File No. <u>I/159/2019-ME</u>

Autonomous

Universities of Punjab

PTU-DEPT

Dept of Mechanical Engineering

		SUBJECT
Main Category	:	Boards Of Studies
Sub Category	:	Meetings
Description	:	Proceedings of the Board of Studies (Physical Sciences), IKGPTU University Campus meeting held on 04.07.2019.
OTHER DETAILS		
Retention	:	
Priority	:	
Language	:	English
Confidentiality	:	
Remarks	:	

No correspondence is attached in this file.

Note No. #1

A meeting of members of Board of Studies (Physical Sciences), IKGPTU University Campus was held on 04.07.2019 in the Department of Physical Sciences, I K Gujral Punjab Technical University, Kapurthala. The agenda of the meeting was discussed in detail and recommendations were made on point. The proceedings of the meetings were recorded in the minutes of the meeting as enclosed as an Annexure.

Submitted for necessary action.

19/07/2019 10:33 AM

NEETIKA (AP(PHYSICAL SCIENCES))

GPTINPO

Attachment: MoM BoS 04 07 2019.pdf

I.K. Gujral Punjab Technical University, Kapurthala Department of Physical Sciences

Minutes of Meeting

A meeting of members of Board of Studies (BoS)-Physical Sciences, IKGPTU University Campus was held on 04.07.2019 in the Department of Physical Sciences, I K Gujral Punjab Technical University, Kapurthala.

Following members of BOS and special invitees were present and actively participated in discussion:

- 1. Dr. Amit Sarin (Chairperson)
- 2. Dr Rakesh Dogra, Member
- 3. Dr N. S. Saini, Member
- 4. Dr. B. C. Chaudhary, Member
- 5. Dr. H. M. Mittal, Member
- 6. Dr. Harleen Dahiya, Member
- 7. Dr. Hitesh Sharma, Member
- 8. Dr. Maninder Kaur, Member
- 9. S. Navdeepak Sandhu, Member
- 10. Dr. Ashish Arora, (Special invitee)
- 11. Dr. Neetika (coordinator)
- 12. Ms Manu Rani, Alumni representative
- 13. Mr. Puneet, M.Sc. (2nd Year) -Student representative

The following members could not attend the meeting:

- 1. Dr Arvinder Singh, Member
- 2. Dr D. P. Singh, Member
- 3. Dr. Bivash Behra, Member
- 4. Dr. Ashok Kumar, member
- 5. Dr Varinderjit Singh, Member
- 6. Dr. Sarabjit Singh Mann, (Special invitee)
- 7. Dr. Chander Parkash, (Special invitee)
- 8. Dr. Priyanka Mahajan, (Special invitee)

The Board of Studies discussed on all the agenda points and following recommendations were made:

Agenda item 1: To consider the Vision and Mission of Department of Physical Sciences with the Program Educational objectives (PEO), Program outcomes (POs), Program specific outcomes (PSOs), and Course outcomes of B.Sc. (Hons.) Physics and M.Sc. (Physics).

/ Rater wo

All BoS members discussed the Program Educational objectives (PEO), Program outcomes (POs), Program specific outcomes (PSOs) of the B.Sc. (Hons.) Physics and M.Sc. (Physics) with the Vision and Mission of Department of Physical Sciences. After incorporating suggestions, BOS members recommended the Program Educational objectives (PEO), Program outcomes (POs), Program specific outcomes (PSOs) and Course outcomes (COs) of various subjects for B.Sc. Hons. (Physics) and M.Sc. (Physics) for approval w.e.f. 2019-2020. The copy of revised Vision and Mission of Department of Physical Sciences, Program Educational objectives (PEO), Program outcomes (POs), and Program specific outcomes (POs), and Program specific outcomes (PSOs) of B.Sc. (Hons) Physics and M.Sc. (Physics) is enclosed as Annexure-I.

Agenda item 2: To consider the study scheme and syllabi of B. Sc. (Hons.) Physics for the first two semesters in the academic session 2019-2020

All BoS members discussed the study scheme and syllabi of B Sc. (Hons.) Physics for 1st and 2nd semester for academic session 2019-2020. Board members agreed that two physics core courses and one lab will be offered in the both first and second semester. Syllabi of the interdisciplinary courses was proposed by their representative and were discussed. The guidelines for the paper setters, internal and external evaluation will be similar to the B.Tech. examination pattern of IKGPTU. BoS members also approved the question paper pattern for the Mid Semester Tests. The copy of study scheme, syllabi, MST question paper pattern, instructions for paper setters, format of question paper of B.Sc. (Hons.) Physics is attached here as Annexure-II.

Agenda item 3: To consider the study scheme and syllabi of M.Sc. (Physics) for the academic session 2019-2020

All BoS members discussed and recommended the new study scheme and syllabi of M Sc. Physics w.e.f. academic session 2019-2020. The copy of study scheme, syllabi, MST question paper pattern, instructions for paper setters, format of question paper of M.Sc. Physics is attached here as Annexure-III.

Agenda item 4: To consider the adoption of study scheme and syllabi of M.Sc. Physics (3rd and 4th semester) 2018 batch.

The board members agreed that the study scheme and syllabi of M.Sc. Physics-2018 batch of IKGPTU may be adopted for the 3rd and 4th semester of 2018 batch of Main Campus.

Raherhioge Menn

Agenda item 5: To consider the syllabus of value-added course on Personality **Development**

All BoS members discussed the syllabus of inter disciplinary value-added course on Personality Development for M.Sc. Physics students which was proposed by Dr. Priyanka Mahajan. Board members approved the content for implementation and agreed that more interdisciplinary courses on Human values, Management, etc., may be added in near future. The copy of finalized syllabus of Personality Development is enclosed as Annexure-IV.

Agenda item 6: To consider the Swayam/MOOC courses as interdisciplinary open electives

All BoS members recommended that all undergraduate and post graduate students may select courses from Swayam/MOOC as open elective as per relevance to their respective study scheme. The student may be given due credit as per University guidelines.

Dr. Amit Sarin

Dr B C Chaudhary

Dr Hitesh Sharma

Mr. Puneet, M.Sc. (Physics)

leerbogs

Dr'Rakesh Dogra

Dr Maninder Kau

Attachment: MoM BoS 04 07 2019.pdf

Annexure-I

7

IK Gujral Punjab Technical University

VISION

To be an institution of excellence in the domain of higher technical education that serves as the fountainhead for nurturing the future leaders of technology and techno- innovation responsible for the techno-economic, social, cultural and environmental prosperity of the people of the State of Punjab, the Nation, and the World

MISSION

- To provide seamless education through the pioneering use of technology, in partnership with industry and society with a view to promote research, discovery and entrepreneurship and
- To prepare its students to be responsible citizens of the world and the leaders of technology and techno-innovation of the 21st Century by developing in them the desirable knowledge, skill and attitudes base for the world of work and by instilling in them a culture for seamlessness in all facets of life.

OBJECTIVES

- To offer globally-relevant, industry-linked, research-focused, technology- enabled seamless education at the graduate, postgraduate and research levels in various areas of engineering & technology and applied sciences keeping in mind that the manpower so spawned is excellent in quality, is relevant to the global technological needs, is motivated to give its best and is committed to the growth of the Nation;
- To foster the creation of new and relevant technologies and to transfer them to industry for effective utilization;
- To participate in the planning and solving of engineering and managerial problems of relevance to global industry and to society at large by conducting basic and applied research in the areas of technologies;

•

- To develop and conduct continuing education programmes for practicing engineers and managers with a view to update their fundamental knowledge base and problem-solving capabilities in the various areas of core competence of the University;
- To develop strong collaborative and cooperative links with private and public sector industries and government user departments through various avenues such as undertaking of consultancy projects, conducting of collaborative applied research projects, manpower development programmes in cutting-edge areas of technology, etc;
- To develop comprehensive linkages with premier academic and research institutions within the country and abroad for mutual benefit;
- To provide leadership in laboratory planning and in the development of instructional resource material in the conventional as well as in the audio-visual, the video and computer-based modes;
- To develop programmes for faculty growth and development both for its own faculty as well as for the faculty of other engineering and technology institutions;
- To anticipate the global technological needs and to plan and prepare to cater to them;
- To interact and participate with the community/society at large with a view to inculcate in them a feel for scientific and technological thought and endeavor; and
- To actively participate in the technological development of the State of Punjab through the undertaking of community development programmes including training and education programmes catering to the needs of the unorganized sector as well as that of the economically and socially weaker sections of society.

ACADEMIC PHILOSOPHY

The philosophy of the education to be imparted at the University is to awaken the "deepest potential" of its students as holistic human beings by nurturing qualities of selfconfidence, courage, integrity, maturity, versatility of mind as well as a capacity to face the challenges of tomorrow so as to enable them to serve humanity and its highest values in the best possible way.

DEPARTMENT OF PHYSICAL SCIENCES

VISION

To be a knowledge nerve center in Physical Sciences, Pure, and Applied Research and Industry requirements for creating sustainable infrastructure and enhancing quality of life of the people of the State of Punjab, the Nation and the World

MISSION

- 1. To offer globally-relevant, industry-linked, research-focused, technology-enabled seamless education at the graduate, postgraduate, and research levels in various areas of Physical sciences keeping in mind that the manpower so spawned is excellent in quality, is relevant to the global scientific and technological needs, is motivated to give its best and is committed to the growth of the Nation;
- 2. To develop and conduct continuing education programs for Science graduates with a view to update their fundamental knowledge base and problem-solving capabilities in the various areas of core specialization of the University;
- 3. To develop comprehensive linkages with premier academic and research institutions within the country and abroad for mutual benefit.

B.Sc. (Hons) Physics

PROGRAM EDUCATIONAL OBJECTIVES: At the end of the program, the student will be able to:

PEO1	Apply principles of basic science concepts in understanding, analysis and prediction
	of physical phenomenon.
PEO2	Develop human resource with knowledge, abilities and insight in Physics and
	related fields required for career in academia and industry.
PEO3	Engage in lifelong learning and adapt to changing professional and societal needs.

PROGRAM OUTCOMES: At the end of the program, the student will be able to:

PO1	Apply the knowledge gained to solve the scientific problems.
PO2	Identify, formulate, and analyze scientific problems reaching substantiated conclusions using first principles of mathematical, physical, and chemical sciences.
PO3	Design solutions for physics problems that meet the specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal consideration.
PO4	Use research-based knowledge and methods including design of experiments, analysis, interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Create, select, and apply appropriate techniques, resources, and modern scientific tools to physics problems with an understanding of the limitations.
PO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues, and the consequent responsibilities relevant to the professional scientific practice.
PO7	Understand the impact of the scientific solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Apply ethical principles and commit to the norms of scientific practice.
PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communicate effectively on scientific activities with the Scientific/Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give

	and receive clear instructions.
PO11	Demonstrate knowledge and understanding of the scientific principles and apply
	these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Recognize the need for and have the preparation and ability to engage in independent
	and life-long learning in the broadest context of scientific and technological change.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Understand the concepts in different areas of physics.
PSO2	Demonstrate expertise to conduct wide range of scientific experiments.
PSO3	Apply the concepts of physics in areas of mechanics, electromagnetism, solid state, nuclear, etc., in industry, academia, and day-to-day life.

M.Sc. Physics

PROGRAM EDUCATIONAL OBJECTIVES: At the end of the program, the student will be able to:

PEO1	Apply principles of basic scientific concepts in understanding, analysis, and
	prediction of physical phenomenon.
PEO2	Develop human resource with specialization in theoretical and experimental
	techniques required for career in academia, research, and industry.
PEO3	Engage in lifelong learning and adapt to changing professional and societal needs.

PROGRAM OUTCOMES: At the end of the program, the student will be able to:

PO1	Apply the scientific knowledge to solve the complex physics problems.
PO2	Identify, formulate, and analyze advanced scientific problems reaching substantiated
	conclusions using first principles of mathematics, physical, and natural sciences.
PO3	Design solutions for advanced scientific problems and design system components or
	processes that meet the specified needs with appropriate attention to health and safety
	risks, applicable standards, and economic, environmental, cultural and societal
	consideration.
PO4	Use research-based knowledge and methods including design of experiments,
	analysis and interpretation of data, and synthesis of the information to provide valid
	conclusions.
PO5	Create, select, and apply appropriate techniques, resources, and modern scientific
	tools to complex physics problems with an understanding of the limitations.
PO6	Apply reasoning informed by the contextual knowledge to assess societal, health,
	safety, legal and cultural issues, and the consequent responsibilities relevant to the
	professional scientific practice.
PO7	Understand the impact of the scientific solutions in societal and environmental
	contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Apply ethical principles and commit to the norms of scientific practice.
PO9	Function effectively as an individual, and as a member or leader in diverse teams,
	and in multidisciplinary settings.
PO10	Communicate effectively on scientific activities with the Scientific/Engineering
	community and with society at large, such as, being able to comprehend and write

	effective reports and design documentation, make effective presentations, and give
	and receive clear instructions.
PO11	Demonstrate knowledge and understanding of the scientific principles and apply
	these to one's own work, as a member and leader in a team, to manage projects and in
	multidisciplinary environments.
PO12	Recognize the need for, and have the preparation and ability to engage in independent
	and life-long learning in the broadest context of scientific and technological change.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Understand the basic and advance concepts in different areas of physics.
PSO2	Perform and design experiments in the areas of electronics, atomic, nuclear, condensed matter, and computational physics.
PSO3	Apply the concepts of physics in specialized areas of condensed, nuclear, renewable energies, particle physics, etc., in industry, academia, research and day today life.

Annexure-I

14

B.Sc. (Hons.) Physics

Course Structure and Syllabus (Based on Choice Based Credit System) 2019 onwards

Scheme & Syllabus (B.Sc. Hons. Physics) Batch 2019 & Onwards

Page 1 of 48

PROGRAM EDUCATIONAL OBJECTIVES: At the end of the program, the student will be able to:

PEO1	Apply principles of basic science concepts in understanding, analysis and prediction
	of physical systems.
PEO2	Develop human resource with knowledge, abilities and insight in Physics and
	related fields required for career in academia and industry.
PEO3	Engage in lifelong learning and adapt to changing professional and societal needs.

PROGRAM OUTCOMES: At the end of the program, the student will be able to:

PO1	Apply the knowledge gained to solve the scientific problems.
PO2	Identify, formulate, and analyze scientific problems reaching substantiated conclusions using first principles of mathematical, physical, and chemical sciences.
PO3	Design solutions for physics problems that meet the specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal consideration.
PO4	Use research-based knowledge and methods including design of experiments, analysis, interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Create, select, and apply appropriate techniques, resources, and modern scientific tools to physics problems with an understanding of the limitations.
PO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues, and the consequent responsibilities relevant to the professional scientific practice.
PO7	Understand the impact of the scientific solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Apply ethical principles and commit to the norms of scientific practice.
PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communicate effectively on scientific activities with the Scientific/Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Demonstrate knowledge and understanding of the scientific principles and apply these to one's own work, as a member and leader in a team, to manage projects and in

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2019 & Onwards

File No.I/159/2019-ME

I. K. Gujral Punjab Technical University, Kapurthala

	multidisciplinary environments.
PO12	Recognize the need for and have the preparation and ability to engage in independent
	and life-long learning in the broadest context of scientific and technological change.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Understand the concepts of different branches of physics.
PSO2	Demonstrate expertise to conduct wide range of scientific experiments.
PSO3	Apply the concepts of physics in areas of mechanics, electromagnetism, solid state, nuclear, etc., in industry, academia, and day-to-day life.

SEMESTER FIRST

Course Code	Course Title	Type of course	Load Allocation			Marks Di	Total Marks	Cr	
			L	Т	P	Internal	External		
UC-BSHP- 111-19	Optics	Core Course Theory and	3	1	-	40	60	100	4
UC-BSHP- 112-19	Electricity and Magnetism	– Practical	3	1	-	40	60	100	4
UC-BSHP- 113-19	Physics Lab-I		-	-	4	30	20	50	2
UC-BSHM- XXX-19	Calculus	General Elective and	3	1	-	40	60	100	4
UC-BSHC- XXX-19	Inorganic Chemistry	– Practical	3	1	-	40	60	100	4
UC-BSHC- XXX-19	Chemistry Lab-I		-	-	4	30	20	50	2
UC-BSHX- XXX-19	Communicative English -I	Ability Enhancement	2	-	-	20	30	50	2
UC-BSHX- XXX-19	Punjabi Compulsory-I or Mudhli Punjabi-I	- Compulsory Course	2	-	-	20	30	50	2
,	TOTAL		16	4	8	260	340	600	24

L: Lectures T: Tutorial P: Practical Cr: Credits

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2019 & Onwards

¹⁷

SEMESTER SECOND

Course Code	Course Title	Type of course	Load Allocation			Marks D	Total Marks	Cr	
			L	Τ	P	Internal	External		
UC-BSHP- 121-19	Waves and Vibrations	Core Course Theory and	3	1	-	40	60	100	4
UC-BSHP- 122-19	Mechanics	- Practical	3	1	-	40	60	100	4
UC-BSHP- 123-19	Physics Lab-II		-	-	4	30	20	50	2
UC-BSHM- XXX-19	Mathematics	General Elective and	3	1	-	40	60	100	4
UC-BSHC- XXX-19	Organic Chemistry	- Practical -	3	1	-	40	60	100	4
UC-BSHC- XXX-19	Chemistry Lab-II	-	-	-	4	30	20	50	2
UC-BSHX- XXX-19	Communicative English -II	Ability Enhancement	2	-	-	20	30	50	2
UC-BSHX- XXX-19	Punjabi Compulsory -II or Mudhli Punjabi-II	- Compulsory Course	2	-	-	20	30	50	2
,	TOTAL		16	4	8	260	340	600	24

L: Lectures T: Tutorial P: Practical Cr: Credits

Examination and Evaluation

Theory	,		
S. No.	Evaluation criteria	Weightage in Marks	Remarks
1	Mid term/sessional Tests	24	Internal evaluation (40 Marks)
2	Attendance	6	MSTs, Quizzes, assignments, attendance, etc., constitute internal
3	Assignments	10	evaluation. Average of two mid semester test will be considered for evaluation.
4	End semester examination	60	External evaluation
5	Total	100	Marks may be rounded off to nearest integer.
Practic	al		
1	Evaluation of practical record/ Viva Voice/Attendance/Seminar/ Presentation	30	Internal evaluation
2	Final Practical Performance + Viva-Voce	20	External evaluation
3	Total	50	Marks may be rounded off to nearest integer.

Instructions for Paper-Setter in B. Sc (Hons.) Physics

A. Scope

- 1. The question papers should be prepared strictly in accordance with the prescribed syllabus and pattern of question paper of the University.
- 2. The question paper should cover the entire syllabus with proper distribution and Weightage of marks for each question.
- 3. The language of questions should be simple, direct, and documented clearly and unequivocally so that the candidates may have no difficulty in appreciating the scope and purpose of the questions. The length of the expected answer should be specified as far as possible in the question itself.
- 4. The distribution of marks to each question/answer should be indicated in the question paper properly.

