IK Gujral Punjab Technical University, Kapurthala Department of Physical Sciences

Ref No.: IKGPTU/PS/ 1990

Date: 15/04/2019.

Subject: Proceedings of the Board of Studies (BoS), Physical Sciences (Material Science/Nano Science and Technology) meeting held on 29.03.2019.

A meeting of members of Board of Studies (BoS), Physical Sciences (Material Science/Nano Science and Technology) was held on 29.03.2019 in the Department of Physical Sciences, I K Gujral Punjab Technical University, Kapurthala. The agenda of the meeting was discussed in detail and recommendations were made on point. The proceedings of the meetings were recorded in the minutes of the meeting as enclosed as an Annexure -1.

Submitted for necessary action.

Convene

Dr. Neetika

Chairman, Board of Studies Head, Physical Sciences.

I.K. Gujral Punjab Technical University, Kapurthala Department of Physical Sciences

RefNO: 1KGPTU)PS/1989

Minutes of Meeting

Dak : 15/04/2019

A meeting of members of Board of Studies (BoS), Physical Sciences (Material Science/Nano Science and Technology) was held on 29.03.2019 in the Department of Physical Sciences, I K Gujral Punjab Technical University, Kapurthala.

Following members of BOS and special invitees were present and actively participated in discussion:

- 1. Dr. Amit Sarin (Chairperson)
- 2. Dr. R. K. Bedi, Member
- 3. Dr Rakesh Dogra, Member
- 4. Dr. Hitesh Sharma, Member
- 5. Dr. Gaurav Bhargava, (Special invitee)
- 6. Dr. Maninder Kaur, Member
- 7. Dr. Jagmeet Bawa, (Special invitee)
- 8. Dr. Priyanka Mahajan, (Special invitee)
- 9. Dr. Sarabjit Singh Mann, (Special invitee)
- 10. Dr. Varinderjit Singh (Special invitee)
- 11. Dr. Neetika (Special invitee)
- 12. S. Navdeepak Sandhu, Member
- 13. Mr. Gurcharan Singh, M.Sc. (2nd Year)-Student representative
- 14. Mr. Nikhil M.Sc. (2nd Year)-Student representative

The following members could not attend the meeting:

- 1. Dr. Davinder Mehta, Member
- 2. Dr. Harpreet Kaur Grewal, Member
- 3. Dr. Kanchan L Singh, Member
- 4. Dr. B D Gupta, Member
- 5. Dr. Rajiv Malhotra, Member
- 6. Dr. P. Arumugam, Member
- 7. Dr. Ravi Kumar, Member
- 8. Dr. Arvind Kumar, Member
- 9. Dr. Ranjan Kumar, Member
- 10. Dr. Ashish Arora, (Special invitee)

The Board of Studies discussed on all the agenda points and following recommendations were made:

Agenda item 1: To consider the revision of Program Educational objectives (PEO), Program outcomes (POs), Program specific outcomes (PSOs) and Course outcomes of M.Sc. (Physics) course

All BoS members discussed the Program Educational objectives (PEO), Program outcomes (POs), Program specific outcomes (PSOs) of the M.Sc. (Physics) course and with vision of the Department of Physical Sciences. After incorporating suggestions, BOS members recommended the Program Educational objectives (PEO), Program outcomes (POs), Program specific outcomes (PSOs) and Course outcomes (COs) of various subjects for M.Sc. (Physics) w.e.f. 2018-19. The copy of revised scheme and syllabus with revised PEOs, POs, PSOs, and COs is enclosed as Annexure A.

Agenda item 2: To consider the syllabus of inter disciplinary value-added course on Personality Development for Main Campus

All BoS members discussed the syllabus of inter disciplinary value-added course on Personality Development for M.Sc. Physics students. The syllabus for audit course is designed by the Dr. Priyanka Mahajan. Board members agreed that more interdisciplinary course on Human values, Management, etc., may be added in near future. The copy of finalized syllabus of Personality Development is enclosed as Annexure-B.

Agenda item 3: To consider the study scheme and syllabus of B. Sc. (Hons) Physics for the first two semesters in the academic session 2019-2020

All BoS members discussed the study scheme of B Sc. (Hons) Physics and syllabus of 1st and 2nd semester starting from the academic session 2019-2020 in the IKGPTU Main Campus. Board members agreed that two physics core courses with their respective labs will be offered in first two semesters. Proposed study scheme and physics courses syllabus is attached here as Annexure-C. Further subject codes and open elective subjects will be discussed in the next BOS meeting.

Agenda item 4: To consider the courses on skill and employability enhancement related.

All BoS members discussed and recommended that theory and lab courses on Mathematical Physics, Electronics, Computational, Statistical, Nuclear, Condensed matter, Renewable energies, and Dissertation are essential for the employability enhancement of M.Sc. Physics students.

Agenda item 5: To consider syllabus of new courses in PhD Course works

All BoS members discussed and recommended the syllabus of new courses on 1) Advanced Particle Physics and 2) Renewable Energy Resources in the Curriculum of Ph. D course work as per the specialization available in the Department of Physical Sciences. The copy of approved syllabus of Advance Particle Physics and Renewable Energy Resources is enclosed as Annexure-D.

Dr. Amit Sarin Chairperson- BoS, Physical Sciences

Dean Academics

Annexure-A

M.Sc. Physics

Course Structure and Syllabus (Based on Choice Based Credit System) 2018 onwards

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Hell

Page 1 of 73

IK Gujral Punjab Technical University

VISION

To be an institution of excellence in the domain of higher technical education that serves as the fountainhead for nurturing the future leaders of technology and techno- innovation responsible for the techno-economic, social, enternable of environmental prosperity of the people of the State of Punjab, the Nation and the World

MISSION

- To provide seamless education through the pioneering use of technology, in partnership with industry and society with a view to promote research, discovery and entrepreneurship and
- To prepare its students to be responsible citizens of the world and the leaders of technology and techno-innovation of the 11st Century by developing in them the desirable knowledge, skill and attitudes base for the world of work and by instilling in them a culture for seamlessness in all facets of life.

OBJECTIVES

- To offer globally-relevant, indestry-linked, research-focused, technology- enabled seamless education at the greduate, postgraduate and research levels in various areas of engineering & technology and applied sciences keeping in mind that the manpower so spawned is excellent in quality, is relevant to the global technological needs, is motivated to give its best and is committed to the growth of the Nation;
- To foster the creation of new and relevant technologies and to transfer them to industry for effective utilization;
- To participate in the planning and solving of engineering and managerial problems of relevance to global industry and to society at large by conducting basic and applied research in the areas of technologies.

Scheme & Syllabus (M.Sc. Physics) Botch 2018 & Clowerds

Page 2 of 73

- To develop and conduct continuing education programmes for practicing engineers and managers with a view to update their fundamental knowledge base and problem-solving capabilities in the various areas of core competence of the University;
- To develop strong collaborative and cooperative links with private and public sector industries and government user departments through various avenues such as undertaking of consultancy projects, conducting of collaborative applied research projects, manpower development programmes in cutting-edge areas of technology, etc;
- To develop comprehensive linkages with premier academic and research institutions within the country and abroad for mutual benefit;
- To provide leadership in laboratory planning and in the development of instructional resource material in the conventional as well as in the audio-visual, the video and computer-based modes;
- To develop programmes for faculty growth and development both for its own faculty as well as for the faculty of other engineering and technology institutions;
- To anticipate the global technological needs and to plan and prepare to cater to them;
- To interact and participate with the community/society at large with a view to inculcate in them a feel for scientific and technological thought and endeavour; and
- To actively participate in the technological development of the State of Punjab through the undertaking of community development programmes including training and education programmes catering to the needs of the unorganized sector as well as that of the economically and socially weaker sections of society.

ACADEMIC PHILOSOPHY

The philosophy of the education to be imparted at the University is to awaken the "deepest potential" of its students as holistic human beings by nurturing qualities of selfconfidence, courage, integrity, maturity, versatility of mind as well as a capacity to face the challenges of tomorrow so as to enable them to serve humanity and its highest values in the best possible way.

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Page 3 of 73

DEPARTMENT OF PHYSICAL SCIENCES

VISION

To be a knowledge nerve center in Physical Sciences, Pure and Applied Research and industry requirements for creating sustainable infrastructure and enhancing quality of life

MISSION

- To offer globally-relevant, industry-linked, research-focused, technology-enabled seamless education at the gracuate, postgraduate and research levels in various areas of Physical sciences keeping in mind that the manpower so spawned is excellent in quality, is relevant to the global scientific and technological needs, is motivated to give its best and is committed to the growth of the Nation;
- To develop and conduct continuing education programmes for Science graduates with a view to update their functionental knowledge base and problem-solving capabilities in the various areas of uppe specialization of the University;
- To develop comprehensive linkages with premier academic and research institutions within the country and abroad for methal benefit.

Page 4 of 73

M.Sc. (Physics) Program

Duration: 2 Years (Semester System)

This M.Sc. (Physics) Program includes various core, electives, and other interdisciplinary courses. The diverse lab experiments allow students to understand the fundamental aspects of the subject. A choice of advanced elective courses offers a glimpse in the frontier areas of research and allow students to work on research project as an integral part of their M.Sc. program. The program also provides adequate exposure to the students for pursuing higher education in the field of technology, research and development in Physics and related areas (M.Phil./Ph.D.) and other job opportunities in academia and industry.

Eligibility:

Pass B.Sc. with 50% marks having Physics as one of the subject. A relaxation of 5% is given in case of candidates belonging to SC/ST category.

PROGRAM EDUCATIONAL OBJECTIVES: At the end of the program, the student will be able to:

PEO1	Apply principles of basic scientific concepts in understanding, analysis, and prediction of physical systems.
PEO2	To develop human resource with specialization in theoretical and experimental techniques required for career in academia, research and industry.
PEO3	Engage in lifelong learning and adapt to changing professional and societal needs.

PO1	Apply the scientific knowledge to solve the complex physics problems.
PO2	Identify, formulate, and analyze advanced scientific problems reaching substantiated conclusions using first principles of mathematics, physical, and natural sciences.
PO3	Design solutions for advanced scientific problems and design system components or processes that meet the specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal consideration.
PO4	Use research-based knowledge and methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Create, select, and apply appropriate techniques, resources, and modern scientific tools to complex physics problems with an understanding of the limitations.
PO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional scientific practice.
PO7	Understand the impact of the scientific solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Apply ethical principles and commit to the norms of scientific practice.
PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communicate effectively on scientific activities with the Scientific/Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Demonstrate knowledge and understanding of the scientific principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of scientific and technological change.

PROGRAM OUTCOMES: At the end of the program, the student will be able to:

PROGRAM SPECIFIC OUTCOMES. At the end of the program, the student will be able to:

PSO1	Understand the basic and advances oncepts of different branches of physics.
PSO2	Perform and design superirounit in the areas of electronics, atomic, nuclear, condensed matter, and computational physics.
PSO3	Apply the concepts of physics in specialized areas of condensed, nuclear, renewable energies, particle physics, etc., in industry, academia, research and day today life.

Scheme & Syllabus (M.Sc. Physics) Bach 2013 2 Convertes

Page 6 of 73

Course Code	Course Title		Load Allocation		Marks Distribution		Total Marks	Credits
		L	Т	Р	Internal	External		
MSPH411-18	Mathematical Physics-I	3	1	-	30	70	100	4
MSPH412-18	Classical Mechanics	3	1	-	30	70	100	4
MSPH413-18	Quantum Mechanics-I	3	1	-	30	70	100	4
MSPH414-18	Electronics	3	1	-	30	70	100	4
MSPH415-18	Computational Physics	3	1	-	30	70	100	4
MSPH416-18	Electronics Lab	-	-	6	50	25	75	3
MSPH417-18	Computational Physics Lab-I	-	-	6	50	25	75	3
	TOTAL	15	5	12	250	400	650	26

SEMESTER FIRST

SEMESTER SECOND

Course Code	Course Title		Load Allocation		Marks Distribution		Total Marks	Credits
		L	T	Р	Internal	External		
MSPH421-18	Mathematical Physics-II	3	1	-	30	70	100	4
MSPH422-18	Statistical Mechanics	3	1		30	70	100	4
MSPH423-18	Quantum Mechanics-II	3	1	-	30	70	100	4
MSPH424-18	Classical Electrodynamics	3	1	-	30	70	100	4
MSPH425-18	Atomic and Molecular Physics	3	1	-	30	70	100	4
MSPH426-18	Atomic, Nuclear, and Particle Physics Lab	-	-	6	50	25	75	3
MSPH427-18	Computational Physics Lab-II	-	-	6	50	25	75	3
	TOTAL	15	5	12	250	400	650	26

L: Lectures T: Tutorial P: Practical

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

I. K. Gujral Punjab Technical University, Kapurthala

Course Code	Course Title		Loa(locat		Marks Distribution		Total Marks	Credits
		L	Т	p	Internal	External	1	
MSPH531-18	Condensed Matter Physics	3	1	-	30	70	100	4
MSPH532-18	Nuclear Physics	3	1	-	30	70	100	4
MSPH533-18	Particle Physics	3	3	-	?()	70	100	4
MSPH534-18 MSPH535-18 MSPH536-18	Elective Subject-I	3	1	-	30	70	100	4
MSPH537-18 MSPH538-18 MSPH539-18	Elective Subject-ff	3	1	-	30	70	100	4
MSPH540-18	Condensed Matter Physics Lab		144	6	50	25	75	3
	TOTAL	15	5	6	200	375	575	23

SEMESTER THIRD

SEMESTER FOURTH

Course Code	Course Title	Load Allocation			Marks Distribution		Total Marks	Credits
		L	Т	P	Incernal	External		
MSPH541-18 MSPH542-18 MSPH543-18	Elective Subject-111	3	1	-	30	70	100	4
MSPH544-18 MSPH545-18 MSPH546-18	Elective Subject-1 V	3	1		30	70	100	4
MSPH547-18	Dissertation		12		260	160	300*	12
	TOTAL	6	14		260	240	500	20

*Evaluation criteria as and when adopted by DIGPTU

TOTAL NUMBER OF CREDITS = 95

Scheme & Syllabus (M.Sc. Physics) Butch 2018 & On wards

Page 8 of 73

LIST OF DEPARTMENTAL/INTERDISCIPLINARY ELECTIVES

Elective Subject-I

S. No.	Name of the Subject	Code
1	Fibre optics and non-linear optics	MSPH534-18
2	Radiation Physics	MSPH535-18
3	Nonlinear Dynamics	MSPH536-18

Elective Subject -II

S.No.	Name of the Subject	Code
1	Plasma Physics	MSPH537-18
2	Structures, Spectra and Properties of Biomolecules	MSPH538-18
3	Science of Renewable Source of Energy	MSPH539-18

Elective-III

S.No.	Name of the Subject	Code
1	Physics of Nanomaterials	MSPH541-18
2	Experimental Techniques in Nuclear and Particle Physics	MSPH542-18
3	Superconductivity and Low Temperature Physics	MSPH543-18

Elective-IV

	Name of the Subject	Code
1	Advanced Condensed Matter Physics	MSPH544-18
2	Advanced Particle Physics	MSPH545-18
3	Environment Physics	MSPH546-18

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

S. No.	Evaluation criteria	Weightage in Marks	Remarks	
1	Mid term/sessional Tests	20	Internal evaluation (20 Marks)	
2	Attendance	5	MSTs, Quizzes, assignments, attendance, etc., constitute internal	
3	Assignments	5	evaluation. Average of two mid comester test will be considered for evaluation.	
4	End semester examination	70	External evaluation (70 Marks)	
			Conduct and checking of the answer sheets will at the Department level in case of University teaching Department or Autonomous institutions.	
			For other colleges examination will be conducted at the University level.	
5	Total	100	Marks may be rounded off to nearest integer.	
ractica	I			
1	Evaluation of practical record/ Viva Voice	30	Internal evaluation (50 Marks)	
2	Attendance	5		
3	Seminar/Presentation	15		
4	Final Practical Performance + Viva Voice	25	External evaluation (25 Marks)	
5	Total	75	Marks may be rounded off to nearest needer.	

Examination and Evaluation

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Omeanis

Page 10 of 73

			Intern	al Assessment		
	Communica		Re	esponse to queries	Maximum Marks	Evaluated by
Departmental Presentation	20			30	50	Committee Member: 1.Head 2.Supervisor 3.One of Faculty Member
Dissertation	Plagiarism	Subject Matter	Usage of Language	Publication/Presentation in Conference	150	
	25	70	25	30		
			External	Assessment		
External Examiner			Subject Ma	tter	50	
Bridininer			50			
	Communi and Preser		Re	sponse to queries		Committee Member:
Viva Voce	20			30	50	1.Head 2.External Expert 3.Supervisor 4. Director (MC) nominee
		То	tal		300	

Evaluation Process:

- 1. The subject matter evaluation can further be defined on the basis of Title, Review of literature/Motivation, Objectives, Methodology, Results and discussions, and Conclusion.
- 2. The usage of language and the subject matter shall be evaluated by the supervisor. Out of 300 marks, 95 marks are to be evaluated by the concerned supervisor.
- 3. Total 15% Plagiarism is admissible for submission of the dissertation. For (0-5)% of plagiarism, candidate should be awarded 25 marks. For >5%-10% candidate should be awarded 15 marks and for the range of > 10% to < 15%, candidate should be awarded 5 marks.
- 4. For publication candidate should be awarded full 30 marks and for presenting the work related to dissertation, candidate should be awarded 25 marks.

