that t idensed	constan they are l phase.	ts, lattic equipp	e vibrat	ions, die	electric				
	201	Gair	i in-dept	h know	ledge ab	out the f	ormati	on of va	rious cr	ystal str	ucture v	ia				
C	202		Differentiate between various lattice types based on their lattice dynamics and hen explain thermal properties of crystalline solids.													
CO3 Understand the electron motion in periodic solids and origin of energy bands semiconductors.																
C	204	To e in sc	-	he basic	transpo	rt theory	for un	derstand	ling the	transpor	rt pheno	menon				
C	205		•	ous moo f insulat		molecul	ar pol	arizabili	ty, unc	lerstand	the die	electric				
		M	apping	of cours	se outco	omes wit	h the p	orogram	outcoi	nes						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	3	2	2 2 2 1 2 1 2 2 1 2									2				
CO2	2	2	2	2	2	2	2	2	2	2	2	2				
CO3	2	2	1	2	1	2	2	2	1	2	1	2				
CO4	2	2	1	2	2	2	1	2	1	2	2	2				
CO5	2	1	1	2	2	2	2	2	1	2	2	2				

1. **Crystal binding and Elastic constants:** Binding in solids; Cohesive energy, Crystals of Inert gases, ionic crystal, Covalent Crystals, Analysis of elastic strains: dilation, stress components; Elastic Compliance and Stiffness: elastic constants, elastic waves in cubic crystals.

(Lectures 6)

- 2. Lattice Dynamics and Thermal Properties: Vibrations of crystal with monatomic and two atom per primitive Basis; Quantization of Elastic waves, Phonon momentum; Inelastic scattering by phonons, Phonon Heat Capacity, Planck Distribution, normal modes; Density of states, Debye T2 model; Einstein Model; anharmonic crystal interactions; thermal conductivity expansion. (Lectures 9)
- 3. **Energy Band Theory:** Electrons in a periodic potential: Bloch theorem, Nearly free electron model; Kronig Penney Model; Electron in a periodic potential; tight binding method; Wigner-Seitz Method Semiconductor Crystals, Band theory of pure and doped semiconductors; effective mass elementary idea of semiconductor superlattices.

(Lectures 9)

4. **Transport Theory:** Electronic transport from classical kinetic theory; Introduction to Boltzmann transport equation; electrical and thermal conductivity of metals; thermoelectric effects; Hall effect and magneto resistance.

(Lectures 8)

5. **Dielectrics and Ferro Electrics:** Polarization mechanisms, Dielectric function from oscillator strength, Clausius-Mosotti relation; piezo, pyro- and ferro-electricity; Dipole theory of ferroelectricity; thermodynamics of ferroelectric transition.

(Lectures 8)

Text Books:

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, New York), 8th ed. 2005.
- 2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.

- 1. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1971
- 2. Solid State Theory: Walter A. Harrison (Tata McGraw-Hill, New Delhi) 1970.
- 3. Liquid Crystals: S. Chandrasekhar (Cambridge University), 2nd ed. 1991.

MSPH	I-532-21	1	N	uclear H	Physics		L-	-3, T-1, I	P-0	4	Credits	5				
Pre-re	quisite	Unders	standing	of grad	uate lev	el physi	cs									
studen radioa with th	ts of M ctive de ne techn	.Sc. cla cays, nu iques us	ess to the sed in str	e basic rces, nu udying t	aspects clear m hese thi	of Nuc odels, ar ngs.	lear Ph nd nucle	Nuclea ysics like ar react	ke statio ions so	c proper	ties of	nuclei,				
Cours	e Outco	omes: A	t the end	d of the	course,	the stud	ent will	be able	to							
C	201		erstand a ear mod		npare nu	clear mo	odels an	d explai	n nucle	ar prope	rties usi	ng				
C	202	Und	Understand structure and static properties of nuclei.													
CO3 Analyse various decay mode of nucleus.																
C	204		nucleon ear force		n scattei	ring and	deutero	n proble	em to ex	xplain na	ature of					
C	CO5	Desc	eribe vai	rious typ	bes of nu	iclear re	actions	and their	r prope	rties.						
		M	apping	of cours	se outco	omes wit	h the p	rogram	outcor	nes						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	3	3	1	1	2	1	1	2	1	2	2	2				
CO2	3	3	1 1 2 1 1 2 2 2 2													
CO3	3	3	1	1	2	1	1	2	1	2	2	2				
CO4	3	3	1	1	2	1	1	2	1	2	2	2				
CO5	3	3	1	1	2	1	1	2	1	2	2	2				

- 1. **Static properties of nucleus:** Nuclear radii and measurements, nuclear binding energy (review), nuclear moments and systematic, wave-mechanical properties of nuclei, hyperfine structure. *(Lectures 5)*
- 2. Nuclear forces: Evidence for saturation of nuclear density and binding energies (review), types of nuclear potential, Ground and excited states of deuteron, dipole and quadrupole moment of deuteron, single and triplet potentials, meson theory of nuclear forces.

(Lectures 10)

- 3. Nuclear decay: Review of barrier penetration of alpha decay & Geiger-Nuttal law. Beta decays, Fermi theory, Kurie plots and comparative half-lives, Allowed and forbidden transitions, Experimental evidence for Parity-violation in beta decay, Electron capture probabilities, Neutrino, detection of neutrinos, Multipolarity of gamma transitions, internal conversion process. *(Lectures 10)*
- 4. **Nuclear Models:** Liquid drop model, Binding energy; fission and fusion, Experimental evidence for shell effects, Shell Model, Spin-Orbit coupling, Magic numbers, Application of Shell Model like Angular momenta and parities of nuclear ground states, Collective model-nuclear vibrations spectra and rotational spectra. *(Lectures 8)*
- 5. Nuclear reactions: Nuclear reactions and cross-sections, Resonance, Breit- Wigner dispersion formula for l=0 and higher values, compound nucleus, Direct reactions, Transfer reactions. (Lectures 7)

Text Books:

- 1. Nuclear Physics: Irving Kaplan (Narosa), 2001.
- 2. Theory of Nuclear Structure: R.R. Roy and B.P. Nigam (New Age, New Delhi) 2005.
- 3. Handbook of Nuclear Physics: S.N. Ghoshal, S. Chand Publishing (1994).

- 1. Basic Ideas and Concepts in Nuclear Physics: K. Hyde (Institute of Physics) 2004.
- 2. Nuclear physics: Experimental and Theoretical, H.S. Hans (New Academic Science) 2nd ed (2011).

MSPH	[-533-21	Particle Physics					L-	3, T-1,	P-0	4	Credits	}
Pre-re	quisite:	course	on Qua	ntum M	echanic	s and Q	uantum	field Th	eory			
invaria static q particle	nce prin Juark mo es in pro	odel of per per	and cons hadrons spective	servation and we e.	n laws, l ak intera	nadron-lactions s	nadron i so that tl	introdu nteractioney gras	ons, rela p the ba	tivistic	kinemat	ics,
	01	Ove		ne partic				action a		or histor	rical and	l latest
C	02				plication e physic		arious	invarian	ce prin	ciples a	and syn	nmetry
C	03			ivistic k rocesses		cs for c	omputa	tions of	outcom	ne of var	rious rea	actions
С	04	Prop	erties o	f baryor	is and m	esons ir	terms o	of naive	nonrela	tivistic o	quark m	odel.
C	05	Wea deca		action ir	ı quarks	and le	ptons a	nd how	that thi	is is res	ponsible	e for β
		M	apping	of cour	se outco	omes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	2	2	1	1	2	1	2	1	3
CO2	1	1	1	2	2	1	1	2	2	2	2	3
CO3	1	1	1	2	2	1	1	2	2	2	-	1
CO4	1	1	1	2	2	1	2	2	2	2	2	2
CO5	1	1	1	2	2	1	2	1	3	2	-	2

- 1. **Introduction:** Fermions and bosons, particles and antiparticles, quarks and leptons, interactions and fields in particle physics, classical and quantum pictures, Yukawa picture, types of interactions electromagnetic, weak, strong and gravitational, units.
- (Lectures 7)
 Invariance Principles and Conservation Laws: Invariance in classical mechanics and quantum mechanics, Parity, Pion parity, Charge conjugation, Positronium decay, Time reversal invariance, CPT theorem. (Lectures 7)
- 3. **Hadron-Hadron Interactions:** Cross section and decay rates, Pion spin, Isospin, Two nucleon system, Pion-nucleon system, Strangeness and Isospin, G-parity, Total and Elastic cross section, Particle production at high energy. *(Lectures 7)*
- Relativistic Kinematics and Phase Space: Introduction to relativistic kinematics, particle reactions, Lorentz invariant phase space, two-body and three-body phase space, dalitz plots, K-2p-decay, t-θ puzzle, dalitz plots for dissimilar particles, Breit-Wigner resonance formula, Mandelstem variables. (Lectures 7)
- 5. Static Quark Model of Hadrons: The Baryon decuplet, quark spin and color, baryon octet, quark-antiquark combination. (Lectures 7)
- **6. Weak Interactions:** Classification of weak interactions, Fermi theory, Parity non conservation in β-decay, experimental determination of parity violation, helicity of neutrino, K-decay, CP violation in K- decay and its experimental determination.

(Lectures 7)

Text Books:

- 1. Introduction to High Energy Physics: D.H. Perkins (Cambridge University Press), 2000.
- 2. Introduction to Quarks and Partons: F.E. Close (Academic Press, London), 1979.
- 3. Introduction to Particle Physics: M.P. Khanna (Prentice Hall of India, New Delhi), 2004.

- 1. An Introductory Course of Particle Physics: Palash Pal (CRC Press).
- 2. Elementary Particles: I.S. Hughes (Cambridge University Press), 3rd ed. 1991.
- 3. Gauge Theory of Elementary Particle Physics: T.P Cheng & L.F. Li (Oxford).
- 4. Dynamics of the Standard Model: J.F. Donoghue (Cambridge University Press).
- 5. First Book of Quantum Field Theory: A. Lahiri & P. Pal, Narosa, New Delhi.
- 6. Introduction to Quantum Field Theory: M. Peskin & D.V. Schroeder. (Levant Books).

Elective Subject -I

MSPH	I-534-21	Fibr	e Optic	s and N	on-line	ar optic	s L-	- 3, T-1,]	P-0	4	Credits					
Pre-re	quisite:	Unders	standing	of grad	uate lev	el optics	and La	asers								
and N	onlinea	r Optio	es is to	expose	the M.S	ne aim a Sc. stude ar optics	nts to t									
Cours	e Outco	mes: A	t the end	d of the	course,	the stude	ent will	be able	to							
C	201	Und	erstand	the struc	cture of	optical f	iber and	l describ	e prope	rties of	optical	ibers.				
C	202	Iden	ntify and compare the various processes of fibers fabrication													
C	CO3 Describe the optics of anisotropic media															
C	CO4 Analyze the electro-optic and acousto-optic effects in fibers															
C	205	anal	yze non-	linear e	ffects in	optical	fibers.									
		M	apping	of cours	se outco	omes wit	th the p	orogram	outcon	nes						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	2	2	-	1	-	1	-	1	-	3	-	1				
CO2	3	2	1 1 1 1 - 1 - 3 - 1													
CO3	2	2	-	1	-	1	-	1	-	3	-	1				
CO4	3	2	1	1	1	-	-	1	-	3	-	1				
CO5	3	2	1	1	1	-	-	1	-	3	-	1				

- 1. **Optical fibre and its properties:** Introduction, basic fibre construction, propagation of light, modes and the fibre, refractive index profile, types of fibre, dispersion, data rate and band width, attenuation, leaky modes, bending losses, cut-off wavelength, mode field diameter, other fibre types. *(Lectures 7)*
- Fiber fabrication and cable design: Fibre fabrication, mass production of fiber, comparison of the processes, fiber drawing process, coatings, cable design requirements, typical cable design, testing. (Lectures 5)
- 3. **Optics of anisotropic media:** Introduction, the dielectric tensor, stored electromagnetic energy in anisotropic media, propagation of monochromatic plane waves in anisotropic media, directions of D for a given wave vector, angular relationships between D, E, H, k and Poynting vector S, the indicatrix, uniaxial crystals, index surfaces, other surfaces related to the uniaxial indicatrix, Huygenian constructions, retardation, biaxial crystals, intensity through polarizer/waveplate/ polarizer combinations. *(Lectures 10)*
- 4. Electro-optic and acousto-optic effects and modulation of light beams: Introduction to the electro-optic effects, linear electro-optic effect, quadratic electro-optic effects, longitudinal electro-optic modulation, transverse electro optic modulation, electro optic amplitude modulation, electro-optic phase modulation, high frequency wave guide, electro-optic modulator, strain optic tensor, calculation of LM for a logitudinal acoustic wave in isotropic medium, Raman-Nath diffraction, Raman-Nath acousto-optic modulator.

(Lectures 10)

5. **Non-linear optics/processes**: Introduction, anharmonic potentials and nonlinear polarization, non-linear susceptibilities and mixing coefficients, parametric and other nonlinear processes, macroscopic and microscopic susceptibilities. *(Lectures 8)*

Text Books:

1. The Elements of Fibre Optics: S.L. Wymer and Meardon (Regents/Prentice Hall), 1992.

- 1. Lasers and Electro-Optics: C.C. Davis (Cambridge University Press), 1996.
- 2. Optical Electronics: Gathak & Thyagarajan (Cambridge Univ. Press), 1989.
- 3. The Elements of Non-linear Optics: *P.N. Butcher & D. Cotter (Cambridge University Press)*, 1991.

										Elective	Subjec	et -I
MSPH	[-535-2	1	Ra	diation	Physics	8	L	-3, T-1,	P-0	4	Credits	5
Pre-re	quisite	: Under	standing	g of grad	luate lev	el nucle	ar phys	ics				
studen that the to be ra	ts of M ey unde adiatior	Sc. clas. erstand t or nucl	s to the he detai ear phys	relative ls of the sicists in	ly advan e underly n their c	nced top ying asp areer.	ics Radi bects and	n Radia iation Ph 1 can uso	iysics a the teo	nd nucle	ar react	ions so
								be able				
C	201				s mode th matte		teraction	n of ele	ectroma	gnetic 1	radiatio	ns and
C	202	Dist	inguish	various	types of	f radiatio	ons base	d on the	ir intera	action w	ith matt	er.
C	203	Lear	m and u	nderstar	nd about	differen	nt detect	ors.				
C	O 4			•		nnique s esonance		KRF, PIX oscopy.	KE, neu	tron acti	vation	
C	:05	Desi	gn expe	riments	to anal	yze effe	cts of ra	diation o	on vario	us objec	ts.	
		Μ	apping	of cour	se outco	omes wi	th the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	-	1	1	1	1	1	2	1	2
CO2	1	1	1	-	1	2	2	1	2	2	2	2
CO3	2	1	2	2	2	2	2	2	2	2	2	2
CO4	2	2	2	2	2	3	3	2	2	2	2	2
C05	3	2	2	3	3	3	3	2	2	2	2	2

1. **Interaction of electromagnetic radiations with Matter:** Different photon interaction processes viz. photoelectric effect, Compton scattering and pair production. Minor interaction processes, Energy and Z dependence of partial photon interaction processes. Attenuation coefficients, Broad and narrow beam geometries. Multiple scattering.

(Lectures 10)

2. Interaction of charged particles with Matter: Elastic and inelastic collisions with electrons and atomic nucleus. Energy loss of heavy charged particles. Range-energy relationships, Straggling. Radiative collisions of electrons with atomic nucleus.

(Lectures 10)

3. Nuclear Detectors and Instrumentation: General characteristics of detectors, Gas filled detectors, Organic and inorganic scintillation detectors, Semi-conductor detectors [Si(Li), Ge(Li) HPGe]. Room temperature detectors, Gamma ray spectrometers. Gamma ray spectrometry with NaI(Tl) scintillation and semiconductor detectors.

(Lectures 10)

4. Analytical Techniques: Principle, instrumentation and spectrum analysis of XRF, PIXE and neutron activation analysis (NAA) techniques. Theory, instrumentation and applications of electron spin resonance spectroscopy (ESR). Experimental techniques and applications of Rutherford backscattering. Applications of elemental analysis and nuclear medicine. (Lectures 10)

Text Books:

- 1. The Atomic Nucleus: R.D. Evans, Tata Mc Graw Hill, New Delhi.
- 2. Nuclear Radiation Detectors: S. S. Kapoor and V. S. Ramamurthy, New Age, International, New Delhi.

Reference Books:

- 1. Radiation Detection and Measurements: G. F. Knoll, Wiley & Sons, New Delhi.
- 2. Introductory Nuclear Physics: K. S. Krane, Wiley & Sons, New Delhi.
- 3. An Introduction to X-ray Spectrometry: Ron Jenkin, Wiley.
- 4. Techniques for Nuclear and Particle Physics Experiments: W. R. Leo, Narosa Publishing House, New Delhi.
- 5. Introduction to experimental Nuclear Physics: R.M. Singru, Wiley & Sons, New Delhi

Elective Subject -I

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 49 of 73

MSPE	I-536-2	1	Non	linear E) ynamio	cs	L-	3, T-1,]	P-0	4	Credits			
Pre-re	quisite	Unders	standing	of grad	uate lev	el physi	cs							
the M. Hamil	Sc. stud tonian s	ents wit ystems.	th the ba	isics of	the rece	f the con ntly eme the stud	erging r	esearch	field of					
Course Outcomes: At the end of the course, the student will be able to CO1 Understand basic knowledge of nonlinear dynamics and phenomenology of chaos.														
C	202	Apply the tools of dynamical systems theory in context to models.												
C	203	O3 Learn skills by solving problems on solving nonlinear problems using numerical methods.												
C	204	Und	erstand	Hamilto	n appro	ach for o	lescribi	ng vario	us phys	ical syst	em.			
C	205	Qua	ntify cla	ssical cl	naos and	l Quantu	ım chao	s.						
		M	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
C01	2	1	-	1	-	1	2	1	2	2	2	2		
CO2	2	2	1	2	1	1	1	1	1	2	1	1		
CO3	3	2	-	2	1	1	2	1	1	2	1	1		
CO4	2	2	-	2	1	1	2	1	1	2	1	1		
CO5	2	2	-	2	1	1	2	1	1	2	1	1		

- Phenomenology of Chaos: Linear and nonlinear systems, A nonlinear electrical system, Biological population growth model, Lorenz model; determinism, unpredictability and divergence of trajectories, Feigenbaum numbers and size scaling, self similarity, models and universality of chaos. (Lectures 8)
- 2. Dynamics in State Space: State space, autonomous and nonautonomous systems, dissipative systems, one dimensional state space, Linearization near fixed points, two dimensional state space, dissipation and divergence theorem. Limit cycles and their stability, Bifurcation theory, Heuristics, Routes to chaos. Three-dimensional dynamical systems, fixed points and limit cycles in three dimensions, Lyapunov exponents and chaos. Three dimensional iterated maps, U-sequence. (Lectures 10)
- 3. **Hamiltonian System**: Non-integrable systems, KAM theorem and period doubling, standard map. Applications of Hamiltonian Dynamics, chaos and stochasticity.

(Lectures 8)

4. **Quantifying Chaos**: Time series, Lyapunov exponents. Invariant measure, Kolmogorov - Sinai entropy. Fractal dimension, Statistical mechanics and thermodynamic formalism.

(Lectures 7)

5. **Quantum Chaos**: Quantum Mechanical analogies of chaotic behaviour, Distribution of energy eigenvalue spacing, chaos and semi-classical approach to quantum mechanics.

(Lectures 7)

Text Books:

1. Chaos and Non Linear Dynamics: R.C. Hilborn (Oxford Univ. Press), 2001.

- 1. Chaos in Dynamical Systems: E. Ott (Cambridge Univ. Press), 2001.
- 2. Applied Nonlinear Dynamics: A.H. Nayfeh and B. Balachandran (Wiley), 1995.
- 3. Chaos in Classical and Quantum Mechanics: M.C. Gutzwiller (Springer-Verlag), 1990.

Elective Subject -II

MSPH	[-537-21		PI	asma P	hysics		L-	3, T-1,]	P-0	4	Credits			
Pre-re	quisite:	Course	on Elec	etrodyna	mics									
						of the g resear					to expo	ose the		
Course	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to					
CO1 Understand the origin of plasma, conditions of plasma formation and propert of plasma.														
C	02		Distinguish between the single particle approach, fluid approach and kinetic statistical approach to describe different plasma phenomena.											
C	03	Classify propagation of electrostatic and electromagnetic waves in magnetized and non-magnetized plasmas												
С	04				-	phenon d and no		-		•	, diffusi	on and		
С	05	therr				for de , or non								
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcor	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	1	-	1	1	1	1	2	2	1	2		
CO2	1	1	1	-	1	1	1	1	2	2	1	2		
CO3	1	1	1	-	1	1	1	1	2	2	1	2		
CO4	1	1	1	-	1	1	1	1	2	2	1	2		
CO5	1	3	2	2	2	2	1	1	2	2	1	2		

- 1. **Introduction:** Plasma State, elementary concepts and definitions of temperature and other parameters, occurrence and importance of plasma for various applications, Production of Plasma in the laboratory, Physics of glow discharge, electron emission, ionization, breakdown of gases, Paschen's laws and different regimes of E/p in a discharge, Townsend discharge and the evolution of discharge. *(Lectures 8)*
- 2. **Plasma diagnostics:** Probes, energy analyzers, magnetic probes and optical diagnostics, preliminary concepts. *(Lectures 5)*
- 3. **Single particle orbit theory:** Drifts of charged particles under the effect of different combinations of electric and magnetic fields, Crossed electric and magnetic fields, Homogenous electric and magnetic fields, spatially varying electric and magnetic fields, time varying electric and magnetic fields, particle motion in large amplitude waves.