B. Type and difficulty level of question papers

- 1. Questions should be framed in such a way as to test the students intelligent grasp of broad principles and understanding of the applied aspects of the subject. The Weightage of the marks as per the difficulty level of the question paper shall be as follows:
 - i) Easy question 30%
 - ii) Average questions 50%
 - iii) Difficult questions 20%
- 2. The numerical content of the question paper should be upto 25%.

C. Format of question paper

- 1. Paper code and Paper-ID should be mentioned properly.
- 2. The question paper will consist of three sections: Sections-A, B and C.
- 3. Section-A is COMPULSORY consisting of TEN SHORT questions carrying two marks each (total 20 marks) covering the entire syllabus.
- 4. The Section-B consists of FOUR questions of eight marks each covering the entire PART-A of syllabus (Taking two questions from every unit).
- 5. The Section-C consists of FOUR questions of eight marks each covering the entire PART-B of syllabus (Taking two questions from every unit).
- 6. Attempt any five questions from Section-B and Section-C, selecting at least two questions from each of the two sections.

Question paper pattern for MST:

Roll No:	No of pages:							
IK Gujral Punjab Technical Universit	ty- Jalandhar							
Department of Physical Sciences								
Academic Session:								
Mid-Semester Test: I/II/III (Regular/reappear)	Date:							
Programme: B.Sc. (Hons.) Physics	Semester:							
Course Code:	Course:							
Maximum Marks: 24	Time: 1 hour 30 minutes							

◆ Note: Section A is compulsory; Attempt any two questions from Section B and one question from Section C.

Sec	tion: A	Marks	COs
1		2	
2		2	
3		2	
4		2	
Sec	tion: B		
5		4	
6		4	
7		4	
Sec	tion: C		
8		8	
9		8	

Details of Course Objectives

CO1	
CO2	
CO3	
<i>CO4</i>	
<i>CO5</i>	

SEMESTER-I

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2019 & Onwards

Page 9 of 48

UC-BSHI 111-19		- Opt	ics					L-3,	T-1, P-0		4 Cred	its
Pre-re	quisit	e: Unders	standing	of senio	or secon	dary lev	vel Phys	ics and I	Mathem	atics		
Diffrace applica and oth physica	ction a ations. her rel s as a c	ectives: T nd Polar Students ated para career. comes: A	ization will be ameters,	among e equipp which	students bed with will act	the S knowle as a st	Students edge to rong ba	also le measure ckgroun	arn abou e wavele nd if he/	ut the L ength, re	ASER efractive	and its index
CO		Identify and illustrate physical concepts and terminology used in optics and other related wave phenomena									er	
CO	2	Analyze and understand coherence and phenomenon of interference and their applications										
CO	3	Acquain	ted with	Fresnel	's and F	raunhof	er's diffi	raction a	and their	applica	tions.	
CO	4	Get thor and trans	-	-		-		-		-	-	lection
CO	5	Describe	the diff	ferent ty	pes of la	asers, its	s princip	le, prop	erties of	laser be	eam.	
		Μ	apping	of cour	se outco	omes wi	th the p	orogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	-	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	1	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
CO5	2	2	2	2	1	1	2	1	1	3	1	1

Detailed Syllabus:

PART-A

UNIT I

Interference: Definition and properties of wave front, Temporal and Spatial Coherence, Young's double slit experiment, Lloyd's single mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films, Fringes of equal inclination (Haidinger Fringes), Newton's Rings: Measurement of wavelength and refractive index, Interferometer: Michelson Interferometer-(1) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, Fabry-Perot interferometer. (11 Lectures)

UNIT-II

Diffraction: Huygens Principle, Huygens-Fresnel Diffraction theory, Fraunhofer diffraction: Single slit. Circular aperture, Rayleigh criterion of resolution, Resolving Power of a telescope, Double slit, Multiple slits, Diffraction grating, Resolving power of grating. Fresnel Diffraction: Fresnel's Assumptions, Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light, Theory of a Zone Plate: Multiple Foci of a Zone Plate, Fresnel diffraction pattern of a straight edge and circular aperture. (11 Lectures)

PART-B

UNIT-III

Polarization: Plane polarized light, Representation of Unpolarized and Polarized light, Polarization by Reflection, Brewster's law, Malus Law, Polarization by Selective absorption by Crystals, Polarization by Scattering, Polarization by Double Refraction, Nicol Prism, Huygen's theory of Double Refraction, Polaroid, Elliptically and Circularly polarized lights, Quarter and Half wave plates. (11 Lectures)

UNIT-IV

Laser and Application: Lasers, Spontaneous emission, Stimulated absorption, Stimulated emission, Einstein coefficients, Einstein relations, Conditions for Laser actions, Population inversion, Different types of Laser Pumping mechanism: Optical Pumping, Electric Discharge and Electrical pumping, Resonators, Two, Three and Four level laser systems, Ruby laser, He-Ne gas Laser, Semiconductor laser, CO2 laser, applications of laser: Holography, Principle of Holography. (11 Lectures)

Text and Reference Books:

- 1. Optics: A.K. Ghatak (Tata-McGraw Hill), 1992.
- 2. Fundamentals of Optics: F.A. Jenkins and H.E. White (McGraw Hill), 1981.
- 3. A Text Book of Optics: Subrahmaniyam N. & et al.(S. Chand Publishing) (2006).
- 4. O. Svelto, "Principles of Lasers", Springer Science & Business Media, 2010.

I. K. Gujral Punjab Technical University, Kapurthala

	BSHF 2-19	•-	Elect	tricity a	nd Mag	gnetism		L-3, '	Г-1, Р-0		4 Cred	its	
Pre-re	quisit	e: Basic l	nowled	ge of El	ectricity	and Ma	agnetisn	n at high	school	level.			
		ectives: T nd magnet								the form	nal struc	eture of	
Course	e Out	comes: A	t the end	d of the	course, 1	the stude	ent will	be able	to				
CO) 1	Understa	nd and	describe	the diff	ferent co	oncepts of	of electr	ostatics	and mag	gnetosta	tics	
CO	02		Understand and describe the different concepts of electrostatics and magnetostatics Apply the knowledge of Maxwell's equation and flow of electromagnetic waves in real problems.										
CO	3	Analyze	the wav	e propag	gation ir	n differe	nt media	a					
CO	4	Compare	the dif	ferent ty	pes of p	olarizat	ion						
CO		have a so						ndament	als requ	ired to s	solve pr	oblems	
		and also		0									
		Μ	apping	of cours	se outco	omes wi	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	1	2	2	2	1	2	1	2	3	2	2	
CO2	3	2	1	-	2	2	1	1	1	3	1	1	
CO3	3	2	3	-	2	1	2	1	1	3	1	1	
CO4 3		2	3	2	-	2	2	1	1	3	1	1	
CO5	2	2	3	2	-	2	2	1	1	3	1	1	

26 Attachment:MoM BoS 04 07 2019.pdf

I. K. Gujral Punjab Technical University, Kapurthala

Detailed Syllabus:

PART-A

UNIT I

Review of Vector Analysis and Electrostatics: scalar and vector product; gradient, divergence and curl and their significance; Gauss-divergence theorem and Stoke's theorem (statement only); Electrostatic field; electric flux; Gauss's law of electrostatics; Applications of Gauss law-Electric filed due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charge sheet; Electric potential as line integral of electric field, potential due to point charge and electric dipole; calculation of electric field from potential; Poisson's equation and Laplace's equation(Cartesian coordinate); Capacitance; capacitance of a spherical conductor and cylindrical capacitor, Energy per unit volume in electrostatic field, Dielectric medium, dielectric polarization and its types, Displacement vector, Boundary conditions *(11 Lectures)*

UNIT-II

Magnetostatics: Magnetic flux; magnetic flux density; Faraday's law; magnetomotive force; Biot-Savart's law and its applications-straight conductor, circular coil, divergence and curl of magnetic field; Ampere's work law in differential form; Magnetic vector potential; ampere's force law; magnetic vector potential; Energy stored in a magnetic field, boundary conditions on magnetic fields. *(10 Lectures)*

PART-B

UNIT-III

Maxwell's Equations and Poynting Vector: Equation of continuity for time varying fields; Inconsistency of ampere's law; concept of sinusoidal time variations (Phasor notation); Maxwell's equations with physical significance; Maxwell equations in free space, static field and in Phasor notation; Difference between displacement current and conduction current; Concept of Poynting vector; Poynting Theorem. (11 Lectures)

UNIT-IV

Electromagnetic Waves: Wave equation in free space or non-conducting or lossless medium; wave equation for conducting medium; wave propagation in lossless and conducting medium (phasor form); Propagation characteristics of EM waves in free space, lossless and in conducting medium; Uniform plane waves and solution; relation between electric and magnetic fields of an electromagnetic wave; Linear, circular and elliptical polarization; depth of penetration, Reflection of waves by a perfect conductor: normal incidence and oblique incidence; Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence. *(12 Lectures)*

Reference Books:

- 1. David Griffiths, Introduction to Electrodynamics, Pearson Education India Learning Private Limited; 4 edition.
- 2. Edward C Jordan and Keith G Balmain, Electromagnetic waves and radiating systems, Prentice Hall
- 3. Kraus John D, Electromagnetics, McGraw-Hill Publisher
- 4. W. Saslow, Electricity, magnetism and light, Academic Press
- 5. A Textbook of Electricity and Magnetism, Magnetism, S K Sharma, Shalini Sharma, Publisher: S Dinesh & Co.

File No.I/159/2019-ME

Attachment:MoM BoS 04 07 2019.pdf

I. K. Gujral Punjab Technical University, Kapurthala

UC-BSHP- 113-19	Physics Lab-I	L-0, T-0, P-4	2 Credits						
D									

Pre-requisite (If any): High-school education

Course Objectives: The aim and objective of the lab course is to introduce the students to the formal structure of electromagnetism and phenomenon of wave optics so that they can use these as per their requirement.

Course Outcomes: At the end of the course, the student will be able to									
CO1 Able to verify the theoretical concepts/laws learnt in theory courses.									
CO2	Trained in carrying out precise measurements and handling sensitive equipment.								
CO3	Understand the methods used for estimating and dealing with experimental uncertainties and systematic "errors".								
CO4	Learn to draw conclusions from data and develop skills in experimental design.								
CO5	Document a technical report which communicates scientific information in a clear and concise manner.								

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	2	1	2	3	2	3
CO2	3	3	1	-	2	2	1	1	1	3	2	3
CO3	3	3	2	-	2	1	2	1	1	3	2	3
CO4	3	2	2	2	-	2	2	1	1	3	2	3
CO5	2	2	2	2	-	2	2	1	1	3	2	3

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses.
- 2. To study the laser beam characteristics like; wave length, aperture, spot size, etc. using diffraction grating.
- 3. To study the diffraction using laser beam and thus to determine the grating element.
- 4. To study wavelength and laser interference using Michelson's Interferometer.
- 5. To find the refractive index of a material/glass using spectrometer.
- 6. To find the refractive index of a liquid using spectrometer.
- 7. To determine the resolving power of a prism.
- 8. To study the magnetic field of a circular coil carrying current using a Steward and Gees Tangent Galvanometer.
- 9. Determine the radius of circular coil using the Circular coil.
- 10. To study B-H curve using CRO.
- 11. To find out polarizability of a dielectric substance.
- 12. To find out the horizontal component of earth's magnetic field (B_h) .

Text and Reference Books:

- 1. A Text -book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 2. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 3. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 4. Practical Physics, C L Arora. S. Chand & Company Ltd.
- 5. http://www.vlab.co.in

UC-BSHM- XXX-19		- CAI	LCULU	S				L-4, T-1, P-0			4 Credits	
Pre-re	quisite	: Unders	tanding	of senio	or secon	dary lev	el Math	ematics		·		
Course career.	e Obje	ctives: w	hich wi	ll act as	a strong	g backg	round if	he/she	chooses	to pursi	ie physi	cs as a
Course	e Outc	omes: A	t the end	l of the	course, 1	he stude	ent will	be able	to			
CO	1											
CO												
CO	3											
CO	4											
CO	5											
		M	apping	of cours	se outco	mes wi	th the p	rogram	outcon	ies		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Detailed Syllabus:

PART-A (Functions of Single Variable)

UNIT-I

Functions, limit, continuity, differentiability, derivative of elementary functions, higher order derivatives. Applications of derivative: increasing decreasing functions, extreme values of functions. Mean value theorems.

UNIT-II

Indefinite integral of a real function, Riemann sums, definite integral and its properties, fundamental theorem of calculus, application of definite integral in finding length of an arc and area enclosed between two curves. Finding volumes by slicing. Volumes of solids of Revolution-Disks and Washers. Cylindrical Shells. Lengths of plane curves. Areas of surfaces of revolution.

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2019 & Onwards

PART-B (Functions of Several Variables)

UNIT-III

Functions of several variables, limits, continuity, partial derivatives, homogeneous functions, Euler's theorem, total derivatives, Jacobians, maxima-minima of functions of several variables, Lagrange's method of undetermined multipliers.

UNIT-IV

Double integrals, change of order of integration, double integral in polar coordinates, triple integrals, change of variables, simple applications in finding area enclosed by curves and volume of solids.

TEXT AND REFERECNCE BOOK

- Robert Wrede and Murray R. Spiegel, Advanced Calculus, 3rd Edition, Schaum's Outline Series (McGraw Hill), 2010.
- Maurice D Weir, Frank R. Giordano and Joel Hass, Thomas' Calculus, 11th Edition, Pearson, 2008.
- James Stewart, Calculus, 5th Edition, Brooks/Cole (Thomson), 2003.

File No.I/159/2019-ME

Attachment:MoM BoS 04 07 2019.pdf

I. K. Gujral Punjab Technical University, Kapurthala

	BSHC- X-19							L-3, '	Г-1, Р-0	-0 4 Credits			
		Unders	standing	of senio	or secon	dary lev	el Physi	ics and I	Mathem	atics			
Course career.	e Objec	ctives: w	which wi	ll act as	a stron	g backg	round if	he/she	chooses	to purs	ue physi	ics as a	
Course	e Outco	omes: A	t the end	d of the	course,	the stud	ent will	be able	to				
CO	1												
CO	2												
CO	3												
CO													
CO	5												
		M	apping	of cours	se outco	omes wi	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1													
CO2													
CO3													
CO4													

Detailed Syllabus:

PART-A

UNIT-I

CO5

Atomic Structure:

Bohr's theory, its limitations and atomic spectrum of hydrogen atom. Wave mechanics: deBroglie equation, Heisenberg's Uncertainty Principle and its significance, Schrödinger's wave equation, significance of ψ and ψ_2 . Quantum numbers and their significance. Normalized and orthogonal wave functions. Sign of wave functions. Radial and angular wave functions for hydrogen atom. Radial and angular distribution curves. Shapes of *s*, *p*, *d* and *f* orbitals. Contour boundary and probability diagrams. Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations, Variation of orbital energy with atomic number

UNIT-II

Chemical Bonding-I:

lonic bond: General characteristics, types of ions, size effects, radius ratio rule and its limitations. Packing of ions in crystals. Born-Landé equation with derivation and importance of Kapustinskii expression for lattice energy. Madelung constant, Born-Haber cycle and its application, Solvation

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2019 & Onwards

energy.

Metallic Bond: Qualitative idea of valence bond and band theories. Semiconductors and insulators, defects in solids.

Weak Chemical Forces: van der Waals forces, ion-dipole forces, dipole-dipole interactions, induced dipole interactions, Instantaneous dipole-induced dipole interactions. Repulsive forces, Hydrogen bonding (theories of hydrogen bonding, valence bond treatment) Effects of chemical force, melting and boiling points, solubility energetics of dissolution process.

UNIT-III

Chemical Bonding-II:

Covalent bond: Lewis structure, Valence Bond theory (Heitler-London approach). Energetics of hybridization, equivalent and non-equivalent hybrid orbitals. Bent's rule, Resonance and resonance energy, Molecular orbital theory. Molecular orbital diagrams of diatomic and simple polyatomic molecules N₂, O₂, C₂, B₂, F₂, CO, NO, and their ions; HCl, BeF₂, CO₂, (idea of s-p mixing and orbital interaction to be given). Formal charge, Valence shell electron pair repulsion theory (VSEPR), shapes of simple molecules and ions containing lone pairs and bond pairs of electrons, multiple bonding (σ and π bond approach) and bond lengths. Covalent character in ionic compounds, polarizing power and polarizability. Fajan's rules and consequences of polarization. Ionic character in covalent compounds: Bond moment and dipole moment. Percentage ionic character from dipole moment and electronegativity difference.

UNIT-IV

Chemistry of s and p Block Elements:

Inert pair effect, Relative stability of different oxidation states, diagonal relationship and anomalous behaviour of first member of each group. Allotropy and catenation. Complex formation tendency of s and p block elements.Hydrides and their classification ionic, covalent and interstitial. Basic beryllium acetate and nitrate.Study of the following compounds with emphasis on structure, bonding, preparation, properties and uses. Boric acid and borates, boron nitrides, borohydrides (diborane) carboranes and graphitic compounds, silanes, Oxides and oxoacids of nitrogen, Phosphorus and chlorine. Peroxo acids of sulphur, interhalogen compounds, polyhalide ions, pseudohalogens and basic properties of halogens.

Reference Books :-

1. Lee, J.D. Concise Inorganic Chemistry, ELBS, 1991.

2. Douglas, B.E; Mc Daniel, D.H. & Alexander, J.J. Concepts & Models of Inorganic Chemistry 3rd Ed., John Wiley Sons, N.Y. 1994.

- 3. Greenwood, N.N. & Earnshaw. Chemistry of the Elements, Butterworth-Heinemann. 1997.
- 4. Cotton, F.A. & Wilkinson, G. Advanced Inorganic Chemistry, Wiley, VCH, 1999.
- 5. Miessler, G. L. & Donald, A. Tarr. Inorganic Chemistry 4th Ed., Pearson, 2010.
- 6. Shriver & Atkins, Inorganic Chemistry 5th Ed.

Note No. #1

File No.I/159/2019-ME

Attachment:MoM BoS 04 07 2019.pdf

I. K. Gujral Punjab Technical University, Kapurthala

UC-BSHC- XXX-19		!-	CHI	EMIST	RY LAI	3-I			L-0, 7	Г-0, Р-4		2 Cred	its
		e: Un	nders	tanding	of senio	or secon	dary lev	el Chen	nistry				
Cours career.		ective	es: w	hich wi	ll act as	a strong	g backgi	round if	he/she	chooses	to pursi	ue physi	cs as a
Cours	e Outo	come	s: At	the end	l of the o	course, t	the stude	ent will	be able	to			
CO													
CO CO													
CO	4												
CO	5												
Mapping of course outcomes with the program outcomes													
	PO1	P	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1													
CO2													
CO3													
CO4													
CO5													
List of	Expe	rime	nts:										
(A) T													
				of appa					0.1				
	-				differer	nt Molar	ity/Nori	mality o	f titrants	5			
(B) Ac						• 1		<i>.</i> 1 ·	• ,				
					l hydrox		U						
					d bicarb	1		0		lure.			
				-	resent ir rimetry		in soaps	s ucierge	51115				
					alic acid		standard	ized KN	/nO4 so	lution			
(I) Lot	matio					using a	, and ar u		1110 - 30	iuuon.			