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

MSI	PH411	-18	MATH	IEMAT	ICAL	HYSIC	CS-I	L-3,	T-1, P-	0	4 Cre	dits
Pre-r	equisi	te: Under	standin	g of grad	duate le	el math	ematics					
in dif	ferent o	ectives: h the mat courses to roh in phy	nematic ught in	this char	iques in ss mid a	at he/sh	e needs	for und	erstandu	no theor	atical tr	antmar
Cour	se Out	comes: A	at the er	id of the	course.	the stud	lent will	be able	to			
CC	01	Use con	nplex va	riables f	or solvi	ng defir	ite integ	gral.				
CC	02	Use the	Delta ai	nd Gamr	na funci	ions for	describ	ing phy	sical sys	tems.		
CC)3	Solve pa										
CC)4	Describe									probler	ns.
CC)5	Use stati	stical m	ethods t	o analys	se the ex	perimer	ntal data				
uter -		M	apping	oi cour	se outer	ines wi	th the p	rogran	outcon	nes		
	POI	PO2	PO3	Pf pa	1405	PO6	PO7	POS	PO9	PO10	PO11	PO12
CO1	3	3	2	2	-	1	1	-	2	1	1	2
CO2	3	3	2	1	-	1	1	-	2	1	1	2
CO3	3	3	2	2		1	1	¥.	2	1	1	2
	2	3	2	2		1	1		2	1	1	2
C O 4	3	HT. 1										-

- 1. **Complex Variables**: Introduction, Cauchy-Riemann conditions, Cauchy's Integral formula, Laurent expansion, singularities, calculus of residues, evaluation of definite integrals, Dispersion relation. *(Lectures 10)*
- Delta and Gamma Functions: Dirac delta function, Delta sequences for one dimensional function, properties of delta function, Gamma function, factorial notation and applications, Beta function. (Lectures 7)
- Differential Equations: Partial differential equations of theoretical physics, boundary value, problems, Neumann & Dirichlet Boundary conditions, separation of variables, singular points, series solutions, second solution. (Lectures 8)
- 4. **Special Functions:** Bessel functions of first and second kind, Generating function, integral representation and recurrence relations for Bessel's functions of first kind, orthogonality. Legendre functions: generating function, recurrence relations and special properties, orthogonality, various definitions of Legendre polynomials, Associated Legendre functions: recurrence relations, parity and orthogonality, Hermite functions, Laguerre functions.

(Lectures 10)

5. Elementary Statistics: Introduction to probability theory, random variables, Binomial, Poisson and Normal distribution. (Lectures 5)

Text Books:

1. Mathematical Methods for Physicists: G. Arfken and H.J. Weber (Academic Press, SanDiego) 7th edition, 2011.

- 1. Mathematical Physics: P.K. Chattopadhyay (Wiley Eastern, New Delhi), 2004.
- 2. Mathematical Physics: A.K. Ghatak, I.C. Goyal and S.J. Chua (MacMillan, India, Delhi), 1986.
- 3. Mathematical Methods in the Physical Sciences M.L. Boas (Wiley, New York) 2rd edition, 2007.
- 4. Special Functions: E.D. Rainville (MacMillan, New York), 1960.
- 5. Mathematical Methods for Physics and Engineering: K.F. Riley, M.P. Hobson and S.J. Bence (Cambridge University Press, Cambridge) 2rd ed., 2006.

MSP	PH412	-18	CLA	ISSICA.	L MEC	HANIC	CS .	L-3.	T-1, P-	-0	4 Cre	dits
Pre-r	equisi	te: Under	standin	g of grad	duate le	vel phys	lics					
studer in the	nts of . mode	jectives: M.Sc. stud rn branch ics, Astro	dents in es of ph	the Lag ysics su	rangian	and Ha	miltonia	in forma	lisms so	that the	ev can u	en thee
Cours	se Out	comes: A	at the en	id of the	course.	the stud	lent will	l be able	tö			
CC)1	Understa	and the	necessit	y of Ac	tion, La	grangiar	n, and H	amilton	ian form	alism.	
CC)2	Use d'A of motio	lambert n.	principi	le ancie	alculus	of varia	tions to	derive	the Lag	ange ec	luation
CC)3	Describe	the mo	tion of a	a mecha	inical sy	stem usi	ing Lagi	ange-H	amilton	formali	sm.
CO	4	Apply e periodic	ssential motion	fontine s) to set	s of a up and	classica solve the	d proble capprop	em (lika priate ph	e motio sysies pr	n under oblems.	centra	force
CO	5	Apprecia physics mechanic	e.g., m	olecular	specta	acous	sties, vi	which is brations	import. of ato	ant in s ms in s	everal a solids, c	reas o coupled
	-	M	apping	of cours	se outco	omes wi	th the p	rogram	outcor	nes		
	POI	PO2	PO3	PG4		PO6	PO7	POg	209	FO10	POII	PO12
CO1	3	2	2	2	2	i	1	-	2	2	2	2
CO2	3	2	2	2	2	1	1		2	2	2	2
CO3	3	2	2	2	2	i	I	-	2	2	2	2
	2	2	2	2		- I	1	-	2	2	2	2
C O 4	3	-										der.

Scheme & Syllabus (M.Sc. Physics) Banch 2018 is throughly

Page 14 of 73

1. Lagrangian Formulation: Mechanics of a system of particles; constraints of motion, generalized coordinates, d'Alembert Principle and Lagrange's velocity-dependent forces and the dissipation function, Applications of Lagrangian formulation.

(Lectures 7)

2. **Hamilton's Principles:** Calculus of variations, Hamilton's principle, Lagrange's equation from Hamilton's principle, extension to nonholonomic systems, advantages of variational principle formulation, symmetry properties of space and time and conservation theorems.

(Lectures 7)

3. **Hamilton's Equations:** Legendre Transformation, Hamilton's equations of motion, Cyclic coordinates, Hamilton's equations from variational principle, Principle of least action.

(Lectures 7)

- 4. Canonical Transformation and Hamilton-Jacobi Theory: Canonical transformation and its examples, Poisson's brackets, Equations of motion, Angular momentum, Poisson's Bracket relations, infinitesimal canonical transformation, Conservation Theorems. Hamilton- Jacobi equations for principal and characteristic functions, Action-angle variables for systems with one-degree of freedom. (Lectures 10)
- 5. Rigid Body Motion: Independent co-ordinates of rigid body, orthogonal transformations, Eulerian Angles and Euler's theorem, infinitesimal rotation, Rate of change of a vector, Coriolis force, angular momentum and kinetic energy of a rigid body, the inertia tensor, principal axis transformation, Euler equations of motion, Torque free motion of rigid body, motion of a symmetrical top. (Lectures 10)

Text Books:

- 1. Classical Mechanics: H. Goldstein, C.Poole and J.Safko (Pearson Education Asia, New Delhi), 2rd ed 2001.
- 2. Mechanics by L.D. Landau & E.M. Lifschz (Pergamon), 1976.

- 3. Classical Mechanics of Particles and Rigid Bodies: K.C. Gupta (Wiley Eastern, New Delhi), 1988.
- 4. Classical Mechanics- J. W. Muller- Kirsten (World Scientific) 2008.
- 5. Advanced Classical & Quantum Dynamics by W. Dittrich, W. And M Reuter, M. (Springer) 1991.
- 6. Classical mechanics by T.W.B. Kibble and Frank H. Berkshire (Imperial College Press) 2004.
- 7. Mathematical Methods of Classical Mechanics by V. I. Arnold, (Springer) 1978.

MSP	H413-1	8 Qua	antum N	lechan	ics-1			L-3, 7	-1, P-0		4 Cred	its
Pre-1	requisite	e: Basic	knowle	dge of v	vave me	chanica	l quanti	ım mech	anics			
the s techn they o	tudents liques of can use t	of M.S vector hese in	 c. class spaces, various 	to the angular branche	formal moments of phy	structur dum, pe sics as	re of th erturbati per their	Quantu e subjec on theor r require	t and to y, and s ment.	o equin	them s	with the
	se Outc							l be able				
	02	App	reciate	the im	portance	and i	mplicati	al forma on of v l'uncerta	ector s	spaces.	Dirac	
(03	Bette		rstandir	ig of t	he mat	hematic	al found				angulai
(04	Solv	e Schrod	linger e	quation	for varie	ous QM	systems	using a	pproxin	nate met	hods.
C	05	Appl	y pertur	bation (heory w	scatteri	ng matr	ix and pa	artial wa	ve anal	ysis.	
		lvi	apping	ul cour	se oute	omes wi	the p	orogram	outcon	nes		
	PO1	PO2	PO3	104	1'05	POó	PO7	POS	PO9	PO10	PO11	PO12
CO1	3	2	2	2	2	2	1	1	2	3	2	2
CO2	3	2	2	12		2	1	1	2	2	2	2
CO3	3	2	2	2	2		Ĩ	2	1	3	2	2
CO4	3	2	2	2	2	2	2	2	2	2	2	2

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Page 16 of 73

- Linear Vector Space and Matrix Mechanics: Vector spaces, Schwarz inequality, Orthonormal basis, Operators: Projection operator, Hermitian and Unitary operators, change of basis, Eigenvalue and Eigenvectors of operators, Dirac's bra and ket notation, commutators, Simultaneous eigenvectors, Postulates of quantum mechanics, uncertainty relation, Harmonic oscillator in matrix mechanics, Time development of states and operators, Heisenberg, Schroedinger and Interaction representations, Exchange operator and identical particles, Density Matrix and Mixed Ensemble. (Lectures 12)
- Angular Momentum: Angular part of the Schrödinger equation for a spherically symmetric potential, orbital angular momentum operator. Eigen values and eigenvectors of L² and Lz. Spin angular momentum, General angular momentum, Eigen values and eigenvectors of J² and Jz. Representation of general angular momentum operator, Addition of angular momenta, C.G. coefficients. (Lectures 7)
- 3. Stationary State Approximate Methods: Non-Degenerate and degenerate perturbation theory and its applications, Variational method with applications to the ground states of harmonic oscillator and other sample systems. (Lectures 7)
- 4. **Time Dependent Perturbation:** General expression for the probability of transition from one state to another, constant and harmonic perturbations, Fermi's golden rule and its application to radiative transition in atoms, Selection rules for emission and absorption of light.

(Lectures 7)

 Scattering Theory: Scattering Cross-section and scattering amplitude, partial wave analysis, Low energy scattering, Green's functions in scattering theory, Born approximation and its application to Yukawa potential and other simple potentials. Optical theorem, Scattering of identical particles. (Lectures 7)

Text Books:

- 1. A Text book of Quantum Mechanics: P.M. Mathews and K. Venkatesan (Tata McGraw Hill, New Delhi) 1nd edition, 2004.
- 2. Quantum Mechanics: V.K. Thankappan (New Age, New Delhi), 2004.

- 1. Quantum Mechanics: M.P. Khanna, (Har Anand, New Delhi), 2006.
- 2. Modern Quantum Mechanics: J.J. Sakurai (Addison Wesley, Reading), 2004.
- 3. Quantum Mechanics: J.L. Powell and B. Crasemann (Narosa, New Delhi), 1995.
- 4. Quantum Physics: S. Gasiorowicz (Wiley, New York), 2rd ed. 2002.
- 5. Quantum Physics: Concepts and Applcations: Nouredine Zettili (Wiley, New York), 2nd ed. 2009.

MSP	H414-1	8 E	lectroni	CS			1	-3, T-1,	P-0	4	4 Credi	ts
Pre-r	equisite	e: Basic	: knowle	edge abo	out elect	ronics						
stude of se analo of phy	nts of M micondu g circuit ysics as	I.Sc. cla uctor p is and i per the	ass to th hysics, ntroduct ir requir	e formal basic c ion to d ement.	l structo ircuit ai igital el	re of the talysis, ectronic	e subjeet first-orc s so that	ac on E t and to e ter nonl t they can I be able	equip th inear c n use th	em with ireuits.	OPAM	owledge P based
	C01	Ur	nderstan	d work	(ing of	Diffe	rent Se	micondi s) and th	actor c	levices ications	(Const	ruction
	CO2	Ex va	plain th rious ap	e cons plication		and w	orking (of Thyr	istors a	nd use	Thyrist	ors for
	CO3	De	sign An	alog and	i Digita	i (nstrun	nents an	d their a	pplicati	ons.	_	
1	CO4	Ap	ply Boo	lean alg	ebra an	d Karna	ugh map	os.				
(CO5	De	sign the	Seque	tia' nud	Integrat	ed circu	its.				
		M	lapping	of com	se auto	omes wi	ith the p)1.0Å).5U	outcor	nies		
	POI	PO2	PC3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	2	1	2	2	1	2	1	2	2	2
CO2	3	3	2	1	2	3	1	2	1	2	2	2
CO3	2	2	3	2	2	4	 1	2	l	2	2	2
	3	3	2	1	2	2	1	2	1	2	2	2
CO4												

Scheme & Syllabus (M.Sc. Physics) Burna 1995 & Consums

Page 18 of 73

1. Semiconductor Devices and applications: Direct and indirect semiconductors, Drift and diffusion of carriers, Photoconductors, Semiconductor junctions, Metal-semiconductor junctions - Ohmic and rectifying contacts, Zener diode, Schottky diode, Switching diodes, Tunnel diode, Light emitting diodes, Photodiodes, Solar cell, Liquid crystal displays.

(Lectures 7)

- 2. UJTs and Thyristors: Operational Principle of UJT: UJT Relaxation Oscillator circuit; PNPN Diode: Characteristics- As a Relaxation Oscillator-Rate Effect; SCR: V-I Characteristics-Gate Triggering Characteristics; DIAC and TRIAC; Thyristors: Basic Parameters- As Current Controllable Devices- Thyristors in Series and in Parallel; Applications of Thyristors- as a Pulse Generator, Bistable Multivibrator, Half and Full Wave Controlled Rectifier, TRIAC based AC power control, SCR based Crowbar Protection; Gate Turn-Off Thyristors; Programmable UJT. (Lectures 10)
- 3. Analog and Digital Instruments: OPAMP and its applications, Time Base; 555 Timer, Basic Digital Frequency Meter System; Reciprocal Counting Technique; Digital Voltmeter System.

- 4. Digital circuits: Boolean algebra, de Morgans theorem, Karnaugh maps. (Lectures 5)
- 5. Sequential circuits: Flip-Flops RS, JK, D, COcked, preset and clear operation, race around conditions in JK Flip-flops, master-slave JK flip-flops, Switch contact bounce circuit. Shift registers, Asynchronous and Synchronous counters, Counter design and applications.

(Lectures8)

6. Integrated Circuits as Digital System Building Blocks: Binary Adders: Half Adder-Parallel Operation-Full Adder-MSI Adder-Serial Operation; Decoder/Demultiplexer: BCD to Decimal Decoder-4-to-16 line Demultiplexer; Data Selector/Multiplexer:16-to-1 Multiplexer; Encoder; ROM: Code Converters-Programming the ROM-Applications; RAM:Linear Selection-Coincident Selection-Basic RAM Elements Bipolar RAM-Static and Dynamic MOS RAM; Digital to Analog Converters: Ladder Type D/A Converter-Multiplying D/A Converter; Analog to Digital Converters: Successive Approximation A/D Converter.

(Lectures 8)

Text Books:

- 1. Text Book of Electronics: S. Chattopadhyay, New Central Book Agency P.Ltd., Kolkata, 2006.
- 2. Digital Principles and Applications: A.P. Malvino and D.P. Leach, Tata McGraw-Hill, Publishing Co., New Delhi.

- 1. Electronics Principles and Applications: *A.B. Bhattacharya*, New Central Book Agency P.Ltd., Kolkata, 2007.
- 2. Integrated Electronics Analog and Digital Circuits and Systems: J. Millman, C.C Halkins and C. Parikh, 1nd Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2010.

⁽Lectures 8)

-3, T-1, P-0	4 Credits
	5, 1-1, 1-0

Pre-requisite: Understanding of graduate level physics

Course Objectives: The aim and objective of the course on **Computational Physics** is to familiarize the students of M.Sc. students with the numerical methods used in computation and programming using any high level language such as Fortran, C++, etc., so that they can use these in solving simple physics problems.

Course Outcomes: At the end of the course the student will be able to

C	CO1	App prob	ly basi lems.	es knov	wledge	of con	nputatio	nal phy	sics ir	solvin	g the	physic
C	02	Prog	ramme	with the	CHEO	any ot	her high	level la	nguage.			
C	03	Use	various	numeria	ai meth	ods in s	olving I	ohysics	problem	ıs.		
C	04	Ana	lyze the	outcom	e of the	algorith	m/prog	ram graj	phically			- 10
C	05	Sim	ulate the	physica	al syster	ns using	simula	tions.		in the second		
		M	apping	of cours	e oute	mes wi	th the p	rogran	outcon	nes		
_	PO1	PO2	PO3	104		PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	2	2	2	1	1	2	3	2	3	2
	3	3	2	2	2	1	1	2	3	2	3	2
CO1 CO2 CO3				2 1 2		1 1	1					
CO2	3	3	3	1		1 1 1 2	1	1	3	2	3	2

Page 20 of 73

- 1. Introduction to Computational Physics: Need and advantages of high level language in physics, programming in a suitable high level language (Matlab/Mathematica/Scilab/Octave), input/output, interactive input, loading and saving data, loops branches and control flow, Matrices and Vectors, Matrix and array operations, Graphic tools: Gnuplots, Origin, Sigmaplot, Visual Molecular Dynamics, Mathematica, etc. (Lectures 11)
- Programming with C++: Introduction to the Concept of Object Oriented Programming; Advantages of C++ over conventional programming languages; Introduction to Classes, Objects; C++ programming syntax for Input/Output, Operators, Loops, Decisions, simple and inline functions, arrays, strings, pointers; some basic ideas about memory management in C+. (Lectures 15)
- **3.** Numerical methods: Computer algorithms, interpolations-cubic spline fitting, Numerical differentiation Lagrange interpolation, Numerical integration by Simpson and Weddle's rules, Random number generators, Numerical solution of differential equations by Euler, predictor-corrector and Runge-Kutta methods, eigenvalue problems, Monte Carlo simulations.

(Lectures15)

Text Books:

- 1. Numerical Mathematical Analysis, J.B. Scarborough (Oxford & IBH Book Co.) 6th ed., 1979.
- 2. A first course in Computational Physics: P.L. DeVries (Wiley) 1nd edition, 2011.

- 1. Computer Applications in Physics: S. Chandra (Narosa) 1nd edition, 2005.
- 2. Computational Physics: R.C. Verma, P.K. Ahluwalia and K.C. Sharma (New Age) 2000.
- 3. Object Oriented Programming with C++: Balagurusamy, (Tata McGrawHill) 4th edition 2008.