(Lectures 8)

- 4. Fluid description of plasmas: distribution functions and Liouville's equation, macroscopic parameters of plasma, two and one fluid equations for plasma, MHD approximations commonly used in one fluid equations and simplified one fluid and MHD equations. dielectric constant of field free plasma, plasma oscillations, space charge waves of warm plasma, dielectric constant of a cold magnetized plasma, ion- acoustic waves, Alfven waves, Magnetosonic waves. *(Lectures 10)*
- 5. Stability of fluid plasma: The equilibrium of plasma, plasma instabilities, stability analysis, two stream instability, instability of Alfven waves, plasma supported against gravity by magnetic field, energy principle. microscopic equations for my body system: Statistical equations for many body systems, Vlasov equation and its properties, drift kinetic equation and its properties. (Lectures 7)

Text Books:

1. Introduction to Plasma Physics, F.F. Chen

- 1. Principles of Plasma Physics, *Krall and Trievelpice*
- 2. Introduction to Plasma Theory, D.R. Nicholson
- 3. The Plasma State, J.L. Shohet
- 4. Introduction to Plasma Physics, M. Uman
- 5. Principles of Plasma Diagnostic, I.H. Hutchinson

Elective Subject-II

MSPH	[-538-21		ictures, iomolec	-	a and P	ropertie	s L·	-3, T-1,	P-0	4	Credits	5	
Pre-re	quisite:	Under	standing	g of grad	luate lev	vel chem	istry an	d physic	s				
of Bio	molecu	l es is t	o famil	iarize tł	ne M.Sc	of the co c. studen ctra and	ts with	the bas	sics of	the rece			
Cours	e Outco	mes: A	t the en	d of the	course,	the stud	ent will	be able	to				
C	01	Dese	cribe va	rious str	uctural	and cher	nical bo	onding a	spects o	f Biomo	lecules		
C	02		Understand structure and theoretical techniques and their application Biomolecules.										
CO3 Understand use of various spectroscopic techniques and their application Biomolecules.										olication	to the		
C	204	Und	erstand	the stru	cture-Fu	inction re	elations	hip and	modelir	ng of bic	molecu	les.	
C	205	Outl	ine and	correlat	e for pr	oviding s	solution	to inter	discipli	nary pro	blem.		
		M	apping	of cour	se outco	omes wit	h the p	orogram	outcor	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	1	2	2	1	2	1	2	2	1	2	
CO2	2	2	1	2	2	2	2	-	2	2	1	2	
CO3	2	2	1	2	1	2	2	-	2	2	1	2	
CO4	2	2	1	2	2	2	2	-	2	2	1	2	
CO5	2	2	1	2	2	1	2	1	2	2	1	2	

- 1. **Structure Aspects of Biomolecule:** Conformational Principles, Conformation and Configuration Isomers and Derivatives, Structure of Polynucleotides, Structure of Polypeptides, Primary, Secondary, Tertiary and Quaternary Structure of Proteins, Structure of Polysaccharides. *(Lectures10)*
- 2. Theoretical Techniques and Their Application to Biomolecules: Hard Sphere Approximation, Ramachandran Plot, Potential Energy Surface, Outline of Molecular Mechanics Method, Brief ideas about Semi-empirical and Ab initio Quantum Theoretical Methods, Molecular Charge Distribution, Molecular Electrostatic Potential and Field and their uses. *(Lectures 10)*
- 3. Spectroscopic Techniques and their Application to Biomolecules: Use of NMR in Elucidation of Molecular Structure, Absorption and Fluorescence Spectroscopy, Circular Dichroism, Laser Raman Spectroscopy, IR spectroscopy, Photoacoustic Spectroscopy, Photo-biological Aspects of Nucleic Acids. *(Lectures 10)*
- 4. Structure-Function Relationship and Modeling: Molecular Recognition, Hydrogen Bonding, Lipophilic Pockets on Receptors, Drugs and Their Principles of Action, Lock and Key Model and Induced fit Model. (Lectures 10)

Text Books:

1. Srinivasan & Pattabhi: Structure Aspects of Biomolecules.

- 1. Govil & Hosur: Conformations of Biological Molecules
- 2. *Price:* Basic Molecular Biology
- 3. *Pullman:* Quantum Mechanics of Molecular Conformations
- 4. Lehninger: Biochemistry
- 5. Mehler & Cordes: Biological Chemistry
- 6. *Smith and Hanawait:* molecular Photobiology, Inactivation and Recovery

Elective Subject - II

MSPH	I-539-21	Scie Ene	nce of F rgy	Renewa	ble sour	ce of	L·	-3, T-1,	P-0	4 Credi	ts				
Pre-re	equisite:	Unders	standing	of grad	luate lev	el semi	conduct	or physi	cs						
Sourc	e Objecter es is to o , hydrog	expose	the M.S												
Cours	e Outco	mes: A	t the en	d of the	course,	the stud	ent will	be able	to						
C	201		Understand the energy demand of world & distinguish between traditional an alternative form of energy.												
CO2 Describe the concept of solar energy radiation and thermal applications.															
C	203	Ana	lyze ma	king of	solar ce	ll and its	types.								
C	CO4	Iden	Identify hydrogen as energy source, its storage and transportation methods.												
C	205	Com	ipare wi	nd energ	gy, wav	e energy	and oc	ean ther	mal ene	rgy con	version.				
		M	apping	of cours	se outco	omes wi	th the p	orogram	outcor	nes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	1	-	1	-	1	2	1	2	3	2	2			
CO2	2	2	1	2	1	1	1	1	1	3	1	1			
CO3	3	2	2 - 2 1 1 2 1 1 3 1												
CO4	2	2	-	2	1	1	2	1	1	3	1	1			
CO5	2	2	-	2	1	1	2	1	1	3	1	1			

- 1. **Introduction**: Production and reserves of energy sources in the world and in India, need for alternatives, renewable energy sources. (Lectures 8)
- 2. **Solar Energy**: Thermal applications, solar radiation outside the earth's atmosphere and at the earth's surface, Principal of working of solar cell, Performance characteristics of solar cell. Types of solar cell, crystalline silicon solar cell, Thin film solar cell, multijunction solar cell, Elementary ideas of perovskite solar cell, dye synthesized solar cell and Tandem solar cell, PV solar cell, module array, and panel, Applications. *(Lectures 11)*
- 3. **Hydrogen Energy**: Environmental considerations, solar hydrogen through photo electrolysis and photocatalytic process, physics of material characteristics for production of solar hydrogen. Storage processes, solid state hydrogen storage materials, structural and electronic properties of storage materials, new storage modes, safety factors, use of hydrogen as fuel; use in vehicles and electric generation, fuel cells.

(Lectures 10)

4. Other sources: Nature of wind, classification and descriptions of wind machines, power coefficient, energy in the wind, wave energy, ocean thermal energy conversion (OTEC), system designs for OTEC, basic idea about biogas, biofuel, and biodiesel.

(Lectures 8)

Text Books:

1. Solar Energy: S.P. Sukhatme (Tata McGraw-Hill, New Delhi), 2008.

- 1. Solar Cell Devices: Fonash (Academic Press, New York), 2010.
- 2. Fundamentals of Solar Cells, Photovoltaic Solar Energy: Fahrenbruch and Bube (Springer, Berlin), 1982.
- 3. Photoelectrochemical Solar Cells: Chandra (New Age, New Delhi).

MSPH	[-540-21	Co	ondense	d Matte	er Physi	cs Lab	L-	3, T-1,]	P-0	4	Credits	5		
Pre-re	quisite:	Unders	standing	of grad	uate lev	el solid	state ph	ysics ex	perimer	nts				
to train physics	n the st s so th	udents at they	of M.So can ii	c. class ivestiga	to adva to adva te vario the data.	anced e ous rele	xperime	ntal tec	hniques	in con	densed	matter		
Course	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to					
	01				ty, resist	•		•	•	•				
	02		Aeasure magnetic properties and magnetic behavior of magnetic materials.											
C	03	Describe the lattice dynamics of simple lattice structures in terms of dispersion relations.												
	04	analy	ze the r	esults o	out scier f experi	ments.					ely reco	rd and		
C	05		•		critical			•		•				
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	1	1	1	-	-	2	2	2	2	2		
CO2	2	1	1	1	1	-	-	2	2	2	2	2		
CO3	1	1	1	1	1	-	-	2	2	2	2	2		
CO4	2	2	2	2	2	2	2	2	2	2	2	2		
CO5	3	3	2	2	3	2	2	2	2	2	2	2		

Note: Students are expected to perform atleast ten experiments out of following list.

- 1. To study temperature dependence of conductivity of a given semiconductor crystal using four probe method.
- 2. Verification of curie-weiss law for the electrical susceptibility of a ferroelectric material.
- 3. To determine charge carrier density and Hall coefficient by Hall effect.
- 4. To determine magnetic susceptibility of material using Quink 's tube method.
- 5. To determine energy gap and resistivity of the semiconductor using four probe method.
- 6. To study the B-H loop characteristics.
- 7. To determine dielectric constant of a material with Microwave set up.
- 8. To measure the Curie temperature of a given PZT sample.
- 9. To measure the velocity of ultrasonic wave in liquids.
- 10. To study dispersion relation for Mono-atomic and Diatomic lattices using Lattice dynamic kit.
- 11. To study the properties of crystals using X-Ray Apparatus.

Text Books:

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, New York), 8th ed. 2005.
- 2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.

- 1. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1971
- 2. Solid State Theory: Walter A. Harrison (Tata McGraw-Hill, New Delhi) 1970.
- 3. Liquid Crystals: S. Chandrasekhar (Cambridge University), 2nd ed. 1991.

Elective Subject -III

MSPH	[-541-2]	l Phy	sics of N	Nanoma	terials		L	- 3, T-1,	P-0	4	Credits	\$			
Pre-re	quisite:	Conde	nsed ma	atter phy	vsics										
familia study o as care	arize the of differ eer.	studen ent proj	ts of M. perties o	Sc. to the second secon	he vario naterials	us aspec s so that	ts relate they ca	on Phy ed to pre an pursu be able	eparation e this e	n, chara	cterizati	on and			
	201	App	ly the l		ge on f	ree elec		eory to		d struct	ure of	metals,			
C	202	Acq	Acquire knowledge of basic approaches to synthesize the inorganic nanoparticles												
C	03	Describe the use of unique optical properties of nanoscale metallic structures f analytical and biological applications													
C	04			-	•	and che materia		propertie	es of c	arbon 1	nanotub	es and			
C	205				-	operty r arger lei		hips in les.	nanoma	aterials	as well	as the			
		M	apping	of cour	se outco	omes wi	th the p	orogram	outcor	nes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	1	2	2	2	-	1	2	1	1	2	2	3			
CO2	1	2	2	2	-	2	2	1	1	2	2	3			
CO3	1	2	2 2 2 - 2 2 1 1 2 2 3												
CO4	1	2	2	2	-	2	2	1	1	2	2	3			
CO5	1	2	2	2	-	2	2	1	1	2	2	3			

- Introductory Aspects: Free electron theory and its features, Idea of band structure metals, insulators and semiconductors. Density of state in one, two, and three dimensional bands and its variation with energy, Effect of crystal size on density of states and band gap. Examples of nanomaterials. (Lectures 8)
- 2. Synthesis of Nanomaterials: Bottom up: Cluster beam evaporation, ion beam deposition, chemical bath deposition with capping techniques and Top down: Ball Milling.

(Lectures 8)

- **3.** General Characterization Techniques: Determination of particle size, study of texture and microstructure, Increase in x-ray diffraction peaks of nanoparticles, shift in photo luminescence peaks, variation in Raman spectra of nanomaterials, photoemission microscopy, scanning force microscopy. (Lectures 8)
- Quantum Dots: Electron confinement in infinitely deep square well, confinement in one and two-dimensional wells, idea of quantum well structure, Examples of quantum dots, spectroscopy of quantum dots. (Lectures 8)
- Carbon based Nanomaterials: Synthesis, structural, and electronics properties of fullerenes, carbon nanotubes, and graphene, Functionalisation of carbon Nanomaterials, Applications of carbon based Nanomaterials.

Text Books:

- 1. Nanotechnology-Molecularly Designed Materials: G.M. Chow & K.E. Gonsalves (American Chemical Society), 1996.
- 2. Nanotechnology Molecular Speculations on Global Abundance: B.C. Crandall (MIT Press), 1996.

Reference Books:

- 1. Quantum Dot Heterostructures: D. Bimerg, M. Grundmann and N.N. Ledentsov (Wiley), 1998.
- 2. Introduction to Nanotechnology, Charles P. Poole Jr., Frank J. Owens, Wiley Student edition, John Wiley & Sons Inc. Publishes (2003).
- 3. Nanotechnology: A gentle introduction to the next Big Idea, Mark Ratner & Daniel Ratner, LPE, Pearson Education (2002).
- 4. Nanostructures and Nanomaterials: Synthesis: Properties and Applications, G. Cao, Imperial College Press 2nd edition (2011).
- 5. NANO: The Essentials "Understanding Nanoscience and Nanotechnology": T. Pradeep, Tata McGraw-Hill Publishing Company Limited, New Delhi (2007).
- 6. Advanced Micro- & Nanosystems, CMOS-MEMS: O. Brand and G K. Fedder, Wiley-VCH (2008)
- 7. Nanophotonics: Paras N. Prasad, Wiley- Interscience (2004).
- 8. Biomedical Nanotechnology: NH Malsch, Taylor & Francis Group (2005).

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Elective Subject -III

MSPH	I-542-21		Experin Nuclear		-		L	-3, T-1, 1	P-0	4	Credits	\$		
Pre-re	quisite:	Course	e on Nuc	elear and	d Particl	e Physic	s							
Nuclea	ar and]	Particle	Physic	s is to e	expose t	ve of th he stude ne fields	nts of N	A.Sc. sti	idents to	o experi	mental	aspects		
Cours	e Outco	mes: A	t the en	d of the	course,	the stud	ent will	be able	to					
C	201	Understand various experimental techniques for describing interaction of radiations with matter.												
C	202	2 Use error analysis for experimental data.												
C	CO3 Knowledge about the different types of the radiation detectors.													
C	204	App	ly the kı	nowledg	ge of det	ectors fo	or vario	us applie	cations					
C	205	· ·				owledge he world		he exper	rimental	method	s used i	n the		
		M	apping	of cours	se outco	omes wit	th the p	orogram	outcor	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
C01	-	-	2	-	1	-	-	1	-	1	1	1		
CO2	-	-	-	3	-	-	-	3	1	1	1	1		
CO3	-	-	1 2 3 - 1 3 2 2 2 2											
CO4	-	-	- 1 3 3 1 1 2 2 2 2											
C05	-	-	1	3	1	1	1	2	2	2	2	2		

Detailed Syllabus:

- 1. **Detection of radiations:** Interaction of gamma-rays, electrons, heavy charged particles, neutrons, neutrinos and other particles with matter (Qualitative description only). General properties of Radiation detectors, energy resolution, detection efficiency and dead time, Error propagation in experimental data. (Lectures 8)
- 2. **Detectors:** Introduction to Gas-filled detectors, Proportional counters, space charge effects, energy resolution, time characteristics of signal pulse, position-sensitive proportional counters, Multiwire proportional chambers, Drift chamber. Organic and inorganic scintillators and their characteristics, light collection and coupling to photomultiplier tubes, Semiconductor detectors, Ge and Si(Li) detectors, Charge production and collection processes, Pulse height spectrum. (Lectures 16)
- 3. Applications of Detectors: Description of electron and gamma ray spectrum from detector, semiconductor detectors in X- and gamma-ray spectroscopy, Semiconductor detectors for charged particle spectroscopy and particle identification. *(Lectures 8)*
- 4. Experimental methods: Large gamma and charge particle detector arrays, heavy-ion reaction analysers, production of radioactive ion beams. Detector systems for high energy experiments: Collider physics (brief account), Particle Accelerators (brief account), Modern Hybrid experiments- CMS. (Lectures 8)

Text Books:

1. Techniques in Nuclear and particle Experiments by W.R. Leo (Springer), 1994.

Reference Books:

- 1. Radiation detection and measurement by Glenn F. Knoll (Wiley), 2010.
- 2. Introduction to Experimental Particle Physics by Richard Fernow (Cambridge University Press), 2001.
- 3. Detectors for particle radiation by Konrad Kleinknecht (Cambridge University Press), 1999.

Elective Subject -III

MSPH	-543-21			•	and Lo	W	L-	3, T-1,	P-0	4	Credits	5
		Tem	peratui	e Physi	ics							
Pre-re	quisite:	course	in Cond	lensed N	Aatter P	hysics	I					
Physics superco trends importa achieva backgro	s is to onductiv in the e ant tool	b build bity. Stu xperime to exp peratur low ten	l funda idents w ental teo ilore ric e now is nperatur	mental vill not chniques h physi s close t re techni	as we only lea s as wel cs of su to few µ iques as	ell as rn theor ll. Low upercon K. Stud well as	advance retical a tempera ductivit lents will the high	ed und spects b ature is y. With Il also b n-Tc sup	erstand out also one of latest e introc percondu	and Low ing in acquain the mos technolo luced to actors.	the fid ted with t versat ogy the	eld of n latest ile and lowest
C	01	Theo	oretical u	understa	nding o	f the coi	ncept of	superco	onductiv	vity.		
С	02		elate ob rconduc		experin	nental p	ropertie	s of su	perconc	luctors	with or	igin of
C	03	Desc super	ribe a rconduc	ppropri tors.	ate th	eoretica	l mod	lel for	desc	ribing	behavi	or of
С	04		-		High To v temper		-		ors and	theoretic	cal	
С	05		ide expo rconduc		out the	experim	ental teo	chniques	s for me	easureme	ent of	
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	2	2	2	2	1	2	2	1	2
CO3	1	2	2	2	2	2	2	1	2	2	-	2
CO3	1	2	2	2	2	2	2	-	2	2	3	2
CO4	1	2	2	2	2	2	2	-	2	2	2	2
CO5	1	2	2	2	2	2	2	1	2	1	3	2

Scheme & Syllabus (M.Sc. Physics) Batch 2021 & Onwards

Page 64 of 73

Detailed Syllabus:

- 1. **Superconductivity:** Introduction, Thermodynamics, The London Equations, penetration depth, Superconductors in magnetic field, Ginzberg-Landau Theory, Type I and II superconductors, BCS theory, second quantization, Cooper Pairing, energy gap Tunnelling, Josephson effects and SIS tunneling. (Lectures 10)
- 2. **Preparation and measurement techniques:** Single crystal growth: Optical image furnace, seeded melt growth, Thin film deposition: Pulsed laser deposition, sputtering, Resistivity measurements, magnetic measurements, Point contact spectroscopy, scanning tunneling microscopy and spectroscopy. (Lectures 10)
- **3. Cryogenics:** Thermal and electrical properties of different materials at low temperatures, Cooling methods above 1K, Joule-ThomPOn, Gifford-McMohan, Evaporation cooling, Liquefication of Helium, Cooling methods below 1K, dilution refrigeration, adiabatic demagnetisation. (Lectures 10)
- 4. Introduction to high-Tc superconductors: Discovery of high-Tc superconductors, Mechanisms of superconductivity in high-Tc superconductors, Introduction to high-Tc superconducting compound like YBCO, Synthesis, Structure and properties, Electronics and applications. (Lectures 10)

Text Books:

1. Introduction to superconductivity: Michael Tinkham, Courier Corporation, 2004.

Reference Books:

- 1. Introduction to superconductivity: A.C. Rose-Innes and E.H. Rhoderick, Pergamon Press, 2004.
- 2. Experimental techniques in low temperature physics: G.K. White and P.J. Meeson, Oxford Univ. Press, 2001.
- 3. Experimental low temperature physics: A. Kent, MacMillan Press, 1992.
- 4. The theory of superconductivity in high-TC Cuprates: *P.W. Anderson*, Princeton Series Publications.

Elective Subject -IV

MSPH	[-544-21	Adv Phys		Condens	sed Mat	tter	L	-3, T-1,	P-0	4	Credits	\$
Pre-re	quisite:	course	on Con	densed	Matter I	Physics						
familia superc	rize the	M.Sc. vity, ma	studenta gnetic r	s with r resonance	elatively e techn	urse on y advano iques ar reer.	ced topi	ics like	optical	properti	es, magi	netism,
Cours	e Outco	mes: A	t the en	d of the	course,	the stud	ent will	be able	to			
C	01		•	and theorie		be the	Optica	l prop	erties	of soli	ds emp	oloying
C	02	-	Explain various types of magnetic phenomenon in solids, underlying physics, an correlation with the applications.							cs, and		
C	03	Und	erstand	and real	ize the u	use of N	MR me	thods fo	r descri	bing sol	ids.	
C	04	Inter	pret the	phenon	nena, be	havior a	ind appl	ications	of supe	erconduc	ctors.	
C	05	Figu solic		nd perce	eive the	effect o	f deforr	nation a	nd diso	rder on 1	the beha	vior of
		M	apping	of cours	se outco	omes wi	th the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	2	2	2	1	1	2	2	2	3
CO2	2	2	2	2	1	2	1	2	2	1	2	3
CO3	3	2	2	2	2	1	2	2	2	2	1	2
CO4	2	2	2	2	2	2	2	1	2	2	2	2
CO5	3	2	2	2	1	2	2	2	2	1	2	3

Detailed Syllabus:

- Optical Properties: Macroscopic theory; Reflectance and Transmittance of a slab; generalized susceptibility, Kramers- Kronig relations, Brillouin scattering, Raman effect in crystals; interband transitions. (Lectures 8)
- 2. **Magnetism:** Dia and para-magnetism in materials; Langevin theory of diamagnetism, quantum theory of diamagnetism and paramagnetism, Exchange interaction. Heisenberg Hamiltonian; Hubbard model; mean field theory; Ferro-, ferri- and antiferromagnetism; Magnons: spin waves, thermal excitation of magnons; Bloch T2/1 law. (Lectures 8)
- 3. Nuclear Magnetic Resonance in Solids: Origin of NMR in solids– equations of motion, line width, motional narrowing, Knight shift. (Lectures 8)
- 4. **Superconductivity:** Experimental Survey; Basic phenomenology; Vortex state of a Type II superconductors; BCS pairing mechanism and nature of BCS ground state; Flux quantization; Tunneling Experiments; High Tc superconductors; Ginzburg-Landau theory; Greens functions at zero temperature; Applications of Greens functions to superconductivity. (Lectures 8)
- 5. **Disordered Solids:** Basic concepts in point defects and dislocations; Noncrystalline solids: diffraction pattern, Glasses, Amorphous semiconductors and Ferromagnets, Heat capacity and Thermal conductivity of amorphous solids; Quasicrystals. (Lectures 8)

Text Books:

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, New York) 2005.
- 2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.

Reference Books:

- 1. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1971.
- 2. Solid State Physics: H. Ibach and H. Luth (Springer, Berlin), 3rd. ed. 2001.
- 3. A Quantum Approach to Solids: P.L. Taylor (Prentice-Hall, Englewood Cliffs), 1970.
- 4. Intermediate Quantum Theory of Solids: A.O.E. Animalu (East-West Press, New Delhi), 1991.
- 5. Solid State Physics : Ashcroft and Mermin (Reinhert& Winston, Berlin), 1976.

Elective Subject -IV

MSPH	I-545-2	1	Advand	ed Par	ticle Ph	ysics	L-	- 3, T-1,]	P-0	4	Credits	5
Pre-re	equisite	course	on part	icle phy	sics							
studen field ti scheme	ts of M. heory, s	Sc. clas tandard at they u	ss to the model	relative of parti	ely adva cle phy	nced top sics, QC	oics rela D and	ced Par ted to sy quark m tre well	ymmetr nodel, a	y breaki nd vario	ng in qu ous unif	iantum ication
Cours	e Outco	omes: A	t the en	d of the	course,	the stud	ent will	be able	to			
C	201				-	and loca and Hig		e symme nanism.	etries of	`system	, invaria	ince of
C	202		Need for standard model of particle physics and its limitations and the properties of QCD.						perties			
C	203			roblem		gencies	in quan	tum field	d theori	es and th	ne	
C	CO4	-	-				•	f the run ons -QC	•	upling c	onstant	in
C	C O 5	Give	en expos	sure abo	ut the pl	hysics be	eyond th	ne Stand	ard Mo	del.		
		M	apping	of cour	se outco	omes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	2	2	-	2	2	2	2
CO2	2	1	1	2	2	2	2	-	2	2	2	2
CO3	1	2	1	2	2	2	2	-	2	2	1	2
CO4	1	1	2	1	2	2	2	-	1	2	1	2
C05	1	2	2	1	2	2	2	-	2	2	3	2

Detailed Syllabus:

- 1. Symmetries and Symmetry Breaking in QFT: Continuous groups: Lorentz group SO(1,2) and its representations, Unitary groups and Orthogonal groups and their representations, Discrete symmetries: Parity, Charge Conjugation and Time reversal Invariance, CP, CPT. (Lectures 10)
- 2. Global and Local invariances of the Action: Approximate symmetries, Noethers theorem, Spontaneous breaking of symmetry and Goldstone theorem, Higgs mechanism, Abelian and Non-Abelian gauge fields, Lagrangian and gauge invariant coupling to matter fields. (Lectures 10)
- 3. **Standard Model of Particle Physics:** SU(2) x SU(1) x U(1) gauge theory, Coupling to Higgs and Matter fields of 2 generations, Gauge boson and fermion mass generation via spontaneous symmetry breaking, CKM matrix, Low energy Electroweak effective theory, Elementary electroweak scattering processes. (Lectures 10)
- 4. QCD and quark model: Asymptotic freedom and Infrared slavery, confinement hypothesis, Approximate flavor symmetries of the QCD lagrangian, Classification of hadrons by flavor symmetry: SU(1) and SU(2) multiplets of Mesons and Baryons, Chiral symmetry and chiral symmetry breaking, Sigma model, Parton model and Deep inelastic scattering structure functions. (Lectures 10)

Text Books:

- 1. Gauge Theory of Elementary Particle Physics: T.P Cheng & L.F. Li (Oxford).
- 2. An Introductory Course of Particle Physics: Palash Pal (CRC Press).

Reference Books:

- 1. First Book of Quantum Field Theory: A. Lahiri & P. Pal, Narosa, New Delhi.
- 2. Introduction to Quantum Field Theory: M. Peskin & D.V. Schroeder. (Levant Books).
- 3. Dynamics of the Standard Model: J.F. Donoghue (Cambridge University Press).

Elective Subject -IV

MSPH	I-546-21	1	Envir	onment	tal Phys	sics	L	-3, T-1,	P-0	4	Credits	5
Pre-re	quisite	Knowl	edge of	classica	l physic	s						
of M proper	Sc phys ly and a	ics to t re well	he recei equippe	nt advaı d to pur	ncement sue a ca	s in thi reer in e	s field s environr	so that	they un sics and	oose the derstand d other r	l these a	aspects
C	201	Und	erstand	the diffe	erent typ	bes of po	ollution	that occ	ur in the	Earth's	enviror	nment
C	202	App	ly the la	ws of ra	diation	to Solar	and Te	rrestrial	Radiati	on		
C	203		Describe the main reservoirs and exchanges in the global carbon cycle and explain the challenges involved in reducing CO2 emissions									
C	204	App	lication	in the R	enewab	le sourc	es of en	ergy				
C	205			-				nodelleo rth syste		fferent s	scales, r	anging
		M	apping	of cours	se outco	omes wi	th the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	2	2	2	2	1	2	3
CO2	2	1	2	2	2	2	2	2	2	2	2	2
CO3	2	2	2	2	2	2	2	2	2	1	2	2
CO4	1	2	1	2	2	2	2	2	2	2	-	3
CO5	1	2	2	2	2	2	2	2	2	2	2	2

Detailed syllabus:

- 1. **Essentials of Environmental Physics**: Structure and thermodynamics of the atmosphere, Composition of air, Greenhouse effect, Transport of matter, energy and momentum in nature, Stratification and stability of atmosphere, Lass of motion, hydrostatic equilibrium, General circulation of the topics, Elements of weather and climate of India.
- 2. Solar and Terrestrial Radiation: Physics of radiation, Interaction of light with matter, tayleigh and Mie scattering, Laws of radiation (Kirchoffs law, Planck's law, Beer's law, Wien's displacement law, etc.), Solar and terrestrial spectra, UV radiation, Ozone depletion problem, IR absorption energy balance of the earth atmosphere system.
- 3. Environmental Pollution and degradation: Elementary fluid dynamics, Diffusion, Turbulence and turbulent diffusion, Factors governing air, Water and noise pollution, Air and water quality standards, Waste disposal, Heat island effect, Land and sea breeze, Puffs and plumes, Gaseous and particulate matters, Wet and dry deposition.
- 4. Environmental Changes and remote sensing: Energy sources and combustion processes, Renewable sources of energy, Solar energy, Wind energy, bioenergy, hydropower, fuel cells, nuclear energy, Forestry and bioenergy.
- 5. Global and Regional Climate: Elements of weather and climate, Stability and vertical motion of air, Horizontal motion of air and water, Pressure gradient forces, Viscous forces, Reynolds number, Enhanced Greenhouse Effect, Energy balance-a Zero-dimensional Greenhouse model, Global climate models.