Scheme & Syllabus B.Sc. (Hons.) Physics Batch 2019 & Onwards

(ii) Estimation of oxalic acid and sodium oxalate in a given mixture.

(iii) Estimation of Fe(II) with K₂Cr₂O₇ using internal (diphenylamine, anthranilic acid) and external indicator.

Reference text:

1. Vogel, A.I. A Textbook of Quantitative Inorganic Analysis, ELBS.

	BSHX		nmunic	ative Er	nglish -l	[L-2, '	Т-0, Р-0)	2 Cred	its	
	<u>X-19</u>		C' '	· .			11 11						
Pre-re	quisit	e: Basic J	proficier	ncy in C	ommun	ication S	Skills						
Cours	e Obj	ectives: 7	The main	objecti	ve of th	is course	e is:						
	J							SRW-Li	stening,	Speaki	ng, Rea	ding &	
			ig skills			1			U,	1	U,	U	
		To hel	p the stu	idents b	ecome t	he inder	bendent	users of	English	langua	ge		
			-			municat	ion skill	ls, integr	ral to the	eir perso	onal, soc	ial and	
		-	sional ir										
	•				-		ge of pro	ofession	al comm	nunicatio	on		
~	•		pare the										
Cours	e Out	comes: A	t the end	d of the	course,	the stud	ent will						
CO	1	acquire b	basic pro	oficiency	y in read	ling &lis	stening,	writing	and spe	aking sk	ills		
CO	2		re basic proficiency in reading &listening, writing and speaking skills le to understand spoken and written English language, particularly the language										
		of their of	eir chosen technical field.										
CO	3	be able to converse fluently.											
CO	4	be able to produce on their own clear and coherent texts.											
CO		become proficient in professional communication, such as, interviews, group											
		discussions, office environments, important reading skills as well as writing skills and											
		thereby		•		•							
		Μ	apping	of cours	se outco	omes wi	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	-	-	1	1	2	2	3	2	3	2	2	
CO2	1	-	-	1	1	2	2	3	2	3	2	2	
CO3	1	-	-	1	1	2	2	3	2	3	2	2	
CO4	1	-	-	1	1	2	2	3	2	3	2	2	
CO5	2	-	-	1	1	2	2	3	2	3	2	2	

Detailed Syllabus:

Part –A

UNIT I-(Literature)

(A) *The Poetic Palette* (Orient Black Swan, Second Edition, 2016)

- The following poems from this anthology are prescribed:
 - 1. Pippa's Song: Robert Browning
 - 2. Apparently With No Surprise: Emily Dickinson
 - 3. Fool and Flea: Jeet Thayil

(B) Prose Parables (Orient Black Swan, 2013)

The following stories from the above volume are prescribed:

- a. The Kabuliwallah : Rabindranath Tagore
- b. The Eyes Are Not Here: Ruskin Bond
- c. Grief: Anton Chekov

UNIT-II

Vocabulary: Word Formation Processes; Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives; Synonyms, antonyms **Grammar:** Subject-verb agreement; Noun-pronoun agreement; Misplaced modifiers; Articles Determiners; Modals; Prepositions;

PART-B

UNIT-III

Reading and Understanding: Close Reading; Comprehension;

UNIT-IV

Mechanics of Writing & Speaking Skills

Essay Writing (Descriptive/Narrative/Argumentative); Business letters; Précis Writing; Self Introductions; Group Discussion

TEXT AND REFERENCE BOOK

- 1. John Eastwood, Oxford Practice Grammar, Oxford University Press, 2014
- 2. Michael Swan, Practical English Usage, OUP. 1995.
- 3. F.T. Wood, Remedial English Grammar, Macmillan. 2007.
- 4. William Zinsser, On Writing Well, Harper Resource Book 2001.
- 5. Sanjay Kumar and Pushp Lata, Oxford University Press. 2011.
- 6. Communication Skills, Oxford University Press. 2011.
- 7. Liz Hamp-Lyons and Ben Heasly, Study Writing, Cambridge University Press. 2006.

File No.I/159/2019-ME

Attachment:MoM BoS 04 07 2019.pdf

37

I. K. Gujral Punjab Technical University, Kapurthala

	BSHX X-19	- ਪੰਜਾ	ਬੀ ਲਾਜ਼ਾ	नी (Pun	jabi Co	ompulso	ry)-I	L-2, 7	Γ-0, Ρ- 0)	2 Cred	its
Pre-re	quisite	e: Unders	tanding	of senio	or secon	dary lev	el Punja	ıbi		•		
1.To е 2.To е	nhance enhance	ectives: T the lang the ab thing with	uage abi ility of	lity of s Learni	tudents. ng scie		l develo	oping so	cience	literacy	through	n local
Cours	e Outc	comes: A	t the end	l of the	course,	the stude	ent will	be able	to			
CO		Translate language	•							0		loca
CO		local kno	Translate and transfer the indigenous/traditional scientific knowledge available in local knowledge into English and other global languages.									
CO		Understa		-					ure and	culture		
<u>CO</u> CO		Learning Improve					nce liter	acy.				
	<u> </u>		mprove the internal communication. Mapping of course outcomes with the program outcomes									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
Detail	ed Syll	labus:										
		PART-A										
UNIT	I : वर्दि	ਵਤਾ ਭਾਗ:										
ਭਾਈ ਵੀ	ਰ ਸਿੰਘ	नैथ्प:										
	ਸਮਾਂ, ਜ	ਜਮਾਂ, ਚਸ਼ਮਾ										
ਪ੍ਰੋ. ਪੂਰਕ	5 मिंथ :											
	ਪੰਜਾਬ	ਂ ਨੂੰ ਕੂਕਾਂ ਮੈਂ	, ਹੱਲ ਵਾਕੂ	ਹੁਣ ਵਾਲੇ								

ਪ੍ਰੋ.ਮੋਹਨ ਸਿੰਘ : ਮਾਂ, ਕੋਈ ਆਇਆ ਸਾਡੇ ਵਿਹੜੇ, ਪਿਆਰ ਪੰਧ ਅੰਮ੍ਰਿਤਾ ਪ੍ਰੀਤਮ: ਆਖਾਂ ਵਾਰਿਸ ਸ਼ਾਹ ਨੂੰ, ਅੰਨਦਾਤਾ (Lecture 11) UNIT-II ਕਹਾਣੀ ਭਾਗ: ਸੰਤ ਸਿੰਘ ਸੇਖੋਂ : ਪੇਮੀ ਦੇ ਨਿਆਣੇ ਸੁਜਾਨ ਸਿੰਘ : ਕੁਲਫੀ ਕੁਲਵੰਤ ਸਿੰਘ ਵਿਰਕ : ਤੂੜੀ ਦੀ ਪੰਡ ਗੁਰਦਿਆਲ ਸਿੰਘ : ਸਾਂਝ (Lecture 12) PART-B **UNIT-III** ਭਾਸ਼ਾ ਦਾ ਟਕਸਾਲੀ ਰੂਪ, ਭਾਸ਼ਾ ਤੇ ਉਪ-ਭਾਸ਼ਾ ਵਿਚ ਅੰਤਰ, ਪੰਜਾਬੀ ਦੀਆਂ ਉਪ-ਭਾਸ਼ਾਵਾਂ,ਪੰਜਾਬੀ ਭਾਸ਼ਾ:ਨਿਕਾਸ ਤੇ ਵਿਕਾਸ। ਭਾਸ਼ਾ ਤੇ ਲਿਪੀ, ਗੁਰਮੁਖੀ ਲਿਪੀ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ, ਗੁਰਮੁਖੀ ਲਿਪੀ: ਨਿਕਾਸ ਤੇ ਵਿਕਾਸ। (Lecture 11) **UNIT-IV** ਸੰਖੇਪ ਰਚਨਾ (ਪ੍ਰੈਸੀ) ਪੈਰਾ ਰਚਨਾ ਸਰਲ ਅੰਗਰੇਜ਼ੀ ਪੈਰ੍ਹੇ ਦਾ ਪੰਜਾਬੀ ਅਨੁਵਾਦ (Lecture 11) **TEXT AND REFERENCE BOOK:** 1. ਸੰਪ.ਡਾ.ਮਹਿਲ ਸਿੰਘ, ਸਾਹਿਤ ਦੇ ਰੰਗ, ਰਵੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ, 2016.

UC-B XXX	SHX- K-19	J = 0.1 (1.1 (-1.1 - 1										
Pre-req	uisite:	Unders	tanding	of senio	or secon	dary lev	el Physi	cs and N	Aathema	atics		
Course	Object	tives• T	he obied	rtive of	the cour	se is to:						
1. enhan						50 15 10.						
2. enhar						d devel	oping so	cience li	teracy t	hrough	local la	nguage
teaching							1 0		2	U		0 0
Course	Outco	mes: A	t the end	l of the o	course, t	the stude	ent will	be able 1	to			
CO1		ranslate inguage		ransfer/	broadca	st the	western	scienti	fic kno	owledge	in the	e local
CO2	Т	ranslate	and tra					al scient		owledge	avail	able in
CO3	U	Indersta	nd the s	ociety th	nrough I	Punjabi	languag	e, literat		culture.		
<u>CO4</u>				and in			nce liter	acy.				
CO5	lr			rnal con			h 41-		or 4			
		Mapping of course outcomes with the program outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
Detailed	l Sylla	bus:										
					j	PART-A	L					
UNIT I ਪੈਂਤੀ ਅੱਖ	Г I ਅੱਖਰੀ (ਵਰਣਮਾਲਾ), ਅੱਖਰ ਕਮ											
	ਾਤਰਾਵਾਂ : ਮੁਢਲੀ ਜਾਣ-ਪਛਾਣ											
ਲਗਾਖਰ	:ਬਿੰਦੀ,	ਟਿੱਪੀ, ਅੱ	ਧਕ									
UNIT-I ਪੰਜਾਬੀ ਸ਼		ੲਤਰ: ਮੁ	ਢਲੀ ਜਾਬ	-ਪਛਾਣ								

ਮੂਲ ਸ਼ਬਦ , ਅਗੇਤਰ, ਪਿਛੇਤਰ

ਸਮਾਨਾਰਥਕ ਸ਼ਬਦ, ਵਿਰੋਧਾਰਥਕ ਸ਼ਬਦ

ਸ਼ੁੱਧ- ਅਸ਼ੁੱਧ: ਦਿੱਤੇ ਪੈਰ੍ਹੇ ਵਿੱਚੋਂ ਅਸ਼ੁੱਧ ਸ਼ਬਦ ਨੂੰ ਸ਼ੁੱਧ ਕਰਨਾ (11 Lectures)

PART-B

UNIT-III ਹਫਤੇ ਦੇ ਸੱਤ ਦਿਨਾਂ ਦੇ ਨਾਂ

ਬਾਰ੍ਹਾਂ ਮਹੀਨਿਆਂ ਦੇ ਨਾਂ

ਰੁੱਤਾਂ ਦੇ ਨਾਂ

ਇਕ ਸੇ ਤੱਕ ਗਿਣਤੀ ਸ਼ਬਦਾਂ ਵਿਚ

UNIT-IV

ਸਧਾਰਣ ਸ਼ਬਦਾਂ ਦਾ ਅੰਗਰੇਜ਼ੀ ਤੋਂ ਪੰਜਾਬੀ ਅਨੁਵਾਦ

ਸਧਾਰਣ ਸ਼ਬਦਾਂ ਦਾ ਪੰਜਾਬੀ ਤੋਂ ਅੰਗਰੇਜ਼ੀ ਅਨੁਵਾਦ

TEXT AND REFERENCE BOOK 1.ਸੰਪ.ਡਾ.ਮਹਿਲ ਸਿੰਘ, ਸਾਹਿਤ ਦੇ ਰੰਗ, ਰਵੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ, 2016.

SEMESTER -II

UC-BS 121-19	-		W	aves and	d Vibra	tions		L-3, '	Т-1, Р-0		4 Cred	its
Pre-re	quisit	e: Unders	standing	of senio	or secon	dary lev	el physi	cs and I	Mathema	atics		
motior waves, interfa	ns, dan , propa ce of n	nped harmagation of nediums.	ives: The objective of the course provides an exposure about simple harmonic d harmonic motions and forced oscillations. Students learns about the different tion of waves in various mediums and reflection/transmission of waves at the iums.								fferent	
Cours	e Outo	comes: A	t the end	d of the	course, 1	the stud	ent will	be able	to			
CO	1	Understa	nd the s	imple a	nd damp	oed harn	nonic m	otion of	an oscil	lator.		
CO	2	Understa	nd Forc	ed Vibr	ations a	nd phen	omenon	of Reso	onance			
CO	3	Apply th	pply the Coupled oscillator to the real life problems.									
CO	4	Understa	nderstand the transmission of signals and Electromagnetic Waves									
CO	5	Apply th	e knowl	edge ob	tained in	n this co	ourse to	day-to-c	lay prob	lems.		
		M	apping	of cours	se outco	omes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	1	-	1	2	-	2	3	2	3
CO2	2	2	2 1 2 1 1 1 - 1 3 2 3									
CO3	3	2	-	2	1	1	2	-	1	3	2	3
CO4	2	2	-	2	1	1	2	1	1	3	3	1
CO5	2	2	- 2 1 1 2 1 1 3 3									

43

I. K. Gujral Punjab Technical University, Kapurthala

Detailed Syllabus:

PART-A

UNIT-I

Simple and Damped Harmonic Motion: Simple harmonic motion, energy of a SHO, Compound pendulum, Torsional pendulum, Electrical Oscillations, Lattice Vibrations, Transverse Vibrations of a mass on a string, Anharmonic Oscillations. Damped simple harmonic motion, Decay of free Vibrations due to damping, types of damping, Determination of damping coefficients – Logarithmic decrement, relaxation time and Q-factor. Electromagnetic damping. (12 Lectures)

UNIT-II

Forced Vibrations and Resonance: Forced mechanical and electrical oscillator, Transient and Steady State Oscillations, Displacement and velocity variation with driving force frequency, Variation of phase with frequency resonance, Power supplied to forced oscillator by the driving force. Q-factor and band width of a forced oscillator, Electrical and nuclear magnetic resonances. (12 lectures)

PART-B

UNIT-III

Coupled Oscillations: Stiffness coupled oscillators, Normal coordinates and modes of vibrations. Inductance coupling of electrical oscillators, Normal frequencies, Forced vibrations and resonance for coupled oscillators, Masses on string-coupled oscillators.

Waves in Physical Media: Types of waves, wave equation (transverse) and its solution characteristics impedance of a string, Impedance matching, Reflection and Transmission of waves at boundary, Energy of vibrating string, wave and group velocity. (12 Lectures)

UNIT-IV

Transmission of signals and Electromagnetic Waves: Transmission of a non-monochromatic wave, Frequency range and Signal duration, Bandwidth theorem, Group and phase velocities, Electromagnetic theory of dispersion, Doppler effect, Electromagnetic (EM) waves: Maxwell Equations, Wave equation, EM waves in a medium of finite ε , μ and σ . Energy flow due to a plane EM wave, EM waves in a conducting medium, Skin depth. (12 Lectures)

Text and Reference Books:

- 1. Text Book of Vibrations and Waves: S.P. Puri (Macmillan India), 2004.
- 2. The Physics of Vibrations and Waves: H.J. Pain (Wiley and ELBS), 2013.
- 3. N.K. Bajaj, The Physics of Waves and Oscillations, Tata McGraw Hill, 1998.

	BSHP 2-19	-		Mec	hanics			L-3, '	Г-1, Р-0)	4 Cred	its
Pre-re	equisit	e: Unders	standing	of senio	or secon	dary lev	el Physi	ics and I	Mathem	atics		
to the they ca	forma an use	l structure these in l	ves: The aim and objective of the course on Mechanics is to introduce the students ructure of vector mechanics, harmonic oscillators, and mechanics of solids so that see in Engineering as per their requirement. This will act as a strong background if o pursue higher studies in physics.							so that		
Cours	e Out	comes: A	t the end	d of the	course, 1	the stud	ent will	be able	to			
CO	1	Understar	nd the fu	ndamenta	als of veo	ctor mec	hanics fo	or a class	ical syste	em.		
CO	2	Identify v	arious ty	pes of fo	orces in n	ature, fr	ames of 1	reference	es, and co	onservati	on laws.	
CO	3	Know th	e inertia	l and no	on-inerti	al syster	n.					
CO	94	Understar	nd the G	avitation	n force as	s a Centra	al Force	Motion				
CO	95	Apply th		0								
		Μ	apping	of cours	se outco	omes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	1	2	1	2	1	2	3	2	2
CO2	2	3	3 1 2 2 1 1 1 1 3 1 1									
CO3	3	3	2	2	2	1	2	1	1	3	1	1
CO4	2	2	2	-	2	1	2	1	1	3	1	1
CO5	2	2	-	2	2	1	2	1	1	3	1	1

Detailed Syllabus:

UNIT I:

Fundamentals of Dynamics: Reference frames. Inertial frames; Review of Newton's Laws of Motion. Galilean transformations; Galilean invariance. Dynamics of a system of particles. Centre of Mass. Principle of conservation of momentum. Impulse. Momentum of variable-mass system: motion of rocket. (12 Lectures)

UNIT II:

Work and Energy: Work and Kinetic Energy Theorem. Conservative and non-conservative forces. Potential Energy. Energy diagram. Stable and unstable equilibrium. Force as gradient of potential energy. Work done by non-conservative forces. Law of conservation of Energy.

Collisions: Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frame of references. (12 Lectures)

UNIT-III

Non-Inertial Systems: Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications. Components of Velocity and Acceleration in Cylindrical and Spherical Coordinate Systems.

(12 Lectures)

UNIT-IV

Gravitation and Central Force Motion: Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and fields due to spherical shell and solid sphere. Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS). (12 Lectures)

Text and Reference Books:

- 1. Mechanics, Berkeley Physics, Vol.1, C. Kittel, W. Knight, et.al. 2007, Tata McGraw-Hill.
- 2. Physics, Resnick, Halliday and Walker 8/e. 2008, Wiley.
- 3. Feynman Lectures, Vol. I, R.P.Feynman, R.B.Leighton, M.Sands, 2008, Pearson Education
- 4. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons
- 5. University Physics. F.W Sears, M.W Zemansky, H.D Young 13/e, 1986, Addison Wesley
- 6. Physics for scientists and Engineers with Modern Phys., J.W.Jewett, R.A.Serway, 2010, Cengage Learning
- 7. Theoretical Mechanics, M.R. Spiegel, 2006, Tata McGraw Hill.