MSPH416-18	Electronics Lab	L-3, T-1, P-0	4 Credits
Due mechatica I	Indeparture diverse time to the		

Pre-requisite: Understanding of graduate level physics experiments

Course Objectives: The aim and objective of the laboratory on Electronics Lab is to expose the students of M.Sc. class to experimental techniques in electronics so that they can verify some of the things read in theory here or in earlier classes and develop confidence to handle sophisticated equipment.

Course Outcomes:	At the end	of the course.	the student will
------------------	------------	----------------	------------------

	CO1	Acc	quire has	nds on e	xperien	ce of ha	ndling a	nd build	ing elec	tronics	circuits.	
	CO2	Be	familiar	with th	e variou	s compo	onents s	uch as re circuits.				
	CO3	Bea	able to 1	indersta	nd the c	onstruct	tion, wo	rking pr des, UJI	, TRIA	and V-I C, etc.	charact	eristics
(CO4	Cap	able of	using co	mpoári	ils of ai	gital ele	ctronics	for vari	ous appl	lications	s.
(CO5	A.bl and	e to des analyze	ign and the rest	perfor dits of e	n scient xperime	tific exp nts.	periment	s as we	ll as acc	curately	record
		M	apping	อร์ cour	ne outes	omesmi	th the j	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	PO1	-									PO11 2	PO12
		PO2	PO3	PO4	PO5	PO6		PO8	PO9	PO10		
CO1 CO2 CO3	2	PO2	PO3	PO4	PO5	PO6		PO8	PO9 2	PO10 2	2	2
CO2	2	PO2	PO3 2 2	PO4	PO5	PO6		PO8 2 2	PO9 2 2	PO10 2 2	2	2

Note: Students are expected to perform atleast 10 experiments out of following list.

- 1. Study the forward and reverse characteristics of a Semiconctor/Zener diode.
- 2. Construction of adder, subtracter, differentiator and integrator circuits using the given OP-Amp.
- 3. Study the static and drain characteristics of a JFET.
- 4. Construction of an Astable multivibrator circuit using transistor.
- 5. Construction of a single FET amplifier with common source configuration.
- 6. To study the operation of Analog to Digital convertor.
- 7. To study the operation of Digital to Analog convertor.
- 8. Construction of a low-pass filter circuit and study its output performance.
- 9. Construction of a high-pass filter circuit and study its output performance.
- 10. To verify the Dmorgan's law using Logic Gates circuit.
- 11. To study the Characteristics of Tunnel Diode.
- 12. To study Amplitude Modulation.
- 13. To study Frequency Modulation.
- 14. To study the Characteristics of SCR.
- 15. To study the Characteristics of MOSFET.
- 16. To study the Characteristics of UJT.
- 17. To study the Characteristics of TRIAC.
- 18. To verify the different Logic and Arithmetic operations on ALU system.
- 19. To study the operation of Encoders and Decoders.
- 20. To study the operation of Left and right shift registers.
- 21. To study the operation of Counters, Ring counters.
- 22. To determine the thermal coefficient of a thermistor.
- 23. To study the operation of an Integrated Circuit Timer.

Text Books:

- 1. Text Book of Electronics: S. Chattopadhyay, New Central Book Agency P.Ltd., Kolkata, 2006.
- 2. Digital Principles and Applications: A.P. Malvino and D.P. Leach, Tata McGraw-Hill, Publishing Co., New Delhi.

- 1. Electronics Principles and Applications: *A.B. Bhattacharya*, New Central Book Agency P.Ltd., Kolkata, 2007.
- 2. Integrated Electronics Analog and Digital Circuits and Systems: J. Millman, C.C Halkins and C. Parikh, 1ndEdition, Tata McGraw Hill Education Private Limited, New Delhi, 2010.

MSPH417-18	Computational Physics Lab-I	L-3, T-1, P-0	4 Credits

Pre-requisite: Understanding of graduate level numerical methods

Course Objectives: The aim and objective of the course on **Computational Physics Lab-I** is to familiarize the of M.Sc. students with the numerical methods used in computation and programming using C++ language so that they can use these in solving simple problems pertaining to physics.

(CO1	App	oly basic plems.	es know	dedge (of comp	utationa	l Physic	es in so	lving va	arious p	hysica
(CO2	Pro	granime	with th	e C+++ o	r any of	her high	level la	nguage			
(:03							ng/sofvir			lems.	
0	:04	Solv	ve probl plems.	em, urit	ital thi	king ar	id analy	tical rea	soning	as appli	ed to sc	ientifi
(05	Ana	lyse and	reprod	uce the	experim	ental da	ita.				
	PO1	PO2	PO3	FO4	205	P/06	PO7	PO8	PO9	PO10	PO11	PO12
C01	PO1 3	PO2 3	PO3 2	PD4 2	205	PO6	PO7	PO8	PO9 3	PO10	PO11 3	PO12
				1 1 120	2 2	PO6 1	PO7 1					
CO2	3	3	2	1 1 120	2	PO6 1 1	PO7 1 1		3	2	3	2
CO1 CO2 CO3 CO4	3	3 3	2	2	2	PO6 1 1 1	PO7 1 1 1	2	3	2	3	2

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Page 24 of 73

Note: Students are expected to perform atleast 10 experiments out of following list.

- 1. To find the standard deviation, mean, variance, moments etc. of at least 15 entries.
- 2. To choose a set of 10 values and find the least squared fitted curve.
- 3. Find y for a given x by fitting a set of values with the help of cubic spline fitting technique.
- 4. To find the Roots of an Algebraic Equation by Bisection method and secant method
- 5. To find the Roots of an Algebraic Equation by Newton-Raphson Method.
- 6. To find the Roots of Linear Equations by Gauss Elimination Method.
- 7. To find the Roots of Linear Equations by Gauss-Seidal Iterative Method.
- 8. Find first order derivative at given x for a set of values with the help of Lagrange interpolation.
- 9. To perform numerical integration of a function by Trapezoidal Rule.
- 10. To perform numerical integration of a function by Simpson's Rule.
- 11. To perform numerical integration of a function by Weddle's rule.
- 12. To solve a Differential Equation by Euler's method and Modified Euler's Method.
- 13. To solve a Differential Equation by Runge Kutta method.
- 14. To find the determinant of a matrix and its eigenvalues and eigenvectors.
- 15. To generate random numbers between (i) 1 and 0, (ii) 1 and 100.

Text Books:

- 1. Numerical Mathematical Analysis, J.B. Scarborough (Oxford & IBH Book Co.) 6th ed., 1979.
- 2. A first course in Computational Physics: P.L. DeVries (Wiley) 1nd edition, 2011.

- 1. Computer Applications in Physics: S. Chandra (Narosa) 1nd edition, 2005.
- 2. Computational Physics: R.C. Verma, P.K. Ahluwalia and K.C. Sharma (New Age) 2000.
- 3. Object Oriented Programming with C++: Balagurusamy, (Tata McGrawHill) 4th edition 2008.

MSI	PH421-1	18	Math	iematic	ai Physi	ics-II		L-3, T-1,	P-0	4 Credits				
Pre-1	requisit	e: Unde	erstandi	ing of g	raduate	level m	athema	atics						
the I theor	M.Sc. S etical ti	students reatmen	with t in di	the ma fferent	courses	taught	niques in this	n Matha that he s class as a care	she ne and fo	eds for	unders	tanding		
Cour	se Outo	omes:	At the er	nd of the	e course	the stu	dent wil	ll able to						
CO1 Understand the basics and aplications of group theory Physics.										l the bra	inches o	f		
(CO2	Use	Use Fourier series and transformations as an aid for analyzing physical problems.											
1	C O 3	Apj	Apply integral transform to solve mathematical problems of Physics interest.											
(CO4	For	Formulate and express a physical law in terms of tensors and simplify it by use of coordinate transforms.											
(CO5	Dev	Develop mathematical skills to solve quantitative problems in physics.											
		M	apping	of cour	SE CUER	omes wi	ith the p	rogram	outco	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12		
CO1	3	3	2	2		1	1	-	2	1	1	2		
C O 2	3	3	2	2	-	1	1	-	2	1	1	2		
CO3	3	3	2	2		1	1	-	2	1	1	2		
		3	2	12	-	1	1	-	2	1	1			
CO4	3	3										2		

Scheme & Syllabus (M.Sc. Physics) Bach 2014 of Converts

Page 26 of 73

- Group Theory: What is a group? Multiplication table, conjugate elements and classes, subgroups, Isomorphism and Homomorphism, Definition of representation and its properties, Reducible and irreducible representations. Schur's lemmas (only statements), characters of a representation. Example of C4v, Topological groups and Lie groups, three dimensional rotation group, special unitary groups SU(1) and SU(2). (Lectures 10)
- 2. Tensors: Introduction, definitions, contraction, direct product. Quotient rule, Levi-Civita symbol, Noncartesian tensors, metric tensor, Covariant differentiation.

(Lectures 7)

- Fourier Series and Integral Transforms: Fourier series, Dirichlet conditions, General properties, Advantages and applications, Gibbs phenomenon, Fourier transforms, Development of the Fourier integral, Inversion theorem, Fourier transforms of derivatives; Momentum representation. Laplace transforms, Laplace transforms of derivatives, Properties of Laplace transform, Inverse Laplace transformation. (Lectures 15)
- 4. Integral Equations: Definitions and classifications, integral transforms and generating functions. Neumann series, Separable Kernels, Hilbert-Schmidt theory, Green's functions in one dimension. *(Lectures 10)*

Text Books:

- 1. Group Theory for Physicists. A.W. Joshi (Wiley Eastern, New Delhi) 2011.
- Mathematical Methods for Physicists: G. Arfken and H.J. Weber. (Academic Press, San Diego) 7th edition, 2011.

- 1. Matrices and Tensors in Physics: A.W. Joshi (Wiley Eastern, New Delhi) 2005.
- 2. Numerical Mathematical Analysis: 1.B. Searborough (Oxford Book Co., Kolkata) 4th edition.
- 3. A First Course in Computational Physics: P L. Devries (Wiley, New York) 1994.
- 4. Mathematical Physics: P.K. Chatopadhyay (Wiley Eastern, New Delhi) 2011.
- 5. Introduction to Mathematical Physics: C. Harper (Prentice Hall of India, New Delhi) 2006.

MSPH422-18	Statistical Mechanics	L-3, T-1, P-0	4 Credits

Pre-requisite: Understanding of graduate level statistical mechanics

Course Objectives: The aim and objective of the course on **Statistical Mechanics** is to equip the M.Sc. student with the techniques of statistical ensemble theory so that he/she can use these to understand the macroscopic properties of the matter in bulk in terms of its microscopic constituents.

Course Outcomes:	At the end	of the course,	the student will	be able to
-------------------------	------------	----------------	------------------	------------

CO1	Find the connection between Statistical Mechanics and thermodynamics
CO2	Use ensemble theory to explain the behavior of Physical systems
CO3	Explain the statistical behavior of Bose-Einstein and Fermi-Dirac systems and their applications.
CO4	Work with models of phase transitions and thermo-dynamical fluctuations.
C05	Describe physical problems using quantum statistics.

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	-	-	-	-	-	1	1	-	-	-
CO2	3	3	3	1	3	2	1	2	2	1	1	1
CO3	3	3	3	1	2	2	1	2	2	1	1	1
CO4	3	3	3	1	2	2	1	2	2	1	1	1
C05	3	3	3	1	2	2	1	2	2	1	1	1

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

- The Statistical Basis of Thermodynamics: The macroscopic and microscopic states, contact between statistics and thermodynamics, classical ideal gas, Gibbs paradox and its solution. (Lectures 7)
- 2. Ensemble Theory: Phase space and Liouville's theorem, the microcanonical ensemble theory and its application to ideal gas of monatomic particles; The canonical ensemble and its thermodynamics, partition function, classical ideal gas in canonical ensemble theory, energy fluctuations, equipartition and virial theorems, a system of quantum harmonic oscillators as canonical ensemble, statistics of paramagnetism; The grand canonical ensemble and significance of statistical quantities, classical ideal gas in grand canonical ensemble theory, density and energy fluctuations. *(Lectures 10)*
- 3. Quantum Statistics of Ideal Systems: Quantum states and phase space, an ideal gas in quantum mechanical ensembles, statistics of occupation numbers; Ideal Bose systems: basic concepts and thermodynamic behaviour of an ideal Bose gas, Bose-Einstein condensation, discussion of gas of photons (the radiation fields) and phonons (the Debye field); Ideal Fermi systems: thermodynamic behaviour of an ideal Fermi gas, discussion of heat capacity of a free electron gas at low temperatures, Pauli paramagnetism.

(Lectures 10)

- 4. Elements of Phase Transitions: Introduction, a dynamical model of phase transitions, Ising model in zeroth approximation. *(Lectures 8)*
- 5. Fluctuations: Thermodynamic fluctuations, random walk and Brownian motion, introduction to non-equilibrium processes, diffusion equation.

(Lectures 5)

Text Books:

1. Statistical Mechanics: R.K. Pathria and P.D. Beale (Butterworth-Heinemann, Oxford), 2rd edition, 2011.

Reference Books:

- 1. Statistical Mechanics: K. Huang (Wiley Eastern, New Delhi), 1987.
- 2. Statistical Mechanics: B.K. Agarwal and M. Eisner (Wiley Eastern, New Delhi) 1nd edition, 2011.
- 3. Elementary Statistical Physics: C. Kittel (Wiley, New York), 2004.
- 4. Statistical Mechanics: S.K. Sinha (Tata McGraw Hill, New Delhi), 1990.

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

MSF	PH423-1	18	Qua	ntum N	lechani	cs-11	1	L-3, T-1	, P-0		4 Credi	ts			
Pre-	requisit	te: Preli	minary o	course o	f Quant	um Mec	hanics								
techn these	duce the liques o in vario	e M.Sc. of Relati ous bran	student vistic q ches of	s to the uantum physics	formal mechai as per b	structur fies and ds/Fer re	e of the Quantu equirem		and to theory	equin h	im/her	with th			
	CO1	De	fine the		tie QM	as the c		ll be able t formula		quantun	n mecha	nics			
CO2 Give the significance of Klein Gordon and Dirac equation a antiparticles.										and existence of					
									s and Noether's theorem in calculating the						
(CO4	Der	Demonstrate the second quantization for scalar, Dirac, and electromagnetic fields.												
(CO5	Exp the	lain the amplitu	origin o des far s	f Feynr Lement	nan diag O proo	grams ar esses	nd apply	the Fey	nman ru	iles to d	erive			
		M	apping	of cour	se oute	omes w	ith the	orogram	outcol	nes					
	PO1	PO2	PO3	PO4	P-03	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	2	2	1	1	1	1	2	2	1	2	2			
CO2	2	2	3	1		1	2	1	2	1	2	2			
CO3	2	2	2	1	1	1	1	1	2	1	2	2			
CO4	2	2	2	2	1	1	1	2	2	1	2	2			
	2	2	3	0		1	2	2	2	1					

Scheme & Syllabus (M.Sc. Physics) Britch 2018 & OF words

Page 30 of 73

1. **Relativistic Quantum Mechanics-I:** Klein-Gordon equation, Dirac equation and its plane wave solutions, significance of negative energy solutions, spin angular momentum of the Dirac particle, the non-relativistic limit of Dirac equation.

(Lectures 10)

2. **Relativistic Quantum Mechanics-II:** Electron in electromagnetic fields, spin magnetic moment, spin-orbit interaction, Dirac equation for a particle in a central field, fine structure of hydrogen atom, Lamb shift.

(Lectures 10)

- 3. Quantum Field Theory: Resume of Lagrangian and Hamiltonian formalism of a classical field, Noether theorem, Quantization of real scalar field, complex scalar field, Dirac field and electromagnetic field, Covariant perturbation theory, Wick's theorem, Scattering matrix. (Lectures 10)
- 4. **Feynman diagrams**: Feynman rules, Feynman diagrams and their applications, Yukawa field theory, calculations of scattering cross-sections, decay rates with examples, Quantum Electrodynamics, calculations of matrix elements for first order and second order.

(Lectures 10)

Text Books:

- 1. Relativistic quantum Mechanics, J D Bjorken and S D Drell, (Tata McGraw Hill, New Delhi) 2012.
- A first book of Quantum Field Theory, A. Lahiri & P. Pal, (Narosa Publishers, New Delhi), 1st ed. 2005.
- 3. Introduction to Quantum Field Theory, M. Peskin & D.V. Schroeder. (Levant Books) 2015.

- 1. Quantum Field Theory in a Nutshell: A Zee (University Press), 2012.
- 2. Lecture on Quantum Field Theory, A. Das (World Scientific), 2008.
- 3. Text Book of Quantum Mechanics-P.M. Mathews & K. Venkatesan (Tata McGraw Hill, New Delhi), 2004.
- 4. Quantum Field Theory: H. Mandl and G. Shaw (Wiley, New York), 2010.
- 5. Advance Quantum Mechanics: J.J. Sakurai (Addison-Wesley, Reading), 2004.

MSPH424-18	Classical Electrodynamics	L-3, T-1, P-0	4 Credits

Pre-requisite: Understanding of graduate level electricity and magnetism

Course Objectives: The Classical Electrodynamics course covers Electrostatics and Magnetostatics including Maxwell equations, and their applications to propagation of electromagnetic waves in dielectrics; EM waves in bounded media, waveguides, Radiation from time varying sources.

Course Outcomes: At the end of the course the student will be able to

CO1	Understand and apply the laws of electromagnetism and use Maxwell equations in different forms and different media.
CO2	Explain the dynamics of charged bodies and radiation from localized time varying electromagnetic sources.
CO3	Provide solution to real life plane wave problems for various boundary conditions for different charge configurations.
CO4	Describe the propagation of electromagnetic waves and its propagation through different med a types /con figurations.
C05	To develop an understanding about the waveguides, and propagation of waves through different waveguides.