Suggested Readings/Books :

- 1. Egbert Boeker & Rienk Van Groundelle: Environmental Physics (John Wiley).
- 2. J. T Hougtion: The Physics of atmosphere (Cambridge University Press, 1977).
- 3. J Twidell and J Weir: Renewable energy Resources (Elbs, 1988).
- 4. Sol Wieder: An introduction t solar energy for scientists and Engineers (John Wiley, 1982)
- 5. R. N. Keshavamurthy and M. Shanker Rao: The Physics of Monsoons (Allied Publishers, 1992).
- 6. G.J. Haltiner and R.T. Williams: Numerical Weather Prediction (John Wiley, 1980).

MSPH	I-547-2 1			Dissert	ation		L-	0, T-12,	P-0	12	Credit	S
Pre-re	quisite:	Know	edge of	specific	branch	of physi	cs					
studen Physic develo	ts to pros. Stude	elimina ents ge f a labo	ries and at the contatory e	methoo pportun xperimo	dology o ity to ent.	Research of resear participa the stude	ch in T te in s	Theoretic some of	cal Phy ngoing	sics and	l Experi	mental
C	201	-	lain the e wider	-		d value c	of prob	lem in p	hysics,	both sci	entifica	lly and
C	202		gn and lts of ex	•		ntific ex	perime	nts as v	well as	accurat	ely reco	ord the
C	203		•	•		ate exper pecific qu		Ũ	ies, and	l decide	which is	s most
C	204	to co	ondense	d matter	physics	scientific s/Nuclear cientists a	/High]	Energy I	Physics	, in oral,	-	
C	205	-	lore nev nology.	w areas	of res	earch in	physi	cs and	allied	fields o	f scien	ce and
		M	apping	of cour	se outco	omes wit	h the p	orogram	outco	mes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	3	1	2	2	2	2	3	2	3
CO2	3	3	3	2	2	2	1	2	2	2	2	2
CO3	2	2	2	2	2	2		2	2	2	1	3
CO4	1	1	-	1		2	2	2	2	3	1	3
CO5	-	2	2	1	-	1		2	2		2	2

Guidelines for the Dissertation:

The aim of project work in M.Sc. 4th semesters is to expose the students to preliminaries and methodology of research and as such it may consist of review of some research papers, development of a laboratory experiments, fabrication of a device, working out some problem, participation in some ongoing research activity, analysis of data, etc.. Project work can be based upon Experimental Physics, Theoretical Physics, or Simulation (quantum based softwares, HPCC, etc.) in the thrust as well as non-thrust research areas of the Department.

A student opting for this course will be attached to one teacher of the Department before the end of the 3rd semester. A report about the work done in the project (typed on both the sides of the paper and properly bound) will be submitted by a date to be announced by the Head of Department.

Assessment of the work done under the project will be carried out by a committee on the basis of effort put in the execution of the project, interest shown in learning the methodology, report prepared, grasp of the problem assigned and viva-voce/seminar, etc. as per course guidelines.

Semester 1st

Sr. No.	Branch	Related Branches	Course codes	Course title	Credits
1	Civil Engineering	1. Civil Engineering	BTPH101-18	Mechanics of solids	4
		2.Construction Engineering & Management	BTPH111-18	Mechanics of solids Lab	1.5
2	Electrical Engineering	1.Electrical Engineering	BTPH102-18	Optics and Modern Physics	4
		2. Automation & Robotics			
		3.Electrical & Electronics Engineering	BTPH112-18	Optics and Modern Physics Lab	1.5
		4.Electronics & Electrical Engineering	_		
		5.Electrical Engineering &			
		Industrial Control			
		6.Instrumentation & Control Engineering			
3	Mechanical Engineering	1.Mechanical Engineering	BTPH103-18	Electromagnetism	4
		2.Marine Engineering	BTPH113-18	Electromagnetism	1.5
		3.Production Engineering		Lab	1.5
		4.Industrial Engineering	_		
		5.Tool Engineering	_		
		6.Automobile Engineering	-		
		7.Aerospace Engineering	-		
		8.Aeronautical Engineering			

	1	Bachelor of Technology (1	-	1 .
4	Computer	1.Computer Engineering	BTPH104-18	Semiconductor	4
	Science		-	Physics	
	Engineering	2.Computer Science Engineering		Semiconductor	
		3.Information Technology	BTPH114-18		1.5
		5. Information Technology		Physics Lab	
		4.3D Animation Engineering	-		
		1.5.2 Thinking			
		5 CSE (Artificial Intelligence &	-		
		Machine Learning			
			_		
		6 CSE (Data Science)			
		7 CSE(IoT & Cyber Security	-		
		including Block Chain			
		Technology)			
			_		
		8 CSE (Internet of Things)			
		0 Artificial Intelligence & Data	_		
		9 Artificial Intelligence & Data Science			
		Science			
5	Electronics and	1.Electronics & Communication	BTPH105-18	Semiconductor and	4
	communication	Engineering		Optoelectronics	
	Engineering		_	Physics	
		2.Electronics & Computer			
		Engineering			
			BTPH115-18	Semiconductor and	1.5
		3.Electronics & Instrumentation		Optoelectronics	
		Engineering		Physics Lab	
		4.Electronics & Telecomm	-		
		Engineering			
		5.Electronics Engineering	-		
		ļ	ļ		
6	Chemical	1.Chemical Engineering	BTPH106-18	Optics and	4
	Sciences		4	Electromagnetism	
		2.Petrochem & Petroleum		Ontion and	
		Refinery Engineering	BTPH116-18	Optics and Electromagnetism	1.5
		3.Textile Engineering	-	-	-
		5. rexult Engineering		Lab	
		4.Food Technology	-		
-					

7	Bio-Technology	1 Bio-Technology	BTPH107-18	Introduction to	4
				Physics:	
		2 Agricultural Engineering		Biotechnology	
			BTPH117-18	Physics Lab	1.5

BTPH101-18	Mechanics of Solids	L-3, T-1, P-0	4 Credits					
Pre-requisites (if any): High-school education with Physics as one of the subject.								
of B. Tech. to th	ves: The aim and objective of the course on Mec e formal structure of vector mechanics, harmonic se in Engineering as per their requirement.							
Course Outcom	nes: At the end of the course, the student will be a	ible to						
CO1	Understand the vector mechanics for a classical	l system.						
CO2	Identify various types of forces in nature, frame	es of references, and	d conservation laws.					
CO3	Know the simple harmonic, damped, and forced system.	simple harmonic o	scillator for a mechanical					
CO4	Analyze the planar rigid body dynamics for a n	nechanical system.						
CO5	Apply the knowledge obtained in this course to		ns.					

Detailed Syllabus:

PART-A

UNIT I: Vector mechanics (10 lectures)

Physical significance of gradient, Divergence and curl. Potential energy function, F = - Grad V, equipotential surfaces, Forces in Nature, Newton's laws and its completeness in describing particle motion, Conservative and non-conservative forces, curl of a force field; Central forces; Conservation of Angular Momentum and Energy, Introduction to Cartesian, spherical and cylindrical coordinate system, Inertial and Non-inertial frames of reference; Rotating coordinate system :- Centripetal and Coriolis accelerations.

UNIT II: Simple harmonic motion, damped and forced simple harmonic oscillator (10 lectures)

Mechanical simple harmonic oscillators, damped oscillations, damped harmonic oscillator – heavy, critical and light damping, energy decay in a damped harmonic oscillator, quality factor, forced mechanical oscillators, resonance.

PART-B

UNIT III: Planar rigid body mechanics (10 lectures)

Definition and motion of a rigid body in plane; Rotation in the plane, Angular momentum about a point of a rigid body in planar motion; center of mass, moment of inertia, theorems of moment of inertia, inertia of plane lamina, circular ring, moment of force, couple, Euler's laws of motion.

UNIT IV: Mechanics of solids (10 lectures)

Friction: Definitions: Types of friction, Laws of static friction, Limiting friction, Angle of friction, angle of repose; motion on horizontal and inclined planes. Methods of reducing friction, Concept of stress and strain at a point; Concepts of elasticity, plasticity, strain hardening, failure (fracture/yielding), one dimensional stress-strain curve; Generalized Hooke's law. Force analysis — axial force, shear force, bending moment and twisting moment. Bending stress; Shear stress; Concept of strain energy; Yield criteria.

- 1. Engineering Mechanics, 2nd ed. MK Harbola, Cengage Learning India, 2013.
- 2. Introduction to Mechanics MK Verma, CRC Press Book, 2009.
- 3. Mechanics- DS Mathur, S Chand Publishing, 1981.
- 4. An Introduction to Mechanics D Kleppner & R Kolenkow, Tata McGraw Hill 2009.
- 5. Principles of Mechanics JL Synge & BA Griffiths, Nabu Press, 2011.
- 6. Mechanics JP Den Hartog, Dover Publications Inc, 1961.
- 7. Engineering Mechanics- Dynamics, 7th ed. JL Meriam, Wiley.
- 8. Theory of Vibrations with Applications -WT Thomson, Pearson.
- 9. An Introduction to the Mechanics of Solids, 2nd ed. with SI Units-SH Crandall, NC Dahl & TJ Lardner
- 10. Classical Mechanics- H. Goldstein, Pearson Education, Asia.
- 11. Classical mechanics of particles and rigid bodies-K.C Gupta, Wiley eastern, New Delhi.
- 12. Engineering Physics-Malik and Singh, Tata McGraw Hill.
- 13. Engineering Mechanics: Statics- 7th ed.-JL Meriam, Wiley, 2011.
- 14. Analytical Mechanics-Satish K Gupta, Modern Publishers.
- 15. https://nptel.ac.in/courses/122102004/

BTPH111-18	Mechanics of Solids Lab	L-0, T-0, P-3	1.5 Credits			
Pre-requisites	(if any): High-school education with Physics 1	ab as one of the subje	ect.			
	tives: The aim and objective of the Lab cours Fech to the formal structure of Mechanics of sol					
man thain manuis	and ant					
per their requir						
1 I	mes: At the end of the course, the student will b	be la				
1 I			ds.			
Course Outco	mes: At the end of the course, the student will b	he mechanics of soli				
Course Outco	mes: At the end of the course, the student will I Able to understand the concepts learned in t	he mechanics of solid the concepts of theo	ry courses.			
Course Outco CO1 CO2	mes: At the end of the course, the student will be a student be student be a student be a student be a student be a st	he mechanics of solid the concepts of theo ts and handling sensi	ry courses. tive equipment.			
Course Outco CO1 CO2 CO3	mes: At the end of the course, the student will I Able to understand the concepts learned in t Learning the skills needed to verify some of Trained in carrying out precise measurement	he mechanics of solid the concepts of theo ts and handling sensi alysis and develop ski	ry courses. tive equipment. lls in experimental design.			

Detailed syllabus:

Note: Students are expected to perform about 10-12 experiments from the following list, selecting minimum of 7-8 from the Section-A and 3-4 from the Section-B.

Section -A

- 1. Measurements of length (or diameter) using vernier caliper, screw gauge, and travelling microscope. Use of Plumb line and Spirit level.
- 2. To determine the horizontal distance between two points using a Sextant.
- 3. To determine the vertical distance between two points using a Sextant.
- 4. To determine the height of an inaccessible object using a Sextant.
- 5. To determine the angular diameter of the sun using the sextant.
- 6. To determine the angular acceleration α , torque τ , and Moment of Inertia of flywheel.
- 7. To study the Motion of a Spring and calculate (a) Spring Constant (b) Value of g and (c) Modulus of rigidity.
- 8. To determine the time period of a simple pendulum for different length and acceleration due to gravity.
- 9. To study the variation of time period with distance between centre of suspension and centre of gravity for a compound pendulum and to determine: (i) Radius of gyration of the bar about an axis through its C.G. and perpendicular to its length. (ii) The value of g in the laboratory.
- 10. To determine the Young's Modulus of a Wire by Optical Lever Method.
- 11. To determine the Elastic Constants/Young's Modulus of a Wire by Searle's method.
- 12. To determine the Modulus of Rigidity of a Wire by Maxwell's needle.
- 13. To determine the Modulus of Rigidity of brass using Searle's method.
- 14. To find the moment of inertia of an irregular body about an axis through its C.G with the torsional pendulum.
- 15. To determine **g** by Kater's Pendulum.
- 16. To determine \mathbf{g} and velocity for a freely falling body using Digital Timing Technique.
- 17. To find out the frequency of AC mains using electric-vibrator.

Section-B

Virtual lab:

- 1. To determine the angular acceleration α and torque τ of flywheel.
- 2. To determine the moment of inertia of a flywheel.
- 3. To find the acceleration of the cart in the simulator.
- 4. To find the distance covered by the cart in the simulator in the given time interval.
- 5. To verify that energy conservation and momentum conservation can be used with a ballistic pendulum to determine the initial velocity of a projectile, its momentum and kinetic energy.
- 6. To verify the momentum and kinetic energy conservation using collision balls.
- 7. To understand the torsional oscillation of pendulum in different liquid. and determine the rigidity modulus of the suspension wire using torsion pendulum.
- 8. To find the Time of flight, Horizontal range and maximum height of a projectile for different velocity, angle of projection, cannon height and environment.
- 9. The Elastic and Inelastic collision simulation will help to analyse the collision variations for different situations.
- 10. Demonstration of collision behaviour for elastic and inelastic type.
- 11. Variation of collision behavior in elastic and inelastic type.
- 12. Study of variation of Momentum, Kinetic energy, Velocity of collision of the objects and the Center of Mass with different velocity and mass.
- 13. Calculation of the Momentum, Kinetic energy, and Velocity after collision.

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 6. Laboratory Experiments in College Physics, C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 7. Practical Physics, G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 8. Experiments in Modern Physics, A.C. Melissinos, Academic Press, N.Y., 1966.
- 9. Practical Physics, C L Arora. S. Chand & Company Ltd.
- 10. http://www.vlab.co.in
- 11. http://vlab.amrita.edu/index.php?sub=1

		0/ 1	
BTPH102-18	Optics and Modern Physics	L-3, T-1, P-0	4 Credits

Pre-requisite (if any):

- 1. High-school education with physics as one of the subject.
- 2. Mathematical course on differential equations.

Course Objectives: The aim and objective of the course on **Optics and Modern Physics** is to introduce the students of B.Tech. to the subjects of wave optics, Quantum Mechanics, Solids, and Semiconductors so that they can use these in Engineering as per their requirement.

-	
Course Ou	tcomes: At the end of the course, the student will be able to
CO1	Identify and illustrate physical concepts and terminology used in optics and other wave
	phenomena.
CO2	Understand optical phenomenon, such as, interference, diffraction etc. in terms of wave
	model.
CO3	Understand the importance of wave equation in nature and appreciate the mathematical
	formulation of the same.
CO4	Appreciate the need for quantum mechanics, wave particle duality, uncertainty principle
	etc. and their applications.
CO5	Understand some of the basic concepts in the physics of solids and semiconductors.
Detailed S	

PART-A

UNIT I: Waves and Oscillations (10 lectures)

Mechanical simple harmonic oscillators, damped harmonic oscillator, forced mechanical oscillators, impedance, steady state motion of forced damped harmonic oscillator, Transverse wave on a string, wave equation on a string, reflection and transmission of waves at a boundary, impedance matching, standing waves, longitudinal waves and their wave equation, reflection and transmission of waves at a boundary.

UNIT II: Optics and LASERS (10 lectures)

Optics: Light as an electromagnetic wave, reflectance and transmittance, Fresnel equations (Qualitative idea), Brewster's angle, total internal reflection: Interference: Huygens' principle, superposition of waves and interference of light by wavefront splitting and amplitude splitting; Young's double slit experiment, Michelson interferometer. Diffraction: Farunhofer diffraction from a single slit and a circular aperture, Diffraction gratings and their resolving power; LASERS: Spontaneous and stimulated emission, Einstein's theory of matter radiation interaction and A and B coefficients; population inversion, pumping, various modes, properties of laser beams, types of lasers: gas lasers (He-Ne), solid-state lasers (ruby), and its applications.

PART-B

UNIT III: Introduction to Quantum Mechanics (10 lectures)

Wave nature of Particles, Free-particle wave function and wave-packets, probability densities, Expectation values, Uncertainty principle, Time-dependent and time-independent Schrodinger equation for wave function, Born interpretation, Solution of stationary-state Schrodinger equation for one dimensional problems: particle in a box, linear harmonic oscillator.

UNIT IV: Introduction to Solids and Semiconductors (10 lectures)

Free electron theory of metals, Fermi level, density of states in 1, 2 and 3 dimensions, Bloch's theorem for particles in a periodic potential, Origin of energy bands (Qualitative idea); Types of electronic materials: metals, semiconductors, and insulators, Intrinsic and extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature (equilibrium carrier statistics), Carrier generation and recombination, Carrier transport: diffusion and drift, p-n junction.

- 1. I. G. Main, "Vibrations and waves in physics", Cambridge University Press, 1993.
- 2. H. J. Pain, "The physics of vibrations and waves", Wiley, 2006.
- 3. E. Hecht, "Optics", Pearson Education, 2008.
- 4. A. Ghatak, "Optics", McGraw Hill Education, 2012.
- 5. O. Svelto, "Principles of Lasers", Springer Science & Business Media, 2010.
- 6. D. J. Griffiths, "Quantum mechanics", Pearson Education, 2014.
- 7. R. Robinett, "Quantum Mechanics", OUP Oxford, 2006.
- 8. D.A. Neamen, "Semiconductor Physics and Devices", Times Mirror High Education Group, Chicago, 1997.
- 9. E.S. Yang, "Microelectronic Devices", McGraw Hill, Singapore, 1988.
- 10. B.G. Streetman, "Solid State Electronic Devices", Prentice Hall of India, 1995.
- 11. HK Malik and AK Singh, Engineering Physics, 2nd ed., Tata McGraw Hill, 2018.
- 12. S. Sharma and J. Sharma, Engineering Physics, Pearson, 2018.
- 13. https://nptel.ac.in/courses/117108037/3
- 14. https://nptel.ac.in/courses/115102023/

BTPH112-18	Optics and Modern Physics Lab	L-0, T-0, P-3	1.5 Credits
Pre-requisite (I	f any): High-school education with physics a	s one of the subject.	
students of B.Te physics so that the	ives: The aim and objective of the lab on C ech. class to the formal structure of wave and hey can use these in Engineering branch as pe	optics, Quantum Mech r their requirement.	
Course Outcom	hes: At the end of the course, the student will	be able to	
CO1	Verify some of the theoretical concepts lear	nt in the theory course	s.
CO2	Trained in carrying out precise measurement	ts and handling sensiti	ive equipment.
CO3	Introduced to the methods used for estimate and systematic errors.	ng and dealing with ex	xperimental uncertainti
CO4		velop skills in experin	nental design.
CO4 CO5	Learn to draw conclusions from data and de Write a technical report which communicat	evelop skills in experin es scientific information	nental design. on in a clear and concis
CO5 Detailed Syllab Note: Students	Learn to draw conclusions from data and de Write a technical report which communicat manner.	es scientific informatic	on in a clear and concis
CO5 Detailed Syllab Note: Students	Learn to draw conclusions from data and de Write a technical report which communicat manner. us: are expected to perform about 10-12 ex	es scientific informatic	on in a clear and concis

Section-B

Virtual lab:

- 1. To find the resolving power of the prism.
- 2. To determine the angle of the given prism.
- 3. To determine the refractive index of the material of a prism
- 4. To determine the numerical aperture of a given optic fibre and hence to find its acceptance angle.
- 5. To calculate the beam divergence and spot size of the given laser beam.
- 6. To determine the wavelength of a laser using the Michelson interferometer.
- 7. To revise the concept of interference of light waves in general and thin-film interference in particular.
- 8. To set up and observe Newton's rings.
- 9. To determine the wavelength of the given source.
- 10. To understand the phenomenon Photoelectric effect.
- 11. To draw kinetic energy of photoelectrons as a function of frequency of incident radiation.
- 12. To determine the Planck's constant from kinetic energy versus frequency graph.
- 13. To plot a graph connecting photocurrent and applied potential.
- 14. To determine the stopping potential from the photocurrent versus applied potential graph.

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 6. Laboratory Experiments in College Physics, C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 7. Practical Physics, G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 8. Experiments in Modern Physics, A.C. Melissinos, Academic Press, N.Y., 1966.
- 9. Practical Physics, C L Arora. S. Chand & Company Ltd.
- 10. http://www.vlab.co.in
- 11. http://vlab.amrita.edu/index.php?sub=1

BTPH103-18	Electromagnetism	L-3, T-1, P-0	4 Credits
Pre-requisites (i	f anv):		

- 1. High-school education with physics as one of the subject.
- 2. Mathematical course on vector calculus.

Course Objectives: The aim and objective of the course is to expose the students to the formal structure of electromagnetism so that they can use these in Engineering as per their requirement.

Course Ou	itcomes: At the end of the course, the student will be able to
CO1	Specify the constitutive relationships for fields and understand their important.
CO2	Describe the static and dynamic electric and magnetic fields for technologically important structures.
CO3	Measure the voltage induced by time varying magnetic flux.
CO4	acquire the knowledge of Maxwell equation and electromagnetic field theory and propagation and reception of electro-magnetic wave systems.
C05	have a solid foundation in engineering fundamentals required to solve problems and also to pursue higher studies.

Detailed Syllabus:

PART-A

UNIT I: Electrostatics in vacuum and linear dielectric medium (10 lectures)

Calculation of electric field and electrostatic potential for a charge distribution; Divergence and curl of electrostatic field; Laplace's and Poisson's equations for electrostatic potential; Uniqueness theorem (Definition); examples: Faraday's cage; Boundary conditions of electric field; Energy of a charge distribution and its expression in terms of electric field. Electrostatic field and potential of a dipole. Bound charges due to electric polarization in Dielectrics; Electric displacement; Solving simple electrostatics problems in presence of dielectrics – Point charge at the centre of a dielectric sphere, charge in front of a dielectric slab.

UNIT II: Magnetostatics in linear magnetic medium (10 lectures)

Bio-Savart law, Divergence and curl of static magnetic field; Concept of vector potential, Magnetization and associated bound currents; auxiliary magnetic field \vec{H} ; Boundary conditions on \vec{B} and \vec{H} . Solving for magnetic field due to bar magnet; magnetic susceptibility and ferromagnetic, paramagnetic and diamagnetic materials; magnetic domains, hysteresis and B-H curve.

PART-B

UNIT III: Faraday's law and Maxwell's equations (10 lectures)

Faraday's law; equivalence of Faraday's law and motional EMF; Lenz's law; Electromagnetic breaking and its applications; Differential form of Faraday's law; energy stored in a magnetic field. Continuity equation for current densities; Modifying equation for the curl of magnetic field to satisfy continuity equation; displacement current and magnetic field arising from time-dependent electric field; Maxwell's equation in vacuum and non-conducting medium; Flow of energy and Poynting vector and Poynting theorem.

UNIT IV: Electromagnetic waves (10 lectures)

Wave equation for electromagnetic waves in free space and conducting medium, Uniform plane waves and general solution of uniform plane waves, relation between electric and magnetic fields of an electromagnetic wave their transverse nature.; Linear, circular and elliptical polarization, Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence.

Text and Reference Books:

- 1. D. Griffiths, Introduction to Electrodynamics, Pearson Education India; 4th ed. (2015).
- 2. J D Jackson, Classical Electrodynamics, John Wiley and Sons (1999).
- 3. Halliday and Resnick, Fundamentals of Physics, Wiley (2011).
- 4. W. Saslow, Electricity, Magnetism and Light, Academic Press (2002).
- 5. HK Malik and AK Singh, Engineering Physics, 2nd ed., Tata McGraw Hill (2018).