File No.I/159/2019-ME

Attachment:MoM BoS 04 07 2019.pdf

I. K. Gujral Punjab Technical University, Kapurthala

UC-B 123-	-	Physics	Lab-II				L-0, T-0	, P-4		2 Cre	edits	
Pre-re	quisite	s (if any)	: High-s	chool ed	ucation	with Phy	sics lab	as one o	of the sub	oject.		
Sc. (He these a	ons.) P	ctives: Th hysics to heir requir homes: At	the forn ement.	nal struc	ture of v	wave an	d vibrati					
CO1		Able to u	understa	nd the th	eoretical	l concep	ts learne	d in the	theory co	ourse.		
CO2		Trained i	in carryi	ng out p	recise m	easurem	ents and	handlin	g equipn	nent.		
CO3		Learn to	draw co	nclusion	s from d	lata and	develop	skills in	experim	ental des	sign.	
CO4		Able to design.	earn to draw conclusions from data and develop skills in experimental design. ble to understand the principles of error analysis and develop skills in experimental esign.									
CO5		Able to c and conc	ise man	ner.			h commu th the pr				ation in	a clear
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	2	1	2	3	2	3
CO2	3	3	3 1 - 2 2 1 1 1 3 2 3									
CO3	3	3	3 2 - 2 1 2 1 1 3 2 3									
CO4	3	2	2 2 - 2 2 1 1 3 2 3									
CO5	2	2	2	2	-	2	2	1	1	3	2	3

⁴⁶

47

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. Measurements of length (or diameter) using vernier caliper and screw gauge.
- 2. Measurement of volume using travelling microscope. Use of Plumb line and Spirit level.
- 3. To determine the frequency of an electrically maintained tuning fork in a) Transverse mode of vibration b) Longitudinal mode of vibration.
- 4. To verify the law of vibrating string Using Melde's experiment.
- 5. To compare mass per unit length of two strings by Melde's experiment.
- 6. To find out the frequency of AC mains using electric-vibrator/sonometer.
- 7. To determine the horizontal and vertical distance between two points using a Sextant.
- 8. To determine the height of an inaccessible object using a Sextant.
- 9. To determine the angular diameter of the sun using the sextant.
- 10. To determine the angular acceleration α , torque τ , and Moment of Inertia of flywheel.
- 11. To study the Motion of a Spring and calculate (a) Spring Constant (b) Value of g and (c) Modulus of rigidity.
- 12. To determine the time period of a simple pendulum for different length and acceleration due to gravity.
- 13. To study the variation of time period with distance between centre of suspension and centre of gravity for a compound pendulum and to determine: (i) Radius of gyration of the bar about an axis through its C.G. and perpendicular to its length. (ii) The value of g in the laboratory.
- 14. To find the moment of inertia of an irregular body about an axis through its C.G with the torsional pendulum.

Reference book and suggested readings:

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 6. Practical Physics, C L Arora. S. Chand & Company Ltd.
- 7. http://www.vlab.co.in

Note No. #1

File No.I/159/2019-ME

Attachment:MoM BoS 04 07 2019.pdf

I. K. Gujral Punjab Technical University, Kapurthala

48

	BSHM XX-19	- MA	THEM	ATICS				L-3, 7	Г-1, Р-0)	4 Cred	its
Pre-re	quisite	e: Unders	standing	of senio	or secon	dary lev	el Math	ematics		·		
career.	-	ectives: v								to pursi	ue physi	cs as a
Cours	e Outo	comes: A	t the end	l of the	course, 1	the stude	ent will	be able	to			
CO												
CO CO												
CO	4											
CO	95											
		Μ	apping	of cours	se outco	omes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Detailed Syllabus:	
P2 UNIT I	ART-A
UNIT-II	
	ART-B
UNIT-III	
UNIT-IV	
TEXT AND REFERENCE BOOK	

File No.I/159/2019-ME

Attachment:MoM BoS 04 07 2019.pdf

I. K. Gujral Punjab Technical University, Kapurthala

	BSHC- X-19	OR	GANI	C CHI	EMIST	ſRY		L-3, '	Г-1, Р-0)	4 Cred	its
Pre-re	quisite:	Unders	standing	of senio	or secon	dary lev	el Physi	cs and I	Mathem	atics		
Course career.	e Objec	tives: w	hich wi	ll act as	a stron	g backg	round if	he/she	chooses	to purs	ue physi	ics as a
Course	e Outco	mes: A	t the end	l of the	course,	the stud	ent will	be able	to			
CO												
CO CO												
CO	4											
CO	5											
		M	apping	of cours	se outco	omes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

⁵⁰

Detailed Syllabus:

PART-A

Unit-I

Basics of Organic Chemistry

Organic Compounds: Classification, and Nomenclature, Hybridization, Shapes of molecules, Influence of hybridization on bond properties. *Electronic Displacements:* Inductive, electromeric, resonance and mesomeric effects, hyperconjugation and their applications; Dipole moment; Organic acids and bases; their relative strength. Homolytic and Heterolytic fission with suitable examples. Curly arrow rules, formal charges; Electrophiles and Nucleophiles; Nucleo phlicity and basicity; Types, shape and their relative stability of Carbocations, Carbanions, Free radicals and Carbenes. Introduction to types of organic reactions and their mechanism: Addition, Elimination and Substitution reactions.

Unit-II

Stereochemistry:

Fischer Projection, Newmann and Sawhorse Projection formulae and their interconversions; Geometrical isomerism: cis–trans and, syn-anti isomerism E/Z notations with C.I.P rules.

Optical Isomerism: Optical Activity, Specific Rotation, Chirality/Asymmetry, Enantiomers, Molecules with two or more chiral-centres, Distereoisomers, meso structures, Racemicmixture and resolution. Relative and absolute configuration: D/L and R/S designations.

A. Carbon-Carbon sigma bonds formation:-

Chemistry of alkanes: Formation of alkanes, Wurtz Reaction, Wurtz-Fittig Reactions, Free radical substitutions: Halogenation -relative reactivity and selectivity.

PART-B

Unit-III

Carbon-Carbon pi bonds:

Formation of alkenes and alkynes by elimination reactions, Mechanism of E1, E2, E1cb reactions. Saytzeff and Hofmann eliminations.

Reactions of alkenes: Electrophilic additions their mechanisms (Markownikoff/ AntiMarkownikoff addition), mechanism of oxymercuration-demercuration, hydroboration oxidation, ozonolysis, reduction (catalytic and chemical), syn and anti-hydroxylation(oxidation). 1,2-and 1,4-addition reactions in conjugated dienes and, Diels-Alder reaction; Allylic and benzylic bromination and mechanism, e.g. propene, 1-butene, toluene, ethyl benzene. *Reactions of alkynes:* Acidity, Electrophilic and Nucleophilic additions. Hydration to form carbonyl compounds, Alkylation of terminal alkynes.

Unit-IV

Cycloalkanes and Conformational Analysis

Types of cycloalkanes and their relative stability, Baeyer strain theory, Conformation analysis of alkanes: Relative stability: Energy diagrams of cyclohexane: Chair, Boat and Twist boat forms; Relative stability with energy diagrams.

Aromatic Hydrocarbons

Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions and heterocyclic compounds with suitable examples. Electrophilic aromatic substitution: halogenation, nitration, sulphonation and Friedel-Craft's alkylation/acylation with their mechanism. Directing effects of the groups.

Text and Reference Books:

- 1. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 2. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 3. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 4. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds; Wiley: London, 1994.
- 5. Kalsi, P. S. Stereochemistry Conformation and Mechanism; New Age International, 2005.

Note No. #1

File No.I/159/2019-ME

Attachment:MoM BoS 04 07 2019.pdf

I. K. Gujral Punjab Technical University, Kapurthala

	BSHC XX-19		EMIST	RY LA	B-II			L-0, 1	Г-0, Р-2		2 Cred	its
Pre-re	equisit	te: Unders	tanding	of senio	or secon	dary lev	el Chen	nistry				
career	•	ectives: w								to pursi	ie physi	cs as a
Cours	se Out	comes: A	t the end	l of the	course, 1	the stude	ent will	be able	to			
CC												
CO CO												
CO)4											
CO)5											
		M	apping	of cours	se outco	omes wit	th the p	rogram	outcon	nes		
-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

List of Experiments:

- 1. Checking the calibration of the thermometer
- 2. Purification of organic compounds by crystallization using the following solvents: a) Water b) Alcohol, and c) Alcohol-Water.
- 3. Determination of the melting points of above compounds and unknown organic compounds (Kjeldahl method and electrically heated melting point apparatus)
- 4. Effect of impurities on the melting point mixed melting point of two unknown organic compounds
- 5. Determination of boiling point of liquid compounds. (boiling point lower than and more than 100°C by distillation and capillary method)
- 6. Chromatography a) Separation of a mixture of two amino acids by ascending and horizontal paper chromatography b) Separation of a mixture of two sugars by ascending paper chromatography, c) Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC)

Reference Books

- 1. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009).
- 2. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. *Practical Organic Chemistry*, *5th Ed.*, Pearson (2012).