Mapping of course outcomes with the program outcomes

	POI	PO2	200	50%	PC.5	906	PO7	PO3	PO9	PO10	PO11	PO12
C01	2	2	2	1	2	1	2	1	I	1	2	3
CO2	2	2	1	1	1	1	1	1	1	3	2	3
CO3	2	2	2	2	12	2	1	l	1	2	2	3
CO4	2	2	1	2	1	2	1	1	l	3	2	3
C05	1	2	1	0		1	1	2	2.	3	2	3

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Ouwards

Page 32 of 73
1. Electrostatics: Laplace and Poisson's equations, Electrostatic potential and energy density of the electromagnetic field, Multipole expansion of the scalar potential of a charge distribution, dipole moment, quadrupole moment, Multipole expansion of the energy of a charge distribution in an external field, Static fields in material media, Polarization vector, macroscopic equations, classification of dielectric media, Molecular polarizability and electrical susceptibility, Clausius-Mossetti relation, Models of Molecular polarizability, energy of charges in dielectric media (Maxwell stress tensor).

(Lectures 10)

2. **Magnetostatics:** The differential equations of magnetostatics, vector potential, magnetic fields of a localized current distribution, Singularity in dipole field, Fermi-contact term, Force and torque on a localized current distribution. (Magnetic stress tensor)

(Lectures 8)

- 3. **Boundary value problems:** Uniqueness theorem, Dirichlet and Neumann Boundary conditions, Earnshaw theorem, Green's (reciprocity) theorem, Formal solution of electrostatic boundary value problem with Green function, Method of images with examples, Magnetostatic boundary value problems. *(Lectures 8)*
- 4. **Time varying fields and Maxwell equations:** Faraday's law of induction, displacement current, Maxwell equations, scalar and vector potential, Gauge transformation, Lorentz and Coulomb gauges, Hertz potential, General expression for the electromagnetic fields energy, conservation of energy, Poynting Theorem, Conservation of momentum.

(Lectures 8)

5. Electromagnetic Waves: wave equation, plane waves in free space and isotropic dielectrics, polarization, energy transmitted by a plane wave, Poynting theorem for a complex vector field, waves in conducting media, skin depth, Reflection and refraction of e.m. waves at plane interface, Fresnel's amplitude relations, Reflection and Transmission coefficients, polarization by reflection, Brewster's angle, Total internal reflection, Stoke's parameters, EM wave guides, Cavity resonators, Dielectric waveguide, optical fibre waveguide. (Lectures 10)

Text Books:

- 1. Classical Electrodynamics: S.P. Puri (Narosa Publishing House) 2011.
- 2. Classical Electrodynamics: J.D. Jackson, (New Age, New Delhi) 2009.
- 3. Introduction to Electrodynamics: D.J. Griffiths (Prentice Hall India, New Delhi) 4th ed., 2011.

Reference Books:

- 1. Classical Electromagnetic Radiation: J.B. Marion and M.A. Heald(Saunders College Publishing House) 2nd edition, 1995.
- 2. Electromagnetic Fields, Ronald K. Wangsness (John Wiley and Sons) 1nd edition, 1986.
- 3. Electromagnetic Field Theory Fundamentals: Bhag Singh Guru and H.R. Hiziroglu

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

MSP	H425-1	8 A	tomic	and Mo	lecular	Physics	1	-3, T-1,	P-0	4	Credit	S
Pre-r	equisit	e: Under	rstandin	g of gra	duate le	vel spec	troscop	У				
the st	udents	e ctives: of M.S Raman, a	c. Phys	sics is	to equij	of the of them	course c with th	n Atem ne know	ic and ledge (Molecu of Atom	lar Phy nic, Rot	sics fo ational
Cours	se Outc	omes: A	At the er	nd of the	course.	the stu	dent wil	l be able	to			
(01		e the ba atom	asie lune	wiadge	of Boh	r's- Son	merfeld	Quant	um theo	ry <mark>o</mark> f hy	droger
(02		lerstand ecules	classic	al/quani	um de	scription	n of ele	etronie	spectra	of atc	om and
(03	Use	microw	vave and	Raman	Spectro	oscopy f	for analy	sis of k	nown m	olecules	
(04		relate in sical des			copie	informa	tion of	known	molecu	lles wit	h thei
(05		lerstand ysis	Spin Re	sonance	e Spectr	oscopy	with foc	us on N	MR for	molecul	ar
		M	apping	of cour	se autor	mes wi	ith the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	12672	P06	PO7	PO8	PO9	PO10	POII	PO12
CO1	2	2	3	2	2	1	1	2	2	3	1	2
CO2	2	2	3	3	2	1	2	2	2	3	1	1
CO3	2	2	i	3	2	1	2	2	2	3]	3
CO4	2	2	3	3	2	1	2	2	2	3	1	3
	2	2	3	3	2	1	2	2	2	3	1	3

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Page 34 of 73

- Electronic Spectroscopy of Atoms: Bohr-Sommerfeld model of atomic structure, Electronic wave function and atomic quantum numbers – hydrogen spectrum – orbital, spin and total angular momentum - fine structure of hydrogen atom – many electron spectrum: Lithium atom spectrum, angular momentum of many electrons – term symbols – the spectrum of helium and alkaline earths – equivalent and non-equivalent electrons –X-ray photoelectron spectroscopy. (Lectures 8)
- Electronic Spectroscopy of Molecules: Diatomic molecular spectra: Born-Oppenheimer approximation – vibrational spectra and their progressions – Franck-Condon principle – dissociation energy and their products –rotational fine structure of electronic-vibration transition - molecular orbital theory – the spectrum of molecular hydrogen – change of shape on excitation – chemical analysis by electronic spectroscopy – reemission of energy – fundamentals of UV photoelectron spectroscopy. (Lectures 9)
- Microwave and Raman Spectroscopy: Rotation of molecules and their spectra diatomic molecules intensity of line spectra the effect of isotropic substitution non-rigid rotator and their spectra polyatomic molecules (linear and symmetric top molecules) Classical theory of Raman effect pure rotational Raman spectra (linear and symmetric top molecules). (Lectures 8)
- 4. Infra-red and Raman Spectroscopy: The energy of diatomic molecules Simple Harmonic Oscillator the Anharmonic oscillator the diatomic vibrating rotator vibration-rotation spectrum of carbon monoxide –breakdown of Born-Oppenheimer approximation the vibrations of polyatomic molecules –influence of rotation on the spectra of polyatomic molecules (linear and symmetric top molecules) Raman activity of vibrations vibrational Raman spectra vibrations of Spherical top molecules.

(Lectures 8)

 Spin Resonance Spectroscopy Spin and magnetic field interaction – Larmor precession – relaxation time – spin-spin relaxation - spin–lattice relaxation - NMR chemical shift coupling constants – coupling between nuclei – chemical analysis by NMR – NMR for nuclei other than hydrogen – ESR spectroscopy - fine structure in ESR. (Lectures 8)

Text Books:

- 1. Fundamentals of Molecular Spectroscopy: Colin N. Banwell and Elaine M. McCash (Tata McGraw-Hill Publishing Company limited).
- 2. Physics of Atoms and Molecules: B. H. Bransden and C. J. Joachain.

- 1. Physical method for Chemists (Second Edition): Russell S. Drago (Saunders College Publishing).
- 2. Introduction to Atomic Spectra: H.E. White-Auckland McGraw Hill, 1924.
- 3. Spectroscopy Vol. I, II & III: Walker & Straughen
- 4. Introduction to Molecular spectroscopy: G.M. Barrow-Tokyo McGraw Hill, 1961.
- 5. Spectra of diatomic molecules: Herzberg-New York, 1944.

MSP	H426-1	18	Atomic,	Nuclea Physic		article	I	3, T-1,	P-0	4	Credit	S
Pre-r	equisito	e: Unde	rstandin	g of gra	duate le	vel aton	nic spec	troscopy	and nu	clear ph	ysics	
to exp so tha	oose the	student	ts of M. Ify some	Sc. stud	ents to a	experime	ental tec	omic, No chniques ory and	in atom	nic and i	nuclear	physic
Cours	se Outc	omes: /	At the er	nd of the	course.	the stud	dent wil	l be able	to			
(01	Acc Seir	juire hai ntillation	nds on e 1 counte	xperien	ce of us	ing part	icle dete	ectors su	ich as G	M cour	iter an
(02	Har	dle osci	lloseope	e for vis	ualisatic	on of va	rious inp	ut and	output si	gnals.	nit (100000-00-00-00
(203	Unc	ierstand	the basi	c of nuc	lear saf	ely man	agement				
CO4		Peri	form sc ilts of m	ientific iclear ex	experin (perime	ients as nts.	i weli a	accur	ately re	cord ar	nd analy	ze th
C	05	Solv	ve applie	ed puele	er probl	ems wit	h critica	l thinkir	ig and a	nalytica	l reason	ing.
		M	apping	of cour	se oute	nies wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	2	2	2	2	2	2	2
CO2	1	1	1	2	1	2	1	2	2	2	2	2
		1	1	2		172	1	2	2	2	2	2
CO3	1	1	1									
CO3	1	2	2	2	4.5	2	2	2	2	2	2	2

Scheme & Syllabus (M.Sc. Physics) Barch 2018 & Oceanis

Page 36 of 73

Note: Students are expected to perform atleast 10 experiments out of following list.

- 1. Determination of e/m of electron by Normal Zeeman Effect using Febry Perot interferometer.
- 2. To verify the existence of Bohr's energy levels with Frank-Hertz experiments.
- 3. Determination of Lande's factor of DPPH using Electron-spin resonance (E.S.R.) spectrometer.
- 4. Determination of ionization Potential of Lithium.
- 5. Analysis of pulse height of gamma ray spectra.
- 6. To study the characteristics of G.M. tube.
- 7. To verify the inverse square law using GM counter.
- 8. To determine the dead time of G.M. counter.
- 9. To study absorption of beta particles is matter using GM counter.
- 10. To study Gaussian distribution using G.M. counter.
- 11. To estimate the efficiency of GM detector for Gamma and Beta source.
- 12. Determination of Planck's constant using Photocell and interference filters.
- 13. Verification of Inverse square law using Photocell.
- 14. To study Gaussian distribution using scintillation counter.
- 15. To study absorption of gamma radiation by scintillation counter.
- 16. To estimate the efficiency of Scintillator counter.

Text Books:

- 1. Fundamentals of Molecular Spectroscopy: Colin N. Banwell and Elaine M. McCash (Tata McGraw-Hill Publishing Company limited).
- 2. Physics of Atoms and Molecules: B. H. Bransden and C. J. Joachain.

- 1. Physical method for Chemists (Second Edition): Russell S. Drago (Saunders College Publishing).
- 2. Introduction to Atomic Spectra: H.E. White-Auckland McGraw Hill, 1924.
- 3. Spectroscopy Vol. I, II & III: Walker & Straughen
- 4. Introduction to Molecular spectroscopy: G.M. Barrow-Tokyo McGraw Hill, 1961.
- 5. Spectra of diatomic molecules: Herzberg-New York, 1944.

I. K. Gujral Punjab Technical University, Kapurthala

MSPH427-18	Computational Physics Lab-II	L-3, T-1, P-0	4 Credits

Pre-requisite: Understanding of graduate level numerical methods and C++

Course Objectives: The aim and objective of the lab on **Computational Physics-II** is to train the students of M.Sc. class in understanding numerical methods, the usage of high level language such as C++ language for simulation of results for different physics problems and graphic analysis of physical data, so that they are well equipped in the use of computer for solving physics related problems.

Course Outcomes: At the end of the course, the student will be able to

C01	Understand and apply basics knowledge of numerical methods in solving the physics problems.
CO2	Write programme with the C++ or any other high level language.
CO3	Learn use of graphical methods in data analysis and solving physics problems.
CO4	Solve physical problem, enabling development of critical thinking and analytica reasoning.
CO5	Apply computational physics in frontier areas of pure and applied research in physics and allied fields

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	2	1	2	1	1	1	3	2	3	2
CO2	3	3	3	ŝ	2	1	1	2	1	2	2	2
CO3	1	2	1	3		2	1	I	ĩ	1	1	1
CO4	3	3	2	2	3	1	1	1	1	1	1	1
C05	1	1	1	1	Ĩ.	ī	ī	1	3	2	1	1

Scheme & Syllabus (M.Sc. Physics) Batch 2011 & Onwards

Page 38 of 73

- Write a program to study graphically the EM oscillations in a LCR circuit (use Runge-Kutta Method). Show the variation of (i) Charge vs Time and (ii) Current vs Time.
- Study graphically the motion of falling spherical body under various effects of medium (viscous drag, buoyancy and air drag) using Euler method.
- 3. Study graphically the path of a projectile with and without air drag using FN method. Find the horizontal and maximum height in either case. Write your comments on the findings.
- 4. Study the motion of an artificial satellite.
- 5. Study the motion of (a) 1-D harmonic oscillator (without and with damping effects).(b) two coupled harmonic oscillators. Draw graphs showing the relations: i) Velocity vs Time, ii) Acceleration vs Time iii) Position vs Time, also compare the numerical and analytical results.
- 6. To obtain the energy eigenvalues of a quantum oscillator using the Runge-Kutta method.
- Study the motion of a charged particle in: (a) Uniform electric field, (b) Uniform Magnetic field, (c) in combined uniform electric and magnetic fields. Draw graphs in each case.
- 8. Use Monte Carlo techniques to simulate phenomenon of (i) Nuclear Radioactivity. Do the cases in which the daughter nuclei are also unstable with half life greater/lesser than the parent nucleus. (ii) to determine solid angle in a given geometry. (iii) simulate attenuation of gamma rays/neutron in an absorber and (iv) solve multiple integrals and compare results with Simpson's method.
- 9. To study phase trajectory of a Chaotic Pendulum.
- 10. To study convection in fluids using Lorenz system.

Text Books:

- Numerical Recipes in C++ The Art of Scientific Computing, William H. Press, Saul, A.Teukolsky, William T. Vetterling, and Brian P. Flannery, (Cambridge), Inc. ed. 2001.
- 2. A First Course in Computational Physics: P.L. DeVries (John Wiley) 2000.

Reference Books:

- 1. An introduction to Computational Physics: Tao Pang (Cambridge), 1nd ed. 2006.
- 2. Computer Applications in Physics: S. Chanara (Narosa), 2006.
- 3. Computational Physics: R.C. Verma P.K. Ahluwalia and K.C. Sharme (New Age), 2005.
- 4. Object Oriented Programming with C+Et Balagurusamy, (Tata McGrawHill), 5th ed. 2011.

Scheme & Syllabus (M.Sc. Physics) Baleis 2018 & Curvas k

Page 39 of 73

MS	PH531-	18	Cond	ensed N	latter I	Physics		L-3, T-1	t, P-0		4 Cred	its
Pre-	requisi	te: Unde	erstandi	ng of gr	aduate l	evel sol	id state j	physics				
prop	erties, e	nergy b	and the	c. class	to the to	opics Iil	ke elasti v so that	c consta t they a	ints, latt	d Matte ice vibra ped with	tions	1.1
Cour	rse Out	comes:	At the e	end of th	e course	, the stu	ident wi	ll be abl	e to			
	CO1	Ga per	in in-de forming	pth know g calcula	wledge a tions on	about the the the the the the the the the th	e format emental	tion of v parame	arious c eters.	erystal st	ructure	via
	CO2	Di the	fferentia n explai	ate betw n therm	een var al prope	ious lat rties of	tice typ crystalli	es basec ne solid	l on the s.	eir lattice	e dynan	nics an
CO3 Understand the electron motion in periodic solids and origin of energy bands i semiconductors.												nds in
(CO4	To in s	explain olids	the basi	c transp	ort theo	ry for u	nderstan	ding the	e transpo	ort phen	omenoi
(C O 5	Usi proj	ng vari perties c	ous mo of insula	dels of tors.	molec	ular po	larizabil	ity, uno	derstand	the d	electric
		M	apping	of cour	se outc	omes w	ith the j	progran	n outco	mes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C O 1	3	2	2	2	1	2	1	2	2	2	1	2
02	2	2	2	2	2	2	2	2	2	2	2	2
03	2	2	1	2	1	2	2	2	1	2	1	2
CO4	2	2	1	2	2	2	1	2	1	2	2	2

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

1. **Crystal binding and Elastic constants:** Binding in solids; Cohesive energy, Crystals of Inert gases, ionic crystal, Covalent Crystals, Analysis of elastic strains: dilation, stress components; Elastic Compliance and Stiffness: elastic constants, elastic waves in cubic crystals.

(Lectures 6)

- 2. Lattice Dynamics and Thermal Properties: Vibrations of crystal with monatomic and two atom per primitive Basis; Quantization of Elastic waves, Phonon momentum; Inelastic scattering by phonons, Phonon Heat Capacity, Planck Distribution, normal modes; Density of states, Debye T2 model; Einstein Model; anharmonic crystal interactions; thermal conductivity expansion. (Lectures 9)
- 3. Energy Band Theory: Electrons in a periodic potential: Bloch theorem, Nearly free electron model; Kronig Penney Model; Electron in a periodic potential; tight binding method; Wigner-Seitz Method Semiconductor Crystals, Band theory of pure and doped semiconductors; effective mass elementary idea of semiconductor superlattices.

(Lectures 9)

4. **Transport Theory:** Electronic transport from classical kinetic theory; Introduction to Boltzmann transport equation; electrical and thermal conductivity of metals; thermoelectric effects; Hall effect and magneto resistance.

(Lectures 8)

5. **Dielectrics and Ferro Electrics:** Polarization mechanisms, Dielectric function from oscillator strength, Clausius-Mosotti relation; piezo, pyro- and ferro-electricity; Dipole theory of ferroelectricity; thermodynamics of ferroelectric transition.

(Lectures 8)

Text Books:

1. Introduction to Solid State Physics: C. Kittel (Wiley, New York), 8th ed. 2005.

2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.

Reference Books:

- 1. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1971
- 2. Solid State Theory: Walter A. Harrison (Tata McGraw-Hill, New Delhi) 1970.
- 3. Liquid Crystals: S. Chandrasekhar (Cambridge University), Ind ed. 1991.