BTPH113-18	Electromagnetism Lab	L-0, T-0, P-3	1.5 Credits
Pre-requisite (I	f any): High-school education		
of B. Tech. class	ves: The aim and objective of the lab cost to the formal structure of electromagner their requirement.	8	
Course Outcom	nes: At the end of the course, the studen	nt will be able to	
CO1	Able to verify some of the theoretica	I concepts learnt in the theory	ry courses.
CO2	Trained in carrying out precise meas	urements and handling sensi	tive equipment.
CO3	understand the methods used for estin systematic "errors."	mating and dealing with expe	erimental uncertainties an
CO4	Learn to draw conclusions from data		
CO5	Write a technical report which comm manner.	nunicates scientific informat	ion in a clear and concise
Note: Students minimum of 7-8	8 from the Section-A and 3-4 from th		
minimum of 7-8	Section	on-A	
minimum of 7-8 1. Use a Mult	Section timeter for measuring (a) Resistance	on-A	
minimum of 7-8 1. Use a Mult Capacitance	Section timeter for measuring (a) Resistance s, and (e) Checking electrical fuses.	on-A es, (b) AC and DC Voltag	
 Use a Mult Capacitance To study the 	Section timeter for measuring (a) Resistance s, and (e) Checking electrical fuses. the magnetic field of a circular coil carryi	on-A es, (b) AC and DC Voltag	
 Use a Mult Capacitance To study the To study B-J 	Section timeter for measuring (a) Resistance s, and (e) Checking electrical fuses.	on-A es, (b) AC and DC Voltaging current. sing CRO.	
 Use a Mult Capacitance To study the To study B-l To find out t To find out t 	Section timeter for measuring (a) Resistance s, and (e) Checking electrical fuses. E magnetic field of a circular coil carrying H curve for a ferromagnetic material us the frequency of AC mains using electro polarizability of a dielectric substance.	on-A es, (b) AC and DC Voltag ing current. sing CRO. ric-vibrator.	
 Use a Mult Capacitance To study the To study B-1 To find out t To find out t Determine a 	Section timeter for measuring (a) Resistance s, and (e) Checking electrical fuses. The magnetic field of a circular coil carrying the curve for a ferromagnetic material us the frequency of AC mains using electric polarizability of a dielectric substance. high resistance by leakage method using	on-A es, (b) AC and DC Voltag ing current. sing CRO. ric-vibrator. ng Ballistic Galvanometer.	
 Use a Mult Capacitance To study the To study B-1 To find out t To find out p Determine a To study the 	Section timeter for measuring (a) Resistance s, and (e) Checking electrical fuses. The magnetic field of a circular coil carrying the curve for a ferromagnetic material using the frequency of AC mains using electric polarizability of a dielectric substance. high resistance by leakage method using the characteristics of a Series RC Circuit.	on-A es, (b) AC and DC Voltag ing current. sing CRO. ric-vibrator. ing Ballistic Galvanometer.	ges, (c) DC Current, (c
 Use a Mult Capacitance To study the To study B-J To find out t To find out t Determine a To study the To study the 	Section timeter for measuring (a) Resistance s, and (e) Checking electrical fuses. The magnetic field of a circular coil carrying the curve for a ferromagnetic material us the frequency of AC mains using electric polarizability of a dielectric substance. high resistance by leakage method using the characteristics of a Series RC Circuit. the series LCR circuit and determine its (a)	on-A es, (b) AC and DC Voltag ing current. sing CRO. ric-vibrator. ing Ballistic Galvanometer. a) Resonant Frequency, (b) 0	ges, (c) DC Current, (c Quality.
 Use a Mult Capacitance To study the To find out t To find out t To find out t Determine a To study the To study the To study the 	Section timeter for measuring (a) Resistance s, and (e) Checking electrical fuses. The magnetic field of a circular coil carrying the curve for a ferromagnetic material using the frequency of AC mains using electric polarizability of a dielectric substance. high resistance by leakage method using the characteristics of a Series RC Circuit.	on-A es, (b) AC and DC Voltaging current. sing CRO. ric-vibrator. ng Ballistic Galvanometer. a) Resonant Frequency, (b) 6 a) Anti-resonant frequency (ges, (c) DC Current, (c Quality.
 Use a Mult Capacitance To study the To study B-1 To find out t To find out t To find out t Determine a To study the To study the To study the To study a p To determin 	Section timeter for measuring (a) Resistance s, and (e) Checking electrical fuses. The magnetic field of a circular coil carrying the curve for a ferromagnetic material us the frequency of AC mains using electric polarizability of a dielectric substance. Thigh resistance by leakage method using the characteristics of a Series RC Circuit. The series LCR circuit and determine its (a parallel LCR circuit and determine its (a the the value of self-inductance by Maxwer the value of self	on-A es, (b) AC and DC Voltag ing current. sing CRO. ric-vibrator. a) Resonant Frequency, (b) G a) Anti-resonant frequency (well Inductance Bridge. well Inductance Capacitance	ges, (c) DC Current, (d Quality. b) Quality factor Q.
 Use a Mult Capacitance To study the To study B-1 To find out t To find out t To find out t Determine a To study the To study the To study a p To determin To determin To determin 	Section timeter for measuring (a) Resistance s, and (e) Checking electrical fuses. The magnetic field of a circular coil carrying the curve for a ferromagnetic material us the frequency of AC mains using electric polarizability of a dielectric substance. Thigh resistance by leakage method using the characteristics of a Series RC Circuit. The series LCR circuit and determine its (a the value of self-inductance by Maxwer the the value of self-inductance by Maxwer the mutual inductance of two coils by	on-A es, (b) AC and DC Voltag ing current. sing CRO. ric-vibrator. a) Resonant Frequency, (b) G a) Anti-resonant frequency (well Inductance Bridge. well Inductance Capacitance y Absolute method.	ges, (c) DC Current, (d Quality. b) Quality factor Q. Bridge.
 Use a Mult Capacitance To study the To study B-J To find out t To find out t To find out t Determine a To study the To study the To study the To study a p To determin To determin To study the 	Section timeter for measuring (a) Resistance s, and (e) Checking electrical fuses. The magnetic field of a circular coil carrying the curve for a ferromagnetic material us the frequency of AC mains using electric polarizability of a dielectric substance. Thigh resistance by leakage method using the characteristics of a Series RC Circuit. The series LCR circuit and determine its (a the value of self-inductance by Maxwer the value of self-inductance by Maxwer the mutual inductance of two coils by the induced emf as a function of the we the tic damping.	on-A es, (b) AC and DC Voltaging current. sing CRO. ric-vibrator. a) Resonant Frequency, (b) (a) Anti-resonant frequency (well Inductance Bridge. well Inductance Capacitance y Absolute method. velocity of magnet and to s	ges, (c) DC Current, (d Quality. b) Quality factor Q. Bridge.
 Use a Mult Capacitance To study the To study B-J To find out t To find out t To find out t Determine a To study the To determin To determin To study the electromagn To determin 	Section timeter for measuring (a) Resistance s, and (e) Checking electrical fuses. The magnetic field of a circular coil carrying the curve for a ferromagnetic material us the frequency of AC mains using electric polarizability of a dielectric substance. Thigh resistance by leakage method using the characteristics of a Series RC Circuit. The series LCR circuit and determine its (a the the value of self-inductance by Maxwer the value of self-inductance by Maxwer the mutual inductance of two coils by the induced emf as a function of the velocity the unknown capacitance by flashing and	on-A es, (b) AC and DC Voltaging current. sing CRO. ric-vibrator. a) Resonant Frequency, (b) G a) Anti-resonant frequency (well Inductance Bridge. well Inductance Capacitance y Absolute method. velocity of magnet and to se d quenching method.	ges, (c) DC Current, (d Quality. b) Quality factor Q. Bridge.
 Use a Mult Capacitance To study the To study B-J To find out t To find out t To find out t To find out t To study the To determin To determin To study th electromagn To determin To study th 	Section timeter for measuring (a) Resistance s, and (e) Checking electrical fuses. The magnetic field of a circular coil carrying the curve for a ferromagnetic material us the frequency of AC mains using electric polarizability of a dielectric substance. Thigh resistance by leakage method using the characteristics of a Series RC Circuit. The series LCR circuit and determine its (a the value of self-inductance by Maxwer the value of self-inductance by Maxwer the mutual inductance of two coils by the induced emf as a function of the vertic the unknown capacitance by flashing and the field pattern of various modes inside a	on-A es, (b) AC and DC Voltaging current. sing CRO. ric-vibrator. a) Resonant Frequency, (b) G a) Anti-resonant frequency (well Inductance Bridge. well Inductance Bridge. well Inductance Capacitance y Absolute method. velocity of magnet and to se d quenching method. a rectangular waveguide.	ges, (c) DC Current, (d Quality. b) Quality factor Q. Bridge.
 Use a Mult Capacitance To study the To study B-1 To find out t To find out t To find out t To find out t Determine a To study the To study the To study the To study the To study a p To determin To determin To study th electromagn To study the To study the 	Section timeter for measuring (a) Resistance s, and (e) Checking electrical fuses. The magnetic field of a circular coil carrying the curve for a ferromagnetic material us the frequency of AC mains using electric polarizability of a dielectric substance. Thigh resistance by leakage method using the characteristics of a Series RC Circuit. The series LCR circuit and determine its (a the the value of self-inductance by Maxwer the value of self-inductance by Maxwer the mutual inductance of two coils by the induced emf as a function of the velocity the unknown capacitance by flashing and	on-A es, (b) AC and DC Voltaging current. sing CRO. tric-vibrator. a) Resonant Frequency, (b) G a) Anti-resonant frequency (well Inductance Bridge. well Inductance Bridge. well Inductance Capacitance y Absolute method. velocity of magnet and to se d quenching method. a rectangular waveguide. tron by helical method.	ges, (c) DC Current, (a Quality. b) Quality factor Q. Bridge.

Section-B

Virtual lab:

- 1. To find out the horizontal component of earth's magnetic field (B_h).
- 2. An experiment to study the variation of magnetic field with distance along the axis of a circular coil carrying current.
- 3. Aim is to find the horizontal intensity of earth's magnetic field at a place and moment of the bar magnet.
- 4. To determine the self-inductance of the coil (L) using Anderson's bridge.
- 5. To calculate the value of inductive reactance (X_L) of the coil at a particular frequency.
- 6. The temperature coefficient of resistor simulation will help the user to easily identify the change in resistivity of the resistor according to the change in temperature.

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 6. Laboratory Experiments in College Physics, C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 7. Practical Physics, G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 8. Experiments in Modern Physics, A.C. Melissinos, Academic Press, N.Y., 1966.
- 9. Practical Physics, C L Arora, S. Chand & Company Ltd.
- 10. http://www.vlab.co.in
- 11. http://vlab.amrita.edu/index.php?sub=1

BTPH104-18	Semiconductor Physics	L-3, T-1, P-0	4 Credits
Prerequisite (if	any): Introduction to Quantum Mechanic	es desirable	
	ives: The aim and objective of the court Fech. class to the formal structure of ser	ť	
	per their requirement.		
Course Outcon	nes: At the end of the course, the student w	will be able to	
CO1	Understand and explain the fundament and semiconductors	al principles and properties	s of electronic materials
CO2	Understand and describe the interactic golden rule.	on of light with semicondu	actors in terms of fermi
CO3	Understand and describe the impact of electronic circuit performance.	f solid-state device capabi	lities and limitations on
CO4	Understand the design, fabrication, semiconductor materials.	and characterization tech	nniques of Engineered
CO5	Develop the basic tools with which they other semiconductor applications.	can study and test the newl	y developed devices and
Detailed Syllab			

PART-A

UNIT 1: Electronic materials (10 lectures)

Free electron theory of metals, Density of states in 1D, 2D, and 3D, Bloch's theorem for particles in a periodic potential, Energy band diagrams, Kronig-Penny model (to introduce origin of band gap), Energy bands in solids, E-k diagram, Direct and indirect bandgaps, Types of electronic materials: metals, semiconductors, and insulators, Occupation probability, Fermi level, Effective mass.

UNIT II: Semiconductors (10 lectures)

Intrinsic and extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature (equilibrium carrier statistics), Carrier generation and recombination, Carrier transport: diffusion and drift, p-n junction, Metal-semiconductor junction (Ohmic and Schottky), Semiconductor materials of interest for optoelectronic devices.

PART-B

UNIT III: Light-semiconductor interaction (10 lectures)

Optical transitions in bulk semiconductors: absorption, spontaneous emission, and stimulated emission; Einstein coefficients, Population inversion, application in semiconductor Lasers; Joint density of states, Density of states for phonons, Transition rates (Fermi's golden rule), Optical loss and gain; Photovoltaic effect, Exciton, Drude model.

UNIT IV: Measurement Techniques (10 lectures)

Measurement for divergence and wavelength using a semiconductor laser, Measurements for carrier density, resistivity, hall mobility using Four-point probe and van der Pauw method, Hot-point probe measurement, capacitance-voltage measurements, parameter extraction from diode I-V characteristics.

- 1. J. Singh: Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc. (1995).
- 2. B. E. A. Saleh and M. C. Teich: Fundamentals of Photonics, John Wiley & Sons, Inc., (2007).
- 3. S. M. Sze: Semiconductor Devices: Physics and Technology, Wiley (2008).
- 4. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press, New York (2007).
- 5. P. Bhattacharya: Semiconductor Optoelectronic Devices, Prentice Hall of India (1997).
- 6. Ben G. Streetman: Solid State Electronics Devices, Pearson Prentice Hall.
- 7. D.A. Neamen, "Semiconductor Physics and Devices", Times Mirror High Education Group, Chicago, 1997.
- 8. E.S. Yang, "Microelectronic Devices", McGraw Hill, Singapore, 1988.
- 9. Online course: "Semiconductor Optoelectronics" by M R Shenoy on NPTEL.
- 10. Online course: "Optoelectronic Materials and Devices" by Monica Katiyar and Deepak Gupta on NPTEL.

BTPH114-18	Semiconductor Physics Lab	L-0, T-0, P-3	1.5 Credits
Pre-requisite (i	f any): (i) High-school education		
students of B.T	ves: The aim and objective of the Lab course on ech. class to the formal structure of semicondu per their requirement.		
Course Outcon	nes: At the end of the course, the student will be a	ible to	
CO1	Able to verify some of the theoretical concepts	learnt in the theory	courses.
CO2	Trained in carrying out precise measurements a	nd handling sensiti	ve equipment.
CO3	Introduced to the methods used for estimating and systematic "errors."	and dealing with ex	perimental uncertainties
CO4	Learn to draw conclusions from data and devel	op skills in experin	ental design.
CO5	Write a technical report which communicates s manner.	cientific informatio	n in a clear and concise
Detailed Syllab	us:		

Note: Students are expected to perform about 10-12 experiments from the following list, selecting minimum of 7-8 from the Section-A and 3-4 from the Section-B.

Section-A

- 1. To study the characteristic of different PN junction diode-Ge and Si.
- 2. To analyze the suitability of a given Zener diode as a power regulator.
- 3. To find out the intensity response of a solar cell/Photo diode.
- 4. To find out the intensity response of a LED.
- 5. To determine the band gap of a semiconductor.
- 6. To determine the resistivity of a semiconductor by four probe method.
- 7. To confirm the de Broglie equation for electrons.
- 8. To study voltage regulation and ripple factor for a half-wave and a full-wave rectifier without and with different filters.
- 9. To study the magnetic field of a circular coil carrying current.
- 10. To find out polarizability of a dielectric substance.
- 11. To study B-H curve of a ferro-magnetic material using CRO.
- 12. To find out the frequency of AC mains using electric-vibrator.
- 13. To find the velocity of ultrasound in liquid.
- 14. To study the Hall effect for the determination of charge current densities.
- 15. Distinguish between Diamagnetic material, Paramagnetic and ferromagnetic material.
- 16. Measurement of susceptibility of a liquid or a solution by Quincke's method.
- 17. To study the sample with the nano-scale objects and measure surface topography with different scales, width and height of nano objects, and force-distance curves using AFM.
- 18. To study the temperature coefficient of Resistance of copper.
- 19. To determine the ratio k/e Using a transistor.
- 20. To compare various capacitance and verify the law of addition of capacitance.
- 21. To determine dipole moment of an organic molecule acetone.
- 22. To measure the temperature dependence of a ceramic capacitor.
- 23. Verification of the curie Weiss law for the electrical susceptibility of a ferromagnetic material.
- 24. To study the laser beam characteristics like; wave length using diffraction grating aperture & divergence.

25. To study laser interference using Michelson's Interferometer.

26. Study of diffraction using laser beam and thus to determine the grating element.

Section-B

Virtual lab:

- 1. To draw the static current-voltage (I-V) characteristics of a junction diode.
- 2. To plot the characteristics of thermistor and hence find the temperature coefficient of resistance.
- 3. To determine the resistivity of semiconductors by Four Probe Method.
- 4. To study Zener diode voltage as regulator and measure its line and load regulation.
- 5. To study the B-H Curve for a ferromagnetic material.
- 6. To study the Hall effect experiment to determine the charge carrier density.
- 7. To determine the magnetic susceptibilities of paramagnetic liquids by Quincke's Method.
- 8. To study the phenomena of magnetic hysteresis and calculate the retentivity, coercivity and saturation magnetization of a material using a hysteresis loop tracer.
- 9. Verification and design of combinational logic using AND, OR, NOT, NAND and XOR gates.

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 6. Laboratory Experiments in College Physics, C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 7. Practical Physics, G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 8. Experiments in Modern Physics, A.C. Melissinos, Academic Press, N.Y., 1966.
- 9. Practical Physics, C L Arora, S. Chand & Company Ltd.
- 10. http://www.vlab.co.in
- 11. http://vlab.amrita.edu/index.php?sub=1

DTDI1105 10	Bachelof of Technology (B.	-	A Creadita
BTPH105-18	Semiconductor and Optoelectronics Physics	L-3, T-1, P-0	4 Credits
Prerequisite (if	any): "Introduction to Quantum Mechanics" D	Desirable	
is to introduce the	ives: The aim and objective of the course on Se he students of B. Tech. class to the formal struct so that they can use these in Engineering as per	ture of semiconduct	
-	nes: At the end of the course, the student will be	-	
CO1	Understand and explain the fundamental print and semiconductors.	nciples and properti	es of electronic materials
CO2	Understand and describe the interaction of golden rule.	light with semicond	ductors in terms of fermi
CO3	Understand and describe the impact of solid electronic circuit performance.	d-state device capal	pilities and limitations on
CO4	Understand the design, fabrication, characteria Engineered semiconductor materials.	terization technique	es, and measurements of
CO5	Learn the basics of the optoelectronic devi detectors.	ces, LEDs, semicor	nductor lasers, and photo
Detailed Syllab	us:		

PART-A

UNIT -I: Electronic materials (10 lectures)

Free electron theory of metals, Density of states in 1D, 2D, and 3D, Bloch's theorem for particles in a periodic potential, energy band diagrams, Kronig-Penny model (to introduce origin of band gap), Energy bands in solids, E-k diagram, Direct and indirect band gaps, Types of electronic materials: metals, semiconductors and insulators, Occupation probability, Fermi level, Effective mass of electron and hole.

UNIT -II: Semiconductors (10 lectures)

Intrinsic and extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature (equilibrium carrier statistics), Carrier generation and recombination, Carrier transport: diffusion and drift, p-n junction, Metal-semiconductor junction (Ohmic and Schottky).

PART-B

UNIT -III: Optoelectronic devices (10 lectures)

Radiative and non-radiative recombination mechanisms in semiconductors, Semiconductor materials of interest for optoelectronic devices; Semiconductor light emitting diodes (LEDs): light emitting materials, device structure, characteristics; Optical transitions in bulk semiconductors: absorption, spontaneous emission, and stimulated emission, Semiconductor laser: population inversion at a junction, structure, materials, device characteristics, Photovoltaics: Types of semiconductor photo detectors-p-n junction, PIN, and Avalanche-and their structure, materials, working principle, and characteristics, Noise limits on performance.

UNIT-IV: Measurement techniques (10 lectures)

Measurement for divergence and wavelength using a semiconductor laser, Measurements for carrier density, resistivity, and hall mobility using Four-point probe and van der Pauw method, Hot-point probe measurement, capacitance-voltage measurements, parameter extraction from diode I-V characteristics.

- 1. J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc. (1995).
- 2. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc. (2007).
- 3. S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley (2008).
- 4. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press, New York (2007).
- 5. P. Bhattacharya: Semiconductor Optoelectronic Devices, Prentice Hall of India (1997).
- 6. Solid state electronics devices: Ben. G. Streetman Pearson Prentice Hall.
- 7. D.A. Neamen: "Semiconductor Physics and Devices", Times Mirror High Education Group, Chicago, 1997.
- 8. E.S. Yang: "Microelectronic Devices", McGraw Hill, Singapore, 1988.
- 9. Online course: "Semiconductor Optoelectronics" by M R Shenoy on NPTEL.
- 10. Online course: "Optoelectronic Materials and Devices" by Monica Katiyar and Deepak Gupta on NPTEL.

	Dachelor of Technology (D	rech. 1º fear)	
BTPH115-18	Semiconductor and Optoelectronics Physics Lab	L-0, T-0, P-3	1.5 Credits
Pre-requisite (i	f any): High-school education		
Physics is to int that they can use	ives: The aim and objective of the Lab courreduce the students of B.Tech. class to the for these in Engineering as per their requirement.	mal lab structure of	-
CO1	Able to verify some of the theoretical concept	ots learnt in the theor	y courses.
CO2	Trained in carrying out precise measurement	s and handling sensi	tive equipment.
CO3	Introduced to the methods used for estimatin and systematic "errors."	g and dealing with e	experimental uncertainties
CO4	Learn to draw conclusions from data and dev	elop skills in experi	mental design.
CO5	Write a technical report which communicate	s scientific informati	ion in a clear and concise

Detailed Syllabus:

Note: Students are expected to perform about 10-12 experiments from the following list, selecting minimum of 7-8 from the Section-A and 3-4 from the Section-B.

Section-A

- 1. To study the characteristic of different PN junction diode-Ge and Si.
- 2. To analyze the suitability of a given Zener diode as a power regulator.
- 3. To find out the intensity response of a solar cell/Photo diode.
- 4. To find out the intensity response of a LED.

manner.

- 5. To determine the band gap of a semiconductor.
- 6. To determine the resistivity of a semiconductor by four probe method.
- 7. To confirm the de Broglie equation for electrons.
- 8. To study voltage regulation and ripple factor for a half-wave and a full-wave rectifier without and with different filters.
- 9. To study the magnetic field of a circular coil carrying current.
- 10. To find out polarizability of a dielectric substance.
- 11. To study B-H curve of a ferro-magnetic material using CRO.
- 12. To find out the frequency of AC mains using electric-vibrator.
- 13. To find the velocity of ultrasound in liquid.
- 14. To study the Hall effect for the determination of charge current densities.
- 15. Distinguish between diamagnetic material, paramagnetic and ferromagnetic material.
- 16. Measurement of susceptibility of a liquid or a solution by Quincke's method.
- 17. To study the sample with the nano-scale objects and measure surface topography with different scales, width and height of nano objects, and force-distance curves using AFM.
- 18. To study the temperature coefficient of Resistance of copper.
- 19. To determine the ratio k/e using a transistor.
- 20. To compare various capacitance and verify the law of addition of capacitance.
- 21. To measure the temperature dependence of a ceramic capacitor.
- 22. Verification of the curie Weiss law for the electrical susceptibility of a ferromagnetic material.

- 23. To study the laser beam characteristics like; wave length using diffraction grating aperture & divergence.
- 24. To study laser interference using Michelson's Interferometer.
- 25. Study of diffraction using laser beam and thus to determine the grating element.

Section-B

Virtual lab:

- 1. To draw the static current-voltage (I-V) characteristics of a junction diode.
- 2. To plot the characteristics of thermistor and hence find the temperature coefficient of resistance.
- 3. To determine the resistivity of semiconductors by Four Probe Method.
- 4. To study Zener diode voltage as regulator and measure its line and load regulation.
- 5. To study the B-H Curve for a ferromagnetic material.
- 6. To study the Hall effect experiment to determine the charge carrier density.
- 7. To determine the magnetic susceptibilities of paramagnetic liquids by Quincke's Method.
- 8. To study the phenomena of magnetic hysteresis and calculate the retentivity, coercivity and saturation magnetization of a material using a hysteresis loop tracer.
- 9. Verification and design of combinational logic using AND, OR, NOT, NAND and XOR gates.