CO5

2

UC	DOTIX	Corr		-4 F -	aliah T	r		TO	тара		2 Cred	:4a
	BSHX XX-19		nmunic	ative Er	ignsn-L	L		L-2,	T-0, P-0	,	2 Cred	Its
	A-17											
Pre-re	quisit	te: Basic p	proficier	ncy in co	ommunio	cative E	nglish					
Cours	e Obi	ectives: T	This cour	rse is de	signed t	0						
	j				U		in LS	RW-Lis	tening.	Speakin	g. Read	ling &
		-	help the students become proficient in LSRW-Listening, Speaking, Reading & Writing skills									
	•	 help th 	help the students become the independent users of English language									
		• develo	develop in them vital communication skills, integral to their personal, social and									
		profes	professional interactions									
			teach them the appropriate language of professional communication									
			prepare them for job market									
Cours	e Out	comes: A	mes: At the end of the course, the student will be able to									
CO	1	Students	will ac	quire ba	asic pro	ficiency	in read	ling &li	stening,	writing	g and sp	eaking
		skills.										
CO	2	Students				-		written	English	languag	ge, parti	cularly
~~~		the langu	0				eld.					
CO	3	They wil	ll be able	e to con	verse flu	iently.						
CO	4	They will	ll be able	e to proc	luce on	their ow	n clear	and coh	erent tex	xts.		
CO	5	Students	will be	come pr	oficient	in profe	ssional	commu	nication	such as	intervie	ws,
		group dis					-		ng skills	s as well	as writi	ng
		skills and										
		Μ	apping	of cours	se outco	omes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	1	1	2	2	3	2	3	2	2
CO2	1	-	-	1	1	2	2	3	2	3	2	2
CO3	1	-	-	1	1	2	2	3	2	3	2	2
CO4	1	-	-	1	1	2	2	3	2	3	2	2
a	-		1		1.		-	-	-	-	-	-

I. K. Gujral Punjab Technical University, Kapurthala

1

-

-

1

2

2

3

2

3

2

2

⁵⁵ 

**Detailed Syllabus:** 

#### Part –A

#### **UNIT I-(Literature)**

(A) The Poetic Palette (Orient Black Swan, Second Edition, 2016)

The following poems from this anthology are prescribed:

- 1. The Soul's Prayer: Sarojini Naidu
- 2. I Sit and Look Out: Walt Whitman
- 3. Women's Rights: Annie Louise Walker

#### (B) Prose Parables (Orient Black Swan, 2013)

The following stories from the above volume are prescribed:

- 1. The Doctor's Word: R.K. Narayan
- 2. The Doll's House: Katherine Mansfield
- 3. Dusk: H.H. Munroe (Saki)

#### UNIT-II

**Vocabulary:** Standard abbreviations; One word substitution; Word Pairs (Homophones/ Homonyms)

**Grammar:** Sentence Structures; Use of phrases and clauses in sentences; Transformation of Sentences; Importance of proper punctuation

# PART-B

#### UNIT-III

**Reading and Understanding:** Summary Paraphrasing; Analysis and Interpretation; Translation (from Hindi/Punjabi to English and vice-versa)

UNIT-IV

**Mechanics of Writing & Speaking Skills:** Report writing; Career Documents- Job applications, Resume/CV writing, Common Everyday Situations: Conversations & Dialogues, Formal Presentations

#### **TEXT AND REFERENCE BOOK**

- 1. John Eastwood, Oxford Practice Grammar, Oxford University Press, 2014
- 2. Michael Swan, Practical English Usage, OUP. 1995.
- 3. F.T. Wood, Remedial English Grammar, Macmillan. 2007.
- 4. William Zinsser, On Writing Well, Harper Resource Book 2001.
- 5. Sanjay Kumar and Pushp Lata, Oxford University Press. 2011.
- 6. Communication Skills, Oxford University Press. 2011.
- 7. Liz Hamp-Lyons and Ben Heasly, Study Writing, Cambridge University Press. 2006.

#### File No.I/159/2019-ME

# Attachment:MoM BoS 04 07 2019.pdf

57

I. K. Gujral Punjab Technical University, Kapurthala

	BSHP X-19	'- ਪੰਜ	ਾਬੀ ਲਾਜ਼	ਮੀ ( Pun	ijabi Co	ompulso	ory)-II	L-2, 7	Г-0, Р-0	)	2 Cred	its	
Pre-re	quisit	e: Under	standing	of senio	or secon	dary lev	el Punja	ıbi					
	-		<b>ves:</b> The objective of the course is to enhance the ability of via Learning science science literacy through local language teaching with science subjects.									science	
Course	e Out	comes: A	At the end	d of the	course, 1	the stude	ent will	be able	to				
CO	1	Transla languag	te and te.	transfer/	broadca	st the	western	scient	ific kno	owledge	in the	e local	
CO		local kn	ranslate and transfer the indigenous/traditional scientific knowledge available in cal knowledge into English and other global languages.										
CO			Jnderstand the society through Punjabi language, literature and culture										
CO			g science				nce liter	acy.					
CO	5		e the inte										
		Ν	lapping	of cours	se outco	omes wi	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1													
CO2													
CO3													
CO4													
CO5													

	I. K. Gujrai Punjab Technicai University, Kapurthaia
Detailed Syllabus:	
PART-A	1
UNIT I :	
ਡਾ.ਹਰਿਭਜਨ ਸਿੰਘ:	
ਅਪ੍ਰਮਾਣਿਕ, ਤੇਰੇ ਹਜ਼ੂਰ ਮੇਰੀ ਹਾਜ਼ਰੀ ਦੀ ਦਾਸਤਾਨ	
ਸ਼ਿਵ ਕੁਮਾਰ ਬਟਾਲਵੀ:	
ਕੰਡਿਆਲੀ ਥੋਰ੍ਹ, ਧਰਮੀ ਬਾਬਲ ਪਾਪ ਕਮਾਇਆ, ਰੁੱਖ	
ਪਾਸ਼:	
ਇਨਕਾਰ,ਸਭ ਤੋਂ ਖਤਰਨਾਕ,ਦਹਿਕਦੇ ਅੰਗਿਆਰਾਂ 'ਤੇ	
ਸੁਰਜੀਤ ਪਾਤਰ:	
ਹੁਣ ਘਰਾਂ ਨੂੰ ਪਰਤਣਾ, ਕੁਝ ਕਿਹਾ ਤਾਂ, ਪੁਲ	(Lecture 12)
UNIT-II	
ਕਹਾਣੀ ਭਾਗ:	
ਸੰਤੋਖ ਸਿੰਘ ਧੀਰ:	
ਕੋਈ ਇਕ ਸਵਾਰ	
ਪ੍ਰੇਮ ਪ੍ਰਕਾਸ਼:	
ਲੱਛਮੀ	
ਮੋਹਨ ਭੰਡਾਰੀ :	
ਘੋਟਣਾ	
ਵਰਿਆਮ ਸਿੰਘ ਸੰਧੂ :	
ਆਪਣਾ ਆਪਣਾ ਹਿੱਸਾ	(Lecture 11)

# Attachment:MoM BoS 04 07 2019.pdf

I. K. Gujral Punjab Technical University, Kapurthala

#### PART-B

UNIT-III ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਉਪਰ ਪਏ ਪ੍ਰਭਾਵ

(Lecture 12)

UNIT-IV

ਰਿਪੋਰਟਿੰਗ, ਸਮਾਚਾਰ ਲਿਖਣ ਦੀ ਵਿਧੀ ਤੇ ਤੱਤ

ਪੰਜਾਬੀ ਪੈਰ੍ਹੇ ਦਾ ਸਰਲ ਅੰਗਰੇਜ਼ੀ ਅਨੁਵਾਦ

ਦਫਤਰੀ ਚਿੱਠੀ ਪੱਤਰ

## **TEXT AND REFERENCE BOOK:**

1. ਸੰਪ.ਡਾ.ਮਹਿਲ ਸਿੰਘ, ਸਾਹਿਤ ਦੇ ਰੰਗ, ਰਵੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ, 2016.

UC-BSHX XXX-19		- ਮੁਢਾ	ਮੁਢਲੀ ਪੰਜਾਬੀ (Mudhli Punjabi)-II				L-2, '	Г-0, Р-0		2 Cred	its	
Pre-re	Pre-requisite: Understanding of senior secondary level Physics and Mathematics											
	<b>Course Objectives:</b> The objective of the course is:											
2.To e	<ol> <li>To enhance the language ability of students.</li> <li>To enhance the ability of Learning science and developing science literacy through local language teaching with science subjects.</li> </ol>								n local			
Cours	e Out	comes: A	t the end	d of the	course, t	the stude	ent will	be able	to			
CO	1	Translate language		ransfer/	broadca	st the	western	scient	ific kno	wledge	in the	local
CO	2	Translate local kno								wledge	avail	able in
CO	3	Understa	and the s	ociety tl	hrough I	Punjabi	languag	e, literat	ure and	culture.		
CO		Learning					nce liter	acy.				
CO	5	Improve M	apping				th the p	rogram	outcon	ies		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Detailed Syllabus:				
PART-A				
UNIT I ਸ਼ਬਦ ਸ਼੍ਰੇਣੀਆਂ : ਪਛਾਣ ਤੇ ਵਰਤੋਂ-				
ਨਾਂਵ				
ਪੜਨਾਂਵ				
ਵਿਸ਼ੇਸ਼ਣ				
ਕਿਰਿਆ				
ਕਿਰਿਆ ਵਿਸ਼ੇਸ਼ਣ	(12 Lectures)			
UNIT-II ਰੋਜ਼ਾਨਾ ਵਰਤੋਂ ਦੀ ਪੰਜਾਬੀ ਸ਼ਬਦਾਵਲੀ:				
ਬਾਜ਼ਾਰ, ਵਪਾਰ, ਰਿਸ਼ਤੇ-ਨਾਤੇ ਤੇ ਕਿੱਤਿਆਂ ਸਬੰਧੀ।	(12 Lectures)			
PART-B				
UNIT-III ਪੰਜਾਬੀ ਵਾਕ ਬਣਤਰ :				
ਸਧਾਰਣ ਵਾਕ				
ਸੰਯੁਕਤ ਵਾਕ				
ਮਿਸ਼ਰਤ ਵਾਕ				
	(12 Lectures)			
UNIT-IV				
ਸਧਾਰਣ ਵਾਕਾਂ ਦਾ ਅੰਗਰੇਜ਼ੀ ਤੋਂ ਪੰਜਾਬੀ ਅਨੁਵਾਦ				
ਸਧਾਰਣ ਵਾਕਾਂ ਦਾ ਪੰਜਾਬੀ ਤੋਂ ਅੰਗਰੇਜ਼ੀ ਅਨੁਵਾਦ	(11 Lectures)			
TEXT AND REFERENCE BOOK: 1. ਸੰਪ.ਡਾ.ਮਹਿਲ ਸਿੰਘ, ਸਾਹਿਤ ਦੇ ਰੰਗ, ਰਵੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ, 2016.				

Annexure-III

# **M.Sc. Physics**

# Course Structure and Syllabus (Based on Choice Based Credit System) 2019 onwards

Scheme & Syllabus (M.Sc. Physics) Batch 2019 & Onwards

**Page** 1 of 73

# **M.Sc. (Physics) Program**

#### **Duration: 2 Years (Semester System)**

This M.Sc. (Physics) Program includes various core, electives, and other interdisciplinary courses. The diverse lab experiments allow students to understand the fundamental aspects of the subject. A choice of advanced elective courses offers a glimpse in the frontier areas of research and allow students to work on research project as an integral part of their M.Sc. program. The program also provides adequate exposure to the students for pursuing higher education in the field of technology, research and development in Physics and related areas (M.Phil./Ph.D.) and other job opportunities in academia and industry.

#### **Eligibility:**

Pass B.Sc. with 50% marks having Physics as one of the subject. A relaxation of 5% is given in case of candidates belonging to SC/ST category.

# **PROGRAM EDUCATIONAL OBJECTIVES:** At the end of the program, the student will be able to:

PEO1	Apply principles of basic scientific concepts in understanding, analysis, and
	prediction of physical systems.
PEO2	Develop human resource with specialization in theoretical and experimental
	techniques required for career in academia, research and industry.
PEO3	Engage in lifelong learning and adapt to changing professional and societal needs.

1	AM OUTCOMES: At the end of the program, the student will be able to:
PO1	Apply the scientific knowledge to solve the complex physics problems.
PO2	Identify, formulate, and analyze advanced scientific problems reaching substantiated
	conclusions using first principles of mathematics, physical, and natural sciences.
PO3	Design solutions for advanced scientific problems and design system components or
	processes that meet the specified needs with appropriate attention to health and safety
	risks, applicable standards, and economic, environmental, cultural and societal
	consideration.
PO4	Use research-based knowledge and methods including design of experiments,
	analysis and interpretation of data, and synthesis of the information to provide valid
	conclusions.
PO5	Create, select, and apply appropriate techniques, resources, and modern scientific
	tools to complex physics problems with an understanding of the limitations.
PO6	Apply reasoning informed by the contextual knowledge to assess societal, health,
	safety, legal and cultural issues, and the consequent responsibilities relevant to the
	professional scientific practice.
PO7	Understand the impact of the scientific solutions in societal and environmental
	contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Apply ethical principles and commit to the norms of scientific practice.
PO9	Function effectively as an individual, and as a member or leader in diverse teams,
	and in multidisciplinary settings.
PO10	Communicate effectively on scientific activities with the Scientific/Engineering
	community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give
	and receive clear instructions.
PO11	Demonstrate knowledge and understanding of the scientific principles and apply
	these to one's own work, as a member and leader in a team, to manage projects and in
	multidisciplinary environments.
PO12	Recognize the need for, and have the preparation and ability to engage in independent
	and life-long learning in the broadest context of scientific and technological change.

**PROGRAM OUTCOMES:** At the end of the program, the student will be able to:

**PROGRAM SPECIFIC OUTCOMES:** At the end of the program, the student will be able to:

PSO1	Understand the basic and advance concepts of different branches of physics.
PSO2	Perform and design experiments in the areas of electronics, atomic, nuclear, condensed matter, and computational physics.
PSO3	Apply the concepts of physics in specialized areas of condensed, nuclear, renewable energies, particle physics, etc., in industry, academia, research and day today life.

#### SEMESTER FIRST

Course Code	Course Title	Load Allocation			rks bution	Total Marks	Credits	
		L	T	P	Internal	External		
UC-MSPH-411-19	Mathematical Physics-I	3	1	-	30	70	100	4
UC-MSPH-412-19	Classical Mechanics	3	1	-	30	70	100	4
UC-MSPH-413-19	Quantum Mechanics-I	3	1	-	30	70	100	4
UC-MSPH-414-19	Electronics	3	1	-	30	70	100	4
UC-MSPH-415-19	Computational Physics	3	1	-	30	70	100	4
UC-MSPH-416-19	Electronics Lab	-	-	6	50	25	75	3
UC-MSPH-417-19	Computational Physics Lab-I	-	-	6	50	25	75	3
Т	OTAL	15	5	12	250	400	650	26

#### SEMESTER SECOND

Course Code	Course Title		Load Marks llocation Distribution		Total Marks	Credits		
		L	Τ	P	Internal	External		
UC-MSPH-421-19	Mathematical Physics-II	3	1	-	30	70	100	4
UC-MSPH-422-19	Statistical Mechanics	3	1	-	30	70	100	4
UC-MSPH-423-19	Quantum Mechanics-II	3	1	-	30	70	100	4
UC-MSPH-424-19	Classical Electrodynamics	3	1	-	30	70	100	4
UC-MSPH-425-19	Atomic and Molecular Physics	3	1	-	30	70	100	4
UC-MSPH-426-19	Atomic, Nuclear, and Particle Physics Lab	-	-	6	50	25	75	3
UC-MSPH-427-19	Computational Physics Lab-II	-	-	6	50	25	75	3
	TOTAL	15	5	12	250	400	650	26

L: Lectures T: Tutorial P: Practical

#### **SEMESTER THIRD**

Course Code	Course Title		Load	l	Marks D	istribution	Total	Credits
		All	Allocation				Marks	
		L	T	P	Internal	External		
UC-MSPH-531-19	Condensed Matter Physics	3	1	-	30	70	100	4
UC-MSPH-532-19	Nuclear Physics	3	1	-	30	70	100	4
UC-MSPH-533-19	Particle Physics	3	1	-	30	70	100	4
UC-MSPH-534-19 UC-MSPH-535-19 UC-MSPH-536-19	Elective Subject-I	3	1	-	30	70	100	4
UC-MSPH-537-19 UC-MSPH-538-19 UC-MSPH-539-19	Elective Subject-II	3	1	-	30	70	100	4
UC-MSPH-540-19	Condensed Matter Physics Lab	-	-	6	50	25	75	3
ΤΟ	TAL	15	5	6	200	375	575	23

#### SEMESTER FOURTH

Course Code	Course Title				Total Marks	Credits		
		L	Τ	P	Internal	External		
UC-MSPH-541-19	Elective Subject-	3	1	-	30	70	100	4
UC-MSPH-542-19	III							
UC-MSPH-543-19								
UC-MSPH-544-19	Elective Subject-	3	1	-	30	70	100	4
UC-MSPH-545-19	IV							
UC-MSPH-546-19								
UC-MSPH-547-19	Dissertation	12		200	100	300*	12	
TOTAL			14		260	240	500	20

*Evaluation criteria as per IKGPTU norms.

#### **TOTAL NUMBER OF CREDITS = 95**

#### LIST OF DEPARTMENTAL/INTERDISCIPLINARY ELECTIVES

# **Elective Subject-I**

S. No.	Name of the Subject	Code
1	Fibre optics and non-linear optics	UC-MSPH-534-19
2	Radiation Physics	UC-MSPH-535-19
3	Nonlinear Dynamics	UC-MSPH-536-19

## **Elective Subject -II**

S.No.	Name of the Subject	Code
1	Plasma Physics	UC-MSPH-537-19
2	Structures, Spectra and Properties of Biomolecules	UC-MSPH-538-19
3	Science of Renewable Source of Energy	UC-MSPH-539-19

#### **Elective-III**

S.No.	Name of the Subject	Code
1	Physics of Nanomaterials	UC-MSPH-541-19
2	Experimental Techniques in Nuclear and Particle Physics	UC-MSPH-542-19
3	Superconductivity and Low Temperature Physics	UC-MSPH-543-19

#### **Elective-IV**

	Name of the Subject	Code				
1	Advanced Condensed Matter Physics	UC-MSPH-544-19				
2	Advanced Particle Physics	UC-MSPH-545-19				
3	Environment Physics	UC-MSPH-546-19				

## **Examination and Evaluation**

Theory	,						
S. No.	Evaluation criteria	Weightage in Marks	Remarks				
1	Mid term/sessional Tests	20	Internal evaluation (30 Marks)				
2	Attendance	5	MSTs, Quizzes, assignments, attendance, etc., constitute internal				
3	Assignments	5	evaluation. Average of two mid semester test will be considered for evaluation.				
4	End semester examination	70	External evaluation (70 Marks)				
5	Total	100	Marks may be rounded off to nearest integer.				
Practic	al						
1	Evaluation of practical record/ Viva Voice	30	Internal evaluation (50 Marks)				
2	Attendance	5					
3	Seminar/Presentation	15	_				
4	Final Practical Performance + Viva Voice	25	External evaluation (25 Marks)				
5	Total	75	Marks may be rounded off to nearest integer.				

#### Instructions for End semester Paper-Setter in M. Sc. Physics

#### A. Scope

- 1. The question papers should be prepared strictly in accordance with the prescribed syllabus and pattern of question paper of the University.
- 2. The question paper should cover the entire syllabus uniformly covering each chapter thoroughly with proper distribution.
- 3. Each unit of course/syllabus carries weightage according to the number of lectures mentioned in syllabus. (1 Lecture ~ 2 Marks)
- 4. The language of questions should be simple, direct, and documented clearly and unequivocally so that the candidates may have no difficulty in appreciating the scope and purpose of the questions. The length of the expected answer should be specified as far as possible in the question itself.
- 5. The distribution of marks to each question/answer should be indicated in the question paper properly.

#### **B.** Type and difficulty level of question papers

- 1. Questions should be framed in such a way as to test the students intelligent grasp of broad principles and understanding of the applied aspects of the subject. The weightage of the marks as per the difficulty level of the question paper shall be as follows:
  - i) Easy question 30%
  - ii) Average questions 50%
  - iii) Difficult questions 20%
- 2. The numerical content of the question paper should be upto 20%.

#### C. Format of question paper

- 1. Paper code and Paper-ID should be mentioned properly.
- 2. The question paper will consist of three sections: Sections-A, B, and C.
- 3. Section-A is COMPULSORY consisting of TEN SHORT questions carrying two marks each (total 20 marks) covering the entire syllabus.
- 4. The Section-B consists of SEVEN questions of five marks each covering the entire syllabus.
- 5. The Section-C consists of THREE questions of ten marks each covering the entire syllabus.
- 6. Attempt any **SIX** questions from Section-B and any **TWO** from Section-C.

#### **Question paper pattern for MST:**

Roll No:	No of pages:						
IK Gujral Punjab Technical University-	Jalandhar						
Department of Physical Science	5						
Academic Session:							
Mid-Semester Test: I/II/III (Regular/reappear)	Date:						
Programme: M.Sc. Physics	Semester:						
Course Code:	Course:						
Maximum Marks: 20	Time: 1 hour 30 minutes						

♦ Note: Section A is compulsory; Attempt any two questions from Section B and one question from Section C.

Sec	tion: A	Marks	COs
1		1	
2		1	
3		1	
4		1	
Sec	tion: B		
5		4	
6		4	
7		4	
Sec	tion: C		
8		8	
9		8	

#### Details of Course Objectives

C01	
CO2	
CO3	
<i>CO4</i>	
<i>CO5</i>	

			Intern	al Assessment		
	Communica presenta		Re	sponse to queries	Maximum Marks	Evaluated by
Departmental Presentation	20			30	50	Committee Member: 1.Head 2.Supervisor 3.One of Faculty Member
Dissertation	Plagiarism 25	Subject Matter 70	Usage of Language 25	Publication/Presentation in Conference 30	150	
	23					
External Examiner			50			
	Communi and Preser		50 Re	sponse to queries		Committee Member:
Viva Voce	20			30	50	1.Head 2.External Expert 3.Supervisor 4. Director (MC) nominee
		To	otal		300	

#### Guidelines for the evaluation of Dissertation:

**Evaluation Process:** 

- 1. The subject matter evaluation can further be defined on the basis of Title, Review of literature/Motivation, Objectives, Methodology, Results and discussions, and Conclusion.
- 2. The usage of language and the subject matter shall be evaluated by the supervisor. Out of 300 marks, 95 marks are to be evaluated by the concerned supervisor.
- 3. Total 15% Plagiarism is admissible for submission of the dissertation. For (0-5)% of plagiarism, candidate should be awarded 25 marks. For >5%-10% candidate should be awarded 15 marks and for the range of > 10% to < 15%, candidate should be awarded 5 marks.
- 4. For publication candidate should be awarded full 30 marks and for presenting the work related to dissertation, candidate should be awarded 25 marks.

	MSPH 1-19	<b>I-</b>	MATHEMATICAL PHYSICS-I					L-3, 7	Г-1, Р-0		4 Cred	its