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

MS	SPH532	-18		Nuclea	ir Physi	¢5		L-3, T-	1, P-0		4 Crec	lits
Pre	-requis	ite: Unc	lerstand	ing of g	raduate	level ph	ysics					
radio	oactive	decays,	The an class to nuclear used in	forces	nuclear	modele	course Juclear , and nu	on Nucle Physics clear rea	ear Phy like sta ctions s	vsics is t utic prop so that th	to famil perties o ney are	iarize tl of nucle equippe
Cou	rse Out	comes:	At the e	end of th	e cours	the stu	udent w	ill be abl	e to			
	C01	Ur nu	nderstan elear me	d and co dels.	mpare	nuclear i	models	and expla	ain nuc	lear prop	perties u	sing
	CO2	Un	derstand	i structu	ire and s	static pro	operties	ofnucle			- Marine Marine	
	CO3		alyse va									
	CO4	Us nuc	e nucleo clear for	n-nucle ces.	on scatt	ering an	d deute:	on probl	em to e	explain r	nature of	ſ
(CO5	De	scribe va	arious ty	pes of n	uclear r	reactions	s and the	ir prope	erties		
								program				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12
201	3	3	1	1	2	1	1	2	1	2	2	2
CO2	3	3	1	1	12	1	1	2	1	2	2	2
03	3	3	1	1	2	1	1	2	1	2	2	2
04	3	3	1	ī	2	1	1	2	1	2	2	2
05	3	3	1	1	2	1	1	2	1			
								da	1	2	2	2

Scheme & Syllabus (M.Sc. Physics) Botch 2013 & Onwards

Page 42 of 73

- Nuclear Models: Liquid drop model, Binding energy; fission and fusion, Experimental evidence for shell effects, Shell Model, Spin-Orbit coupling, Magic numbers, Application of Shell Model like Angular momenta and parities of nuclear ground states, Collective modelnuclear vibrations spectra and rotational spectra. (Lectures 8)
- 2. Static properties of nucleus: Nuclear radii and measurements, nuclear binding energy (review), nuclear moments and systematic, wave-mechanical properties of nuclei, hyperfine structure. *(Lectures 5)*
- 3. Nuclear decay: Review of barrier penetration of alpha decay & Geiger-Nuttal law. Beta decays, Fermi theory, Kurie plots and comparative half-lives, Allowed and forbidden transitions, Experimental evidence for Parity-violation in beta decay, Electron capture probabilities, Neutrino, detection of neutrinos, Multipolarity of gamma transitions, internal conversion process. (Lectures 10)
- 4. Nuclear forces: Evidence for saturation of nuclear density and binding energies (review), types of nuclear potential, Ground and excited states of deuteron, dipole and quadrupole moment of deuteron, single and triplet potentials, meson theory of nuclear forces.

(Lectures 10)

5. Nuclear reactions: Nuclear reactions and cross-sections, Resonance, Breit- Wigner dispersion formula for l=0 and higher values, compound nucleus, Direct reactions, Transfer reactions. *(Lectures 7)*

Text Books:

- 1. Nuclear Physics: Irving Kaplan (Narosa), 2001.
- 2. Theory of Nuclear Structure: R.R. Roy and B.P. Nigam (New Age, New Delhi) 2005.

- 1. Basic Ideas and Concepts in Nuclear Physics : K. Hyde (Institute of Physics) 2004.
- 2. Nuclear physics: Experimental and Theoretical, H.S. Hans (New Academic Science) 1nd ed (2011).
- 3. Nuclear Physics and its applications: John Lile
- 4. Nuclear Physics: V. Devnathan

MS	PH533-	18		Particl	e Physic	CS.		L-3, T-1	, P-0		4 Credi	its
Pre-	requisi	te: cour	se on Q	uantum	mechan	ics and (Quantur	n field T	heory			
static	quark i cles in p	model o proper p	f hadroi erspecti	nservati ns and w ve.	on laws eak inte	. hadron	s so that	to introd interact they gra	ions, re sp the t	In the structure to	1 .	and the second
	CO1	Ov		the part				Il be able		jor histe	orical ar	nd lates
CO2 Understand the implications of various invariance principles and symmetry properties in particle physics.												mmetr
CO3 Master relativistic kinematics for computations of outcome of various real and decay processes											eaction	
CO4 Properties of baryons and mesons in terms of naive nonrelativistic qu										quark m	nodel.	
(CO5		ak inter					and how				
		M	apping	of cour	se oute	omes w	ith the p	program	outcor	nes	117.11	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POIL	PO12
CO1	1	1	1	2	2	1	1	2	1	2	1	3
CO2	1	1	1	2	2	1	1	2	2	2	2	3
03	1	1	1	2	2	ì	1	2	2	2	-	1
04	1	1	1	2	2	1	2	2	2	2	2	2
CO5			1	2	2	1	2		3			

Scheme & Syllabus (M.Sc. Physics) Buch 2018 & Onwards

Page 44 of 73

1. **Introduction:** Fermions and bosons, particles and antiparticles, quarks and leptons, interactions and fields in particle physics, classical and quantum pictures, Yukawa picture, types of interactions - electromagnetic, weak, strong and gravitational, units.

(Lectures 7)

- Invariance Principles and Conservation Laws: Invariance in classical mechanics and quantum mechanics, Parity, Pion parity, Charge conjugation, Positronium decay, Time reversal invariance, CPT theorem. (Lectures 7)
- 3. Hadron-Hadron Interactions: Cross section and decay rates, Pion spin, Isospin, Two nucleon system, Pion-nucleon system, Strangeness and Isospin, G-parity, Total and Elastic cross section, Particle production at high energy. *(Lectures 7)*
- Relativistic Kinematics and Phase Space: Introduction to relativistic kinematics, particle reactions, Lorentz invariant phase space, two-body and three-body phase space, dalitz plots, K-2p-decay, t-θ puzzle, dalitz plots for dissimilar particles, Breit-Wigner resonance formula, Mandelstem variables. (Lectures 7)
- 5. Static Quark Model of Hadrons: The Baryon decuplet, quark spin and color, baryon octer, quark-antiquark combination. (Lectures 7)
- 6. Weak Interactions: Classification of weak interactions, Fermi theory, Parity non conservation in β-decay, experimental determination of parity violation, helicity of neutrino, K-decay, CP violation in K- decay and its experimental determination.

(Lectures 7)

Text Books:

- 1. Introduction to High Energy Physics: D.H. Perkins (Cambridge University Press), 2000.
- 2. Gauge Theory of Elementary Particle Physics: T.P Cheng & L.F. Li (Oxford).
- 3. An Introductory Course of Particle Physics: Palash Pal (CRC Press).

- 1. Elementary Particles : I.S. Hughes (Cambridge University Press), 2rded. 1991.
- 2. Introduction to Quarks and Partons : F.E. CLose (Academic Press, London), 1979.
- 3. Introduction to Particle Physics : M.P. Khanna (Prentice Hall of India, New Delhi), 2004.
- 4. Dynamics of the Standard Model: J.F. Donoghue (Cambridge University Press).
- 5. First Book of Quantum Field Theory: A. Lahiri & P. Pal, Narosa, New Delhi.
- 6. Introduction to Quantum Field Theory: M. Peskin & D.V. Schroeder. (Levant Books).

Elective Subject -I

MS	PH534-1	18	Fil	ore Opt	ies and	Non-lii	icar op	tics	L-3, T-1	, P-0		4 Credi	its
Pre-	requisit	e: U	nde	rstandi	ng of gra	aduate F	evel opt	ics					
*****	rse Obje Nonline of optica	ai c	Jpr	1CS 15 11	CXDOS	C LIE IV	C STH	dents to	jective the bas	of the c ics of t	course o he chali	n Fibre erging	e Opti researc
Cour	se Outc	ome	s: /	At the e	nd of th	e course	, the stu	ident wi	ll be able	e to			
	CO1		Unc	lerstand	the stri	icture e	f optical	fiber ar	nd descri	be prop	erties of	optical	fibers
(CO2							s of fibe			-		
(CO3				e optics			*****					
(CO4	1	Ana	lyze the	e electro	-optic a	nd acou	sto-opti	c effects	in fiber	°S		
(C O 5					effects i							
									orogram	1 outco	mes		
	PO1	PC)2	PO3	PQ4	POS	PO6	PO7	PO8	PO9	PO10	PO11	POI
CO1	2	2		-	1		1		1	-	3		1
CO2	3	2		1	1	1	1	-	1		3	-	1
CO3	2	2			1	-	1	-	1	-	3	-	1
C O 4	3	2		1	1	1	-	-	1	-	3		1
05	3	2		1	1	1		-	1				
									4		3		1

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Page 46 of 73

- Optical fibre and its properties: Introduction, basic fibre construction, propagation of light, modes and the fibre, refractive index profile, types of fibre, dispersion, data rate and band width, attenuation, leaky modes, bending losses, cut-off wavelength, mode field diameter, other fibre types. (Lectures 7)
- Fiber fabrication and cable design: Fibre fabrication, mass production of fiber, comparison of the processes, fiber drawing process, coatings, cable design requirements, typical cable design, testing. (Lectures 5)
- 3. **Optics of anisotropic media:** Introduction, the dielectric tensor, stored electromagnetic energy in anisotropic media, propagation of monochromatic plane waves in anisotropic media, directions of D for a given wave vector, angular relationships between D, E, H, k and Poynting vector S, the indicatrix, uniaxial crystals, index surfaces, other surfaces related to the uniaxial indicatrix, Huygenian constructions, retardation, biaxial crystals, intensity through polarizer/waveplate/ polarizer combinations. *(Lectures 10)*
- 4. Electro-optic and acousto-otpic effects and modulation of light beams: Introduction to the electro-optic effects, linear electro-optic effect, quadratic electro-optic effects, longitudinal electro-optic modulation, transverse electro optic modulation, electro optic amplitude modulation, electro-optic phase modulation, high frequency wave guide, electro-optic modulator, strain optic tensor, calculation of LM for a logitudinal acoustic wave in isotropic medium, Raman-Nath diffraction, Raman-Nath acousto-optic modulator.

(Lectures 10)

5. Non-linear optics/processes: Introduction, anharmonic potentials and nonlinear polarization, non-linear susceptibilities and mixing coefficients, parametric and other nonlinear processes, macroscopic and microscopic susceptibilities. *(Lectures 8)*

Text Books:

1. The Elements of Fibre Optics: S.L. Wymer and Meardon (Regents/Prentice Hall), 1992.

Reference Books:

- 1. Lasers and Electro-Optics: C.C. Davis (Cambridge University Press), 1996.
- 2. Optical Electronics: Gathak & Thyagarajan (Cambridge Univ. Press), 1989.
- 3. The Elements of Non-linear Optics: P.N. Butcher & D. Cotter (Cambridge University Press), 1991.

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

MSI	PH535-	18	T	adiati	n DL			¥ 6 00 1	1976		e Subj	
112133	• & ≣ «J «J «J «J «	10	r	Radiatio	n rnys	ICS		L-3, T-1	, P-0		4 Credi	ts
Pre-	requisi	te: Und	erstandi	ng of gr	aduate l	evel nuc	clear phy	ysics				
that to be	they und radiatio	lerstand	the det clear ph	e relativ ails of ti ysicists	ie under in their	anced to dying a career.	spects a	on Rad diation I ad caa u	physics so the to	and much		A Practice March
	C01	Un		l variou	is mod	es of i		ll'òe able on of e		agnetic	radiatic	ons an
	CO2	Dis	tinguish	various	types :	of radiat	ions bas	ed on th	eir inter	action w	ith mat	ter.
CO3 Learn and understand about different detectors and their use for												
4	CO4	Use	e differe	nt analy	tical rec	hnique :	such as	XRF, PE roscopy.	XE, neu			
(C O 5	Des	ign exp	eriments	s to ano!	yze effe	ects of ra	diation	on varic	ous objec	ets.	
								program				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C O 1	1	1	1	-	1	1	1	1	1	2	1	2
C O2	1	1	1	-	1	2	2	1	2	2	2	2
000	2	1	2	2	2	2	2	2	2	2	2	2
203			2	2	2	3	3	2	2	2	2	2
CO3	2	2	2									

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Page 48 of 73

1. Interaction of electromagnetic radiations with Matter: Different photon interaction processes viz. photoelectric effect, Compton scattering and pair production. Minor interaction processes, Energy and Z dependence of partial photon interaction processes. Attenuation coefficients, Broad and narrow beam geometries. Multiple scattering.

(Lectures 8)

2. Interaction of charged particles with Matter: Elastic and inelastic collisions with electrons and atomic nucleus. Energy loss of heavy charged particles. Range-energy relationships, Straggling. Radiative collisions of electrons with atomic nucleus.

(Lectures 8)

 Nuclear Detectors and Spectroscopy: General characteristics of detectors, Gas filled detectors, Organic and inorganic scintillation detectors, Semi-conductor detectors [Si(Li), Ge(Li) HPGe]. Room temperature detectors, Gamma ray spectrometers. Gamma ray spectrometry with NaI(Tl) scintillation and semiconductor detectors.

(Lectures 8)

(Lectures 8)

- 4. Nuclear spectrometry and applications: Analysis of nuclear spectrometric data, Measurements of nuclear energy levels, spins, parities, moments, internal conversion coefficients, Angular correlation, Perturbed angular correlation, Measurement of g-factors and hyperfine fields. *(Lectures 8)*
- 5. Analytical Techniques: Principle, instrumentation and spectrum analysis of XRF, PIXE and neutron activation analysis (NAA) techniques. Theory, instrumentation and applications of electron spin resonance spectroscopy (ESR). Experimental techniques and applications of Mossbauer effect, Rutherford backscattering. Applications of elemental analysis, Diagnostic nuclear medicine, Therapeutic nuclear medicine.

Text Books:

- 1. The Atomic Nucleus: R.D. Evans, Tata Mc Graw Hill, New Delhi.
- 2. Nuclear Radiation Detectors: S. S. Kapoor and V. S. Ramamurthy, New Age, International, New Delhi.

- 1. Radiation Detection and Measurements: G. F. Knoll, Wiley & Sons, New Delhi.
- 2. Introductory Nuclear Physics: K. S. Krane, Wiley & Sons, New Delhi.
- 3. An Introduction to X-ray Spectrometry: Ron Jenkin, Wiley.
- 4. Techniques for Nuclear and Particle Physics Experiments: W. R. Leo, Narosa Publishing House, New Delhi.
- 5. Introduction to experimental Nuclear Physics: R.M. Singru, Wiley & Sons, New Delhi.

Elective Subject -I

3.403												
MSI	PH536-	18	No	nlinear	Dynam	lics		L-3, T-1	, P-0		4 Credi	ts
Pre-1	requisi	te: Unde	erstandir	ng of gra	aduate le	evel phy	sics					
the iv	1.5c. sti	ectives: idents w system:	vith the	n and o pasies o	bjective f the rec	of the c ently er	ourse of nerging	n Nonlin research	ear Dy field o	n amics f dynam	is to far ics of n	niliari. online
Cour	se Out	comes:	At the e	nd of the	e course	, the stu	dent wi	ll be able	e to			
(CO1	Un cha	derstand los.	l basie k	nowledy	ee of no	nlinear	dynamic	s and pl	henomer	nology (of
CO2 Apply the tools of dynamical systems theory in context to models.												
CO3 Learn skills by solving problems on solving nonlinear problems using numethods.											ing nun	nerical
CO4 Understand Hamilton approach for describing various ph										sical sys	tem.	
(05	Qua	antify cla	assical c	haos an	d Quant	um cha	os.				
		M	lapping	ofcour	se cutri	mes w	ith the J	program	outcor	nes		
	PO1	PO2	PO3	PO4	POS	PO6	PO7	PO8	PO9	PO10	PO11	POI
C01	2	1	-	1	-	1	2	1	2	2	2	2
CO2	2	2	2 1		1	1	1	1	1	2	1	1
CO3	3	2	-	2		1	2	1	Ĩ	2	1	1
CO4	2	2	-	2	1	1	2	1	1	2	1	1
1.1		-										

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Page 50 of 73

 Phenomenology of Chaos: Linear and nonlinear systems, A nonlinear electrical system, Biological population growth model, Lorenz model; determinism, unpredictability and divergence of trajectories, Feigenbaum numbers and size scaling, self similarity, models and universality of chaos. (Lectures 8)

2. **Dynamics in State Space:** State space, autonomous and nonautonomous systems, dissipative systems, one dimensional state space, Linearization near fixed points, two dimensional state space, dissipation and divergence theorem. Limit cycles and their stability, Bifurcation theory, Heuristics, Routes to chaos. Three-dimensional dynamical systems, fixed points and limit cycles in three dimensions, Lyapunov exponents and chaos. Three dimensional iterated maps, U-sequence. *(Lectures 10)*

3. **Hamiltonian System**: Non-integrable systems, KAM theorem and period doubling, standard map. Applications of Hamiltonian Dynamics, chaos and stochasticity.

(Lectures 8)

4. Quantifying Chaos: Time series, Lyapunov exponents. Invariant measure, Kolmogorov - Sinai entropy. Fractal dimension, Statistical mechanics and thermodynamic formalism.

(Lectures 7)

5. Quantum Chaos: Quantum Mechanical analogies of chaotic behaviour, Distribution of energy eigenvalue spacing, chaos and semi-classical approach to quantum mechanics.

(Lectures 7)

Text Books:

1. Chaos and Non Linear Dynamics: R.C. Hilborn (Oxford Univ. Press), 2001.

- 1. Chaos in Dynamical Systems: E. Ott (Cambridge Univ. Press), 2001.
- 2. Applied Nonlinear Dynamics: A.H. Nayfeh and B. Balachandran (Wiley), 1995.
- 3. Chaos in Classical and Quantum Mechanics: M.C. Gutzwiller (Springer-Verlag), 1990.