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 6. Laboratory Experiments in College Physics, C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 7. Practical Physics, G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 8. Experiments in Modern Physics, A.C. Melissinos, Academic Press, N.Y., 1966.
- 9. Practical Physics, C L Arora, S. Chand & Company LTD.
- 10. http://www.vlab.co.in
- 11. http://vlab.amrita.edu/index.php?sub=1

BTPH106	5-18 Optics and Electromagnetism	L-3, T-1, P-0	4 Credits
Prerequis	site (if any): Introduction to Quantum Mech	nanics desirable	
the studen and quant	bjectives: The aim and objective of the co tts of B.Tech. class to the basic concepts of um physics, so that they can use these in En	f optics and its applications, el gineering as per their requirem	ectricity and magnetism
Course O	utcomes. At the end of the course, the stud	ent will be able to understand	
Course O	Identify and illustrate physical concepts phenomena.		s and other wave
		and terminology used in optic	
CO1	Identify and illustrate physical concepts phenomena. Understand optical phenomena such as	and terminology used in optic polarization, birefringence, into	erference, and diffractior
CO1 CO2	Identify and illustrate physical concepts phenomena.Understand optical phenomena such as in terms of the wave model.Understand the importance of wave	and terminology used in optic polarization, birefringence, into equation in nature and appro-	erference, and diffractior eciate the mathematica

Detailed syllabus:

PART-A

Unit I: Wave Optics (8 lectures)

Diffraction: Introduction to interference and example; concept of diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer diffraction at single slit, double slit, and multiple slits; diffraction grating, characteristics of diffraction grating and its applications; Polarization: Introduction to polarization, polarisation by reflection, polarisation by double refraction, scattering of light, circular and elliptical polarisation, optical activity.

UNIT-II: Fibre Optics and LASERS (12 lectures)

Fibre Optics: Introduction, optical fibre as a dielectric wave guide: total internal reflection, numerical aperture and various fibre parameters, losses associated with optical fibres, step and graded index fibres, application of optical fibres; LASERS: Spontaneous and stimulated emission, Einstein's theory of matter radiation interaction and A and B coefficients; population inversion, pumping, various modes, properties of laser beams, types of lasers: gas lasers (He-Ne), solid-state lasers (ruby), applications.

PART-B

UNIT-III: Electromagnetism and Magnetic Properties of Materials (10 lectures)

Laws of electrostatics: Coulomb and Gauss Law, electric current and the continuity equation, laws of magnetism: Ampere's and Faraday's laws. Maxwell's equations (derivation and physical significance), Dielectric polarisation, permeability and dielectric constant, polar and non-polar dielectrics, internal fields in a solid, Clausius-Mossotti equation, applications of dielectrics; Magnetisation, permeability and susceptibility, classification of magnetic materials, ferromagnetism, magnetic domains and hysteresis, applications.

Unit IV: Quantum Mechanics (10 lectures)

Introduction to quantum physics, black body radiation, explanation using the photon concept, photoelectric effect, Compton effect, de Broglie hypothesis, wave-particle duality, Born's interpretation of the wave function, Davisson and Germer experiment: verification of matter waves, uncertainty principle, Schrodinger wave equation: particle in 1-dimensional box.

- 1. "Fundamentals of Physics", 6th Ed., D. Halliday, R. Resnick and J. Walker, John Wiley and Sons, Inc., New York, 2001.
- 2. "Physics", M. Alonso and E.J. Finn, Addison Wesley, .1992.
- 3. "Fundamentals of Optics", 4th Ed., F.A. Jenkins and H.E. White, McGraw-Hill Book Co., 1981.
- 4. "Optics", A Ghatak, Tata-McGraw Hill, New Delhi, 1992.
- 5. "Vibration and Waves", A.P. French, Arnold-Heinemann, New Delhi, 1972.
- 6. "Vibrations and waves in physics", I. G. Main, Cambridge University Press, 1993.
- 7. "The physics of vibrations and waves", H. J. Pain, Wiley, 2006.
- 8. "Optics", E. Hecht, Pearson Education, 2008.
- 9. "Optics", A. Ghatak, McGraw Hill Education, 2012.
- 10. "Principles of Lasers", O. Svelto, Springer Science & Business Media, 2010.
- 11. "Quantum mechanics", D. J. Griffiths, Pearson Education, 2014.
- 12. "Quantum Mechanics", R. Robinett, OUP Oxford, 2006.
- 13. "Semiconductor Physics and Devices", D.A. Neamen, Times Mirror High Education Group, Chicago, 1997.
- 14. "Microelectronic Devices", E.S. Yang, McGraw Hill, Singapore, 1988.
- 15. "Solid State Electronic Devices", B.G. Streetman, Prentice Hall of India, 1995.
- 16. HK Malik and AK Singh, Engineering Physics, 2nd ed., Tata McGraw Hill (2018).
- 17. https://nptel.ac.in/courses/117108037/3
- 18. https://nptel.ac.in/courses/115102023/

	Bachelor of Teenhology (I		
BTPH116-18	Optics and Electromagnetism Lab	L-0, T-0, P-3	1.5 Credits
Pre-requisite ((if any): High-school education		
Course Object	tives: The aim and objective of the lab on Opt	ics and Electromagne	tism is to provide students
	perience of verifying various theoretical conce		
these in their b	ranch of Engineering as per their requirement.		2
		11.1	
Laboratory O	utcomes: At the end of the course, students wi	ll be	
CO1	Able to verify some of the theoretical conce	1	
CO2	Trained in carrying out precise measurement	its and handling sensit	tive equipment.
CO3	Introduced to the methods used for estimation	ng and dealing with e	experimental uncertainties
	and systematic "errors."		

	and systematic "errors."
CO4	Learn to draw conclusions from data and develop skills in experimental design.
CO5	Write a technical report which communicates scientific information in a clear and concise
	manner.

Detailed Syllabus:

Note: Students are expected to perform about 10-12 experiments from the following list, selecting minimum of 7-8 from the Section-A and 3-4 from the Section-B.

Section-A

- 1. To study the magnetic field of a circular coil carrying current.
- 2. To find out polarizability of a dielectric substance.
- 3. To study the laser beam characteristics like; wave length using diffraction grating aperture & divergence.
- 4. To study laser interference using Michelson's Interferometer.
- 5. Study of diffraction using laser beam and thus to determine the grating element.
- 6. To determine numerical aperture of an optical fibre.
- 7. To determine attenuation & propagation losses in optical fibres.
- 8. To find out the frequency of AC mains using electric-vibrator.
- 9. To find the refractive index of a material using spectrometer.
- 10. To find the refractive index of a liquid using spectrometer.
- 11. To study B-H curve for a ferromagnetic material using CRO.
- 12. To find the velocity of ultrasound in liquid.
- 13. To determine the grain size of a material using optical microscope.
- 14. To study the characteristics of solar cell.
- 15. To study the Characteristics of Light Emitting Diode (LED).
- 16. To determine the energy gap of a given semi-conductor.
- 17. To determine the specific rotation of sugar using Laurent's half-shade polarimeter.

Section-B

Virtual lab:

- 1. To find the resolving power of the prism.
- 2. To determine the angle of the given prism.
- 3. To determine the refractive index of the material of a prism.
- 4. To find the numerical aperture of a given optic fibre and hence to find its acceptance angle.
- 5. To calculate the beam divergence and spot size of the given laser beam.
- 6. To determine the wavelength of a laser using the Michelson interferometer.
- 7. To revise the concept of interference of light waves in general and thin-film interference in particular.
- 8. To set up and observe Newton's rings.
- 9. To determine the wavelength of the given source.
- 10. To understand the phenomenon Photoelectric effect as a whole.
- 11. To draw kinetic energy of photoelectrons as a function of frequency of incident radiation.
- 12. To determine the Planck's constant from kinetic energy versus frequency graph.
- 13. To plot a graph connecting photocurrent and applied potential
- 14. To determine the stopping potential from the photocurrent versus applied potential graph.

- 1. "Fundamentals of Physics", 6th Ed., D. Halliday, R. Resnick and J. Walker, John Wiley and Sons, Inc., New York, 2001.
- 2. "Physics", M. Alonso and E.J. Finn, Addison Wesley, .1992.
- 3. "Fundamentals of Optics", 4th Ed., F.A. Jenkins and H.E. White, McGraw-Hill Book Co., 1981.
- 4. "Optics", A Ghatak, Tata-McGraw Hill, New Delhi, 1992
- 5. "Vibration and Waves", A.P. French, Arnold-Heinemann, New Delhi, 1972.
- 6. "Students Reference Manual for Electronic Instrumentation Laboratories",
- 7. "Laboratory Experiments in College Physics", C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 8. "Practical Physics", G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 9. "Experiments in Modern Physics", A.C. Melissinos, Academic Press, N.Y., 1966.
- 10. "Practical Physics", C L Arora. S. Chand & Company LTD.
- 11. http://www.vlab.co.in
- 12. http://vlab.amrita.edu/index.php?sub=1

BTPH107-18	Introduction to Physics in Biotechnology	L-3, T-1, P-0	4 Credits		
Prerequisite (if	any): High School knowledge				
Course Object	ives: The aim and objective of the course on In	troduction to Physic	ics in Biotechnology is to		
	udents of B. Tech. class to the basic concepts an				
magnetic mater	ial, superconductivity and a brief introduction to	quantum physics,	so that they can use these		
in Engineering a	as per their requirement.				
Course Outcon	nes: At the end of the course, the student will be	able to			
CO1	Identify and illustrate physical concepts and	terminology used i	n Lasers, fibre optics and		
	other wave phenomena.		_		
CO2	Understand the X-Rays and their applications	to the ultrasounds.			
CO3	Understand the importance of wave equation	n in nature and app	preciate the mathematical		
	formulation of the same				
CO4	Appreciate the need for quantum mechanics,	wave particle dua	lity, uncertainty principle		
	etc.	-			
CO5	Understand the properties of magnetic materials and superconductivity.				
Detailed Syllab	ous:				

PART-A

UNIT I: LASERS and Fibre Optics (10 lectures)

Principles and working of laser: population inversion, pumping, threshold population inversion, types of laser: solid state (Ruby), gas (He-Ne); application of lasers (Medical/Industrial Applications); Fibre Optics: Introduction, optical fibre as a dielectric wave guide, total internal reflection, step and graded index fibres, numerical aperture and various fibre parameters, losses associated with optical fibres, application of optical fibres.

UNIT II: Magnetic Materials and Superconductivity (10 lectures)

Origin of magnetism, Basic idea of Diamagnetic, Paramagnetic, Ferromagnetic, Ferrimagnetic and Ferrite materials, Soft and Hard Magnetic materials, magnetostriction, magnetic anisotropy, applications of magnetic materials; Superconductivity, properties of superconducting state, Meissner Effect, Type-I and Type-II superconductors, Introduction to BCS theory (Qualitative idea), applications in medical industry.

PART-B

UNIT III: X-rays and Ultrasounds (10 lectures)

X-rays, Production of X-rays, Continuous and Characteristic X-Rays, Absorption of X-rays, Bragg's law, Adverse effects of X-rays, X-ray radiography; Ultrasounds: Ultra sound generators, properties of ultrasound-waves and its propagation in biological tissues, Pulse echo techniques, Doppler principle, involvement in design of medical instruments, Adverse effects of ultrasound waves.

UNIT IV: Quantum Theory and Nano-Materials ((10 lectures)

Photoelectric effect, Compton effect and de-Broglie waves; Wave-particle duality, concept of Electron microscopy; Nano-materials, surface to volume ratio, electron confinement (qualitative description), top-down and bottom-up method of synthesis, qualitative idea of quantum well, quantum wire and quantum dot. Carbon nanotubes: types, properties and applications.

Text and Reference Books:

- 1. Engineering Physics, Malik; HK, Singh; AK, Tata McGraw Hill.
- 2. Concepts of Modern Physics, Beiser; A., Tata McGraw Hill.
- 3. Introduction to Solids, Azaroff LV, Tata Mc Graw Hill.
- 4. Engineering Physics, D.K. Bhattacharya, Poonam Tondon, Oxford University Press.
- 5. Optical Fibre system, Technology, Design & Applications, Kao; CK, McGraw Hill.
- 6. Laser Theory & Applications, Thygrajan; K, Ghatak; AK, Mc Millan India Ltd.

Bachelor of Technology (B. Tech. 14 Year)				
BTPH117-18	Physics lab	L-0, T-0, P-3	1.5 Credits	
Pre-requisite (if a	ny): High-school education			
	s: The aim and objective of the Physics lab is to the original concepts learnt in theory courses so the original concepts learnt in theory courses so the original concepts learnt in the orig			
Laboratory Outc	omes: At the end of the course, students will be	;		
CO1	Able to verify some of the theoretical concept	ts learnt in the theor	y courses.	
CO2	Trained in carrying out precise measurements	and handling sensi	tive equipment.	
CO3	Introduced to the methods used for estimating uncertainties and systematic errors.	g and dealing with e	xperimental	
CO4	Learn to draw conclusions from data and deve	elop skills in experi	mental design.	
CO5	Write a technical report which communicates manner.	scientific informati	on in a clear and concise	
minimum of 7-8 f	from the Section-A and 3-4 from the Section- Section-A	В.		
	Section-A			
	he magnetic field of a circular coil carrying cur	rent.		
	It polarizability of a dielectric substance. the laser beam characteristics like; wave le e.	ngth using diffract	tion grating aperture &	
4. To study l	aser interference using Michelson's Interferome			
	liffraction using laser beam and thus to determining in a numerical aperture of an optical fibre.	he the grating eleme	nt.	
7. To determ	ine attenuation & propagation losses in optical			
	It the frequency of AC mains using electric-vibration in the energy gap of a given semi-conductor.	ator.		
	B-H curve of a ferromagnetic material using CR	.O.		
11. To find the	e velocity of ultrasound in liquid.			
	ine the grain size of a material using optical mich he characteristics of solar cell.	croscope.		
14. To study t	he Characteristics of Light Emitting Diode (LE			
 To study the Characteristics of Light Emitting Diode (LED). To determine the specific rotation of sugar using Laurent's half-shade polarimeter. 				

Section-B

Virtual lab:

- 1. To find the numerical aperture of a given optic fibre and hence to find its acceptance angle.
- 2. To calculate the beam divergence and spot size of the given laser beam.
- 3. To determine the wavelength of a laser using the Michelson interferometer.
- 4. To revise the concept of interference of light waves in general and thin-film interference in particular.
- 5. To set up and observe Newton's rings.
- 6. To determine the wavelength of the given source.
- 7. To understand the phenomenon Photoelectric effect.
- 8. To draw kinetic energy of photoelectrons as a function of frequency of incident radiation.
- 9. To determine the Planck's constant from kinetic energy versus frequency graph.
- 10. To plot a graph connecting photocurrent and applied potential
- 11. To determine the stopping potential from the photocurrent versus applied potential graph.

- 1. "Fundamentals of Physics", 6th Ed., D. Halliday, R. Resnick and J. Walker, John Wiley and Sons, Inc., New York, 2001.
- 2. "Physics", M. Alonso and E.J. Finn, Addison Wesley, 1992.
- 3. "Fundamentals of Optics", 4th Ed., F.A. Jenkins and H.E. White, McGraw-Hill Book Co., 1981.
- 4. "Optics", A Ghatak, Tata-McGraw Hill, New Delhi, 1992
- 5. "Vibration and Waves", A.P. French, Arnold-Heinemann, New Delhi, 1972.
- 6. "Students Reference Manual for Electronic Instrumentation Laboratories",
- 7. "Laboratory Experiments in College Physics", C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 8. "Practical Physics", G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 9. "Experiments in Modern Physics", A.C. Melissinos, Academic Press, N.Y., 1966.
- 10. "Practical Physics", C L Arora. S. Chand & Company LTD.
- 11. http://www.vlab.co.in
- 12. http://vlab.amrita.edu/index.php?sub=1

Bachelor of Technology (B. Tech. 1st Year)

Annexure VIII

Study Scheme & Syllabus of Bachelor of Technology (1st and 2nd semester)

Batch 2021 onwards

By

Department of Physical Sciences IK Gujral Punjab Technical University

Sr. No.	Branch	Related Branches	Course codes	Course title	Credits
1	Civil Engineering	1. Civil Engineering	BTPH101-21	Mechanics of solids	4
		2.Construction Engineering & Management	BTPH111-21	Mechanics of solids Lab	1.5
2	Electrical Engineering	1.Electrical Engineering 2.Automation & Robotics	BTPH102-21	Optics and Modern Physics	4
		3.Electrical & Electronics Engineering	BTPH112-21	Optics and Modern Physics Lab	1.5
		4.Electronics & Electrical Engineering			
		5.Electrical Engineering & Industrial Control			
		6.Instrumentation & Control Engineering			
3	Mechanical Engineering	1.Mechanical Engineering 2.Marine Engineering	BTPH103-21	Electromagnetism	4
		3.Production Engineering	BTPH113-21	Electromagnetism Lab	1.5
		4.Industrial Engineering	-		
		5.Tool Engineering			
		6.Automobile Engineering	_		
		7.Aerospace Engineering	_		
		8.Aeronautical Engineering	_		
4	Computer Science	1.Computer Engineering	BTPH104-21	Semiconductor Physics	4
	Engineering	2.Computer Science Engineering		Semiconductor	
		3.Information Technology	BTPH114-21	Physics Lab	1.5
		4.3D Animation Engineering			

5	Electronics and	1.Electronics & Communication	BTPH105-21	Semiconductor and	4
	communication	Engineering		Optoelectronics	
	Engineering	2 Electronics & Commuter	_	Physics	
		2.Electronics & Computer Engineering			
		Engineering	DTD1115 01		1.5
		3.Electronics & Instrumentation	-BTPH115-21	Semiconductor and	1.5
		Engineering		Optoelectronics Physics Lab	
		4.Electronics & Telecomm			
		Engineering			
		5.Electronics Engineering			
6	Chemical	1.Chemical Engineering	BTPH106-21	Optics and	4
	Sciences	2.Petrochem & Petroleum	_	Electromagnetism	
		Refinery Engineering		Optics and	
		Refinery Engineering	BTPH116-21	Electromagnetism	1.5
		3.Textile Engineering		Lab	
		4.Food Technology			
7	Bio-Technology	Bio-Technology	BTPH107-21	Introduction to Physics: Biotechnology	4
			BTPH117-21	Physics Lab	1.5

BTPH101-21	Mechanics of Solids	L-3, T-1, P-0	4 Credits				
Pre-requisites (Pre-requisites (if any): High-school education with Physics as one of the subject.						
of B. Tech. to th	Course Objectives: The aim and objective of the course on Mechanics of Solids is to introduce the students of B. Tech. to the formal structure of vector mechanics, harmonic oscillators, and mechanics of solids so that they can use these in Engineering as per their requirement.						
Course Outcom	es: At the end of the course, the student will be a	ble to					
CO1	Understand the vector mechanics for a classical	l system.					
CO2	Identify various types of forces in nature, frame	es of references, an	d conservation laws.				
CO3	Know the simple harmonic, damped, and forced system.	simple harmonic o	scillator for a mechanical				
CO4	Analyze the planar rigid body dynamics for a n	nechanical system.					
CO5	Apply the knowledge obtained in this course to	the related problem	ms.				

Detailed Syllabus:

PART-A

UNIT I: Vector mechanics (10 lectures)

Introduction to Cartesian, spherical and cylindrical coordinate system; unit vectors, velocity, acceleration and line elements, Physical significance of gradient, Divergence and curl. Potential energy function, F = - Grad V, Newton's laws and its completeness in describing particle motion, Conservative and non-conservative forces, curl of a force field; Central forces; properties of space and time, Conservation of Angular Momentum and Energy, Inertial and Non-inertial frames of reference; Rotating coordinate system :- Centripetal and Coriolis force, accelerations, Forces in Nature.

UNIT II: Simple harmonic motion, damped and forced simple harmonic oscillator (10 lectures)

Mechanical simple harmonic oscillators: simple pendulum, mass-string system in vertical and horizontal oscillations, damped oscillations, damped harmonic oscillator- heavy, critical and light damping, energy decay in a damped harmonic oscillator, logarithmic decrement, relaxation time, quality factor, forced mechanical oscillators, resonance.

PART-B

UNIT III: Planar rigid body mechanics (10 lectures)

Definition and motion of a rigid body in plane; Rotation in the plane, Angular momentum about a point of a rigid body in planar motion; inertia tensor, center of mass, moment of inertia, theorems of moment of inertia, inertia of plane lamina, circular ring, moment of force, couple, Euler's laws of motion.

UNIT IV: Mechanics of solids (10 lectures)

Friction: Definitions: Types of friction, Laws of static friction, Limiting friction, Angle of friction, angle of repose; motion on horizontal and inclined planes. Methods of reducing friction, Concept of stress and strain

at a point; Concepts of elasticity, plasticity, strain hardening, failure (fracture/yielding), one dimensional stress-strain curve; Generalized Hooke's law. Force analysis — axial force, shear force, bending moment and twisting moment. Bending stress; Shear stress; Concept of strain energy; Yield criteria.

- 1. Engineering Mechanics, 2nd ed. MK Harbola, Cengage Learning India, 2013.
- 2. Introduction to Mechanics MK Verma, CRC Press Book, 2009.
- 3. Mechanics- DS Mathur, S Chand Publishing, 1981.
- 4. An Introduction to Mechanics D Kleppner & R Kolenkow, Tata McGraw Hill 2009.
- 5. Principles of Mechanics JL Synge & BA Griffiths, Nabu Press, 2011.
- 6. Mechanics JP Den Hartog, Dover Publications Inc, 1961.
- 7. Engineering Mechanics- Dynamics, 7th ed. JL Meriam, Wiley.
- 8. Theory of Vibrations with Applications -WT Thomson, Pearson.
- 9. An Introduction to the Mechanics of Solids, 2nd ed. with SI Units-SH Crandall, NC Dahl & TJ Lardner
- 10. Classical Mechanics- H. Goldstein, Pearson Education, Asia.
- 11. Classical mechanics of particles and rigid bodies K.C Gupta, Wiley eastern, New Delhi.
- 12. Engineering Physics-Malik and Singh, Tata McGraw Hill.
- 13. Engineering Mechanics: Statics- 7th ed.-JL Meriam, Wiley, 2011.
- 14. Analytical Mechanics-Satish K Gupta, Modern Publishers.
- 15. https://nptel.ac.in/courses/122102004/

BTPH111-21	Mechanics of Solids Lab	L-0, T-0, P-3	1.5 Credits			
Pre-requisites (if any): High-school education with Physics lab a	as one of the subjec	t.			
Course Objecti	ves: The aim and objective of the Lab course o	n Mechanics of S	olids is to introduce the			
	ech to the formal structure of Mechanics of solids					
per their require						
· · ·	nes: At the end of the course, the student will be					
CO1	Able to understand the concepts learned in the r	mechanics of solids	5.			
CO2	Learning the skills needed to verify some of the concepts of theory courses.					
CO3	Trained in carrying out precise measurements a	nd handling sensiti	ve equipment.			
CO4	Able to understand the principles of error analys	is and develop skill	s in experimental design.			
CO5	Able to document a technical report which com and concise manner.	municates scientifi	c information in a clear			
Detailed Syllab						
Detaileu Syllab	us.					

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. Measurements of length (or diameter) using vernier caliper, screw gauge, and travelling microscope. Use of Plumb line and Spirit level.
- 2. To find out the frequency of AC mains using electric-vibrator.
- 3. To determine the horizontal and vertical distance between two points using a Sextant.
- 4. To determine the height of an inaccessible object using a Sextant.
- 5. To determine the angular diameter of the sun using the sextant.
- 6. To determine the angular acceleration α , torque τ , and Moment of Inertia of flywheel.
- 7. To study the Motion of a Spring and calculate (a) Spring Constant (b) Value of g and (c) Modulus of rigidity.
- 8. To determine the time period of a simple pendulum for different lengths and acceleration due to gravity.
- 9. To study the variation of time period with distance between centre of suspension and centre of gravity for a compound pendulum and to determine: (i) Radius of gyration of the bar about an axis through its C.G. and perpendicular to its length. (ii) The value of g in the laboratory.
- 10. To determine the Young's Modulus of a Wire by Optical Lever Method.
- 11. To determine the Elastic Constants/Young's Modulus of a Wire by Searle's method.
- 12. To determine the Modulus of Rigidity of a Wire by Maxwell's needle.
- 13. To find the moment of inertia of an irregular body about an axis through its C.G with the torsional pendulum.
- 14. To determine \mathbf{g} by Kater's Pendulum.
- 15. To determine **g** and velocity for a freely falling body using Digital Timing Technique.
- 16. Demonstration of collision behaviour for elastic and inelastic type and calculation of the Momentum, Kinetic energy, and Velocity after collision.