Pre-re	quisit	e: Unders	tanding	of grad	uate leve	el mathe	ematics			<b>I</b>		
student in diffe	ts with erent c	ectives: T in the math courses tau rch in phy	ematica	l techni his class	ques that s and for	t he/she	needs f	for unde	rstandin	g theore	etical tre	atment
		comes: A							to			
CO	1	Use com	plex var	iables fo	or solvir	ng defin	ite integ	ral.				
CO	2	Use the Delta and Gamma functions for describing physical systems.										
CO	3	Solve partial differential equations using boundary value problems.										
CO	4	Describe special functions and recurrence relations to solve the physics problems.										
CO	5	Use statistical methods to analyse the experimental data.										
	I	M	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	-	1	1	-	2	1	1	2
CO2	3	3	2	1	-	1	1	-	2	1	1	2
CO3	3	3	2	2	-	1	1	-	2	1	1	2
CO4	3	3	2	2	-	1	1	-	2	1	1	2
CO5	3 3 2		2	3	-	2	1	-	2	1	1	2

- 1. **Complex Variables**: Introduction, Cauchy-Riemann conditions, Cauchy's Integral formula, Laurent expansion, singularities, calculus of residues, evaluation of definite integrals, Dispersion relation. *(Lectures 10)*
- 2. **Delta and Gamma Functions:** Dirac delta function, Delta sequences for one dimensional function, properties of delta function, Gamma function, factorial notation and applications, Beta function. *(Lectures 7)*
- 3. **Differential Equations:** Partial differential equations of theoretical physics, boundary value, problems, Neumann & Dirichlet Boundary conditions, separation of variables, singular points, series solutions, second solution. *(Lectures 8)*
- 4. **Special Functions:** Bessel functions of first and second kind, Generating function, integral representation and recurrence relations for Bessel's functions of first kind, orthogonality. Legendre functions: generating function, recurrence relations and special properties, orthogonality, various definitions of Legendre polynomials, Associated Legendre functions: recurrence relations, parity and orthogonality, Hermite functions, Laguerre functions.

(Lectures 10)

5. **Elementary Statistics:** Introduction to probability theory, random variables, Binomial, Poisson and Normal distribution. *(Lectures 5)* 

#### **Text Books:**

1. Mathematical Methods for Physicists: G. Arfken and H.J. Weber (Academic Press, SanDiego) 7th edition, 2011.

- 1. Mathematical Physics: P.K. Chattopadhyay (Wiley Eastern, New Delhi), 2004.
- 2. Mathematical Physics: A.K. Ghatak, I.C. Goyal and S.J. Chua (MacMillan, India, Delhi), 1986.
- 3. Mathematical Methods in the Physical Sciences *M.L. Boas (Wiley, New York) 3rd edition,* 2007.
- 4. Special Functions: E.D. Rainville (MacMillan, New York), 1960.
- 5. Mathematical Methods for Physics and Engineering: K.F. Riley, M.P. Hobson and S.J. Bence (Cambridge University Press, Cambridge) 3rd ed., 2006.

	MSPH 2-19	[-	CLAS	SICAL	MECH	IANICS	5	L-3, '	Г-1, Р-0		4 Cred	its					
Pre-re	quisit	e: Unders	tanding	of grad	uate leve	el physi	cs										
student in the r Matter	ts of N noder Physi	ectives: 7 A.Sc. stud n branche cs, Astrop	ents in t s of phy ohysics,	he Lagr sics suc etc.	angian a h as Qu	and Ham antum N	niltonian Aechanio	formal cs, Quar	isms so ntum Fie	that they	y can us	e these					
		comes: A									1.						
CO																	
CO	2	Use d'Al of motion	se d'Alambert principle and calculus of variations to derive the Lagrange equations motion.														
CO	3	Describe	scribe the motion of a mechanical system using Lagrange-Hamilton formalism.														
CO	4		pescribe the motion of a mechanical system using Lagrange-Hamilton formalism. Apply essential features of a classical problem (like motion under central force, eriodic motions) to set up and solve the appropriate physics problems.														
СО	5	Apprecia physics mechanic	e.g., mo	olecular	spectra	, acous	tics, vil		-								
		M	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12					
C01	3	2	2	2	2	1	1	-	2	2	2	2					
CO2	3	2	2	2	2	1	1	-	2	2	2	2					
CO3	3	2	2	2	2	1	1	-	2	2	2	2					
CO4	3	2	2 2 2 1 1 1 - 2 2 2 2														
CO5	3	2	2	2	1	1	1	-	2	2	2	2					

1. Lagrangian Formulation: Mechanics of a system of particles; constraints of motion, generalized coordinates, d'Alembert Principle and Lagrange's velocity-dependent forces and the dissipation function, Applications of Lagrangian formulation.

#### (Lectures 7)

2. **Hamilton's Principles:** Calculus of variations, Hamilton's principle, Lagrange's equation from Hamilton's principle, extension to nonholonomic systems, advantages of variational principle formulation, symmetry properties of space and time and conservation theorems.

(Lectures 7)

3. **Hamilton's Equations:** Legendre Transformation, Hamilton's equations of motion, Cyclic coordinates, Hamilton's equations from variational principle, Principle of least action.

(Lectures 7)

- 4. **Canonical Transformation and Hamilton-Jacobi Theory:** Canonical transformation and its examples, Poisson's brackets, Equations of motion, Angular momentum, Poisson's Bracket relations, infinitesimal canonical transformation, Conservation Theorems. Hamilton- Jacobi equations for principal and characteristic functions, Action-angle variables for systems with one-degree of freedom. *(Lectures 10)*
- 5. **Rigid Body Motion:** Independent co-ordinates of rigid body, orthogonal transformations, Eulerian Angles and Euler's theorem, infinitesimal rotation, Rate of change of a vector, Coriolis force, angular momentum and kinetic energy of a rigid body, the inertia tensor, principal axis transformation, Euler equations of motion, Torque free motion of rigid body, motion of a symmetrical top. *(Lectures 10)*

# **Text Books:**

- 1. Classical Mechanics: *H. Goldstein, C.Poole and J.Safko (Pearson Education Asia, New Delhi),* 3rd ed 2001.
- 2. Mechanics by L.D. Landau & E.M. Lifschz (Pergamon), 1976.

- 3. Classical Mechanics of Particles and Rigid Bodies: K.C. Gupta (Wiley Eastern, New Delhi), 1988.
- 4. Classical Mechanics- J. W. Muller- Kirsten (World Scientific) 2008.
- 5. Advanced Classical & Quantum Dynamics by W. Dittrich, W. And M Reuter, M. (Springer) 1991.
- 6. Classical mechanics by T.W.B. Kibble and Frank H. Berkshire (Imperial College Press) 2004.
- 7. Mathematical Methods of Classical Mechanics by V. I. Arnold, (Springer) 1978.

UC-M 413-19		Quar	ntum M	echanic	s-I			L-3, T-	-1, P-0	2	l Credit	ts					
Pre-re	quisite:	Basic l	knowled	ge of wa	ave mec	hanical	quantu	m mecha	nics								
the stu technic they ca	idents of ques of y	f M.Sc vector s ese in v	. class paces, a various b	to the f ingular pranches	formal s moment of phys	structure um, per sics as p	of the turbation or their	Quantum e subject on theory requirem be able	and to y, and sc nent.	equip	them w	ith the					
C	01	Unde	es: At the end of the course, the student will be able to Understand the need for quantum mechanical formalism and its basic principles.														
C	02		preciate the importance and implication of vector spaces, Dirac ket bra tations, eigen value problem.														
C	03	Unde	rstand th	ne impli	cations	of gener	alized	uncertain	ty princ	iple in (	QM.						
C	04	mom	entum fo	or a syst	em of p	articles.		al found		1		C					
C	05	Solve	Schrod	inger eq	uation f	for vario	ous QM	systems	using ap	oproxim	ate met	nods.					
		M	apping	of cours	se outco	omes wi	th the j	program	outcon	ies							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12					
C01	3	2	2	2	2	2	1	1	2	3	2	2					
CO2	3	2	2	2	2	2	1	1	2	2	2	2					
CO3	3	2	2	2	2	2	1	2	1	3	2	2					
CO4	3	2	2	2	2	2	2	2	2	2	2	2					
CO5	3	2	2	2	2	2	1	1	2	3	2	2					

Scheme & Syllabus (M.Sc. Physics) Batch 2019 & Onwards

Page 15 of 73

- 1. Linear Vector Space and Matrix Mechanics: Vector spaces, Schwarz inequality, Orthonormal basis, Operators: Projection operator, Hermitian and Unitary operators, change of basis, Eigenvalue and Eigenvectors of operators, Dirac's bra and ket notation, commutators, Simultaneous eigenvectors, Postulates of quantum mechanics, uncertainty relation, Harmonic oscillator in matrix mechanics, Time development of states and operators, Heisenberg, Schroedinger and Interaction representations, Exchange operator and identical particles, Density Matrix and Mixed Ensemble. (Lectures 15)
- Angular Momentum: Angular part of the Schrödinger equation for a spherically symmetric potential, orbital angular momentum operator. Eigen values and eigenvectors of L² and Lz. Spin angular momentum, General angular momentum, Eigen values and eigenvectors of J² and Jz. Representation of general angular momentum operator, Addition of angular momenta, C.G. coefficients. (Lectures 10)
- 3. **Stationary State Approximate Methods:** Non-Degenerate and degenerate perturbation theory and its applications, Variational method with applications to the ground states of harmonic oscillator and other sample systems. *(Lectures 8)*
- 4. **Time Dependent Perturbation:** General expression for the probability of transition from one state to another, constant and harmonic perturbations, Fermi's golden rule and its application to radiative transition in atoms, Selection rules for emission and absorption of light.

(Lectures 7)

#### **Text Books:**

- 1. A Text book of Quantum Mechanics: P.M. Mathews and K. Venkatesan (Tata McGraw Hill, New Delhi) 2nd edition, 2004.
- 2. Quantum Mechanics: V.K. Thankappan (New Age, New Delhi), 2004.

- 1. Quantum Mechanics: M.P. Khanna (Har Anand, New Delhi), 2006.
- 2. Modern Quantum Mechanics: J.J. Sakurai (Addison Wesley, Reading), 2004.
- 3. Quantum Mechanics: J.L. Powell and B. Crasemann (Narosa, New Delhi), 1995.
- 4. Quantum Physics: S. Gasiorowicz (Wiley, New York), 3rd ed. 2002.
- 5. Quantum Physics: Concepts and Applications: Nouredine Zettili (Wiley, New York), 2nd ed. 2009.

UC-M 414-19		Ele	ctronics	1			L	• <b>3, T-1,</b> ]	P-0	4	Credits	5			
Pre-re	quisite: ]	Basic l	knowled	ge abou	t electro	onics									
studen of sen analog of phys	e Object ts of M.S niconduct circuits a sics as pe e Outcon	c. clas or phy ind int r their	s to the ysics, b roduction require	formal s asic cir on to dig ment.	structure cuit ana gital elec	e of the s alysis, fi etronics	ubject rst-ord so that	and to ea er nonli they can	quip the near cin use the	em with rcuits, (	the kno DPAMP	wledge based			
(	201	Wo	rking Pr	inciples	and V-		eristics	) and the	eir appli	cations.					
(	<ul> <li>Working Principles and V-I characteristics) and their applications.</li> <li>Explain the construction and working of Thyristors and use Thyristors for various applications.</li> <li>Design Analog and Digital Instruments and their applications.</li> </ul>														
(	CO3	Des	ign Ana	log and	Digital	Instrum	ents and	d their ap	oplication	ons.					
	CO4		-			Karnau									
0	205	Des	ign the	Sequent	ial and I	Integrate	d circu	its.							
		M	apping	of cours	se outco	omes wit	h the p	orogram	outcor	nes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	3	2	1	2	2	1	2	1	2	2	2			
CO2	3	3	2	1	2	2	1	2	1	2	2	2			
CO3	2	2	3	2	2	2	1	2	1	2	2	2			
CO4	3	3     2     1     2     2     1     2     1     2     2     2													
CO5	2	2	2	2	2	2	1	2	1	2	2	2			

Scheme & Syllabus (M.Sc. Physics) Batch 2019 & Onwards

1. **Semiconductor Devices and applications:** Direct and indirect semiconductors, Drift and diffusion of carriers, Photoconductors, Semiconductor junctions, Metal-semiconductor junctions - Ohmic and rectifying contacts, Zener diode, Schottky diode, Switching diodes, Tunnel diode, Light emitting diodes, Photodiodes, Solar cell, Liquid crystal displays.

# (Lectures 7)

- UJTs and Thyristors: Operational Principle of UJT: UJT Relaxation Oscillator circuit; PNPN Diode: Characteristics- As a Relaxation Oscillator-Rate Effect; SCR: V-I Characteristics-Gate Triggering Characteristics; DIAC and TRIAC; Thyristors: Basic Parameters- As Current Controllable Devices- Thyristors in Series and in Parallel; Applications of Thyristors- as a Pulse Generator, Bistable Multivibrator, Half and Full Wave Controlled Rectifier, TRIAC based AC power control, SCR based Crowbar Protection; Gate Turn-Off Thyristors; Programmable UJT. (Lectures 10)
- Analog and Digital Instruments: OPAMP and its applications, Time Base; 555 Timer, Basic Digital Frequency Meter System; Reciprocal Counting Technique; Digital Voltmeter System. (Lectures 8)
- 4. **Digital and Sequential circuits:** Boolean algebra, de Morgans theorem, Karnaugh maps, Flip-Flops – RS, JK, D, COcked, preset and clear operation, race around conditions in JK Flipflops, master-slave JK flip-flops, Switch contact bounce circuit. Shift registers, Asynchronous and Synchronous counters, Counter design and applications.

# (Lectures 8)

5. Integrated Circuits as Digital System Building Blocks: Binary Adders: Half Adder-Parallel Operation-Full Adder-MSI Adder-Serial Operation; Decoder/Demultiplexer: BCD to Decimal Decoder-4-to-16 line Demultiplexer; Data Selector/Multiplexer:16-to-1 Multiplexer; Encoder; ROM: Code Converters-Programming the ROM-Applications; RAM:Linear Selection-Coincident Selection-Basic RAM Elements Bipolar RAM-Static and Dynamic MOS RAM; Digital to Analog Converters: Ladder Type D/A Converter-Multiplying D/A Converter; Analog to Digital Converters: Successive Approximation A/D Converter.

(Lectures 8)

# **Text Books:**

- 1. Text Book of Electronics: S. Chattopadhyay, New Central Book Agency P.Ltd., Kolkata, 2006.
- 2. Digital Principles and Applications: A.P. Malvino and D.P. Leach, Tata McGraw-Hill, Publishing Co., New Delhi.

- 1. Electronics Principles and Applications: *A.B. Bhattacharya*, New Central Book Agency P.Ltd., Kolkata, 2007.
- 2. Integrated Electronics Analog and Digital Circuits and Systems: *J. Millman, C.C Halkins and C. Parikh*, 2nd Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2010.

	ASPH- 5-19	Com	putatio	nal Phy	vsics		L-	<b>3, T-1,</b> ]	P-0	4	Credits	1
Pre-re	quisite:	Unders	tanding	of grad	uate lev	el physi	cs					
familia program in solv	e Object rize the mming u ing simp e Outco	studen ising ar ble phys	ts of M ny high sics prob	.Sc. stu level la blems.	dents w nguage	ith the such as	numeric Fortran	al meth	ods use etc., so t	ed in co	mputati	on and
	01	Appl								solving	g the p	ohysics
	02 03	U	ramme various			•	U		0 0	0		
	03		yze the									
	04		late the			U	1 0	0 1				
		Ma	apping o	of cours	se outco	mes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	1	2	3	2	3	2
CO2	3	3	3	1	2	1	1	1	3	2	3	2
CO3	3	3	3	2	2	1	1	2	1	2	2	2
CO4	3	3	3	3	2	2	2	2	2	2	2	2
CO5	3	3	3	3	2	2	1	2	2	2	2	2

# **Detailed Syllabus:**

- 1. **Introduction to Computational Physics:** Need and advantages of high level language in physics, programming in a suitable high level language, input/output, interactive input, loading and saving data, loops branches and control flow, Matrices and Vectors, Matrix and array operations, need for Graphic tools. *(Lectures 11)*
- Programming with C++: Introduction to the Concept of Object Oriented Programming; Advantages of C++ over conventional programming languages; Introduction to Classes, Objects; C++ programming syntax for Input/Output, Operators, Loops, Decisions, simple and inline functions, arrays, strings, pointers; some basic ideas about memory management in C+. (Lectures 15)
- **3. Numerical methods:** Computer algorithms, interpolations-cubic spline fitting, Numerical differentiation Lagrange interpolation, Numerical integration by Simpson and Weddle's rules, Random number generators, Numerical solution of differential equations by Euler, predictor-corrector and Runge-Kutta methods, eigenvalue problems, Monte Carlo simulations.

(Lectures 15)

# **Text Books:**

- 1. Numerical Mathematical Analysis, J.B. Scarborough (Oxford & IBH Book Co.) 6th ed., 1979.
- 2. A first course in Computational Physics: P.L. DeVries (Wiley) 2nd edition, 2011.

- 1. Computer Applications in Physics: S. Chandra (Narosa) 2nd edition, 2005.
- 2. Computational Physics: R.C. Verma, P.K. Ahluwalia and K.C. Sharma (New Age) 2000.
- 3. Object Oriented Programming with C++: Balagurusamy, (Tata McGraw Hill) 4th edition 2008.

	MSPH- 6-19	Elec	tronics	Lab			L	- <b>3, T-1,</b> ]	P-0	4	Credits					
Pre-re	equisite:	Unders	standing	of grad	uate lev	el physi	cs elect	ronics e	xperime	ents						
studen the thi equipr		Sc. clas	ss to export here	perimen or in e	tal tech arlier cl	niques i asses an	n electr d devel	onics so op confi	that th	ey can y	verify so	ome of				
Cours	e Outco	omes: A	t the en	d of the	course,	the stud	ent will									
C	CO1	Acq	uire han	ds on ex	perienc	e of han	dling ar	nd buildi	ng elect	tronics c	circuits.					
	CO2	chip	s and ho	w to use	e these o	compone	ents in c	ircuits.		-						
C	203		e familiar with the various components such as resistors, capacitor, inductor, IC hips and how to use these components in circuits. e able to understand the construction, working principles and V-I characteristics f various devices such as PN junction diodes, UJT, TRIAC, etc.													
C	CO4	Capa	able of u	ising co	mponen	ts of dig	ital elec	ctronics	for vario	ous appl	ications	•				
C	CO5					n scienti xperimer		eriments	s as we	ll as acc	curately	record				
		M	apping	of cours	se outco	omes wit	th the p	orogram	outcor	nes						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	2	2	2	1	1	2	1	2	2	2	2	2				
CO2	2	1	2	2	2	2	1	2	2	2	2	2				
CO3	1	1	2	2	1	1	1	2	2	2	2	2				
CO4	2	2	2	2	2	3	1	2	2	2	2	2				
CO5	3	2	3	3	2	3	1	2	2	2	2	2				

## Note: Students are expected to perform atleast 10 experiments out of following list.

- 1. Study the forward and reverse characteristics of a Semiconctor/Zener diode.
- 2. Construction of adder, subtracter, differentiator and integrator circuits using the given OP-Amp.
- 3. Study the static and drain characteristics of a JFET.
- 4. Construction of an Astable multivibrator circuit using transistor.
- 5. Construction of a single FET amplifier with common source configuration.
- 6. To study the operation of Analog to Digital convertor.
- 7. To study the operation of Digital to Analog convertor.
- 8. Construction of a low-pass filter circuit and study its output performance.
- 9. Construction of a high-pass filter circuit and study its output performance.
- 10. To verify the Dmorgan's law using Logic Gates circuit.
- 11. To study the Characteristics of Tunnel Diode.
- 12. To study Amplitude Modulation.
- 13. To study Frequency Modulation.
- 14. To study the Characteristics of SCR.
- 15. To study the Characteristics of MOSFET.
- 16. To study the Characteristics of UJT.
- 17. To study the Characteristics of TRIAC.
- 18. To verify the different Logic and Arithmetic operations on ALU system.
- 19. To study the operation of Encoders and Decoders.
- 20. To study the operation of Left and right shift registers.
- 21. To study the operation of Counters, Ring counters.
- 22. To determine the thermal coefficient of a thermistor.
- 23. To study the operation of an Integrated Circuit Timer.