I. K. Gujral Punjab Technical University, Kapurthala

Elective Subject -II

MS	PH537-	18		Plasma	Physic	8	1	L-3, T-1	, P-0		4 Cred	its
Pre-	requisit	te: Cour	se on El	lectrody	namics							
Cou M.So	rse Obj c. stude	ectives: nts to th	The ai e basics	im and of the c	objectiv halleng	e of the	e course arch fiel	e on Pl a d Plasm	asma P a physi	hysics i cs.	s to ex	pose tl
Cou	rse Out	comes:	At the e	ad of the	e course	, the stu	dent wi	ll be abl	e to			
	C01	Un of p	derstanc plasma.	the ori	gin of _I	olasma,	conditic	ons of pl	lasma fo	ormation	and pr	opertie
	CO2	Dis stat	tinguish istical a	i betwee pproach	en the to desc	single p tibe diff	article erem pl	approac asma ph	h, fluic enomer	appros	ich and	kineti
	CO3	Cla	ssify pr		on of el	ectrosta				c waves	in mag	gnetize
	CO4	Des mot	cribe th pility for	e basic both m	transpor agnetize	t pheno ed and n	mena si on-mag	ich as p netized	lasma re plasmas	esistivity 3.	, diffus	ion an
(CO5	For	nulate	the con mic equ	ndinons	for d	escribin	e a p	asma	to be yze the	in a s stability	tate o of thi
		M	apping	of cour	se oute	mes wi	th the p	rogram	outcoi	nes		
	PO1	PO2	PO3	PO4	POS	PO6	PO7	PO8	PO9	PO10	POII	PO12
CO1	1	1	1	-	1	1	1	1	2	2	1	2
02	1	1	1	-	1	1	1	1	2	2	1	2
03	1	1	ì	-	1	1	1	1	2	2	1	2
CO4	1	1	1		1	1	1	1	3	2	1	2
		3	2	2		2						

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Page 52 of 73

- 1. **Introduction:** Plasma State, elementary concepts and definitions of temperature and other parameters, occurrence and importance of plasma for various applications, Production of Plasma in the laboratory, Physics of glow discharge, electron emission, ionization, breakdown of gases, Paschen's laws and different regimes of E/p in a discharge, Townsend discharge and the evolution of discharge. *(Lectures 8)*
- 2. Plasma diagnostics: Probes, energy analyzers, magnetic probes and optical diagnostics, preliminary concepts. (Lectures 5)
- 3. Single particle orbit theory: Drifts of charged particles under the effect of different combinations of electric and magnetic fields, Crossed electric and magnetic fields, Homogenous electric and magnetic fields, spatially varying electric and magnetic fields, time varying electric and magnetic fields, particle motion in large amplitude waves.

(Lectures 8)

- 4. Fluid description of plasmas: distribution functions and Liouville's equation, macroscopic parameters of plasma, two and one fluid equations for plasma, MHD approximations commonly used in one fluid equations and simplified one fluid and MHD equations. dielectric constant of field free plasma, plasma oscillations, space charge waves of warm plasma, dielectric constant of a cold magnetized plasma, ion- acoustic waves, Alfven waves, Magnetosonic waves. *(Lectures 10)*
- 5. Stability of fluid plasma: The equilibrium of plasma, plasma instabilities, stability analysis, two stream instability, instability of Alfven waves, plasma supported against gravity by magnetic field, energy principle. microscopic equations for my body system: Statistical equations for many body systems, Vlasov equation and its properties, drift kinetic equation and its properties. (Lectures 7)

Text Books:

1. Introduction to Plasma Physics, F.F. Chen

- 1. Principles of Plasma Physics, Krall and Trievelpice
- 2. Introduction to Plasma Theory, D.R. Nicholson
- 3. The Plasma State, J.L. Shohet
- 4. Introduction to Plasma Physics, M. Uman
- 5. Principles of Plasma Diagnostic, I.H. Hutchinson

I. K. Gujral Punjab Technical University, Kapurthala

Elective Subject-II

MS	PH538-		ructure Biomol		tra and	Properi	ties	L-3, T-1	, P-0		4 Cred	ts
Pre-	requisit	te: Unde	erstandi	ng of gr	aduate le	vel che	mistry a	and phys	ics			
OI D	TOULOIC	unca 12	to ram	manze	the M.S	C. SUICE	ents wo	on Struc th the bar ties of E	acies of	the was	and pr cently e	opertie mergin
Cour	rse Out	comes:	At the e	nd of th	e course	, the stu	ident wi	ll be able	e to			
CO1 Describe various structural and chem								onding a	ispects	of Biom	olecule	s.
CO2 Understand structure and the Biomolecules.												
(CO3	Une Bio	derstand	use of es.	various	spectro	scopic	techniqu	es and	their ap	plication	n to the
(CO4		derstand	the stru	icture-Fi	inction	relation	ship and	modeli	ng of bio	omoleci	iles.
(CO5							n to inter				
		Μ	lapping	ofcour	se outer	omes wi	ith the _l	program	outcor	mes		
	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	2	2]	2	1	2	2	1	2
CO2	2	2	1	2	2	2	2	-	2	2	1	2
03	2	2	1	2	1	2	2	-	2	2	1	2
CO4	2	2	1	2	2	2	2	-	2	2	1	2
204												

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Page 54 of 73

- Structure Aspects of Biomolecule: Conformational Principles, Conformation and Configuration Isomers and Derivatives, Structure of Polynucleotides, Structure of Polypeptides, Primary, Secondary, Tertiary and Quaternary Structure of Proteins, Structure of Polysaccharides. (Lectures10)
- 2. Theoretical Techniques and Their Application to Biomolecules: Hard Sphere Approximation, Ramachandran Plot, Potential Energy Surface, Outline of Molecular Mechanics Method, Brief ideas about Semi-empirical and Ab initio Quantum Theoretical Methods, Molecular Charge Distribution, Molecular Electrostatic Potential and Field and their uses. (Lectures 10)
- Spectroscopic Techniques and their Application to Biomolecules: Use of NMR in Elucidation of Molecular Structure, Absorption and Fluorescence Spectroscopy, Circular Dichroism, Laser Raman Spectroscopy, IR spectroscopy, Photoacoustic Spectroscopy, Photo-biological Aspects of Nucleic Acids. (Lectures 10)
- 4. Structure-Function Relationship and Modeling: Molecular Recognition, Hydrogen Bonding, Lipophilic Pockets on Receptors, Drugs and Their Principles of Action, Lock and Key Model and Induced fit Model. (Lectures 10)

Text Books:

1. Srinivasan & Pattabhi: Structure Aspects of Biomolecules.

Reference Books:

- 1. Govil & Hosur: Conformations of Biological Molecules
- 2. Price: Basic Molecular Biology
- 3. Pullman: Quantum Mechanics of Molecular Conformations
- 4. Lehninger: Biochemistry
- 5. Mehler & Cordes: Biological Chemistry
- 6. Smith and Hanawait: molecular Photobiology, Inactivation and Recovery

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

M	ISPH53	9-18	S	cienco	of Dor						Electiv	ve Subj	ect - 11
			1~	nergy	of Rene	wable s	Source (of	L-3, T-	-1, P-0	4 Cr	edits	
Pr	e-requi	site:	Und	lerstand	ding of g	raduate	level se	emicond	uctor ph	unian			
Co	urse O	hier	tivo	The					urse on the alter		e of rei	newable sources	Ener like so
									ill be ab			1000	
	C01		Un	derstar		nergy d	errand		l & dist		betweer	1 traditi	onal ar
	CO2							rgy radia	tion and	tharma	1		
	CO3		Ana	alyze n	naking o	f solar c	ell and	its types	the second the	dicima	applica	ations.	
	CO4								rage and	transm			
	C05		Con	npare v	vind or s	rgy: wa	vu energ	and o	cean the	rmal en	ration	methods	š.
			M	apping	g of cou	rse outo	omes w	ith the	progran	1 outcon	nes	version	
	PO1	P	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	T
CO1	2	1		-	1	-	1	2	1	2	3		PO12
02	2	2		I	2	1	1	1	1	1		2	2
03	3	2		-	2	1		2			3	1	1
04	2	2		_	2				1	1	3	1	1
05	2			1		1	1	2	1	1	3	1	1
03	2	2		-	2	1	1	2	1	1	3	1	

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Page 56 of 73

- 1. Introduction: Production and reserves of energy sources in the world and in India, need for alternatives, renewable energy sources. (Lectures 8)
- 2. **Solar Energy**: Thermal applications, solar radiation outside the earth's atmosphere and at the earth's surface, Principal of working of solar cell, Performance characteristics of solar cell. Types of solar cell, crystalline silicon solar cell, Thin film solar cell, multijunction solar cell, Elementary ideas of perovskite solar cell, dye synthesized solar cell and Tandem solar cell, PV solar cell, module, array, and panel, Applications.

(Lectures 11)

3. **Hydrogen Energy**: Environmental considerations, solar hydrogen through photo electrolysis and photocatalytic process, physics of material characteristics for production of solar hydrogen. Storage processes, solid state hydrogen storage materials, structural and electronic properties of storage materials, new storage modes, safety factors, use of hydrogen as fuel; use in vehicles and electric generation, fuel cells.

(Lectures 10)

4. Other sources: Nature of wind, classification and descriptions of wind machines, power coefficient, energy in the wind, wave energy, ocean thermal energy conversion (OTEC), system designs for OTEC, basic idea about biogas, biofuel, and biodiesel.

(Lectures 8)

Text Books:

1. Solar Energy: S.P. Sukhatme (Tata McGraw-Hill, New Delhi), 2008.

Reference Books:

- 1. Solar Cell Devices: Fonash (Academic Press, New York), 2010.
- 2. Fundamentals of Solar Cells, Photovoltaic Solar Energy: Fahrenbruch and Bube (Springer, Berlin), 1982.
- 3. Photoelectrochemical Solar Cells : Chandra (New Age, New Delhi).

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

	PH540-1	18 (Conden	sed Mat	tter Phy	sics La	b 1	L-3, T-1	, P-0		4 Credi	ts			
Pre-	requisit	e: Unde	erstandir	ig of gra	iduate le	vel soli	d state p	physics e	experim	ents					
physi	rse Obje ain the s cs so t sticated	hat the	y can	investig	s to ad tate var	ious re	AVPARIT	ionial te	in the set of the set of	anal See more	1	a concentration a			
Cour	se Outc	omes: /	At the er	nd of the	e course	the stu	dent wil	l be able	e to						
(CO1	Mea	asure co	nductiv	ity, resi	stivity ar	nd thern	no-dyna	mical p	roperties	of solid	ls.			
(CO2		Measure conductivity, resistivity and thermo-dynamical properties of solids. Measure magnetic properties and magnetic behavior of magnetic materials.												
(03	Des	Describe the lattice dynamics of simple lattice structures in terms of dispersion relations.												
CO4		Des anal	Design and carry out scientific experiments as well as accurately record and analyze the results of experiments.												
(05	Solv	e proble	em with	critical	thinking	g and an	alytical	reasoni	ng.					
	The second s					mes wi									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12			
C O 1	2	1	1	1	1	-	-	2	2	2	2	2			
02	2	1	1	1	Ŧ	-	-	2	2	2	2	2			
			1	1	ì	-		2	2	2	2				
03	1	1	1	2	· · · ·			4	4	4	2	2			
CO3	1	2	2	2	2	2	2	2	2	2	2	2			

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Page 58 of 73

Note: Students are expected to perform atleast ten experiments out of following list.

- 1. To study temperature dependence of conductivity of a given semiconductor crystal using four probe method.
- 2. Verification of curie-weiss law for the electrical susceptibility of a ferroelectric material.
- 3. To determine charge carrier density and Hall coefficient by Hall effect.
- 4. To determine magnetic susceptibility of material using Quink 's tube method.
- 5. To determine energy gap and resistivity of the semiconductor using four probe method.
- 6. To study the B-H loop characteristics.
- 7. To determine dielectric constant of a material with Microwave set up.
- 8. To measure the Curie temperature of a given PZT sample.
- 9. To measure the velocity of ultrasonic wave in liquids.
- 10. To study dispersion relation for Mono-atomic and Diatomic lattices using Lattice dynamic kit.
- 11. To study the properties of crystals using X-Ray Apparatus.

Text Books:

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, New York), 8th ed. 2005.
- 2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.

- 1. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1971
- 2. Solid State Theory: Walter A. Harrison (Tata McGraw-Hill, New Delhi) 1970.
- 3. Liquid Crystals: S. Chandrasekhar (Cambridge University), 1nd ed. 1991.

Elective Subject -III

NIS.	PH541-	-18 Ph	ysics of	f Nanon	naterial	S		L-3, T-1	, P-0		4 Credi	ts		
Pre-	requisi	te: Con	densed	matter	physics									
rann	of diff	ne stude	Ints of M	4.SC. 10	the van	IOUS asp	ects rela	e on Ph ated to pr can purs	renarati	on char	antonino	tion on		
Cour	se Out	comes:	At the e	nd of th	e course	, the stu	ident wi	ll be able	e to					
CO1 Apply the knowledge on free electron theory to the band structure insulators, and semiconductors.											ture of	metal		
	CO2	Aco	quire kn	synthes	ize the i	inorgani	c nanop	article						
(CO3	Des	Describe the use of unique optical properties of nanoscale metallic structures for analytical and biological applications											
•	C O 4	Uno nan	derstand ostructu	the pl red mes	hysical oporous	and ch s materia	emical als.	properti	es of	carbon	nanotub	es an		
(CO5	Det	ermine cepts, no	the stru ot appric	cture-pr cable at	operty larger le	relation ngth sci	ships in ales.	nanom	aterials	as well	as th		
		ĨM	lapping	of cour	se oute	onies w	ith the j	program	outcor	mes				
	PO1	PO2	PO3	r ² O4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	2	2	3	3	1	2	1	1	2	2	3		
CO2	1	2	2	3	3	2	2	1	1	2	2	3		
	1	2	2	3	3	2	2	.1	ì	2	2	3		
CO3			2	3	3	2	2	1	1	2	2			
CO3	1	2	14				20			18047	20	3		

Scheme & Syllabus (M.Sc. Physics) Bruch 2018 & Onwards

Page 60 of 73

- Introductory Aspects: Free electron theory and its features, Idea of band structure metals, insulators and semiconductors. Density of state in one, two, and three dimensional bands and its variation with energy, Effect of crystal size on density of states and band gap. Examples of nanomaterials. (Lectures 8)
- 2. **Preparation of Nanomaterials:** Bottom up: Cluster beam evaporation, ion beam deposition, chemical bath deposition with capping techniques and Top down: Ball Milling.

(Lectures 8)

- 3. General Characterization Techniques: Determination of particle size, study of texture and microstructure, Increase in x-ray diffraction peaks of nanoparticles, shift in photo luminescence peaks, variation in Raman spectra of nanomaterials, photoemission microscopy, scanning force *(Lectures 8)*
- 4. Quantum Dots: Electron confinement in infinitely deep square well, confinement in one and two-dimensional wells, idea of quantum well structure, Examples of quantum dots, spectroscopy of quantum dots. (Lectures 8)
- 5. Other Nanomaterials: Properties and applications of carbon nanotubes and nanofibres, Nanosized metal particles, Nanostructured polymers, Nanostructured films and Nano structured semiconductors. *(Lectures 8)*

Text Books:

- 1. Nanotechnology-Molecularly Designed Materials: G.M. Chow & K.E. Gonsalves (American Chemical Society), 1996.
- 2. Nanotechnology Molecular Speculations on Global Abundance: B.C. Crandall (MIT Press), 1996.

- 1. Quantum Dot Heterostructures: D. Bimerg, M. Grundmann and N.N. Ledentsov (Wiley), 1998.
- 2. Nanoparticles and Nanostructured Films-Preparation, Characterization and Application: J.H.Fendler (Wiley), 1998.
- 3. Nanofabrication and Bio-system: H.C. Hoch, H.G. Craighead and L. Jelinski (Cambridge Univ. Press), 1996.
- 4. Physics of Semiconductor Nanostructures: K.P. Jain (Narosa), 1997.
- 5. Physics of Low-Dimension Semiconductors: J.H. Davies (Cambridge Univ. Press) 1998.
- 6. Advances in Solid State Physics (Vo.41): B. Kramer (Ed.) (Springer), 2001.

I. K. Gujral Punjab Technical University, Kapurthala

Elective Subject -III

MS	PH542	-18				iques in Physics		L-3, T-1	, P-0		4 Cred	its		
Pre-	requisi	te: Cou	rse on N	luclear I	hysics	and Part	icle Phy	sics		1				
	TALES COLLI		AC 1 11 V 3	11	1 MX DOSP	THA CITS	パネスをおうすい ノヘル	irse on M.Sc. s clear phy	A					
								ll be abl						
	CO1	Un rad	derstan liations	d variou with ma	s experi tter	mental t	echniqu	les for de	escribin	g interac	tion of			
(CO2	Us	Use various statistical methods for experimental data.											
(CO3	Kn		e about				of the		n detec	tors ar	id thei		
CO4		Intr	Introduced to neutron physics, methods to detector slow and fast neutrons.											
(CO5	Equ	ipped v	with the	basic kn		e about	the expe						
		M	lapping	of cour	se oute	mes w	ith the j	orogran	outcos	mes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	-	-	2	-	ł	-	-	1	1	1	1	1		
CO2	-	-		3		-	-	3	1	1	1	1		
CO3	-	-	1	2	3	-	I	3	2	2	2	2		
04	-	-	1	3	3	1	1	2	2	2	2	2		
		· · · · · · · · · · · · · · · · · · ·										-		

Page 62 of 73

- Detection of radiations: Interaction of gamma-rays, electrons, heavy charged particles, neutrons, neutrinos and other particles with matter. General properties of Radiation detectors, energy resolution, detection efficiency and dead time. Statistics and treatment of experimental data. (Lectures 8)
- 2. **Detectors:** Gas-filled detectors, Proportional counters, space charge effects, energy resolution, time characteristics of signal pulse, position-sensitive proportional counters, Multiwire proportional chambers, Drift chamber, Time projection chamber. Organic and inorganic scintillators and their characteristics, light collection and coupling to photomultiplier tubes and photodiodes, Semiconductor detectors, Ge and Si(Li) detectors, Charge production and collection processes, Pulse height spectrum, General background and detector shielding.

(Lectures 16)

3. Applications of Detectors: Description of electron and gamma ray spectrum from detector, semiconductor detectors in X- and gamma-ray spectroscopy, Compton-suppressed, Semiconductor detectors for charged particle spectroscopy and particle identification.