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 6. Laboratory Experiments in College Physics, C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 7. Practical Physics, G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 8. Experiments in Modern Physics, A.C. Melissinos, Academic Press, N.Y., 1966.
- 9. Practical Physics, C L Arora. S. Chand & Company Ltd.
- 10. http://www.vlab.co.in

BTPH102-21	Optics and Modern Physics	L-3, T-1, P-0	4 Credits	

Pre-requisite (if any):

- 1. High-school education with physics as one of the subject.
- 2. Mathematical course on differential equations.

Course Objectives: The aim and objective of the course on **Optics and Modern Physics** is to introduce the students of B.Tech. to the subjects of wave optics, Quantum Mechanics, Solids, and Semiconductors so that they can use these in Engineering as per their requirement.

Course Ou	atcomes: At the end of the course, the student will be able to
CO1	Identify and illustrate physical concepts and terminology used in optics and other wave phenomena.
CO2	Understand optical phenomenon, such as, interference, diffraction etc. in terms of wave model.
CO3	Understand the importance of wave equation in nature and appreciate the mathematical formulation of the same.
CO4	Appreciate the need for quantum mechanics, wave particle duality, uncertainty principle etc. and their applications.
CO5	Understand some of the basic concepts in the physics of solids and semiconductors.
Detailed S	yllabus:

PART-A

UNIT I: Waves and Oscillations (10 lectures)

Mechanical simple harmonic oscillators, damped harmonic oscillator, forced mechanical oscillators, impedance, steady state motion of forced damped harmonic oscillator, Transverse wave on a string, wave equation on a string, reflection and transmission of waves at a boundary, impedance matching, standing waves, longitudinal waves and their wave equation, reflection and transmission of waves at a boundary.

UNIT II: Optics and LASERS (10 lectures)

Optics: Light as an electromagnetic wave, reflectance and transmittance, Fresnel equations (Qualitative idea), Brewster's angle, total internal reflection: Interference: Huygens' principle, superposition of waves and interference of light by wavefront splitting and amplitude splitting; Young's double slit experiment, Michelson interferometer. Diffraction: Farunhofer diffraction from a single slit and a circular aperture, Diffraction gratings and their resolving power; LASERS: Spontaneous and stimulated emission, Einstein's theory of matter radiation interaction and A and B coefficients; population inversion, pumping, various modes, properties of laser beams, types of lasers: gas lasers (He-Ne), solid-state lasers (ruby), and its applications.

PART-B

UNIT III: Introduction to Quantum Mechanics (10 lectures)

Wave nature of Particles, Free-particle wave function and wave-packets, probability densities, Expectation values, Uncertainty principle, Time-dependent and time-independent Schrodinger equation for wave function, Born interpretation, Solution of stationary-state Schrodinger equation for one dimensional problems: particle in a box, linear harmonic oscillator.

UNIT IV: Introduction to Solids and Semiconductors (10 lectures)

Free electron theory of metals, Fermi level, density of states in 1, 2 and 3 dimensions, Bloch's theorem for particles in a periodic potential, Origin of energy bands (Qualitative idea); Types of electronic materials: metals, semiconductors, and insulators, Intrinsic and extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature (equilibrium carrier statistics), Carrier generation and recombination, Carrier transport: diffusion and drift, p-n junction.

- 1. I. G. Main, "Vibrations and waves in physics", Cambridge University Press, 1993.
- 2. H. J. Pain, "The physics of vibrations and waves", Wiley, 2006.
- 3. E. Hecht, "Optics", Pearson Education, 2008.
- 4. A. Ghatak, "Optics", McGraw Hill Education, 2012.
- 5. O. Svelto, "Principles of Lasers", Springer Science & Business Media, 2010.
- 6. D. J. Griffiths, "Quantum mechanics", Pearson Education, 2014.
- 7. R. Robinett, "Quantum Mechanics", OUP Oxford, 2006.
- 8. D.A. Neamen, "Semiconductor Physics and Devices", Times Mirror High Education Group, Chicago, 1997.
- 9. E.S. Yang, "Microelectronic Devices", McGraw Hill, Singapore, 1988.
- 10. B.G. Streetman, "Solid State Electronic Devices", Prentice Hall of India, 1995.
- 11. HK Malik and AK Singh, Engineering Physics, 2nd ed., Tata McGraw Hill, 2018.
- 12. S. Sharma and J. Sharma, Engineering Physics, Pearson, 2018.
- 13. <u>https://nptel.ac.in/courses/117108037/3</u>
- 14. https://nptel.ac.in/courses/115102023/

	Bachelor of Technology (B.	Tech. 1 st Year)		
BTPH112-21	Optics and Modern Physics Lab	L-0, T-0, P-3	1.5 Credits	
Pre-requisite (I	f any): High-school education with physics as	one of the subject.		
students of B.Te	ives: The aim and objective of the lab on Op ech. class to the formal structure of wave and op hey can use these in Engineering branch as per	otics, Quantum Meel	·	
Course Outcon	nes: At the end of the course, the student will be	e able to		
CO1	Verify some of the theoretical concepts learn	t in the theory course	es.	
CO2	Trained in carrying out precise measurements and handling sensitive equipment.			
CO3	Introduced to the methods used for estimatin			
	and systematic errors.		-	
CO4	Learn to draw conclusions from data and dev	elop skills in experi	mental design.	
CO5	Write a technical report which communicates	* *	¥	
	manner.			

Detailed Syllabus:

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. To study the laser beam characteristics like; wavelength using diffraction grating aperture & divergence.
- 2. To Study of diffraction using laser beam and thus to determine the grating element.
- 3. To study laser interference using Michelson's Interferometer.
- 4. To determine the numerical aperture of a given optic fibre and hence to find its acceptance angle.
- 5. To determine attenuation & propagation losses in optical fibres.
- 6. To determine the grain size of a material using optical microscope.
- 7. To find the refractive index of a material/glass/liquid using spectrometer.
- 8. To find the velocity of ultrasound in liquid.
- 9. To study the characteristic of different p-n junction diode Ge and Si.
- 10. To analyze the suitability of a given Zener diode as voltage regulator.
- 11. To find out the intensity response of a solar cell/Photo diode/LED.
- 12. To find out the frequency of AC mains using electric-vibrator.
- 13. To find the resolving power and the angle of prism.
- 14. To determine the wavelength of the given source using Newton's rings method.
- 15. To understand the phenomenon Photoelectric effect and draw kinetic energy of photoelectrons as a function of frequency of incident radiation.
- 16. To determine the Planck's constant from kinetic energy versus frequency graph.
- 17. To determine the stopping potential from the photocurrent versus applied potential graph.

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 6. Laboratory Experiments in College Physics, C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 7. Practical Physics, G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 8. Experiments in Modern Physics, A.C. Melissinos, Academic Press, N.Y., 1966.
- 9. Practical Physics, C L Arora. S. Chand & Company Ltd.
- 10. http://www.vlab.co.in

BTPH103-21	Electromagnetism	L-3, T-1, P-0	4 Credits
Pre-requisites ((if any):		
U	hool education with physics as one on atical course on vector calculus.	f the subject.	

Course Objectives: The aim and objective of the course is to expose the students to the formal structure of electromagnetism so that they can use these in Engineering as per their requirement.

Course Outcomes: At the end of the course, the student will be able to		
CO1	Specify the constitutive relationships for fields and understand their important.	
CO2	Describe the static and dynamic electric and magnetic fields for technologically important structures.	
CO3	Measure the voltage induced by time varying magnetic flux.	
CO4	acquire the knowledge of Maxwell equation and electromagnetic field theory and propagation and reception of electro-magnetic wave systems.	
CO5	have a solid foundation in engineering fundamentals required to solve problems and also to pursue higher studies.	

Detailed Syllabus:

PART-A

UNIT I: Electrostatics in vacuum and linear dielectric medium (10 lectures)

Calculation of electric field and electrostatic potential for a charge distribution; Divergence and curl of electrostatic field; Laplace's and Poisson's equations for electrostatic potential; Uniqueness theorem (Definition); examples: Faraday's cage; Boundary conditions of electric field; Energy of a charge distribution and its expression in terms of electric field. Electrostatic field and potential of a dipole. Bound charges due to electric polarization in Dielectrics; Electric displacement; Solving simple electrostatics problems in presence of dielectrics – Point charge at the centre of a dielectric sphere, charge in front of a dielectric slab.

UNIT II: Magnetostatics in linear magnetic medium (10 lectures)

Bio-Savart law, Divergence and curl of static magnetic field; Concept of vector potential, Magnetization and associated bound currents; auxiliary magnetic field \vec{H} ; Boundary conditions on \vec{B} and \vec{H} . Solving for magnetic field due to bar magnet; magnetic susceptibility and ferromagnetic, paramagnetic and diamagnetic materials; magnetic domains, hysteresis and B-H curve.

PART-B

UNIT III: Faraday's law and Maxwell's equations (10 lectures)

Faraday's law; equivalence of Faraday's law and motional EMF; Lenz's law; Electromagnetic breaking and its applications; Differential form of Faraday's law; energy stored in a magnetic field. Continuity equation for current densities; Modifying equation for the curl of magnetic field to satisfy continuity equation; displacement current and magnetic field arising from time-dependent electric field; Maxwell's equation in vacuum and non-conducting medium; Flow of energy and Poynting vector and Poynting theorem.

UNIT IV: Electromagnetic waves (10 lectures)

Wave equation for electromagnetic waves in free space and conducting medium, Uniform plane waves and general solution of uniform plane waves, relation between electric and magnetic fields of an electromagnetic wave their transverse nature.; Linear, circular and elliptical polarization, Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence.

Text and Reference Books:

- 1. D. Griffiths, Introduction to Electrodynamics, Pearson Education India; 4th ed. (2015).
- 2. J D Jackson, Classical Electrodynamics, John Wiley and Sons (1999).
- 3. Halliday and Resnick, Fundamentals of Physics, Wiley (2011).
- 4. W. Saslow, Electricity, Magnetism and Light, Academic Press (2002).
- 5. HK Malik and AK Singh, Engineering Physics, 2nd ed., Tata McGraw Hill (2018).

BTPH113-21	Electromagnetism Lab	L-0, T-0, P-3	1.5 Credits
Pre-requisite (I	f any): High-school education		
	ves: The aim and objective of the lab course on El		
of B. Tech. class	to the formal structure of electromagnetism so the	hat they can use the	se in various branches of
engineering as p	er their requirement.		
Course Outcom	es: At the end of the course, the student will be a	ble to	
CO1	Able to verify some of the theoretical concepts	learnt in the theory	courses.
CO2	Trained in carrying out precise measurements a	nd handling sensiti	ve equipment.
CO3	understand the methods used for estimating and systematic "errors."	dealing with experi	imental uncertainties and
CO4	Learn to draw conclusions from data and development	op skills in experim	nental design.
CO5	Write a technical report which communicates s manner.	cientific informatio	n in a clear and concise

Detailed Syllabus:

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses.
- 2. To study the magnetic field of a circular coil carrying current.
- 3. To study B-H curve for a ferromagnetic material using CRO.
- 4. To find out the frequency of AC mains using electric-vibrator.
- 5. To find out polarizability of a dielectric substance.
- 6. Determine a high resistance by leakage method using Ballistic Galvanometer.
- 7. To study the characteristics of a Series RC Circuit.
- 8. To study the series LCR circuit and determine its (a) Resonant Frequency, (b) Quality.
- 9. To study a parallel LCR circuit and determine its (a) Anti-resonant frequency (b) Quality factor Q.
- 10. To determine the value of self-inductance by Maxwell Inductance Bridge and Capacitance Bridge.
- 11. To determine the mutual inductance of two coils by Absolute method.
- 12. To study the induced emf as a function of the velocity of magnet and to study the phenomenon of electromagnetic damping.
- 13. To determine unknown capacitance by flashing and quenching method.
- 14. To study the field pattern of various modes inside a rectangular waveguide.
- 15. To determine charge to mass ratio (e/m) of an electron by helical method.
- 16. To determine charge to mass ratio (e/m) of an electron by Thomson method.
- 17. To find out the horizontal component of earth's magnetic field (B_h).

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 6. Laboratory Experiments in College Physics, C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 7. Practical Physics, G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 8. Experiments in Modern Physics, A.C. Melissinos, Academic Press, N.Y., 1966.
- 9. Practical Physics, C L Arora, S. Chand & Company Ltd.
- 10. http://www.vlab.co.in

BTPH104-21	Semiconductor Physics	L-3, T-1, P-0	4 Credits
Prerequisite (if	any): Introduction to Quantum Mechanics	desirable	
	ves: The aim and objective of the course Cech. class to the formal structure of semi		
	per their requirement.	1 2	,
Course Outcom	es: At the end of the course, the student wi	l be able to	
CO1	Understand and explain the fundamental and semiconductors	principles and properties	s of electronic materials
CO2	Understand and describe the interaction of light with semiconductors in terms of fermi golden rule.		
CO3			
CO4	Understand the design, fabrication, as semiconductor materials.	nd characterization tech	nniques of Engineered
CO5	Develop the basic tools with which they can other semiconductor applications.	an study and test the newl	y developed devices and
Detailed Syllab			

PART-A

UNIT 1: Electronic materials (10 lectures)

Free electron theory of metals, Density of states in 1D, 2D, and 3D, Bloch's theorem for particles in a periodic potential, Energy band diagrams, Kronig-Penny model (to introduce origin of band gap), Energy bands in solids, E-k diagram, Direct and indirect bandgaps, Types of electronic materials: metals, semiconductors, and insulators, Occupation probability, Fermi level, Effective mass.

UNIT II: Semiconductors (10 lectures)

Intrinsic and extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature (equilibrium carrier statistics), Carrier generation and recombination, Carrier transport: diffusion and drift, p-n junction, Metal-semiconductor junction (Ohmic and Schottky), Semiconductor materials of interest for optoelectronic devices.

PART-B

UNIT III: Light-semiconductor interaction (10 lectures)

Optical transitions in bulk semiconductors: absorption, spontaneous emission, and stimulated emission; Einstein coefficients, Population inversion, application in semiconductor Lasers; Joint density of states, Density of states for phonons, Transition rates (Fermi's golden rule), Optical loss and gain; Photovoltaic effect, Exciton, Drude model.

UNIT IV: Measurement Techniques (10 lectures)

Measurement for divergence and wavelength using a semiconductor laser, Measurements for carrier density, resistivity, hall mobility using Four-point probe and van der Pauw method, Hot-point probe measurement, capacitance-voltage measurements, parameter extraction from diode I-V characteristics.

Reference books and suggested reading:

- 1. J. Singh: Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc. (1995).
- 2. B. E. A. Saleh and M. C. Teich: Fundamentals of Photonics, John Wiley & Sons, Inc., (2007).
- 3. S. M. Sze: Semiconductor Devices: Physics and Technology, Wiley (2008).
- 4. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press, New York (2007).
- 5. P. Bhattacharya: Semiconductor Optoelectronic Devices, Prentice Hall of India (1997).
- 6. Ben G. Streetman: Solid State Electronics Devices, Pearson Prentice Hall.
- 7. D.A. Neamen, "Semiconductor Physics and Devices", Times Mirror High Education Group, Chicago, 1997.
- 8. E.S. Yang, "Microelectronic Devices", McGraw Hill, Singapore, 1988.
- 9. Online course: "Semiconductor Optoelectronics" by M R Shenoy on NPTEL.
- 10. Online course: "Optoelectronic Materials and Devices" by Monica Katiyar and Deepak Gupta on NPTEL.
- 11. Satayaparkash, 'Quantum Mechanics'.
- 12. A. Ghatak and Lokanathan, 'Quantum Mechanics'.

UNIT I Quantum Mechanics:

Need and origin of Quantum Concept, Wave-particle duality, Matter waves, Group and Phase velocities, Concept of Uncertainty Principle and its application: nonexistence of electron in the nucleus, Born interpretation of wave function & its significance, normalization of wave function, Schrodinger wave equation: time independent and dependent, Eigen functions & Eigen values, particle in a box in 1-D. Concept of scattering from a potential barrier and tunneling.

UNIT-II Electronic Materials: (8 Hrs.)

Free electron theory, Density of states and energy band diagrams, Introduction to band gap theory, Direct and indirect band gaps. Types of electronic materials: metals, semiconductors and insulators, Occupation probability, Fermi level, Effective mass, phonons.

UNIT-III Semiconductors and Light- Semiconductor Interactions: (12 Hrs.)

Intrinsic and extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature (equilibrium carrier statistics), Carrier generation and recombination, Carrier transport: diffusion and drift, p-n junction, Metal-semiconductor junction (Ohmic and Schottky), Semiconductor materials of interest for optoelectronic devices. Optical transitions in bulk semiconductors: absorption, spontaneous emission, and stimulated emission;

Lasers: principles and working of laser: population inversion, pumping, types of lasers with emphasis on the semi-conductor Lasers.

UNIT-IV Fibre Optics Communication: (8 Hrs.)

Introduction and importance of use of optical fibres in data transmission, optical fibre as a dielectric wave guide: total internal reflection, numerical aperture and various fibre parameters, losses associated with optical fibres, step and graded index fibres, applications of optical fibres.

BTPH114-21	Semiconductor Physics Lab	L-0, T-0, P-3	1.5 Credits			
Pre-requisite (if	fany): (i) High-school education					
Course Objectives: The aim and objective of the Lab course on Semiconductor Physics is to introduce the students of B.Tech. class to the formal structure of semiconductor physics so that they can use these in Engineering as per their requirement.						
Course Outcom	Course Outcomes: At the end of the course, the student will be able to					
CO1	Able to verify some of the theoretical concepts	learnt in the theory	courses.			
CO2	Trained in carrying out precise measurements a	nd handling sensiti	ve equipment.			
CO3	Introduced to the methods used for estimating a and systematic "errors."	and dealing with ex	sperimental uncertainties			
CO4	Learn to draw conclusions from data and develo	op skills in experim	nental design.			
CO5	Write a technical report which communicates s manner.	cientific informatio	n in a clear and concise			
Detailed Syllab	us:					

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. To study the characteristic of different PN junction diode-Ge and Si.
- 2. To analyze the suitability of a given Zener diode as a power regulator.
- 3. To find out the intensity response of a solar cell/Photo diode/LED.
- 4. To determine the band gap and resistivity of a semiconductor by four probe method.
- 5. To study voltage regulation and ripple factor for a half-wave and a full-wave rectifier without and with different filters.
- 6. To study the magnetic field of a circular coil carrying current.
- 7. To find out polarizability of a dielectric substance.
- 8. To study B-H curve of a ferro-magnetic material using CRO.
- 9. To find out the frequency of AC mains using electric-vibrator.
- 10. To find the velocity of ultrasound in liquid.
- 11. To study the Hall effect for the determination of charge current densities.
- 12. Distinguish between Diamagnetic material, Paramagnetic and ferromagnetic material.
- 13. Measurement of susceptibility of a liquid or a solution by Quincke's method.
- 14. To study the sample with the nano-scale objects and measure surface topography with different scales, width and height of nano objects, and force-distance curves using AFM.
- 15. To study the temperature coefficient of Resistance of copper.
- 16. To compare various capacitance and verify the law of addition of capacitance.
- 17. Verification of the curie Weiss law for the electrical susceptibility of a ferromagnetic material.
- 18. To study the laser beam characteristics like; wave length using diffraction grating aperture & divergence.
- 19. To study laser interference using Michelson's Interferometer.
- 20. Study of diffraction using laser beam and thus to determine the grating element.
- 21. Verification and design of combinational logic using AND, OR, NOT, NAND and XOR gates.

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 6. Laboratory Experiments in College Physics, C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 7. Practical Physics, G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 8. Experiments in Modern Physics, A.C. Melissinos, Academic Press, N.Y., 1966.
- 9. Practical Physics, C L Arora, S. Chand & Company Ltd.
- 10. http://www.vlab.co.in

	Bachelor of Technology (B		
BTPH105-21	Semiconductor and Optoelectronics	L-3, T-1, P-0	4 Credits
	Physics		
Duonoquigito (it	f any): "Introduction to Quantum Mechanics" I	Desirable	
r rerequisite (i	any : Introduction to Quantum Mechanics	Jesirable	
•	ives: The aim and objective of the course on Se		
is to introduce t	he students of B. Tech. class to the formal struc	cture of semiconduct	or physics and
Optoelectronics	s so that they can use these in Engineering as pe	r their requirement.	
Course Outcon	nes: At the end of the course, the student will b	e able to	
601		•••••••••••••••••••••••••••••••••••••••	
CO1	Understand and explain the fundamental pri	inciples and properti	es of electronic materials
GOA	and semiconductors.		1
CO2	Understand and describe the interaction of golden rule.	light with semicone	ductors in terms of fermi
CO3	Understand and describe the impact of soli	d state device capal	ailities and limitations on
005	electronic circuit performance.	destate device capat	sinces and minitations on
CO4	*	torization toohnique	and massurements of
004	Understand the design, fabrication, charac	terization technique	es, and measurements of
005	Engineered semiconductor materials.	· IFD ·	1 , 1 1 1 .
CO5	Learn the basics of the optoelectronic dev	ices, LEDs, semicor	nductor lasers, and photo
	detectors.		
Detailed Syllab	ous:		

PART-A

UNIT -I: Electronic materials (10 lectures)

Free electron theory of metals, Density of states in 1D, 2D, and 3D, Bloch's theorem for particles in a periodic potential, energy band diagrams, Kronig-Penny model (to introduce origin of band gap), Energy bands in solids, E-k diagram, Direct and indirect band gaps, Types of electronic materials: metals, semiconductors and insulators, Occupation probability, Fermi level, Effective mass of electron and hole.

UNIT -II: Semiconductors (10 lectures)

Intrinsic and extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature (equilibrium carrier statistics), Carrier generation and recombination, Carrier transport: diffusion and drift, p-n junction, Metal-semiconductor junction (Ohmic and Schottky).

PART-B

UNIT -III: Optoelectronic devices (10 lectures)

Radiative and non-radiative recombination mechanisms in semiconductors, Semiconductor materials of interest for optoelectronic devices; Semiconductor light emitting diodes (LEDs): light emitting materials, device structure, characteristics; Optical transitions in bulk semiconductors: absorption, spontaneous emission, and stimulated emission, Semiconductor laser: population inversion at a junction, structure, materials, device characteristics, Photovoltaics: Types of semiconductor photo detectors-p-n junction, PIN, and Avalanche-and their structure, materials, working principle, and characteristics, Noise limits on performance.

UNIT-IV: Measurement techniques (10 lectures)

Measurement for divergence and wavelength using a semiconductor laser, Measurements for carrier density, resistivity, and hall mobility using Four-point probe and van der Pauw method, Hot-point probe measurement, capacitance-voltage measurements, parameter extraction from diode I-V characteristics.

- 1. J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc. (1995).
- 2. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc. (2007).
- 3. S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley (2008).
- 4. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press, New York (2007).
- 5. P. Bhattacharya: Semiconductor Optoelectronic Devices, Prentice Hall of India (1997).
- 6. Solid state electronics devices: Ben. G. Streetman Pearson Prentice Hall.
- 7. D.A. Neamen: "Semiconductor Physics and Devices", Times Mirror High Education Group, Chicago, 1997.
- 8. E.S. Yang: "Microelectronic Devices", McGraw Hill, Singapore, 1988.
- 9. Online course: "Semiconductor Optoelectronics" by M R Shenoy on NPTEL.
- 10. Online course: "Optoelectronic Materials and Devices" by Monica Katiyar and Deepak Gupta on NPTEL.

	Dachelor of Technology (
BTPH115-21	Semiconductor and Optoelectronics Physics Lab	L-0, T-0, P-3	1.5 Credits
Pre-requisite (i	f any): High-school education		
Physics is to interpret that they can use	ives: The aim and objective of the Lab controduce the students of B.Tech. class to the for the these in Engineering as per their requirement mes: At the end of the course, the student will	rmal lab structure of t.	-
CO1	Able to verify some of the theoretical conco	epts learnt in the theor	v courses.
CO2	Trained in carrying out precise measurements and handling sensitive equipment.		
CO3	Introduced to the methods used for estimating and dealing with experimental uncertainties and systematic "errors."		
CO4	Learn to draw conclusions from data and de	evelop skills in experi	mental design.
CO5	Write a technical report which communicates scientific information in a clear and concise		

Detailed Syllabus:

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. To study the characteristic of different PN junction diode-Ge and Si.
- 2. To analyze the suitability of a given Zener diode as a power regulator.
- 3. To find out the intensity response of a solar cell/Photo diode.
- 4. To find out the intensity response of a LED.

manner.