# **Text Books:**

- 1. Text Book of Electronics: S. Chattopadhyay, New Central Book Agency P.Ltd., Kolkata, 2006.
- 2. Digital Principles and Applications: A.P. Malvino and D.P. Leach, Tata McGraw-Hill, Publishing Co., New Delhi.

- 1. Electronics Principles and Applications: *A.B. Bhattacharya*, New Central Book Agency P.Ltd., Kolkata, 2007.
- 2. Integrated Electronics Analog and Digital Circuits and Systems: *J. Millman, C.C Halkins and C. Parikh*, 2nd Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2010.

	MSPH- 7-19	C	Computa	ational	Physics	Lab-I	L	• <b>3, T-1,</b> ]	P-0	4	Credits	5
Pre-re	quisite:	Under	standing	of grad	uate lev	el nume	erical m	ethods				
familia prograt to phys	rize th mming t sics.	e of M using C	M.Sc. s ++ lang	tudents uage so	with t that the	he nun y can us	nerical se these	<b>Comp</b> method in solvin	s used ng simp	in cor	nputatic	on and
	01	prob	lems.					l Physic		lving va	rious p	hysical
C	203 204	Use Solv	various	numerio	cal meth	ods in d	lescribir	ng/solvir tical rea	ng physi			ientific
C	05				ice the e se outco			ta. program	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	1	2	3	2	3	2
CO2	3	3	3	1	2	1	1	1	3	2	3	2
CO3	3	3	3	2	2	1	1	2	1	2	2	2
CO4	3	3	2	2	3	1	1	1	1	1	1	1
CO5	1	3	3	3	1	1	1	1	2	1	2	2

# Note: Students are expected to perform atleast 10 experiments out of following list using C++ and Gnuplot.

- 1. To find the standard deviation, mean, variance, moments etc. of at least 15 entries.
- 2. To choose a set of 10 values and find the least squared fitted curve.
- 3. Find y for a given x by fitting a set of values with the help of cubic spline fitting technique.
- 4. To find the Roots of an Algebraic Equation by Bisection method and secant method
- 5. To find the Roots of an Algebraic Equation by Newton-Raphson Method.
- 6. To find the Roots of Linear Equations by Gauss Elimination Method.
- 7. To find the Roots of Linear Equations by Gauss-Seidal Iterative Method.
- 8. Find first order derivative at given x for a set of values with the help of Lagrange interpolation.
- 9. To perform numerical integration of a function by Trapezoidal Rule.
- 10. To perform numerical integration of a function by Simpson's Rule.
- 11. To perform numerical integration of a function by Weddle's rule.
- 12. To solve a Differential Equation by Euler's method and Modified Euler's Method.
- 13. To solve a Differential Equation by Runge Kutta method.
- 14. To find the determinant of a matrix and its eigenvalues and eigenvectors.
- 15. To generate random numbers between (i) 1 and 0, (ii) 1 and 100.

# **Text Books:**

- 1. Numerical Mathematical Analysis, J.B. Scarborough (Oxford & IBH Book Co.) 6th ed., 1979.
- 2. A first course in Computational Physics: P.L. DeVries (Wiley) 2nd edition, 2011.

- 1. Computer Applications in Physics: S. Chandra (Narosa) 2nd edition, 2005.
- 2. Computational Physics: R.C. Verma, P.K. Ahluwalia and K.C. Sharma (New Age) 2000.
- 3. Object Oriented Programming with C++: Balagurusamy, (Tata McGrawHill) 4th edition 2008.

	MSPH- 1-19		Mathe	ematical	Physic	s-II	L	-3, T-1, I	P-0	4	Credits	5			
Pre-re	quisite:	Unders	standing	of grad	uate lev	el mathe	ematics								
the M theoret backgr	Sc. St.	udents atment he/she	with th in diff chooses	ne math ferent c to pursu	ematica ourses ie resear	l techn taught rch in ph	iques t in this iysics as	Mather hat he/s class a s a caree	she nee and for	ds for	underst	anding			
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	able to							
C	201	Und Phys		the basi	cs and a	plicatior	ns of gro	oup theo	ry in all	the bra	nches of	f			
C	202	Use	Fourier	series a	nd trans	formatic	ons as a	n aid for	analyzi	ng phys	ical pro	blems.			
C	CO2Use Fourier series and transformations as an aid for analyzing physical problems.CO3Apply integral transform to solve mathematical problems of Physics interest.														
C	°O4			nd expre ransforn		ysical la	w in ter	ms of te	nsors ar	nd simpl	ify it by	use of			
C	205	Dev	elop ma	thematio	cal skills	s to solv	e quanti	itative p	roblems	in phys	ics.				
		M	apping	of cours	se outco	omes wit	th the p	orogram	outcor	nes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	3	2	2	-	1	1	-	2	1	1	2			
CO2	3	3	2	2	-	1	1	-	2	1	1	2			
CO3	3	3	2	2	-	1	1	-	2	1	1	2			
CO4	3	3	2	2	-	1	1	-	2	1	1	2			
CO5	3	3	2	2	-	1	1	-	2	1	1	2			

- 1. **Group Theory:** What is a group? Multiplication table, conjugate elements and classes, subgroups, Isomorphism and Homomorphism, Definition of representation and its properties, Reducible and irreducible representations, Schur's lemmas (only statements), characters of a representation. Example of C4v, Topological groups and Lie groups, three dimensional rotation group, special unitary groups SU(1) and SU(2). *(Lectures 10)*
- 2. **Tensors:** Introduction, definitions, contraction, direct product. Quotient rule, Levi-Civita symbol, Noncartesian tensors, metric tensor, Covariant differentiation.

(Lectures 7)

- 3. **Fourier Series and Integral Transforms:** Fourier series, Dirichlet conditions, General properties, Advantages and applications, Gibbs phenomenon, Fourier transforms, Development of the Fourier integral, Inversion theorem, Fourier transforms of derivatives; Momentum representation. Laplace transforms, Laplace transforms of derivatives, Properties of Laplace transform, Inverse Laplace transformation. *(Lectures 15)*
- 4. **Integral Equations:** Definitions and classifications, integral transforms and generating functions. Neumann series, Separable Kernels, Hilbert-Schmidt theory, Green's functions in one dimension. *(Lectures 10)*

#### **Text Books:**

- 1. Group Theory for Physicists: A.W. Joshi (Wiley Eastern, New Delhi) 2011.
- 2. Mathematical Methods for Physicists: G. Arfken and H.J. Weber, (Academic Press, San Diego) 7th edition, 2011.

- 1. Matrices and Tensors in Physics: A.W. Joshi (Wiley Eastern, New Delhi) 2005.
- 2. Numerical Mathematical Analysis: J.B. Scarborough (Oxford Book Co., Kolkata) 4th edition.
- 3. A First Course in Computational Physics: P.L. Devries (Wiley, New York) 1994.
- 4. Mathematical Physics: P.K. Chatopadhyay (Wiley Eastern, New Delhi) 2011.
- 5. Introduction to Mathematical Physics: C. Harper (Prentice Hall of India, New Delhi) 2006.

	MSPH- 2-19		Stati	stical N	lechani	cs	L	• <b>3, T-1,</b> ]	P-0	4	Credits					
Pre-re	quisite:	Unders	standing	of grad	uate lev	el statisti	ical me	chanics								
M.Sc. unders constit	student tand the uents.	with the macr	e techn oscopic	iques of proper	f statisti ties of	of the counce ical enset the ma	mble the the the the the the the the the th	heory so bulk	o that he that	e/she ca	n use tl	nese to				
C	201	Find	the con	nection	between	n Statistic	cal Me	chanics a	and ther	modyna	mics					
C	202	Use	ensemb	le theor	y to exp	lain the b	ehavio	or of Phy	sical sy	stems						
C	203	-	Use ensemble theory to explain the behavior of Physical systems Explain the statistical behavior of Bose-Einstein and Fermi-Dirac systems and their applications. Work with models of phase transitions and thermo-dynamical fluctuations.													
C	<b>CO4</b>	Wor	k with r	nodels c	of phase	transition	ns and	thermo-	dynami	cal fluct	uations.					
C	205	Desc	cribe ph	ysical p	roblems	using qu	antum	statistic	s.							
		M	apping	of cours	se outco	omes witl	h the p	orogram	outcon	nes						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	-	1	-	-	-	-	-	1	1	-	-	-				
CO2	3	3	3	1	3	2	1	2	2	1	1	1				
CO3	3	3	3	1	2	2	1	2	2	1	1	1				
CO4	3	3	3	1	2	2	1	2	2	1	1	1				
CO5	3	3	3	1	2	2	1	2	2	1	1	1				

- 1. **The Statistical Basis of Thermodynamics:** The macroscopic and microscopic states, contact between statistics and thermodynamics, classical ideal gas, Gibbs paradox and its solution. *(Lectures 7)*
- 2. **Ensemble Theory:** Phase space and Liouville's theorem, the microcanonical ensemble theory and its application to ideal gas of monatomic particles; The canonical ensemble and its thermodynamics, partition function, classical ideal gas in canonical ensemble theory, energy fluctuations, equipartition and virial theorems, a system of quantum harmonic oscillators as canonical ensemble, statistics of paramagnetism; The grand canonical ensemble and significance of statistical quantities, classical ideal gas in grand canonical ensemble theory, density and energy fluctuations. (*Lectures 10*)
- 3. **Quantum Statistics of Ideal Systems:** Quantum states and phase space, an ideal gas in quantum mechanical ensembles, statistics of occupation numbers; Ideal Bose systems: basic concepts and thermodynamic behaviour of an ideal Bose gas, Bose-Einstein condensation, discussion of gas of photons (the radiation fields) and phonons (the Debye field); Ideal Fermi systems: thermodynamic behaviour of an ideal Fermi gas, discussion of heat capacity of a free electron gas at low temperatures, Pauli paramagnetism.

(Lectures 10)

- 4. **Elements of Phase Transitions:** Introduction, a dynamical model of phase transitions, Ising model in zeroth approximation. *(Lectures 8)*
- **5. Fluctuations:** Thermodynamic fluctuations, random walk and Brownian motion, introduction to non-equilibrium processes, diffusion equation.

(Lectures 5)

#### **Text Books:**

1. Statistical Mechanics: R.K. Pathria and P.D. Beale (Butterworth-Heinemann, Oxford), 3rd edition, 2011.

- 1. Statistical Mechanics: K. Huang (Wiley Eastern, New Delhi), 1987.
- 2. Statistical Mechanics: B.K. Agarwal and M. Eisner (Wiley Eastern, New Delhi) 2nd edition, 2011.
- 3. Elementary Statistical Physics: C. Kittel (Wiley, New York), 2004.
- 4. Statistical Mechanics: S.K. Sinha (Tata McGraw Hill, New Delhi), 1990.

UC-M 423-19			Quant	tum Me	chanics	-II	L	• <b>3, T-1,</b> 1	P-0	4	Credits	5
Pre-re	quisite:	Prelim	inary co	ourse of	Quantui	n Mech	anics					
introdu technic these i	uce the liques of n variou	M.Sc. s Relativ s branc	tudents istic qua hes of p	to the f antum r hysics a	ormal s nechani s per his	tructure cs and ( s/her rec	of the s Quantur Juireme	e on <b>Q</b> subject a n field nt. be able	and to e theory s	quip hi	m/her w	ith the
C	01			elativisti quantu			variant	formula	tion of c	luantum	mechar	nics
C	02			nificanc antipart		in Gord	on and	Dirac eq	uation a	and expl	ain the	
C	03	App	ly the sy		es princ	-	d Noeth	er's theo	orem in	calculat	ing the	
C	04	Dem field		e the sec	ond qua	ntizatio	n for sc	alar, Dir	ac, and	electron	nagnetic	;
C	05	-		origin o les for e	•	0		d apply	the Fey	nman ru	les to de	erive
		Ma	apping	of cours	se outco	mes wi	th the p	orogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	1	1	1	2	2	1	2	2
CO2	2	2	3	1	1	1	-	1	2	1	2	2
CO3	2	2	2	2	1	1	1	1	2	1	2	2
CO4	2	2	2	2	1	1	1	2	2	1	2	2
CO5	2	2	3	2	1	1	2	2	2	1	2	2

91

#### **Detailed Syllabus:**

1. **Relativistic Quantum Mechanics-I:** Klein-Gordon equation, Dirac equation and its plane wave solutions, significance of negative energy solutions, spin angular momentum of the Dirac particle, the non-relativistic limit of Dirac equation.

#### (Lectures 10)

2. **Relativistic Quantum Mechanics-II:** Electron in electromagnetic fields, spin magnetic moment, spin-orbit interaction, Dirac equation for a particle in a central field, fine structure of hydrogen atom, Lamb shift.

#### (Lectures 10)

- 3. **Quantum Field Theory:** Resume of Lagrangian and Hamiltonian formalism of a classical field, Noether theorem, Quantization of real scalar field, complex scalar field, Dirac field and electromagnetic field, Covariant perturbation theory, Wick's theorem, Scattering matrix. *(Lectures 10)*
- 4. **Feynman diagrams**: Feynman rules, Feynman diagrams and their applications, Yukawa field theory, calculations of scattering cross-sections, decay rates with examples, Quantum Electrodynamics, calculations of matrix elements for first order and second order.

(Lectures 10)

#### **Text Books:**

- 1. Relativistic quantum Mechanics, J D Bjorken and S D Drell, (Tata McGraw Hill, New Delhi) 2012.
- 2. A first book of Quantum Field Theory, A. Lahiri & P. Pal, (Narosa Publishers, New Delhi), 1st ed. 2005.
- 3. Introduction to Quantum Field Theory, M. Peskin & D.V. Schroeder. (Levant Books) 2015.

- 1. Quantum Field Theory in a Nutshell: A Zee (University Press), 2012.
- 2. Lecture on Quantum Field Theory, A. Das (World Scientific), 2008.
- 3. Text Book of Quantum Mechanics-P.M. Mathews & K. Venkatesan (Tata McGraw Hill, New Delhi), 2004.
- 4. Quantum Field Theory: H. Mandl and G. Shaw (Wiley, New York), 2010.
- 5. Advance Quantum Mechanics: J.J. Sakurai (Addison- Wesley, Reading), 2004.

	MSPH- 4-19	Clas	sical El	ectrody	mamics		L	- <b>3, T-1,</b> ]	P-0	4	Credits	5			
Pre-re	quisite:	Unders	standing	of grad	uate lev	el electr	ricity an	d magne	etism						
Magne electro time va	e Obje etostatics magneti arying so	inclu c wave ources.	ding N s in die	Aaxwell lectrics;	equat EM wa	ions, a aves in	nd the bounde	ir appl d media	ications , waveg	to p	ropagati	on of			
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to						
C	201				ncept o	of quad	rupole,	multipo	ole exp	ansion	and die	electric			
C	CO2       Explain the magnetic scalar, vector potential and boundary conditions on magnetic fields.														
C	203	Prov	ide solu	tion to v	various	boundar	y value	problem	ns.						
C	<b>CO4</b>			-				and dif igh diffe			d descr	ibe the			
C	205		-	alytical s e guides		solve p	roblem	s related	to prop	pagation	of EM	waves			
		M	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
C01	2	2	2	1	2	1	2	1	1	1	2	3			
CO2	2	2	1	1	1	1	1	1	1	3	2	3			
CO3	2	2	2	2	2	2	1	1	1	2	2	3			
CO4	2	2	1	2	1	2	1	1	1	3	2	3			
CO5	1	2	1	2	1	1	1	2	2	3	2	3			

1. **Electrostatics:** Electrostatic potential and potential of a charge distribution, dipole moment, Electric Quadrupole and multipoles, Multipole expansion of the scalar potential, Dielectric polarization and its types, Polarization vector, Relation between electric displacement, electric field and Polarisation, Electrostatic energy and energy density in free space and dielectric, Boundary conditions at the interface of two dielectrics.

(Lectures 10)

- 2. **Magnetostatics:** Current density, magnetic induction, Force on a current element: Ampere's Force law, Divergence of magnetic induction, Magnetic scalar and vector potential, Boundary conditions on magnetic fields. *(Lectures 6)*
- 3. **Boundary value problems:** Uniqueness theorem, Green's theorem, Green's reciprocation theorem, Solution of electrostatic boundary value problem with Green function, Method of images with examples; Point charge near an infinite grounded conducting plane; Dielectric slab of infinite face in front of a point charge, Laplace and Poisson's equations in different coordinates, Solution of Laplace equation. *(Lectures 8)*
- 4. **Maxwell equations and Electromagnetic Waves:** Maxwell equations, Concept of displacement current, Maxwell's equations for free space, static fields and in Phasor notation, Wave equations in free space, non-conducting and conduction medium (Phasor form), Propagation characteristics of EM waves in free space, non-conducting and conducting media, conductors and dielectrics, depth of penetration, Poynting vector, Poynting theorem, Poynting theorem in complex form, Polarisation, Reflection of waves by a perfect conductor-normal and oblique incidence, Reflection and transmission of waves by a perfect dielectric-normal and oblique incidence, Brewster's angle, Total internal reflection, Gauge transformation, Lorentz and Coulomb gauges, Hertz potential,

(Lectures 10)

5. Wave Guides: Wave guides, Derivation of field equations in rectangular wave guides, Transverse magnetic (TM) waves, Transverse Electric (TE) waves, Propagation characteristics of TM and TE waves, Lowest possible mode in TM and TE waves, Dominant mode, Evanescent mode, Degenerate mode, Transverse electromagnetic (TEM) waves and characteristics, Difference between Transmission lines and wave guides, Definition, function and properties of an antenna, Retarded vector potential.

(Lectures 10)

#### **Text Books:**

- 1. Classical Electrodynamics: S.P. Puri (Narosa Publishing House) 2011.
- 2. Classical Electrodynamics: J.D. Jackson, (New Age, New Delhi) 2009.
- 3. Introduction to Electrodynamics: D.J. Griffiths (Prentice Hall India, New Delhi) 4th ed., 2011.

- 1. Classical Electromagnetic Radiation: J.B. Marion and M.A. Heald(Saunders College Publishing House) 2nd edition, 1995.
- 2. Electromagnetic Fields, Ronald K. Wangsness (John Wiley and Sons) 2nd edition, 1986.
- 3. Electromagnetic Field Theory Fundamentals: *Bhag Singh Guru and H.R. Hiziroglu*

	MSPH- 5-19	A	tomic a	nd Mol	ecular I	Physics	L	-3, T-1,	P-0	4	Credits	5
Pre-re	quisite:	Under	standing	of grad	luate lev	el spect	roscopy	/				
the stu	•	of M.S	c. Physi	ics is t	o equip			n <b>Atomi</b> e know			•	
Cours	e Outco	mes: A	t the en	d of the	course,	the stud	ent will	l be able	to			
C	201		e the ba atom	sic knov	wledge	of Bohr	's- Son	merfeld	Quantu	im theor	ry of hy	drogen
C	202		erstand ecules	classica	al/quant	um des	cription	of ele	ctronic	spectra	of ato	m and
C	203	Use	microw	ave and	Raman	Spectro	scopy f	or analy	sis of kr	nown me	olecules	
C	04		elate in ical des		-	scopic i	nforma	tion of	known	molecu	les with	h their
C	205	Und anal		Spin Re	sonance	Spectro	oscopy	with foc	us on N	MR for	molecul	ar
		M	apping	of cours	se outco	omes wi	th the <b>p</b>	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	2	2	1	1	2	2	3	1	2
CO2	2	2	3	3	2	1	2	2	2	3	1	1
CO3	2	2	3	3	2	1	2	2	2	3	1	3
CO4	2	2     2     3     3     2     1     2     2     2     3     1										3
CO5	2	2	3	3	2	1	2	2	2	3	1	3

- 1. Electronic Spectroscopy of Atoms: Bohr-Sommerfeld model of atomic structure, Electronic wave function and atomic quantum numbers – hydrogen spectrum – orbital, spin and total angular momentum - fine structure of hydrogen atom – many electron spectrum: Lithium atom spectrum, angular momentum of many electrons – term symbols – the spectrum of helium and alkaline earths – equivalent and non-equivalent electrons –X-ray photoelectron spectroscopy. (Lectures 8)
- 2. Electronic Spectroscopy of Molecules: Diatomic molecular spectra: Born-Oppenheimer approximation vibrational spectra and their progressions Franck-Condon principle dissociation energy and their products –rotational fine structure of electronic-vibration transition molecular orbital theory the spectrum of molecular hydrogen change of shape on excitation chemical analysis by electronic spectroscopy reemission of energy fundamentals of UV photoelectron spectroscopy. (Lectures 9)
- Microwave and Raman Spectroscopy: Rotation of molecules and their spectra diatomic molecules intensity of line spectra the effect of isotropic substitution non-rigid rotator and their spectra polyatomic molecules (linear and symmetric top molecules) Classical theory of Raman effect pure rotational Raman spectra (linear and symmetric top molecules). (Lectures 8)