(Lectures 8)

4. **Experimental methods:** Large gamma and charge particle detector arrays, heavy-ion reaction analysers, production of radioactive ion beams. Detector systems for high energy experiments: Collider physics (brief account), Particle Accelerators (brief account), Modern Hybrid experiments- CMS . (Lectures 8)

Text Books:

1. Techniques in Nuclear and particle Experiments by W.R. Leo (Springer), 1994.

- 1. Radiation detection and measurement by Glenn F. Knoll (Wiley), 2010.
- 2. Introduction to Experimental Particle Physics by Richard Fernow (Cambridge University Press), 2001.
- 3. Detectors for particle radiation by Konrad Kleinknecht (Cambridge University Press), 1999.

1. K. Gujral Punjab Technical University, Kapurthala

Elective Subject -III

MS	PH543-		upercon emperat	ductivit ture Phy	y and I vsics	70M		L-3, T-1	, P-0		4 Cred	its
Pre-	requisit	te: cour	se in Co	ndensed	Matter	Physics						
super trend impo achie backy	reconduc ls in the rtant to wable te ground o	tivity. experiod to e emperated of low t	The c ild fun Students mental t xplore r ure now emperat	will no techriqu ich phy is close ure techi	t only b on as w sics of to few niques a	well as earn the rell. Lov superco μK. Stu is well a	advan oretical v tempe nductiv idents w s the hig	aced un aspects rature is ity. Wit vill also gh-Tc su	derstan but als s one o h latest be intro percond	ding in o acquai f the mc technol	the inted wi ost versa logy the	field of the field
	C01		eoretical							vity		
	CO2	Co	rrelate o percondu	bserved							with o	rigin o
(CO3		scribe ercondu		iate t	heoretic	al mo	del fo	r des	cribing	behav	ior o
(04	Pro	vide exp lerstandi	osure to ng of lo	High T w tempo	c class of	of super echniqu	conduct es.	ors and	theoreti	cal	
(005	Pro sup	vide exp ercondu	osure at ctivity.	out the	experin	iental te	chnique	s îor m	easurem	ent of	
		IV.	lapping	of cours	se outco	mes wi	th the p	rogram	outcoi	nes		
	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C O 1	1	2	2	2	2	2	2	1	2	2	1	3
03	1	2	2	2	2	2	2	1	2	-	-	3
	1	2	2	2	2	2	2	-	2	-	3	3
03							-		2			
CO3	1	2	2	2	2	2	2		2	2	2	3

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Page 64 of 73

- 1. **Superconductivity:** Introduction, Thermodynamics, The London Equations, penetration depth, Superconductors in magnetic field, Ginzberg-Landau Theory, Type I and II superconductors, BCS theory, second quantization, Cooper Pairing, energy gap Tunnelling, Josephson effects and SIS tunneling. *(Lectures 10)*
- 2. **Preparation and measurement techniques:** Single crystal growth: Optical image furnace, seeded melt growth, Thin film deposition: Pulsed laser deposition, sputtering, Resistivity measurements, magnetic measurements, Point contact spectroscopy, scanning tunneling microscopy and spectroscopy. *(Lectures 10)*
- 3. Cryogenics: Thermal and electrical properties of different materials at low temperatures, Cooling methods above 1K, Joule-ThomPOn, Gifford-McMohan, Evaporation cooling, Liquefication of Helium, Cooling methods below 1K, dilution refrigeration, adiabatic demagnetisation. (Lectures 10)
- 4. Introduction to high-Tc superconductors: Discovery of high-Tc superconductors, Mechanisms of superconductivity in high-Tc superconductors, Introduction to high-Tc superconducting compound like YBCO, Synthesis, Structure and properties, Electronics and applications. (Lectures 10)

Text Books:

1. Introduction to superconductivity: Michael Tinkham, Courier Corporation, 2004.

- 1. Introduction to superconductivity: A.C. Rose-Innes and E.H. Rhoderick, Pergamon Press, 2004.
- 2. Experimental techniques in low temperature physics: G.K. White and P.J. Meeson, Oxford Univ. Press, 2001.
- 3. Experimental low temperature physics: A. Kent, MacMillan Press, 1992.
- 4. The theory of superconductivity in high-TC Cuprates: *P.W. Anderson*, Princeton Series Publications.

I. K. Gujral Punjab Technical University, Kapurthala

Elective Subject -IV

MSI	PH544-		dvanced hysics	d Condo	ensed M	latter		L-3, T-	1, P-0		4 Cred	its		
Pre-	requisi	te: cou	rse on Co	ondense	d Matte	r Physic	s							
super to use	rconduc e the rel	tivity, levant t	: The old c. stude magnetic echnique	resona es in the	nce tech ir later c	ely adva niques career.	and disc	pics like ordered	e optica solids so	1	100			
			At the e											
	CO1	Com	omprehe	nd and ic theor	descr ies.	ibe the	e Optic	cal pro	perties	of sol	ids en	nployin		
	CO2	Ex co	Explain various types of magnetic phenomenon in solids, underlying physics, and correlation with the applications.											
(CO3	Ur	Understand and realize the use of NMR methods for describing solids.											
(CO4		Interpret the phenomena, behavior and applications of superconductors.											
(CO5	Fig	ure out ids									avior o		
		N	lapping	of cour	se out	omes w	ith the j	program	n outco	mes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	2	2	2	2	1	1	2	2	2	3		
CO2	2	2	2	2	1	2	1	2	2	1	2	3		
CO3	3	2	2	2	2	1	2	2	2	2	1	2		
CO4	2	2	2	2	2	2	2	1	2	2	2	2		
05	3	2	2	2	1	2	2	2						
				-		4	2.	2.	2	1	2	3		

٠

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwords

Page 66 of 73

- Optical Properties: Macroscopic theory; Reflectance and Transmittance of a slab; generalized susceptibility, Kramers- Kronig relations, Brillouin scattering, Raman effect in crystals; interband transitions. (Lectures 8)
- 2. **Magnetism:** Dia and para-magnetism in materials; Langevin theory of diamagnetism, quantum theory of diamagnetism and paramagnetism, Exchange interaction. Heisenberg Hamiltonian; Hubbard model; mean field theory; Ferro-, ferri- and antiferromagnetism; Magnons: spin waves, thermal excitation of magnons; Bloch T2/1 law. (Lectures 8)
- 3. Nuclear Magnetic Resonance in Solids: Origin of NMR in solids– equations of motion, line width, motional narrowing, Knight shift. (Lectures 8)
- 4. Superconductivity: Experimental Survey; Basic phenomenology; Vortex state of a Type II superconductors; BCS pairing mechanism and nature of BCS ground state; Flux quantization; Tunneling Experiments; High Tc superconductors; Ginzburg-Landau theory; Greens functions at zero temperature; Applications of Greens functions to superconductivity. (Lectures 8)
- 5. **Disordered Solids:** Basic concepts in point defects and dislocations; Noncrystalline solids: diffraction pattern, Glasses, Amorphous semiconductors and Ferromagnets, Heat capacity and Thermal conductivity of amorphous solids; Quasicrystals. (Lectures 8)

Text Books:

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, New York) 2005.
- 2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.

- 1. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1971.
- 2. Solid State Physics: H. Ibach and H. Luth (Springer, Berlin), 2rd. ed. 2001.
- 3. A Quantum Approach to Solids: P.L. Taylor (Prentice-Hall, Englewood Cliffs), 1970.
- 4. Intermediate Quantum Theory of Solids: A.O.E. Animalu (East-West Press, New Delhi), 1991.
- 5. Solid State Physics : Ashcroft and Mermin (Reinhert & Winston, Berlin), 1976.

Elective Subject -IV

MSI	PH545-1	18	Adva	nced Pa	rticle P	hysics	I	3, T-1,	P-0	4	Credi	ts		
Pre-1	equisit	e: Knov	vledge c	of partic	le physio	CS								
stude field schen high o	nts of M theory, nes so tl energy p	4.Sc. cla standar hat they ohysics.	ass to th d mode unders	e relativ l of par tand the	vely adv ticle phy se napce	anced to ysics, Q is prope	opics rel CD and erly and	nced Pa lated to s l quark r are well	symmet nodel, equipp	ry break and vari	ing in q	uantur ficatio		
		- ,						ll be able						
(CO1	Unacti	derstand ion, sym	l variou imetry b	s global reaking	and loc , and Hi	cal gaug ggs mec	e symm hanism.	etries o	i system	i, invari	ance o		
(CO2		Need for standard model of particle physics and its limitations and the properties of QCD.											
CO3		Def	Define the problem of divergencies in quantum field theories and the renormalisation methods.											
(CO4	Asy	mptotic -abelian	freedor gauge	n and in theory o	f strong	lavery o interact	f the run ions -QC	ning co CD.	upling c	onstant	in		
(CO5	Giv	en expo	sure abo	out the p	inysics b	beyond t	he Stand	ard Mo	del.				
		M	lapping	of cour	se outc	omes wi	ith the f	orogram	outcor	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12		
CO1	2	2	2	2	2	2	2		2	1	2	2		
CO2	2	1	1	2	2	2	2	-	2	1	2	2		
03	1	2	1	2	2	2	2	-	2	3	1	2		
C O 4	1	1	2	1	2	2	2	-	1	2	1	2		
		2	2		2	2	2		2					

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Page 68 of 73
Detailed Syllabus:

- Symmetries and Symmetry Breaking in QFT: Continuous groups: Lorentz group SO(1,2) and its representations, Unitary groups and Orthogonal groups and their representations, Discrete symmetries: Parity, Charge Conjugation and Time reversal Invariance, CP, CPT. (Lectures 10)
- Global and Local invariances of the Action: Approximate symmetries, Noethers theorem, Spontaneous breaking of symmetry and Goldstone theorem, Higgs mechanism, Abelian and Non-Abelian gauge fields, Lagrangian and gauge invariant coupling to matter fields. (Lectures 10)
- 3. **Standard Model of Particle Physics:** SU(2) x SU(1) x U(1) gauge theory, Coupling to Higgs and Matter fields of 2 generations, Gauge boson and fermion mass generation via spontaneous symmetry breaking, CKM matrix, Low energy Electroweak effective theory and Decoupling, Elementary electroweak scattering processes. (Lectures 10)
- 4. QCD and quark model: Asymptotic freedom and Infrared slavery, confinement hypothesis, Approximate flavor symmetries of the QCD lagrangian, Classification of hadrons by flavor symmetry: SU(1) and SU(2) multiplets of Mesons and Baryons, Chiral symmetry and chiral symmetry breaking, Sigma model, Parton model and Deep inelastic scattering structure functions. (Lectures 10)

Text Books:

- 1. Gauge Theory of Elementary Particle Physics: T.P Cheng & L.F. Li (Oxford).
- 2. An Introductory Course of Particle Physics: Palash Pal (CRC Press).

- 1. First Book of Quantum Field Theory: A. Lahiri & P. Pal, Narosa, New Delhi.
- 2. Introduction to Quantum Field Theory: M. Peskin & D.V. Schroeder. (Levant Books).
- 3. Dynamics of the Standard Model: J.F. Donoghue (Cambridge University Press).

Elective Subject -IV

MSP	PH546-1	8	Envi	ronmer	ntal Phy	sics	I	2-3, T-1	, P-0	4	Credi	ts
Pre-r	equisite	e: Know	vledge o	f classic	al physi	ics					10-10-10-10-10-10-10-10-10-10-10-10-10-1	
of M	Sc phy	sics to	the reco	ent adva	ancemer	its in th	is field	so that	they un	nderstan	d these	aspect
Cour	se Outc	omes: A	At the er	nd of the	e course.	, the stu	dent wil	ll be able	e to			
(CO1	Unc	derstand	the diff	erent ty	pes of p	ollution	that occ	cur in th	e Earth'	s enviro	nment
(C O2	App	oly the la	aws of r	adiation	to Sola	r and Te	errestrial	Radiat	ion		
(03	Des exp	cribe the	e main 1 challeng	eservoii ges invo	rs and ex lved in t	xchange reducing	s in the g CO2 e	global c mission	arbon cy s	ycle and	
(CO4	App	lication	in the I	Renewal	ole sour	ces of er	nergy	(Autor)			
(205	Des fron	cribe ho n the loc	ow poll al envir	ution ar onment	to the g	ate are (lobal Ea	modelle arth syst	d on di em.	fferent	scales,	rangin
		M	apping	of cour	se outc	omes wi	ith the _l	progran	n outcor	mes	-1	
	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2	2	2	2	2	2	2	2	2	1	2	3
CO2	2	1	2	2	2	2	2	2	2	2	2	2
CO3	2	2	2	2	2	2	2	2	2	1	2	2
CO4	1	2	1	2	2	2	2	2	2	2	-	3
04							1	1				

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Page 70 of 73

Detailed syllabus:

- 1. **Essentials of Environmental Physics**: Structure and thermodynamics of the atmosphere, Composition of air, Greenhouse effect, Transport of matter, energy and momentum in nature, Stratification and stability of atmosphere, Lass of motion, hydrostatic equilibrium, General circulation of the topics, Elements of weather and climate of India.
- 2. Solar and Terrestrial Radiation: Physics of radiation, Interaction of light with matter, tayleigh and Mie scattering, Laws of radiation (Kirchoffs law, Planck's law, Beer's law, Wien's displacement law, etc.), Solar and terrestrial spectra, UV radiation, Ozone depletion problem, IR absorption energy balance of the earth atmosphere system.
- 3. Environmental Pollution and degradation: Elementary fluid dynamics, Diffusion, Turbulence and turbulent diffusion, Factors governing air, Water and noise pollution, Air and water quality standards, Waste disposal, Heat island effect, Land and sea breeze, Puffs and plumes, Gaseous and particulate matters, Wet and dry deposition.
- 4. Environmental Changes and remote sensing: Energy sources and combustion processes, Renewable sources of energy, Solar energy, Wind energy, bioenergy, hydropower, fuel cells, nuclear energy, Forestry and bioenergy.
- Global and Regional Climate: Elements of weather and climate, Stability and vertical motion of air, Horizontal motion of air and water, Pressure gradient forces, Viscous forces, Reynolds number, Enhanced Greenhouse Effect, Energy balance-a Zero-dimensional Greenhouse model, Global climate models.

Suggested Readings/Books :

- 1. Egbert Boeker & Rienk Van Groundelle: Environmental Physics (John Wiley).
- 2. J. T Hougtion: The Physics of atmosphere (Cambridge University Press, 1977).
- 3. J Twidell and J Weir: Renewable energy Resources (Elbs, 1988).
- Sol Wieder: An introduction t solar energy for scientists and Engineers (John Wiley, 1982)
- 5. R. N. Keshavamurthy and M. Shanker Rao: The Physics of Monsoons (Allied Publishers, 1992).
- 6. G.J. Haltiner and R.T. Williams: Numerical Weather Prediction (John Wiley, 1980).

IVI 51	PH547-	18		Disser	tation		L	-0, T-12	2, P-0	1	2 Cred	its
Pre-	requisit	e: Knov	vledge o	f specif	ic brane	h of phy	/sics					
stude Phys devel	ents to p ics. Stu lopment	orelimin dents g of a lab	aries an et the oratory	d metho opportu experin	odology inity to pent.	of rese particij	arch in pate in	Theoret	ical Phy ongoing	ertation i ysics an researc	d Exper	rimenta
	C01	Exp		e signifi	cance ai					, both sc	ientifica	ally and
	CO2		sign and alts of e			entific e	experim	ents as	well as	accurat	tely rec	ord the
	CO3	Crit	tically a ropriate	nalyse a for ans	nd evalu wering s	uate exp pecific	eriment questior	al strate 15.	gies, and	d decide	which i	s most
(CO4	to c	ondense	d matte	r physic	s/Nucle	ar/High	vledge in Energy e public	Physics	ntext of a , in oral,	a topic 1 written	elated and
(CO5	Exp tech	olore ne mology.	w area	s of re:	search i	n phys	ics and	allied	fields o	of scien	ce and
		M	apping	of cour	se outc	omes wi	ith the j	orogran	1 outcoi	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	
	101	102					107					PO12
CO1	2	2	1	3	1	2	2	2	2	3	2	PO12
				3	1	2		2	2	3	2	
C02	2	2	1			1	2					3
CO1 CO2 CO3 CO4	2	2	1 3	2	2	2	2	2	2	2		3

Scheme & Syllabus (M.Sc. Physics) Batch 2018 & Onwards

Page 72 of 73

Guidelines for the Dissertation:

The aim of project work in M.Sc. 4th semesters is to expose the students to preliminaries and methodology of research and as such it may consist of review of some research papers, development of a laboratory experiments, fabrication of a device, working out some problem, participation in some ongoing research activity, analysis of data, etc.. Project work can be in Experimental Physics, Theoretical Physics, or Simulation(quantum based softwares, HPCC, etc.) based in the thrust as well as non-thrust research areas of the Department.

A student opting for this course will be attached to one teacher of the Department before the end of the 3rd semester. A report about the work done in the project (typed on both the sides of the paper and properly bound) will be submitted by a date to be announced by the Head of Department.

Assessment of the work done under the project will be carried out by a committee on the basis of effort put in the execution of the project, interest shown in learning the methodology, report prepared, grasp of the problem assigned and viva-voce/seminar, etc. as per course guidelines.

Annexure-B

Draft Syllabus of Personality Development

UNIT I

Building up and enrichment of Vocabulary

Learning Derivatives, Prefixes and Suffixes; Homonyms & Homophones; Pairs/Group of words; Synonyms & Antonyms; One word substitution; Foreign words & Phrases

UNIT II

Application of Business Communication

(a) Speaking Module

- Oral communication-Everyday Interactions, Group Discussions, Public speaking;
- Conversation Skills; Business Etiquette;
- Presentation Skills- combating stage fright, preparing power point presentations
- Non- Verbal Communication in Oral & Power Point Presentations; Telephonic Skills;
- Preparation for job interview- practice through mock interview

(b) Mechanics of Writing

- Descriptive and argumentative essays,
- Scientific & Technical Writing- writing abstracts & summaries, research papers;
- Writing business letters, emails; memos;
- Drafting Reports- training reports, project reports, varied business reports;
- Career Documents: Preparing a selling resume, covering letters, CVs, Preparing Portfolio etc.