- 5. To determine the band gap of a semiconductor.
- 6. To determine the resistivity of a semiconductor by four probe method.
- 7. To confirm the de Broglie equation for electrons.
- 8. To study voltage regulation and ripple factor for a half-wave and a full-wave rectifier without and with different filters.
- 9. To study the magnetic field of a circular coil carrying current.
- 10. To find out polarizability of a dielectric substance.
- 11. To study B-H curve of a ferro-magnetic material using CRO.
- 12. To find out the frequency of AC mains using electric-vibrator.
- 13. To find the velocity of ultrasound in liquid.
- 14. To study the Hall effect for the determination of charge current densities.
- 15. Distinguish between diamagnetic material, paramagnetic and ferromagnetic material.
- 16. Measurement of susceptibility of a liquid or a solution by Quincke's method.
- 17. To study the sample with the nano-scale objects and measure surface topography with different scales, width and height of nano objects, and force-distance curves using AFM.
- 18. To study the temperature coefficient of Resistance of copper.
- 19. To determine the ratio k/e using a transistor.
- 20. To compare various capacitance and verify the law of addition of capacitance.
- 21. To measure the temperature dependence of a ceramic capacitor.
- 22. Verification of the curie Weiss law for the electrical susceptibility of a ferromagnetic material.
- 23. To study the laser beam characteristics like; wave length using diffraction grating aperture & divergence.

24. To study laser interference using Michelson's Interferometer.

25. Study of diffraction using laser beam and thus to determine the grating element.

Section-B

Virtual lab:

- 1. To draw the static current-voltage (I-V) characteristics of a junction diode.
- 2. To plot the characteristics of thermistor and hence find the temperature coefficient of resistance.
- 3. To determine the resistivity of semiconductors by Four Probe Method.
- 4. To study Zener diode voltage as regulator and measure its line and load regulation.
- 5. To study the B-H Curve for a ferromagnetic material.
- 6. To study the Hall effect experiment to determine the charge carrier density.
- 7. To determine the magnetic susceptibilities of paramagnetic liquids by Quincke's Method.
- 8. To study the phenomena of magnetic hysteresis and calculate the retentivity, coercivity and saturation magnetization of a material using a hysteresis loop tracer.
- 9. Verification and design of combinational logic using AND, OR, NOT, NAND and XOR gates.

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 6. Laboratory Experiments in College Physics, C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 7. Practical Physics, G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 8. Experiments in Modern Physics, A.C. Melissinos, Academic Press, N.Y., 1966.
- 9. Practical Physics, C L Arora, S. Chand & Company LTD.
- 10. http://www.vlab.co.in

BTPH106	5-21 Optics and Electromagnetism	L-3, T-1, P-0	4 Credits
Prerequis	ite (if any): Introduction to Quantum Mechanic	s desirable	
the studen and quantu	bjectives: The aim and objective of the course ts of B.Tech. class to the basic concepts of opti- um physics, so that they can use these in Engine utcomes: At the end of the course, the student w	cs and its applications, ele ering as per their requirement	ectricity and magnetism,
CO1	Identify and illustrate physical concepts and phenomena.	terminology used in optics	and other wave
CO2	Understand optical phenomena such as polarization, birefringence, interference, and diffraction in terms of the wave model.		
CO3	Understand the importance of wave equation in nature and appreciate the mathematical formulation of the same		
001	Acquire knowledge about the Maxwell equa	· 1 · ·	
CO4	riequire into vieuge usout are maximen equa	tion and magnetic propertie	es of materials.

Detailed syllabus:

PART-A

Unit I: Wave Optics (8 lectures)

Diffraction: Introduction to interference and example; concept of diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer diffraction at single slit, double slit, and multiple slits; diffraction grating, characteristics of diffraction grating and its applications; Polarization: Introduction to polarization, polarisation by reflection, polarisation by double refraction, scattering of light, circular and elliptical polarisation, optical activity.

UNIT-II: Fibre Optics and LASERS (12 lectures)

Fibre Optics: Introduction, optical fibre as a dielectric wave guide: total internal reflection, numerical aperture and various fibre parameters, losses associated with optical fibres, step and graded index fibres, application of optical fibres; LASERS: Spontaneous and stimulated emission, Einstein's theory of matter radiation interaction and A and B coefficients; population inversion, pumping, various modes, properties of laser beams, types of lasers: gas lasers (He-Ne), solid-state lasers (ruby), applications.

PART-B

UNIT-III: Electromagnetism and Magnetic Properties of Materials (10 lectures)

Laws of electrostatics: Coulomb and Gauss Law, electric current and the continuity equation, laws of magnetism: Ampere's and Faraday's laws. Maxwell's equations (derivation and physical significance), Dielectric polarisation, permeability and dielectric constant, polar and non-polar dielectrics, internal fields in a solid, Clausius-Mossotti equation, applications of dielectrics; Magnetisation, permeability and susceptibility, classification of magnetic materials, ferromagnetism, magnetic domains and hysteresis, applications.

Unit IV: Quantum Mechanics (10 lectures)

Introduction to quantum physics, black body radiation, explanation using the photon concept, photoelectric effect, Compton effect, de Broglie hypothesis, wave-particle duality, Born's interpretation of the wave function, Davisson and Germer experiment: verification of matter waves, uncertainty principle, Schrodinger wave equation: particle in 1-dimensional box.

- 1. "Fundamentals of Physics", 6th Ed., D. Halliday, R. Resnick and J. Walker, John Wiley and Sons, Inc., New York, 2001.
- 2. "Physics", M. Alonso and E.J. Finn, Addison Wesley, .1992.
- 3. "Fundamentals of Optics", 4th Ed., F.A. Jenkins and H.E. White, McGraw-Hill Book Co., 1981.
- 4. "Optics", A Ghatak, Tata-McGraw Hill, New Delhi, 1992.
- 5. "Vibration and Waves", A.P. French, Arnold-Heinemann, New Delhi, 1972.
- 6. "Vibrations and waves in physics", I. G. Main, Cambridge University Press, 1993.
- 7. "The physics of vibrations and waves", H. J. Pain, Wiley, 2006.
- 8. "Optics", E. Hecht, Pearson Education, 2008.
- 9. "Optics", A. Ghatak, McGraw Hill Education, 2012.
- 10. "Principles of Lasers", O. Svelto, Springer Science & Business Media, 2010.
- 11. "Quantum mechanics", D. J. Griffiths, Pearson Education, 2014.
- 12. "Quantum Mechanics", R. Robinett, OUP Oxford, 2006.
- 13. "Semiconductor Physics and Devices", D.A. Neamen, Times Mirror High Education Group, Chicago, 1997.
- 14. "Microelectronic Devices", E.S. Yang, McGraw Hill, Singapore, 1988.
- 15. "Solid State Electronic Devices", B.G. Streetman, Prentice Hall of India, 1995.
- 16. HK Malik and AK Singh, Engineering Physics, 2nd ed., Tata McGraw Hill (2018).
- 17. https://nptel.ac.in/courses/117108037/3
- 18. https://nptel.ac.in/courses/115102023/

BTPH116-21	Optics and Electromagnetism Lab	L-0, T-0, P-3	1.5 Credits			
Pre-requisite (if	any): High-school education					

Course Objectives: The aim and objective of the lab on Optics and Electromagnetism is to provide students the firsthand experience of verifying various theoretical concepts learnt in theory courses so that they can use these in their branch of Engineering as per their requirement.

Laboratory Outcomes:	At the end of the course,	, students will be

CO1	Able to verify some of the theoretical concepts learnt in the theory courses.
CO2	Trained in carrying out precise measurements and handling sensitive equipment.
CO3	Introduced to the methods used for estimating and dealing with experimental uncertainties
	and systematic "errors."
CO4	Learn to draw conclusions from data and develop skills in experimental design.
CO5	Write a technical report which communicates scientific information in a clear and concise
	manner.

Detailed Syllabus:

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. To study the magnetic field of a circular coil carrying current.
- 2. To find out polarizability of a dielectric substance.
- 3. To study the laser beam characteristics like; wave length using diffraction grating aperture & divergence.
- 4. To study laser interference using Michelson's Interferometer.
- 5. Study of diffraction using laser beam and thus to determine the grating element.
- 6. To determine numerical aperture of an optical fibre.
- 7. To determine attenuation & propagation losses in optical fibres.
- 8. To find out the frequency of AC mains using electric-vibrator.
- 9. To find the refractive index of a material using spectrometer.
- 10. To find the refractive index of a liquid using spectrometer.
- 11. To study B-H curve for a ferromagnetic material using CRO.
- 12. To find the velocity of ultrasound in liquid.
- 13. To determine the grain size of a material using optical microscope.
- 14. To study the characteristics of solar cell.
- 15. To study the Characteristics of Light Emitting Diode (LED).
- 16. To determine the energy gap of a given semi-conductor.
- 17. To determine the specific rotation of sugar using Laurent's half-shade polarimeter.

Section-B

Virtual lab:

- 1. To find the resolving power of the prism.
- 2. To determine the angle of the given prism.
- 3. To determine the refractive index of the material of a prism.
- 4. To find the numerical aperture of a given optic fibre and hence to find its acceptance angle.
- 5. To calculate the beam divergence and spot size of the given laser beam.
- 6. To determine the wavelength of a laser using the Michelson interferometer.
- 7. To revise the concept of interference of light waves in general and thin-film interference in particular.
- 8. To set up and observe Newton's rings.
- 9. To determine the wavelength of the given source.
- 10. To understand the phenomenon Photoelectric effect as a whole.
- 11. To draw kinetic energy of photoelectrons as a function of frequency of incident radiation.
- 12. To determine the Planck's constant from kinetic energy versus frequency graph.
- 13. To plot a graph connecting photocurrent and applied potential
- 14. To determine the stopping potential from the photocurrent versus applied potential graph.

- 1. "Fundamentals of Physics", 6th Ed., D. Halliday, R. Resnick and J. Walker, John Wiley and Sons, Inc., New York, 2001.
- 2. "Physics", M. Alonso and E.J. Finn, Addison Wesley, .1992.
- 3. "Fundamentals of Optics", 4th Ed., F.A. Jenkins and H.E. White, McGraw-Hill Book Co., 1981.
- 4. "Optics", A Ghatak, Tata-McGraw Hill, New Delhi, 1992
- 5. "Vibration and Waves", A.P. French, Arnold-Heinemann, New Delhi, 1972.
- 6. "Students Reference Manual for Electronic Instrumentation Laboratories",
- 7. "Laboratory Experiments in College Physics", C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 8. "Practical Physics", G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 9. "Experiments in Modern Physics", A.C. Melissinos, Academic Press, N.Y., 1966.
- 10. "Practical Physics", C L Arora. S. Chand & Company LTD.
- 11. http://www.vlab.co.in
- 12. <u>http://vlab.amrita.edu/index.php?sub=1</u>

BTPH107-21	Introduction to Physics in Biotechnology	L-3, T-1, P-0	4 Credits
Prerequisite (if	f any): High School knowledge		
Course Object	ives: The aim and objective of the course on In	troduction to Physi	ics in Biotechnology is to
	udents of B. Tech. class to the basic concepts an	•	
	ial, superconductivity and a brief introduction to		
•	as per their requirement.	-1	
	as per their requirement.		
Course Outcon	nes: At the end of the course, the student will be	able to	
CO1	Identify and illustrate physical concepts and	terminology used i	n Lasers, fibre optics and
	other wave phenomena.		
CO2	Understand the X-Rays and their applications	to the ultrasounds.	
CO3	Understand the importance of wave equation	n in nature and app	preciate the mathematical
	formulation of the same		
CO4	Appreciate the need for quantum mechanics,	wave particle dua	lity, uncertainty principle
	etc.	-	
CO5	Understand the properties of magnetic materia	als and superconduc	ctivity.
Detailed Syllab		•	· ·

PART-A

UNIT I: LASERS and Fibre Optics (10 lectures)

Principles and working of laser: population inversion, pumping, threshold population inversion, types of laser: solid state (Ruby), gas (He-Ne); application of lasers (Medical/Industrial Applications); Fibre Optics: Introduction, optical fibre as a dielectric wave guide, total internal reflection, step and graded index fibres, numerical aperture and various fibre parameters, losses associated with optical fibres, application of optical fibres.

UNIT II: Magnetic Materials and Superconductivity (10 lectures)

Origin of magnetism, Basic idea of Diamagnetic, Paramagnetic, Ferromagnetic, Ferrimagnetic and Ferrite materials, Soft and Hard Magnetic materials, magnetostriction, magnetic anisotropy, applications of magnetic materials; Superconductivity, properties of superconducting state, Meissner Effect, Type-I and Type-II superconductors, Introduction to BCS theory (Qualitative idea), applications in medical industry.

PART-B

UNIT III: X-rays and Ultrasounds (10 lectures)

X-rays, Production of X-rays, Continuous and Characteristic X-Rays, Absorption of X-rays, Bragg's law, Adverse effects of X-rays, X-ray radiography; Ultrasounds: Ultra sound generators, properties of ultrasound-waves and its propagation in biological tissues, Pulse echo techniques, Doppler principle, involvement in design of medical instruments, Adverse effects of ultrasound waves.

IK Gujral Punjab Technical University Bachelor of Technology (B. Tech. 1st Year)

UNIT IV: Quantum Theory and Nano-Materials ((10 lectures)

Photoelectric effect, Compton effect and de-Broglie waves; Wave-particle duality, concept of Electron microscopy; Nano-materials, surface to volume ratio, electron confinement (qualitative description), top-down and bottom-up method of synthesis, qualitative idea of quantum well, quantum wire and quantum dot. Carbon nanotubes: types, properties and applications.

Text and Reference Books:

- 1. Engineering Physics, Malik; HK, Singh; AK, Tata McGraw Hill.
- 2. Concepts of Modern Physics, Beiser; A., Tata McGraw Hill.
- 3. Introduction to Solids, Azaroff LV, Tata Mc Graw Hill.
- 4. Engineering Physics, D.K. Bhattacharya, Poonam Tondon, Oxford University Press.
- 5. Optical Fibre system, Technology, Design & Applications, Kao; CK, McGraw Hill.
- 6. Laser Theory & Applications, Thygrajan; K, Ghatak; AK, Mc Millan India Ltd.

IK Gujral Punjab Technical University Bachelor of Technology (B. Tech. 1st Year)

BTPH117-21	Physics lab	L-0, T-0, P-3	1.5 Credits	
Pre-requisite (if any): High-school education				
Course Objectives: The aim and objective of the Physics lab is to provide students the firsthand experience of				
verifying various theoretical concepts learnt in theory courses so that they can use these in Engineering as per				
their requirement.				
Laboratory Outcomes: At the end of the course, students will be				
CO1	Able to verify some of the theoretical concept	s learnt in the theor	ry courses.	
CO2	Trained in carrying out precise measurements and handling sensitive equipment.			
CO3	Introduced to the methods used for estimating and dealing with experimental			
	uncertainties and systematic errors.			
CO4	Learn to draw conclusions from data and develop skills in experimental design.			
CO5	Write a technical report which communicates	scientific informat	ion in a clear and concise	
	manner.			
Detailed Syllabus:				

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. To study the magnetic field of a circular coil carrying current.
- 2. To find out polarizability of a dielectric substance.
- 3. To study the laser beam characteristics like; wave length using diffraction grating aperture & divergence.
- 4. To study laser interference using Michelson's Interferometer.
- 5. Study of diffraction using laser beam and thus to determine the grating element.
- 6. To determine numerical aperture of an optical fibre.
- 7. To determine attenuation & propagation losses in optical fibres.
- 8. To find out the frequency of AC mains using electric-vibrator.
- 9. To determine the energy gap of a given semi-conductor.
- 10. To study B-H curve of a ferromagnetic material using CRO.
- 11. To find the velocity of ultrasound in liquid.
- 12. To determine the grain size of a material using optical microscope.
- 13. To study the characteristics of solar cell.
- 14. To study the Characteristics of Light Emitting Diode (LED).
- 15. To determine the specific rotation of sugar using Laurent's half-shade polarimeter.

Section-B

Virtual lab:

- 1. To find the numerical aperture of a given optic fibre and hence to find its acceptance angle.
- 2. To calculate the beam divergence and spot size of the given laser beam.
- 3. To determine the wavelength of a laser using the Michelson interferometer.
- 4. To revise the concept of interference of light waves in general and thin-film interference in particular.
- 5. To set up and observe Newton's rings.
- 6. To determine the wavelength of the given source.
- 7. To understand the phenomenon Photoelectric effect.
- 8. To draw kinetic energy of photoelectrons as a function of frequency of incident radiation.
- 9. To determine the Planck's constant from kinetic energy versus frequency graph.
- 10. To plot a graph connecting photocurrent and applied potential
- 11. To determine the stopping potential from the photocurrent versus applied potential graph.

Reference books and suggested reading:

- 1. "Fundamentals of Physics", 6th Ed., D. Halliday, R. Resnick and J. Walker, John Wiley and Sons, Inc., New York, 2001.
- 2. "Physics", M. Alonso and E.J. Finn, Addison Wesley, 1992.
- 3. "Fundamentals of Optics", 4th Ed., F.A. Jenkins and H.E. White, McGraw-Hill Book Co., 1981.
- 4. "Optics", A Ghatak, Tata-McGraw Hill, New Delhi, 1992
- 5. "Vibration and Waves", A.P. French, Arnold-Heinemann, New Delhi, 1972.
- 6. "Students Reference Manual for Electronic Instrumentation Laboratories",
- 7. "Laboratory Experiments in College Physics", C.H. Bernard and C.D. Epp, John Wiley and Sons, Inc., New York, 1995.
- 8. "Practical Physics", G.L. Squires, Cambridge University Press, Cambridge, 1985.
- 9. "Experiments in Modern Physics", A.C. Melissinos, Academic Press, N.Y., 1966.
- 10. "Practical Physics", C L Arora. S. Chand & Company LTD.
- 11. http://www.vlab.co.in
- 12. http://vlab.amrita.edu/index.php?sub=1

GOVERNMENT OF PUNJAB DEPARTMENT OF TECHNICAL EDUCATION AND INDUSTRIAL TRAINING (TECHNICAL EDUCATION BRANCH - II)

NOTIFICATION

No. TECH-TE-2013/4/2021-4TE2/1 339119 3-31

Dated: 13/08/9091

1

1.0 The Governor of Punjab is pleased to appoint the I. K. Gujral Punjab Technical University, Kapurthala as the authority competent to conduct the Online Centralized Counselling for admission to various degree levels Engineering Courses being run in the Institutions and Universities located in the State of Punjab on the basis of JEE (Main) for the Academic Session 2021-22. The admission shall be made in the colleges affiliated to Universities/Campuses of the Universities mentioned below:-

- 1. I. K. Gujral Punjab Technical University, Kapurthala
- 2. Maharaja Ranjit Singh Punjab Technical University, Bathinda
- 3. Punjab Agricultural University, Ludhiana
- Note: The name of colleges, branches in each college and the number of seats will be as given in the letter of approval issued by AICTE/Concerned University (in case of University Campuses / Constituent Campuses only) for the year 2021-22.

As per All India Council for Technical Education, New Delhi letter No. AICTE/Adv-I/AB/2016/86 dated 08.12.2016 and letter dated 07-07-2020:-

- (i) In no eventually, a Technical Institution without prior approval of the AICTE, and affiliating University shall be allowed to participate in the counselling and admission process and to admit students. Affiliating University shall not enroll students admitted in such Technical Institutions, which do not have requisite approval of the AICTE.
- (ii) University shall not grant affiliation to a Technical Institution approved by AICTE after the last date as issued by AICTE in the Calendar Year in which the academic session is to commence.
- (iii)Affiliating University shall not permit any Technical Institution to admit students without requisite prior approval of the AICTE.
- (iv)University/Institution shall not permit admissions of students to Technical Program which are not approved by the AICTE.
- 2.0 The Governor of Punjab is also pleased to further issue the following criteria for making admissions:-
- A. Eligibility Criteria (Educational Qualifications and Resident Status) for admission
 - (i) For admission to the Engineering Courses, 85% seats shall be open for the candidates from within the State and 15% will be open for the candidates from outside the State.
 - (ii) Admission shall be made on the basis of rank of JEE (Main) for both 85% quota for residents of Punjab and 15% quota for outside Punjab.
 - a) For Engineering & Technology Courses
 - (i) All those candidates who have passed the 10+2 examination from a board recognized or established by central/state government through a legislation and a member of Council of Boards of School Education (COBSE), New Delhi with Physics / Mathematics / Chemistry / Computer Science / Electronics / Information Technology / Biology / Informatics Practices / Biotechnology / Technical Vocational Subject / Agriculture / Engineering Graphics / Business Studies / Entrepreneurship. (any of three)

Obtained atleast 45% marks (40% marks in case of candidates belonging to reserved category) in the above subject taken together.

Those candidates who have passed diploma in any Engineering Trade from Punjab State Board of Technical Education & Industrial Training, Chandigarh or Sant Longowal Institute of Engineering and Technology, Longowal (SLIET), or any such examination from any other recognized State Board of Technical Education with at least 45% marks (40% marks in case of candidates belonging to reserved category) 2

(The Universities will offer suitable bridge courses such as Mathematics, Physics, Engineering drawing, etc., for the students coming from diverse backgrounds to achieve desired learning outcomes of the programme)

OR

-02-

OR

The candidates .who have passed two years certificate course from Sant Longowal Institute of Engineering and Technology, Longowal (SLIET) shall be eligible.

- (ii)
 - The candidates whose results are not declared/pending (due to whatsoever reason) in the qualifying examination, shall also be eligible to appear for counseling on the basis of JEE (Main) merit. The admission of such candidates shall be purely provisional and shall stand cancelled, if they fail to produce their eligibility at the time of admission and such candidates shall have no claim, whatsoever, for admission to these courses through Counseling.

Eligibility for PAU, Ludhiana

- (i) In addition to conditions enumerated above for admission to Engineering courses run by Punjab Agricultural University, Ludhiana, the eligibility criteria of the concerned university, shall be applicable.
- (ii) In case of any dispute, decision of the competent authority conducting the counselling shall be final and binding on all.

B. <u>GENERAL ELIGIBILITY CRITERIA FOR ADMISSION TO DEGREE LEVEL ENGINEERING AND</u> TECHNOLOGY COURSES:

Apart from the basic educational qualifications prescribed above, the general eligibility criteria shall be as contained in Punjab Government, Department of Technical Education & Industrial Training, Punjab Memo No. 35/44/95-1T(2)/978 dated 21st March, 2003, which is attached as Annexure. This communication shall be treated as a part and parcel of this notification, for all purposes, and all the provisions of this notification shall be read along with the contents of the said communication.

Exemption under above Para

Children/wards/dependent (whose parent are not alive) of all those regular Punjab Government employees, members of All India Service borne on Punjab cadre, Serving judges and the employees of the Punjab and Haryana High Court, employees of Boards/ Corporations/Statutory Bodies established by an act of the state of Punjab who have been holding post outside Punjab on or before 1st January of the year of entrance test that is on or before 1st January, 2021 and their children/wards/ dependents may have done 10+1 and/or 10+2 outside Punjab.

C. <u>RESERVATION:</u>

- (i) The reservation of seats shall be as per Punjab Government, Department of Technical Education and Industrial Training Memo. No. 13 / 2/ 05 -1TE2/1987 dated 2nd July, 2013 and memo no. 8/41/2019-4TE2/53 dated 13.09.2019, which are attached as Annexures. This communication shall be treated as a part and parcel of this notification, for all purposes, and all the provisions of these notifications shall be read along with the contents of the said communication.
- (ii) The attention of the applicants desirous of claiming reservation under any category whatsoever is especially drawn to the condition and stipulation that only the certificates that have been produced at the time of admission shall be considered. The candidates are accordingly advised, in their own interest, to get the requisite certificates issued well before the date of admission, otherwise, claim for reservation shall be summarily rejected.

Candidates are required to claim reservation at the time of registering for online Centralized Counselling. If no reservation is claimed the candidates shall be treated and considered as a "General Candidate".

-03-

3

- (iii) The I. K. Gujral Punjab Technical University shall make a provision in the application form for a candidate to indicate the category, if any, under which he/she is seeking reservation. There shall also be a provision to indicate the sub-category of the category, if any, under which reservation is being sought, so that *inter se* gradation can be facilitated. These subcategories have been elucidated in the Punjab Government, Department of Technical Education and Industrial Training Memo. No. 13 / 2/ 05 -1TE2/1987 dated 2nd July, 2013 and memo no. 8/41/2019-4TE2/53 dated 13.09.2019, which are attached as Annexures. Punjab Government may also set up a committee to effect *inter se* gradation of candidates claiming reservation under certain categories, as indicated in the aforesaid memos dated 2nd July, 2013 and 13.09.2019.
- (iv) A candidate shall be eligible to make a claim for reservation in any of the reserved category. However, the procedure for a counselling shall be as per Punjab Government, Welfare Department (Reservation Cell) Memo. No. 7/21/2004 - RS1 / 1674 - 1677 dated 20th Dec., 2004.

GENERAL CONDITIONS:

D.

(i) There shall be Centralized Counselling by I. K. Gujral Punjab Technical University. The procedure for Centralized Counselling shall be decided by the I. K. Gujral Punjab Technical University. However, the following category of seats shall be filled through direct Counselling other than Centralized Counselling:

Sub categories, Priority for making admission under Defence Category, Para-Military and TA/RA Category & ICAR Nomination seats, Disabled Person Category of PAU, Ludhiana.