Suggested Readings:

- 1. Practical English Usage. Michael Swan. OUP. 1995.
- 2. On Writing Well. William Zinsser. Harper Resource Book. 2001
- 3. Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- 4. Communication Skills. Sanjay Kumar and Pushp Lata. Oxford University Press. 2011.
- Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press
- English Language Skills. Aruna Koneru. McGraw Hill Education (India) Private Limited. 2015.

Huth

Annexure-C

B.Sc. (Hons.) Physics

Course Structure and Syllabus (Based on Choice Based Credit System) 2019 onwards

Hult

Scheme & Syllabus (B.Sc. Hons. Physics) Batch 2019 & Onwards

Page 1 of 16

SEMESTER FIRST

Course Code	Course Title		Loa ocat			arks bution	Total Marks	Credits
		L	T	P	Internal	External		
BSHPXXX- 19	Optics	3	1	-	40	60	100	4
BSHPXXX- 19	Mechanics	3	1	-	40	60	100	4
BSHPXXX- 19	Mathematics-I	3	1	-	40	60	100	4
BSHPXXX- 19	Chemistry-I	3	1	-	40	60	100	4
BSHPXXX- 19	Communicative English -I	3	1	-	20	30	50	2
BSHPXXX- 19	Punjabi Compulsory-I or Mudhli Punjabi-I	2	-	-	20	30	50	2
BSHPXXX- 19	Physics Lab-I	-	-	6	50	25	75	3
BSHPXXX- 19	Chemistry Lab-I		-	4	30	20	50	2
	TOTAL	16	4	10	280	345	625	25

L: Lectures T: Tutorial P: Practical

Course Code	Course Title	A	Lo	ad ation		arks ibution	Total Marks	Credits
		L	1	P	Internal	External		
BSHPXXX- 19	Waves and Vibrations	3	1	-	40	60	100	4
BSHPXXX- 19	Electricity and Magnetism	3	1	-	40	60	100	4
BSHPXXX- 19	Mathematics-II	3	1	-	40	60	100	4
BSHPXXX- 19	Chemistry-II	3	1		40	60	100	4
BSHPXXX- 19	Communicative English -11	2	-	-	20	30	50	2
BSHPXXX- 19	Punjabi Compulsory-I or Mudhli Punjabi-II	2	-	-	20	30	50	2
BSHPXXX- 19	Physics Lab-II		-	6	50	25	75	3
3SHPXXX- 19	Chemistry Lab-II	-	-	4	30	20	50	2
	TOTAL	16	4	10	280	345	625	25

SEMESTER SECOND

L: Lectures T: Tutorial P: Practical

BSHPXXX- 19	Optics	L-3, T-1, P-0	4 Credits

Pre-requisite: Understanding of senior secondary level Physics and Mathematics

Course Objectives: The objective of the course is to develop basic understanding of Interference, Diffraction and Polarization among students. The Students also learn about the LASER and its applications. Students will be equipped with knowledge to measure wave length, refractive index and other related parameters, which will act as a strong background if he/she chooses to pursue research in physics as a career.

Detailed Syllabus:

PART-A

UNIT I

Interference: Definition and properties of wave front, Temporal and Spatial Coherence, Young's double slit experiment, Lloyd's single mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films, Fringes of equal inclination (Haidinger Fringes), Newton's Rings: Measurement of wavelength and refractive index, Interferometer: Michelson Interferometer-(1) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, Fabry-Perot interferometer. (12 Lectures)

UNIT-II

Diffraction: Huygens Principle, Huygens-Fresnel Diffraction theory, Fraunhofer diffraction: Single slit. Circular aperture, Rayleigh criterion of resolution, Resolving Power of a telescope, Double slit, Multiple slits, Diffraction grating, Resolving power of grating. Fresnel Diffraction: Fresnel's Assumptions, Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light, Theory of a Zone Plate: Multiple Foci of a Zone Plate, Fresnel diffraction pattern of a straight edge and circular aperture. (11 Lectures)

PART-B

UNIT-III

Polarization: Plane polarized light, Representation of Unpolarized and Polarized light, Polarization by Reflection, Brewster's law, Malus Law, Polarization by Selective absorption by Crystals, Polarization by Scattering, Polarization by Double Refraction, Nicol Prism, Huygen's theory of Double Refraction, Polaroid, Elliptically and Circularly polarized lights, Quarter and Half wave plates. (11 Lectures)

UNIT-IV

Laser and Application: Lasers, Spontaneous emission, Stimulated absorption, Stimulated emission, Einstein coefficients, Einstein relations, Conditions for Laser actions, Population inversion, Different types of Laser Pumping mechanism: Optical Pumping, Electric Discharge and Electrical pumping, Resonators, Two, Three and Four level laser systems, Ruby laser, He-Ne gas Laser, Semiconductor laser, CO2 laser, applications of laser: Holography, Principle of Holography. Recording and Reconstruction Method. Theory of Holography as Interference between two Plane Waves. Point source holograms. (11 Lectures)

Text and Reference Books:

1. Optics: A.K. Ghatak (Tata-McGraw Hill), 1992.

2. Fundamentals of Optics: F.A. Jenkins and H.E. White (McGraw Hill), 1981.

BSHPXXX- 19	Mechanics	L-3, T-1, P-0	4 Credits
----------------	-----------	---------------	-----------

Pre-requisite: Understanding of senior secondary level Physics and Mathematics

Course Objectives: The aim and objective of the course on Mechanics is to introduce the students to the formal structure of vector mechanics, harmonic oscillators, and mechanics of solids so that they can use these in Engineering as per their requirement. This will act as a strong background if he/she chooses to pursue higher studies in physics.

Detailed Syllabus:

UNIT I:

Fundamentals of Dynamics: Reference frames. Inertial frames; Review of Newton's Laws of Motion. Galilean transformations; Galilean invariance. Dynamics of a system of particles. Centre of Mass. Principle of conservation of momentum. Impulse. Momentum of variable-mass system: motion of rocket.

Work and Energy: Work and Kinetic Energy Theorem. Conservative and non-conservative forces. Potential Energy. Energy diagram. Stable and unstable equilibrium. Force as gradient of potential energy. Work done by non-conservative forces. Law of conservation of Energy. (12 Lectures)

UNIT-II

Non-Inertial Systems: Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications. Components of Velocity and Acceleration in Cylindrical and Spherical Coordinate Systems. Collisions: Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frame of refrences. (11 Lectures)

UNIT-III

Gravitation and Central Force Motion: Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and fields due to spherical shell and solid sphere. Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS). (11 Lectures)

UNIT-IV:

Special Theory of Relativity: Michelson-Morley Experiment and its outcome. Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation. Relativistic transformation of velocity, Variation of mass with velocity. Massless Particles. Mass-energy Equivalence. Relativistic Doppler effect. Minkowski space time, Relativisitic Kinematics. Energy-Momentum Four Vector.

(12 Lectures)

Text and Reference Books:

- 1. Mechanics, Berkeley Physics, Vol.1, C.Kittel, W.Knight, et.al. 2007, Tata McGraw-Hill.
- 2. Physics, Resnick, Halliday and Walker 8/e. 2008, Wiley.
- 3. Feynman Lectures, Vol. I, R.P.Feynman, R.B.Leighton, M.Sands, 2008, Pearson Education
- 4. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons
- 5. University Physics. F.W Sears, M.W Zemansky, H.D Young 13/e, 1986, Addison Wesley
- 6. Physics for scientists and Engineers with Modern Phys., J.W.Jewett, R.A.Serway, 2010. Cengage Learning
- 7. Theoretical Mechanics, M.R. Spiegel, 2006, Tata McGraw Hill.

BSHP121-19	Vibrations and Waves	L-3, T-1, P-0	4 Credits

Pre-requisite: Understanding of senior secondary level physics and Mathematics

Course Objectives: The objective of the course provides an exposure about simple harmonic motions, damped harmonic motions and forced oscillations. Students learns about the different waves, propagation of waves in various mediums and reflection/transmission of waves at the interface of mediums.

Detailed Syllabus:

PART-A

UNIT-I

Simple and Damped Harmonic Motion: Simple harmonic motion, energy of a SHO, Compound pendulum, Torsional pendulum, Electrical Oscillations, Lattice Vibrations, Transverse Vibrations of a mass on a string, Anharmonic Oscillations. Damped simple harmonic motion, Decay of free Vibrations due to damping, types of damping, Determination of damping coefficients – Logarithmic decrement, relaxation time and Q-factor. Electromagnetic damping. (12 Lectures)

UNIT-II

Forced Vibrations and Resonance: Forced mechanical and electrical oscillator, Transient and Steady State Oscillations, Displacement and velocity variation with driving force frequency, Variation of phase with frequency resonance, Power supplied to forced oscillator by the driving force. Q-factor and band width of a forced oscillator, Electrical and nuclear magnetic resonances. (1 2 lectures)

PART-B

UNIT-III

Coupled Oscillations: Stiffness coupled oscillators, Normal coordinates and modes of vibrations. Inductance coupling of electrical oscillators, Normal frequencies, Forced vibrations and resonance for coupled oscillators, Masses on string-coupled oscillators.

Waves in Physical Media: Types of waves, wave equation (transverse) and its solution characteristics impedance of a string, Impedance matching, Reflection and Transmission of waves at boundary, Energy of vibrating string, wave and group velocity. (12 Lectures)

UNIT-IV

Electromagnetic waves: Physical interpretation of Maxwell's equations, E.M waves and wave equation in a medium having finite permeability and permittivity but with conductivity $\sigma = 0$. Poynting vector, Impedance of a dielectric to EM waves, EM waves in a conducting medium and skin depth, EM wave velocity in a conductor and anomalous dispersion, Response of a conducting medium to EM waves. Reflection and transmission of EM waves at a boundary of two dielectric media for normal and oblique incidence, Reflection of EM waves from surface of a conductor at normal incidence. (12 Lectures)

Text and Reference Books:

1. Text Book of Vibrations and Waves: S.P. Puri (Macmillan India), 2004.

2. The Physics of Vibrations and Waves: H.J. Pain (Wiley and ELBS), 1976.

BSHP122	2-19 Electricity and Magnetism	L-3, T-1, P-0	4 Credits
Pre-requi	site: Basic knowledge of Electricity and Ma	gnetism at high school leve	el.
	bjectives: The objective of the course is to and magnetism so that they can use these as		formal structure of
Course O	utcomes: At the end of the course, the stude		etactsics
CO2	Apply the knowledge of Maxwell's equat problems.		
CO3	Analyze the wave propagation in different m	nedia	
CO4	Compare the different types of polarization		

Detailed Syllabus:

PART-A

UNIT I Review of Vector Analysis and Electrostatics: scalar and vector product; gradient, divergence and curl and their significance; Gauss-divergence theorem and Stoke's theorem (statement only); Electrostatic field; electric flux; Gauss's law of electrostatics; Applications of Gauss law-Electric filed due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charge sheet; Electric potential as line integral of electric field, potential due to point charge and electric dipole; calculation of electric field from potential; Poisson's equation and Laplace's equation(Cartesian coordinate); Capacitance; capacitance of a spherical conductor and cylindrical capacitor, Energy per unit volume in electrostatic field, Dielectric medium, dielectric polarization and its types, Displacement vector, Boundary conditions (*12 Lectures*)

UNIT-II Magnetostatics: Magnetic flux; magnetic flux density; Faraday's law; magnetomotive force; Biot-Savart's law and its applications-straight conductor, circular coil, divergence and curl of magnetic field; Ampere's work law in differential form; Magnetic vector potential; ampere's force law; magnetic vector potential; Energy stored in a magnetic field, boundary conditions on magnetic fields. *(10 Lectures)*

PART-B

UNIT-III Maxwell's Equations and Poynting Vector: Equation of continuity for time varying fields; Inconsistency of ampere's law; concept of sinusoidal time variations (Phasor notation); Maxwell's equations with physical significance; Maxwell equations in free space, static field and in Phasor notation; Difference between displacement current and conduction current; Concept of Poynting vector; Poynting Theorem. (11 Lectures)

UNIT-IV Electromagnetic Waves: Wave equation in free space or non-conducting or lossless medium; wave equation for conducting medium; wave propagation in lossless and conducting medium (phasor form); Propagation characteristics of EM waves in free space, lossless and in conducting medium; Uniform plane waves and solution; relation between electric and magnetic fields of an electromagnetic wave; Linear, circular and elliptical polarization; depth of penetration, Reflection of waves by a perfect conductor: normal incidence and oblique incidence; Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence.

- David Griffiths, Introduction to Electrodynamics, Pearson Education India Learning Private Limited; 4 edition.
- Edward C Jordan and Keith G Balmain, Electromagnetic waves and radiating systems, Prentice Hall
- (iii) Kraus John D, Electromagnetics, McGraw-Hill Publisher
- (iv) W. Saslow, Electricity, magnetism and light, Academic Press

PHSS906-18	Advanced Particle Physics	L-3, T-1, P-0	4 Credits
------------	----------------------------------	---------------	-----------

Pre-requisite: Knowledge of particle physics

Course Objectives: The objective of the course on **Advanced Particle Physics** is to expose the students of Ph.D. to the relatively advanced topics related to symmetry breaking in quantum field theory, standard model of particle physics, QCD and quark model, and various unification schemes so that they understand these aspects properly and are well equipped to pursue a career in high energy physics.

Course Outcomes: At the end of the course, the student will have

CO1	Understanding of various global and local gauge symmetries of system, invariance of action, symmetry breaking, and Higgs mechanism.
CO2	Need for standard model of particle physics and its limitations and the properties of QCD.
CO3	The problem of divergencies in quantum field theories and the renormalisation methods.
CO4	Asymptotic freedom and infrared slavery of the running coupling constant in non-abelian gauge theory of strong interactions -QCD.
CO5	Physics beyond the Standard Model Physics.

Detailed Syllabus:

- 1. Symmetries and Symmetry Breaking in QFT: Continuous groups: Lorentz group SO(1,2) and its representations, Dirac, Weyl and Majorana fermions, Unitary groups and Orthogonal groups and their representations, Discrete symmetries: Parity, Charge Conjugation and Time reversal Invariance, CP, CPT. (Lectures 10)
- 2. Global and Local invariances of the Action: Approximate symmetries, Noethers theorem, Spontaneous breaking of symmetry and Goldstone theorem, Higgs mechanism, Abelian and Non-Abelian gauge fields, Lagrangian and gauge invariant coupling to matter fields. (Lectures 10)
- 3. **Standard Model of Particle Physics:** SU(2) x SU(1) x U(1) gauge theory, Coupling to Higgs and Matter fields of 2 generations, Gauge boson and fermion mass generation via spontaneous symmetry breaking, CKM matrix, Low energy Electroweak effective theory and Decoupling, Elementary electroweak scattering processes. (Lectures 10)
- 4. **QCD and quark model:** Asymptotic freedom and Infrared slavery, confinement hypothesis, Approximate flavor symmetries of the QCD lagrangian, Classification of hadrons by flavor symmetry: SU(1) and SU(2) multiplets of Mesons and Baryons, Chiral symmetry and chiral symmetry breaking, Parton model and Deep inelastic scattering structure functions.

(Lectures 10)

Anth

Text Books:

- 1. Gauge Theory of Elementary Particle Physics: T.P Cheng & L.F. Li (Oxford).
- 2. An Introductory Course of Particle Physics: Palash Pal (CRC Press).

- 1. First Book of Quantum Field Theory: A. Lahiri & P. Pal, Narosa, New Delhi.
- 2. Introduction to Quantum Field Theory: M. Peskin & D.V. Schroeder. (Levant Books).
- 3. Dynamics of the Standard Model: J.F. Donoghue (Cambridge University Press).

PHS907-18	Renewable Energy Resources	L-3, T-1, P-0	4 Credits
Pre-requisite:	Understanding of semiconductor physic	ics	
expose the Ph.	tives: The aim and objective of the co D. students to the basics of the alternati		
	mes: At the end of the course, the stude	ent will be able to	
energy, etc. Course Outco CO1	Understand the energy demand of		between traditional and
Course Outco	Understand the energy demand of alternative form of energy.	world & distinguish	
Course Outco CO1	Understand the energy demand of alternative form of energy. Describe the concept of solar energy	world & distinguish radiation and therm	
Course Outco CO1 CO2	Understand the energy demand of alternative form of energy.	world & distinguish radiation and therm types.	al applications.

Detailed Syllabus:

- 1. Introduction: Production and reserves of energy sources in the world and in India, need for alternatives, renewable energy sources. (Lectures 8)
- Solar Energy: Thermal applications, solar radiation outside the earth's atmosphere and at the earth's surface, Principal of working of solar cell, Performance characteristics of solar cell. Types of solar cell, crystalline silicon solar cell, Thin film solar cell, multijunction solar cell, Elementary ideas of perovskite solar cell, dye synthesized solar cell and Tandem solar cell, PV solar cell, module array, and panel, Applications. (Lectures 11)
- 3. Hydrogen Energy: Environmental considerations, solar hydrogen through photo electrolysis and photocatalytic process, physics of material characteristics for production of solar hydrogen. Storage processes, solid state hydrogen storage materials, structural and electronic properties of storage materials, new storage modes, safety factors, use of hydrogen as fuel; use in vehicles and electric generation, fuel cells. (Lectures 10)
- 4. Other sources: Nature of wind, classification and descriptions of wind machines, power coefficient, energy in the wind, wave energy, ocean thermal energy conversion (OTEC), system designs for OTEC, basic idea about biogas, biofuel, and biodiesel.

Text Books:

(Lectures 8)

1. Solar Energy: S.P. Sukhatme (Tata McGraw-Hill, New Delhi), 2008.

- 1. Solar Cell Devices: Fonash (Academic Press, New York), 2010.
- 2. Fundamentals of Solar Cells, Photovoltaic Solar Energy: Fahrenbruch and Bube (Springer, Berlin), 1982.
- 3. Photoelectrochemical Solar Cells : Chandra (New Age, New Delhi).