For the above categories, counselling shall be done by I. K. Gujral Punjab Technical University, Kapurthala, whereas for other categories, counselling shall be done by the concerned Universities/Institutions, but the nominee of I. K. Gujral Punjab Technical University, Kapurthala, shall be associated for these counselling. However, Guru Nanak Dev Engineering College, Ludhiana will itself admit candidates under Rural Quota (Except for SC Candidates) of B.Tech. First Year through counselling on the basis of merit criterion as per seat matrix before the start of online counseling by the I. K. Gujral Punjab Technical University, Kapurthala.

- (ii) The students shall be liable to pay Fee / Development Fee and other charges as per the rates of Fee / Development Fee and other charges to the concerned college as fixed by the Government of Punjab/AICTE/Concerned University, from time to time.
- (iii) The management quota shall be as per Punjab Govt., Department of Technical Education and Industrial Training Memo no. 13/129/2003-1TE2/1247 dated 25th April 2008 and Partial notification no. 13/129/2003-1TE2/1892 dated 20th June 2008 and partial notification no. 13/129/2003-1TE2/171 dated 18th January, 2011 which are attached as Annexures.
- (iv) Appearing in JEE (Main) shall be compulsory for students claiming seats under 85% quota reserved for Punjab residents and also to students claiming seats under 15% quota reserved for those outside Punjab i.e. All India. If a candidate is not able to produce his residence certificate, he / she shall be considered for 15% quota only.
- (v) Admissions to the Engineering courses, both for 85% seats for resident of Punjab and 15% seats for outsiders shall be made strictly on the basis of JEE (Main). Incase seats are not being filled under respective categories, admission may be considered on inter-se-merit of marks obtained in qualifying examination.
- (vi) Counselling for 85% seats for Punjab residents and 15% outside Punjab candidates shall be taken up simultaneously. However, the reserved category candidates shall be considered in general category first before being considered in respective reserved category.
- (vii) The College / University will issue a public notice on official website to this effect

indicating clearly the number of seats vacant in each reserve category and general category and fill the seats in that very particular category in all the rounds of counselling.

4

(viii) After following the above said procedure, if still the seats remain vacant in reserve category, the college / university can fill these from candidates belonging to general category in a subsequent step at the end of Centralized Counseling. Admission to such unfilled/vacant seats as well as management quota shall be furnished to the. K. Gujral Punjab Technical University and details thereof shall be finalized within 15 days of the last date of counselling.

-04-

(ix) 85% seats would be reserved for the candidates from within the state of Punjab and 15% will be open to all candidates from outside the State. The eligibility criteria for 85% seats will be that the candidates should be a resident of Punjab State in terms of Punjab Govt., Department of Personnel and Administrative Reforms (PP II Branch) letter no. 1/3/95-3PP II/9619 dated 6th June 1996 and letter no. 1/3/95-3PP II / 81 dated 1st Jan 1999, or have passed 10+1 and 10+2 examination as a regular candidate from recognized institutions situated in Punjab. However Children of Defence Personnel posted in Punjab are exempted from this condition to the extent that they should have passed only qualifying examination i.e. 10+2 from a recognized institution situated in Punjab. Each candidate would be required to submit a certificate to this effect from the Principal / Head of Institution last attended in the prescribed Performa.

(x) There shall be a joint Centralized Counselling by I. K. Gujral Punjab Technical University with representatives from all the other Universities.

- (xi) There shall be two rounds of Centralized Counselling by I. K. Gujral Punjab Technical University, Kapurthala. The procedure of Centralized online Counselling will be decided by the I. K. Gujral Punjab Technical University, Kapurthala. Thereafter the direct admissions at the college level shall be allowed for vacant seats. The I. K. Gujral Punjab Technical University, Kapurthala will issue necessary instructions to the Institutions / University in this regard.
- (xii) Any seat falling vacant after counselling or any drop out vacancy will be filled by the concerned private institute/college on the criteria of admission under management quota. A seat once accepted shall not be changed.
- (xiii) The information about the eligibility for admission to degree courses in Engineering Colleges and Departments of Universities and also about the institution/ discipline/ category-wise availability of seats and reservation of seats for various categories shall be made available by I. K. Gujral Punjab Technical University, Kapurthala on website <u>www.ptu.ac.in</u>.
- (xiv) As per All India Council for Technical Education Revised Academic Calendar for A/Y 2021-22 issued on dated 12.07.2021, which is attached as annexure, the last date upto which students can be admitted against vacancies arising due to any reason(no student should be admitted in any institution after the last date under any quota) is 20.10.2021. Hence admissions to various degree courses shall be allowed only once in an academic session.
- (xv) If any new Institution is approved or seats are increased/altered in the existing institutions by the AICTE and such approval is received before the commencement of that particular round of counselling, I. K. Gujral Punjab Technical University will publish on the official website and invite additional Choice preference from the registered candidates, at the till end of their original choices, without, however, altering the previous choice. These new institutes as well as existing Institutes having addition / alternation in seats shall be taken into consideration before the start of choice filling of that particular round.
- (xvi) The fee structure for Foreign Nationals/PIO shall be the same as was in vogue for NRI candidates.
- (xvii) The guidelines for admission of Foreign Nationals / PIO shall be as per Punjab Government Notification No. 13/75/2001-ITE2/296 dated Chandigarh the 23rd January, 2002.
- (xviii) The guidelines for admission of Kashmiri migrants shall be as per Notification of Punjab

Government in this regard.

(xix) The guidelines for admission of Sikh minority community students to Guru Nanak Dev Engineering College, Ludhiana and Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib shall be as per Punjab Government Notification No.18/33/2001-GC(6)/4513 dated Chandigarh, the 3rd April, 2001.

-05-

5

- (xx) Non refundable counselling fee of Rs. 2000/- (Rupees Two Thousand only) will be collected by the University as counselling fee from each student one time only.
- (xxi) In case a student changes his/her college/University allotted during centralized counselling conducted by I. K. Gujral Punjab Technical University, Kapurthala his / her fee shall be refunded by the previous Institution after deduction of Rs. 1000/- only and the original documents will be returned immediately. However, in case of upgradation of seats during subsequent counselling no deduction shall be made.
- (xxii) In case a student surrenders his / her seat within 7 days of the end of the Centralized Counseling, he / she must submit application to the college and register on I. K. Gujral Punjab Technical University website <u>www.ptu.ac.in.</u>I. K. Gujral Punjab Technical University shall only forward such cases to the concerned colleges/Universities and colleges must refund his/her full fee after deduction of Rs. 1000/- only.
- (xxiii) In keeping with the direction of Ministry of Human Resource Development Department, Govt. of India all Institutions and Universities shall in public interest, maintain a waiting list of students/ candidates. In the event of a student/ candidate withdrawing before the starting of the course, the wait listed candidates should be given admissions against the vacant seat. The entire fees collected from the student, after a deduction of the processing fee of not more than Rs. 1000/- (Rupees One Thousand only) shall be refunded and returned by the Institution/ University to the student/ candidate withdrawing from the programme. It would not be permissible for institutions and universities to retain the certificates in original. If a student leave after joining the course and if the seat consequently falling vacant gets filled by another candidate by the last date of admission, the institution must return the fees collected with proportionate deductions of monthly fee and proportionate hostel rent, where applicable.
- (xxiv) All Institutions affiliated to I. K. Gujral Punjab Technical University and Maharaja Ranjit Singh Punjab Technical University shall follow 'Fee Waiver Scheme' as prescribed by AICTE and notified by Government of Punjab vide its notification No. 13/60/08-1TE2/1797, dated 23rd May, 2011, Notification No. 13/60/08-1TE2/2007 dated 31.5.2012, Letter No. 751-752/S-I/ECC/2015 dated 13.05.2015 and Letter No. 428-430 dated 04.04.2019. Other Institutions/ Universities may notify their respective fee waiver scheme separately.
- (xxv) As per section 7 of the Aadhaar Act, 2016, use of Aadhaar Authentication Services while identifying beneficiaries and processing the benefit under any scholarship scheme of government is mandatory. The Universities shall adhere to the guidelines and regulations defined by Unique Identification Authority of India (UIDAI).

E. <u>OVER-RIDING PROVISION</u>

y

Nothing in this notification shall be operative in so far as it is inconsistent with the law of the land as laid down in the judgment of the honorable Supreme Court of India in the case of TMA Pai Foundation and others vs. State of Karnataka and others (2002) 8SCC 481:AIR 2003 SC 355). Any such inconsistency may be brought to the notice of the Department of Technical Education, Government of Punjab, for immediate rectification.

Dated, Chandigarh the 12-08-2021

Anurag Verma, IAS Principal Secretary to Govt. of Punjab, Deptt. of Technical Education &Indl. Training

Endst. No. TECH-TE-2013/4/2021-4TE2/1 339119 3031 (1-4) Dated: 13/08/2021

- A copy is forwarded to the following for information and necessary action:-
- 1. The Director, Technical Education & Industrial Training, Punjab, Chandigarh.
- 2. The Vice Chancellor, Maharaja Ranjit Singh Punjab Technical University, Bathinda
- 3. The Vice Chancellor, I. K. Gujral Punjab Technical University, Kapurthala
- 4. The Vice Chancellor, Punjab Agricultural University, Ludhiana
- 5. The System Analyst, Computer Section, Office of the Director, Technical Education & Industrial Training, Punjab, Chandigarh.
- 6. Sh. Umesh Chander, Superintendent Grade-1, O/o Director, Technical Education & Industrial Training, Punjab, Chandigarh for uploading on the portal of Controller, Printing and Stationery, Punjab, Chandigarh for requested that the notification may be published in the State Govt. extraordinary Gazette and 20 copies of the notifications may be supplied to Government for record.

of C Under Secretary

GOVERNMENT OF PUNJAB DEPARTMENT OF TECHNICAL EDUCATION AND INDUSTRIAL TRAINING (TECHNICAL EDUCATION BRANCH - II)

NOTIFICATION

No. TECH-TE-2013/4/2021-4TE2/1 339130 3091

Dated: 13/08/202)

7

1.0 The Governor of Punjab is pleased to appoint the I. K. Gujral Punjab Technical University, Kapurthala as the authority competent toconduct the Centralized Counselling to make admission of Diploma Holder/B.Sc. to the 2nd year/3rd semester of the Graduate Programme Engineering & Technology. The admission shall be made in the colleges affiliated to Universities and Campuses of the Universities mentioned below:-

- 1. I. K. Gujral Punjab Technical University, Kapurthala
- 2. Maharaja Ranjit Singh Punjab Technical University, Bathinda
- Lateral Entry to Second Year Degree Course(s) in Engineering and Technology Programme shall be permissible up to maximum of 10% of the "Approved Intake" of previous year, which shall be over and above, supernumerary to the "Approved Intake", plus the unfilled vacancies of the First year as specified in the Approval Process Handbook.

2.0 The Governor of Punjab is also pleased to further issue the following criteria for making admissions:

A. ELIGIBILITY CRITERIA FOR DIPLOMA HOLDERS

(i) All those candidates who have passed minimum three years/two years (Lateral Entry) Diploma examination from an AICTE approved institution/recognized university as defined by UGC with at least 45% marks (40% in case of Candidates belonging to reserved category) in any branch of Engineering and Technology shall be eligible to apply.

OR

(ii) All those candidates who have passed B. Sc. Degree from a recognized University as defined by UGC, with at least 45% marks (40% in case of Candidates belonging to reserved category) and passed XII standard with mathematics as a subject shall be eligible to apply.

OR

(iii) Passed D.Voc. stream in the same or allied sector.

((The Universities will offer suitable bridge courses such as Mathematics, Physics, Engineering drawing, etc., for the students coming from diverse backgrounds to achieve desired learning outcomes of the programme)

- B. <u>GENERAL ELIGIBILITY CRITERIA FOR ADMISSION TO DEGREE LEVEL ENGINEERING, TECHNOLOGY</u> COURSE:
 - (i) The admission of candidates to the Engineering courses under this scheme shall only be given to those, who fulfill all other conditions for admission. In case of seats reserved for SC/ST, the relative merit of candidates shall be determined within the reserved category.
 - (ii) Candidates who have appeared / are appearing in the qualifying diploma examination to be held
 during the current session shall also be eligible for submission of admission form but they will have to pass the diploma before the date of counselling, otherwise, they will not be considered for admission. Such candidates will not have any claim, whatsoever, with regard to the admission to the courses.
 - (iii) The guidelines issued for the grant of resident certificates / bonafide resident of Punjab by Department of Personnel and Administrative Reforms (PP-2 Branch) vide No. 1/3/95-3PP-2/9619 dated the 6th June, 1996, and I.D. No. 1/2/96-3PP-2/8976 dated 7th July, 1998 and No. 1/3/95-3PP-2/80 dated 1st January 1999, and further instructions, issued by that Department, if any, will be adhered to in letter and spirit while making admission to the Degree Courses in the Engineering Colleges. However, children of defence personnel posted in Punjab are exempted from this condition to the extent that they should have passed only qualifying examination from a recognized institution situated in Punjab.

(iv) Apart from the basic educational qualifications prescribed above, the general eligibility criteria shall be as contained in Punjab Government, Department of Technical Education & Industrial Training, Memo No. 35/44/95-1T(2)/978 dated 21st March, 2003, which is annexed to this notification. This communication shall be treated as a part and parcel of this notification, for all purposes, and all the provisions of this notification shall be read along with the contents of the said communication.

-02-

Exemption under above para

Children / Wards / Dependent (whose parent are not alive) of all those regular Punjab Government Employees, members of All India Service borne on Punjab Cadre, Serving Judges and the employees of the Punjab and Haryana High Court, employees of Boards / Corporations / Statutory Bodies established by an Act of the State of Punjab who have been holding post outside Punjab on or before 1st January of the year of admissions that is on or before 1st January, 2020 and their children / wards / dependents have completed qualifying examination outside Punjab.

C. <u>RESERVATION:</u>

- (i) The reservation of seats shall be as per Punjab Government, Department of Technical Education and Industrial Training Memo. No. 13/2/05-1TE2/1987 dated 2nd July, 2013 and Memo no.8/41/2019-4TE2/53 dated 13.09.2019, which are attached as Annexures. This communication shall be treated as a part and parcel of this notification for all purposes and all the provisions of this notification shall be read along with the contents of the said communication.
- (ii) The attention of the applicants desirous of claiming reservation under any category whatsoever is especially drawn to the condition and stipulation that only the certificates that have been produced at the time of admission shall be considered. The candidates are accordingly advised, in their own interest, to get the requisite certificates issued well before the date of admission, otherwise, claim for reservation shall be summarily rejected. Candidates are required to claim reservation at the time of registering for counselling. If no reservation is claimed the candidate shall be treated and considered as a "General Category Candidate".
- (iii) The I. K. Gujral Punjab Technical University shall make a provision in the online application form for a candidate to indicate the category, if any, under which he/she is seeking reservation. There shall also be a provision to indicate the sub-category of the category, if any, under which reservation is being sought, so that inter-se gradation can be facilitated. These sub-categories have been elucidated in the Punjab Government, Department of Technical Education and Industrial Training Memo. No. 13/2/05-1TE2/1987 dated 2nd July, 2013 and Memo no.8/41/2019-4TE2/53 dated 13.09.2019, which are attached as Annexures. Punjab Government may also set up a committee to effect inter-se gradation of candidates claiming reservation under certain categories, as indicated in the aforesaid memo dated 2nd July, 2013 and dated 13th September, 2019.
- (iv) A candidate shall be eligible to make claim for reservation in any reserved category. However, the procedure for counselling shall be as per Punjab Government, Welfare Department (Reservation Cell) Memo No.7/21/2004-RS1/1674-1677 dated 20th Dec. 2004.

D. GENERAL CONDITIONS:

- (i) There shall be centralized Centralized Counselling by I. K. GujralPunjab Technical University.
- (ii) There shall be two rounds of Centralized counseling by I. K. Gujral Punjab Technical University, Kapurthala. The procedure of Centralized Online Counselling will be decided by the I. K. Gujral Punjab Technical University, Kapurthala. Thereafter the direct admissions at the college level shall be allowed for vacant seats. The I. K. Gujral Punjab Technical University, Kapurthala will be issue necessary instructions to the affiliated Institutions of University in this regard.
- (iii) As per All India Council for Technical Education Revised Academic Calendar for A/Y 2021-22 issued on dated 12.07.2021, which is attached as annexure, the last date upto which students can be admitted against vacancies arising due to any reason(no student should be admitted in any institution after the last date under any quota) is 20.10.2021.Hence admissions to various degree courses shall be allowed only once in an academic session.

(iv) The students shall be liable to pay Fee / Development Fee and other charges as per the rates of Fee / Development Fee and other charges as fixed by the Government of Punjab/AICTE/ Concerned University, from time to time.

03-

- (v) The management quota shall be as per Punjab Govt., Deptt. of Technical Education and Industrial Training Memo no. 13/129/2003-1TE2/1247 dated 25th April 2008 and Partial notification no. 13/129/2003-1TE2/1892 Dated 20th June 2008 and partial notification no. 13/129/2003-1TE2/171 dated 18th January 2011, which is as Annexed.
- (vi) The allocation of seats through counselling shall be done as follows:
 - (a) Counselling for 85% seats for Punjab residents and 15% outside Punjab candidates shall be taken up simultaneously. However, the reserved category candidates shall be considered in general category first before being considered in respective reserved category.
 - (b) The seats still remaining unfilled even after the end of Centralized Counselling shall be filled on merit at the level of Institution. Admission to such unfilled/vacant seats as well as management quota shall be furnished to I. K. Gujral Punjab Technical Universityand details thereof shall be finalized within 15 days of the last date of counselling.
- (vii) Any seat falling vacant after counselling or any drop out vacancy will be filled by the Institute on the basis of the criteria of admission under management quota. A seat once accepted shall not be changed.
- (viii) The information about the eligibility for admission to Lateral Entry courses in Engineering Colleges and Departments of Universities and also about the institution/ discipline/ categorywise availability of seats and reservation of seats for various categories shall be made available by I. K. Gujral Punjab Technical University, Kapurthala on website <u>www.ptu.ac.in</u>.
- (ix) The guidelines for admission of Foreign Nationals/Person of India Origin shall be as per Punjab Government Notification No. 13/75/2001-1TE2/296 dated Chandigarh the 23rd January, 2002.
- (x) The guidelines for admission of Kashmiri migrants shall be as per notification of Punjab Government in this regard.
- (xi) Non refundable counselling fee of Rs. 2,000/- (Rupees Two Thousand only) will be collected by the University as counselling fee from each student one time only.
- (xii) In case a student changes his/her College/University during centralized counselling conducted by I. K. Gujral Punjab Technical Universityhis/her fee shall be refunded by the pervious Institution after deduction of Rs 1,000/- only the original documents will be refunded immediately. However, in case of up-gradation of seats during subsequent counselling's no deduction shall be made.
- (xiii) In case a student surrenders his/her seat, within 7 days of the end of the Centralized online Counselling, he/she must submit application to college and register on I. K. Gujral Punjab Technical Universitywebsite <u>www.ptu.ac.in</u>. I. K. Gujral Punjab Technical Universityshall only forward such cases to the concerned Colleges/ Universities and Colleges must refund his/her full fee after detection of Rs. 1,000/- only.
- (xiv) In keeping with the direction of Ministry of Human Resource Development Department, Govt. of India, all Institutions and Universities shall in public interest, maintain a waiting list of students/candidates. In the event of a student/ candidate withdrawing before the start of the course, the waiting list candidates should be given admissions against the vacant seat. The entire fees collected from the student, after a deduction of processing fee of not more than Rs. 1,000/- (Rupees One Thousand Only) shall be refunded and returned by the Institution/University to the student/candidate withdrawing from the programme. It would not be permissible for Institutions and Universities to retain the School/Institution leaving certificates in original. If a student leaves after joining the course and if the seat subsequently falling vacant gets filled by another candidate by the last date of admission, the Institution must return the fees collected with proportionate deduction of monthly fee and proportionate hostel rent, where applicable.
- (xv) All Institutions affiliated to I. K. Gujral Punjab Technical University and Maharaja Ranjit Singh Punjab Technical University shall follow 'Fee Waiver Scheme' as prescribed by AICTE and

9

(xvi) As per section 7 of the Aadhaar Act, 2016, use of Aadhaar Authentication Services while identifying beneficiaries and processing the benefit under any scholarship scheme of government is mandatory. The Universities shall adhere to the guidelines and regulations defined by Unique Identification Authority of India (UIDAI).

-04-

E. OVER-RIDING PROVISION:

Nothing in this notification shall be operative in so far as it is inconsistent with the law of the land as laid down in the judgement of the Hon'ble Supreme Court of India in the case of <u>T.M.A. Pai Foundation</u> and others Vs. State of Karnataka and others ((2002) 8 SCC 481:AIR 2003 SC 355). Any such inconsistency may be brought to the notice of the Government of Punjab, clearly highlighting the inconsistency, for immediate rectification.

Dated, Chandigarh the 12-08-2021

Anurag Verma, IAS Principal Secretary to Govt. of Punjab, Deptt. of Technical Education &Indl. Training

Endst. No. TECH-TE-2013/4/2021-4TE2/1 339130 3031 (1-4) Dated: 13/08/303)

- A copy is forwarded to the following for information and necessary action:-
- 1. The Director, Technical Education & Industrial Training, Punjab, Chandigarh.
- 2. The Vice Chancellor, Maharaja Ranjit Singh Punjab Technical University, Bathinda
- 3. The Vice Chancellor, I.K. Gujral Punjab Technical University, Kapurthala
- 4. The System Analyst, Computer Section, Office of the Director, Technical Education & Industrial Training, Punjab, Chandigarh.
- 5. Sh. Umesh Chander, Superintendent Grade-1, O/o Director, Technical Education & Industrial Training, Punjab, Chandigarh for uploading on the portal of Controller, Printing and Stationery, Punjab, Chandigarh for requested that the notification may be published in the State Govt. extraordinary Gazette and 20 copies of the notifications may be supplied to Government for record.

O Under Secretary

Content

Module	Lecture Required
1. Mechanics	02
2. Mechanical Properties of Solids and Fluids	03
3. Waves and Oscillations	03
4. Electricity and Magnetism	03
5. Electromagnetic Signal	02
6. Optics	02
7. Semiconductor Electronics	03
8. Modern Physics	02
9. Atomic and Nuclear Physics	02

Syllabus

- 1. Classical Mechanics: Centre of Mass, Motion of Centre of mass, Pure Translational and Rotational motion, Torque and angular momentum, Principle of moments (Moment of Inertia), Radius of Gyration, Generalized Motion, Kinematics of rotational motion about a fixed axis.
- 2. Mechanical Properties of Solids and Fluids: Elastic behaviors of solids, Hooke's Law, Young's Modulus, Shear Modulus, Bulk Modulus, Applications of Elastic behaviors of materials, Compressibility, Viscosity, Relative density, Pascal's Law, Streamline Flow, Bernoulli's Principle, Surface Tension, Drops and Bubbles
- **3.** Waves and Oscillations: Rectilinear motion, Oscillations or Vibrations, Simple Harmonic Motion, Damped Harmonic motion: Real oscillatory system, Forced or Driven oscillation, TYPES OF WAVES, Superposition of Waves, Reflection and Refraction, Standing Waves and Normal Modes, Beats, Resonance, Doppler's Effect
- 4. Electricity and Magnetism: Physical concepts of gradient, divergence, and curl; Laplacian operator, Concept of electricity and magnetism, Coulomb's law, Electrostatics, Magnetostatics, The Lorentz force, Maxwell's equations
- 5. Electromagnetic Signal: Introduction to Maxwell's equations, The dynamical magnetic field, The dynamical electric field, Electromagnetic Waves
- **6. Wave Optics:** Interference of light, Photons, Young's Double Slit Experiment, Huygens's Principle, Diffraction, Diffraction Grating, Polarization
- 7. Semiconductor Electronics: Classification of metals, conductors and semiconductors, Fermi Level, Intrinsic Semiconductor, Extrinsic Semiconductor, *p-n* junction, Semiconductor Diode, Half-Wave Rectifier, Full-Wave Rectifier, Zener diode, Photodiode, Light emitting diode, Junction Transistor
- 8. Modern Physics: Wave nature of light, Particle nature of light: the photon, De Broglie Hypothesis, Experimental confirmation of de Broglie hypothesis (Davisson and Germer's Experiment)
- **9.** Atomic and Nuclear Physics: Matters, Atoms, Atomic Theory: Atomic Theory by John Dolton, Atomic Theory by J. J Thompson, Atomic Theory by Ernest Rutherford, Atomic Theory by James Chadwick, Discovery of the Neutron, Bohr's Postulates, Proton, Neutron, Electron, Limitations of Bohr's Theory