- 4. **Infra-red and Raman Spectroscopy:** The energy of diatomic molecules Simple Harmonic Oscillator the Anharmonic oscillator the diatomic vibrating rotator vibration-rotation spectrum of carbon monoxide –breakdown of Born-Oppenheimer approximation the vibrations of polyatomic molecules –influence of rotation on the spectra of polyatomic molecules (linear and symmetric top molecules) Raman activity of vibrations vibrational Raman spectra vibrations of Spherical top molecules.

(Lectures 8)

5. **Spin Resonance Spectroscopy** Spin and magnetic field interaction – Larmor precession – relaxation time – spin-spin relaxation - spin–lattice relaxation - NMR chemical shift - coupling constants – coupling between nuclei – chemical analysis by NMR – NMR for nuclei other than hydrogen – ESR spectroscopy - fine structure in ESR. (*Lectures 8*)

#### **Text Books:**

- 1. Fundamentals of Molecular Spectroscopy: Colin N. Banwell and Elaine M. McCash (Tata McGraw-Hill Publishing Company limited).
- 2. Physics of Atoms and Molecules: B. H. Bransden and C. J. Joachain.

- 1. Physical method for Chemists (Second Edition): Russell S. Drago (Saunders College Publishing).
- 2. Introduction to Atomic Spectra: H.E. White-Auckland McGraw Hill, 1924.
- 3. Spectroscopy Vol. I, II & III: Walker & Straughen
- 4. Introduction to Molecular spectroscopy: G.M. Barrow-Tokyo McGraw Hill, 1961.
- 5. Spectra of diatomic molecules: Herzberg-New York, 1944.

	MSPH- 6-19	A	,	Nuclear Physics	·	article	L-	<b>3, T-1,</b> ]	P-0	4	Credits	5
Pre-re	quisite:	Unders	standing	of grad	uate lev	el atomio	c specti	roscopy	and nuc	lear phy	vsics	
to exposed to so that sophis	they ca ticated e	tudents in verif quipme	of M.S y some ent.	c. stude of the 1	nts to ex results o	f the lab xperimer obtained the stude	ital tecl	hniques ory and	in atom develop	ic and n	uclear p	ohysics
	201	Acqu	uire han		perienc	e of usir				ch as G	M coun	ter and
C	202	Hano	dle oscil	loscope	for visu	alisation	of var	ious inp	ut and o	utput si	gnals.	
C	203	Und	erstand	the basic	c of nuc	lear safe	ly mana	agement	•			
C	204			entific o clear ex	-	ents as its.	well a	s accura	ately re	cord an	d analy	ze the
C	205	Solv	e applie	d nuclea	ar proble	ems with	critica	l thinkin	ig and a	nalytica	l reason	ing.
		Ma	apping	of cours	se outco	omes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	2	2	2	2	2	2	2
CO2	1	1	1	2	1	2	1	2	2	2	2	2
CO3	1	1	1	2	1	2	1	2	2	2	2	2
CO4	1	2	2	2	1	2	2	2	2	2	2	2
CO5	1	2	2	2	1	2	2	2	2	2	2	2

#### Note: Students are expected to perform atleast 10 experiments out of following list.

- 1. Determination of e/m of electron by Normal Zeeman Effect using Febry Perot interferometer.
- 2. To verify the existence of Bohr's energy levels with Frank-Hertz experiments.
- 3. Determination of Lande's factor of DPPH using Electron-spin resonance (E.S.R.) spectrometer.
- 4. Determination of ionization Potential of Lithium.
- 5. Analysis of pulse height of gamma ray spectra.
- 6. To study the characteristics of G.M. tube.
- 7. To verify the inverse square law using GM counter.
- 8. To determine the dead time of G.M. counter.
- 9. To study absorption of beta particles is matter using GM counter.
- 10. To study Gaussian distribution using G.M. counter.
- 11. To estimate the efficiency of GM detector for Gamma and Beta source.
- 12. Determination of Planck's constant using Photocell and interference filters.
- 13. Verification of Inverse square law using Photocell.
- 14. To study Gaussian distribution using scintillation counter.
- 15. To study absorption of gamma radiation by scintillation counter.
- 16. To estimate the efficiency of Scintillator counter.

#### **Text Books:**

- 1. Fundamentals of Molecular Spectroscopy: Colin N. Banwell and Elaine M. McCash (Tata McGraw-Hill Publishing Company limited).
- 2. Physics of Atoms and Molecules: B. H. Bransden and C. J. Joachain.

- 1. Physical method for Chemists (Second Edition): Russell S. Drago (Saunders College Publishing).
- 2. Introduction to Atomic Spectra: H.E. White-Auckland McGraw Hill, 1924.
- 3. Spectroscopy Vol. I, II & III: Walker & Straughen
- 4. Introduction to Molecular spectroscopy: G.M. Barrow-Tokyo McGraw Hill, 1961.
- 5. Spectra of diatomic molecules: Herzberg-New York, 1944.

	MSPH- 7-19	C	omputa	tional I	Physics	Lab-II	L	- <b>3, T-1,</b> 1	P-0	4	Credits	5		
Pre-re	quisite	Unders	standing	of grad	luate lev	el nume	erical me	ethods a	nd C++					
studen as C+- physic proble	ts of M. ⊦ langua al data, ms.	Sc. clas age for so that	s in und simulati they ar	lerstand on of re e well o	ing num esults fo equippe	erical m or differed d in the	ethods, ent phys use of	mputat the usag sics prol comput	ge of hig blems a er for s	gh level nd grapl	languag hic anal	ge such ysis of		
	01							be able		athods	in colvi	ng the		
C	UI		sics prot		piy basi	ICS KHOV	vieuge	or nume		lethous	111 50171	ing the		
C	202	Writ	Write programme with the C++ or any other high level language.											
C	203	Lear	Learn use of graphical methods in data analysis and solving physics problems.											
C	<b>CO4</b>		Solve physical problem, enabling development of critical thinking and analytical reasoning.											
C	05		Apply computational physics in frontier areas of pure and applied research in physics and allied fields.											
		Ma	apping	of cours	se outco	omes wi	th the p	orogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	2	1	2	1	1	1	3	2	3	2		
CO2	3	3	3	2	2	1	1	2	1	2	2	2		
CO3	1	2	1	3	1	2	1	1	1	1	1	1		
CO4	3	3	2	2	3	1	1	1	1	1	1	1		
CO5	1	1	1	1	1	1	1	1	3	2	1	1		

# Note: Students are expected to perform atleast 10 experiments out of following list using C++ and Gnuplot.

- 1. Write a program to study graphically the EM oscillations in LCR circuit (use Runge-Kutta Method). Show the variation of (i) Charge vs Time and (ii) Current vs Time.
- 2. Study graphically the motion of falling spherical body under various effects of medium (viscous drag, buoyancy and air drag) using Euler method.
- 3. Study graphically the path of a projectile with air drag using FN method. Find the horizontal and maximum height in either case. Write your comments on the findings.
- 4. Study graphically the path of a projectile without air drag using FN method. Find the horizontal and maximum height in either case. Write your comments on the findings.
- 5. Study the motion of an artificial satellite.
- Study the motion of 1-D harmonic oscillator (without and with damping effects). Draw graphs showing the relations: i) Velocity vs Time, ii) Acceleration vs Time iii) Position vs Time, also compare the numerical and analytical results.
- Study the motion of two coupled harmonic oscillators. Draw graphs showing the relations: i) Velocity vs Time, ii) Acceleration vs Time iii) Position vs Time, also compare the numerical and analytical results.
- 8. To obtain the energy eigenvalues of a quantum oscillator using the Runge-Kutta method.
- 9. Study the motion of a charged particle in uniform electric field.
- 10. Study the motion of a charged particle in uniform Magnetic field.
- 11. Study the motion of a charged particle in combined uniform electric and magnetic fields.
- 12. Use Monte Carlo techniques to simulate phenomenon of Nuclear Radioactivity. Do the cases in which the daughter nuclei are also unstable with half life greater/lesser than the parent nucleus.
- 13. Use Monte Carlo techniques to simulate phenomenon to determine solid angle in a given geometry.
- 14. Use Monte Carlo techniques to simulate phenomenon to simulate attenuation of gamma rays/neutron in an absorber.
- 15. Use Monte Carlo techniques to simulate phenomenon to solve multiple integrals and compare results with Simpson's method.

Scheme & Syllabus (M.Sc. Physics) Batch 2019 & Onwards

- 16. To study phase trajectory of a Chaotic Pendulum.
- 17. To study convection in fluids using Lorenz system.

# **Text Books:**

- 1. Numerical Recipes in C++ The Art of Scientific Computing, William H. Press, Saul, A.Teukolsky, William T. Vetterling, and Brian P. Flannery, (Cambridge), 2nd ed. 2001.
- 2. A First Course in Computational Physics: P.L. DeVries (John Wiley) 2000.

- 1. An introduction to Computational Physics: Tao Pang (Cambridge), 2nd ed. 2006.
- 2. Computer Applications in Physics: S. Chandra (Narosa), 2006.
- 3. Computational Physics: R.C. Verma, P.K. Ahluwalia and K.C. Sharma (New Age), 2005.
- 4. Object Oriented Programming with C++: Balagurusamy, (Tata McGraw Hill), 5th ed. 2011.

	MSPH- 1-19		Condensed Matter PhysicsL-3, T-1, P-04 Credits								5			
Pre-re	quisite	Under	standing	g of grad	luate lev	el solid	state ph	iysics						
expose proper used in	e the stu ties, ene n investi	dents of ergy bar gating t	f M.Sc. nd theor hese asp	class to y and tr pects of	the top ansport the mat	pics like	elastic so that ndensed	constan they are l phase.	ts, lattic equipp	Matter e vibrat ed with	ions, die	electric		
C	201		Gain in-depth knowledge about the formation of various crystal structure via performing calculations on their elemental parameters.											
CO2Differentiate between various lattice types based on their lattice dyna then explain thermal properties of crystalline solids.										dynam	ics and			
C	203		Understand the electron motion in periodic solids and origin of energy bands in semiconductors.											
C	204		o explain the basic transport theory for understanding the transport phenomenon solids											
C	205		Using various models of molecular polarizability, understand the dielectric properties of insulators.											
		M	apping	of cour	se outco	omes wi	th the p	orogram	outcor	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	2	1	2	1	2	2	2	1	2		
CO2	2	2	2	2	2	2	2	2	2	2	2	2		
CO3	2	2	1	2	1	2	2	2	1	2	1	2		
CO4	2	2	1	2	2	2	1	2	1	2	2	2		
CO5	2	1	1	2	2	2	2	2	1	2	2	2		

1. **Crystal binding and Elastic constants:** Binding in solids; Cohesive energy, Crystals of Inert gases, ionic crystal, Covalent Crystals, Analysis of elastic strains: dilation, stress components; Elastic Compliance and Stiffness: elastic constants, elastic waves in cubic crystals.

(Lectures 6)

- Lattice Dynamics and Thermal Properties: Vibrations of crystal with monatomic and two atom per primitive Basis; Quantization of Elastic waves, Phonon momentum; Inelastic scattering by phonons, Phonon Heat Capacity, Planck Distribution, normal modes; Density of states, Debye T2 model; Einstein Model; anharmonic crystal interactions; thermal conductivity expansion. (Lectures 9)
- 3. **Energy Band Theory:** Electrons in a periodic potential: Bloch theorem, Nearly free electron model; Kronig Penney Model; Electron in a periodic potential; tight binding method; Wigner-Seitz Method Semiconductor Crystals, Band theory of pure and doped semiconductors; effective mass elementary idea of semiconductor superlattices.

(Lectures 9)

4. **Transport Theory:** Electronic transport from classical kinetic theory; Introduction to Boltzmann transport equation; electrical and thermal conductivity of metals; thermoelectric effects; Hall effect and magneto resistance.

(Lectures 8)

5. **Dielectrics and Ferro Electrics:** Polarization mechanisms, Dielectric function from oscillator strength, Clausius-Mosotti relation; piezo, pyro- and ferro-electricity; Dipole theory of ferroelectricity; thermodynamics of ferroelectric transition.

(Lectures 8)

#### **Text Books:**

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, New York), 8th ed. 2005.
- 2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.

- 1. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1971
- 2. Solid State Theory: Walter A. Harrison (Tata McGraw-Hill, New Delhi) 1970.
- 3. Liquid Crystals: S. Chandrasekhar (Cambridge University), 2nd ed. 1991.

	MSPH- 2-19		N	uclear I	Physics		L	-3, T-1,	P-0	4	Credits	6		
Pre-re	quisite	: Unders	standing	g of grad	luate lev	el physi	ics							
studen radioad with th	ts of M ctive de ne techn	l.Sc. cla cays, nu iques us	ss to the sclear fo wed in str	e basic prces, nu udying t	aspects iclear m hese thi	of Nuc odels, a ngs.	clear Ph nd nucle	Nuclea hysics litear react	ke statio ions so	c proper	ties of	nuclei,		
Cours	e Outco	omes: A	t the end	d of the	course,	the stud	lent will	be able	to					
CO1 Understand and compare nuclear models and explain nuclear properties usi nuclear models.												ng		
С	202	Und	Understand structure and static properties of nuclei.											
C	203	Ana	Analyse various decay mode of nucleus.											
C	204		Use nucleon-nucleon scattering and deuteron problem to explain nature of nuclear forces.											
C	205	Desc	Describe various types of nuclear reactions and their properties.											
		M	apping	of cours	se outco	omes wi	th the p	orogram	outcor	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	1	1	2	1	1	2	1	2	2	2		
CO2	3	3	1	1	2	1	1	2	1	2	2	2		
CO3	3	3	1	1	2	1	1	2	1	2	2	2		
CO4	3	3	1	1	2	1	1	2	1	2	2	2		
CO5	3	3	1	1	2	1	1	2	1	2	2	2		

#### **Detailed Syllabus:**

- 1. **Static properties of nucleus:** Nuclear radii and measurements, nuclear binding energy (review), nuclear moments and systematic, wave-mechanical properties of nuclei, hyperfine structure. *(Lectures 5)*
- 2. Nuclear forces: Evidence for saturation of nuclear density and binding energies (review), types of nuclear potential, Ground and excited states of deuteron, dipole and quadrupole moment of deuteron, single and triplet potentials, meson theory of nuclear forces.

(Lectures 10)

- 3. **Nuclear decay:** Review of barrier penetration of alpha decay & Geiger-Nuttal law. Beta decays, Fermi theory, Kurie plots and comparative half-lives, Allowed and forbidden transitions, Experimental evidence for Parity-violation in beta decay, Electron capture probabilities, Neutrino, detection of neutrinos, Multipolarity of gamma transitions, internal conversion process. *(Lectures 10)*
- 4. **Nuclear Models:** Liquid drop model, Binding energy; fission and fusion, Experimental evidence for shell effects, Shell Model, Spin-Orbit coupling, Magic numbers, Application of Shell Model like Angular momenta and parities of nuclear ground states, Collective model-nuclear vibrations spectra and rotational spectra. *(Lectures 8)*
- **5.** Nuclear reactions: Nuclear reactions and cross-sections, Resonance, Breit- Wigner dispersion formula for 1=0 and higher values, compound nucleus, Direct reactions, Transfer reactions. *(Lectures 7)*

#### **Text Books:**

- 1. Nuclear Physics: Irving Kaplan (Narosa), 2001.
- 2. Theory of Nuclear Structure: R.R. Roy and B.P. Nigam (New Age, New Delhi) 2005.
- 3. Handbook of Nuclear Physics: S.N. Ghoshal, S. Chand Publishing (1994).

- 1. Basic Ideas and Concepts in Nuclear Physics: K. Hyde (Institute of Physics) 2004.
- 2. Nuclear physics: Experimental and Theoretical, H.S. Hans (New Academic Science) 2nd ed (2011).

	И <b>SPH-</b> 3-19		Р	article l	Physics		L	-3, T-1, 1	P-0	4	Credits	6		
Pre-re	quisite:	course	on Qua	ntum M	lechanic	s and Q	uantum	field Th	eory					
invaria static c particle	nce prin Juark mo es in pro	ciples a odel of l per per	and constant	servation and we	n laws, l ak intera	hadron-lactions s	nadron i so that t	introdu nteractio hey gras be able	ons, rela p the ba	ativistic 1	kinemat	ics,		
C	01		<ul><li><b>nes:</b> At the end of the course, the student will be able to</li><li>Overview the particle spectrum, their interaction and major historical and latest developments.</li></ul>											
C	02		Understand the implications of various invariance principles and symmetry properties in particle physics.											
C	03		Master relativistic kinematics for computations of outcome of various reactions and decay processes.											
C	<b>O4</b>	Prop	Properties of baryons and mesons in terms of naive nonrelativistic quark model.											
C	05	Weak interaction in quarks and leptons and how that this is responsible for $\beta$ decay.												
		Ma	apping	of cour	se outco	omes wi	th the p	orogram	outcor	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	1	2	2	1	1	2	1	2	1	3		
CO2	1	1	1	2	2	1	1	2	2	2	2	3		
CO3	1	1	1	2	2	1	1	2	2	2	-	1		
CO4	1	1	1	2	2	1	2	2	2	2	2	2		
CO5	1	1	1	2	2	1	2	1	3	2	-	2		

1. **Introduction:** Fermions and bosons, particles and antiparticles, quarks and leptons, interactions and fields in particle physics, classical and quantum pictures, Yukawa picture, types of interactions - electromagnetic, weak, strong and gravitational, units.

(Lectures 7)

- 2. **Invariance Principles and Conservation Laws:** Invariance in classical mechanics and quantum mechanics, Parity, Pion parity, Charge conjugation, Positronium decay, Time reversal invariance, CPT theorem. *(Lectures 7)*
- 3. **Hadron-Hadron Interactions:** Cross section and decay rates, Pion spin, Isospin, Two nucleon system, Pion-nucleon system, Strangeness and Isospin, G-parity, Total and Elastic cross section, Particle production at high energy. *(Lectures 7)*
- 4. Relativistic Kinematics and Phase Space: Introduction to relativistic kinematics, particle reactions, Lorentz invariant phase space, two-body and three-body phase space, dalitz plots, K-2p-decay, t-θ puzzle, dalitz plots for dissimilar particles, Breit-Wigner resonance formula, Mandelstem variables. (Lectures 7)
- **5. Static Quark Model of Hadrons:** The Baryon decuplet, quark spin and color, baryon octer, quark-antiquark combination. (*Lectures 7*)
- **6. Weak Interactions:** Classification of weak interactions, Fermi theory, Parity non conservation in β-decay, experimental determination of parity violation, helicity of neutrino, K-decay, CP violation in K- decay and its experimental determination.

(Lectures 7)

#### **Text Books:**

- 1. Introduction to High Energy Physics: D.H. Perkins (Cambridge University Press), 2000.
- 2. Introduction to Quarks and Partons: F.E. Close (Academic Press, London), 1979.
- 3. Introduction to Particle Physics: M.P. Khanna (Prentice Hall of India, New Delhi), 2004.

- 1. An Introductory Course of Particle Physics: Palash Pal (CRC Press).
- 2. Elementary Particles: I.S. Hughes (Cambridge University Press), 3rd ed. 1991.
- 3. Gauge Theory of Elementary Particle Physics: T.P Cheng & L.F. Li (Oxford).
- 4. Dynamics of the Standard Model: J.F. Donoghue (Cambridge University Press).
- 5. First Book of Quantum Field Theory: A. Lahiri & P. Pal, Narosa, New Delhi.
- 6. Introduction to Quantum Field Theory: M. Peskin & D.V. Schroeder. (Levant Books).

# **Elective Subject -I**

	MSPH- 4-19	Fibre Optics and Non-linear optics						• <b>3, T-1,</b> ]	P-0	4	Credits	5	
Pre-re	equisite:	Unders	standing	of grad	uate lev	vel optics	and La	asers					
and N	onlinea	r Optio	es is to	expose	the M.S	ne aim a Sc. stude ar optics	nts to t						
Cours	e Outco	mes: A	t the end	d of the	course,	the stude	ent will	be able	to				
CO1 Understand the structure of optical fiber and describe properties of optical f											fibers.		
C	202	Iden	Identify and compare the various processes of fibers fabrication										
C	203	Desc	Describe the optics of anisotropic media										
C	<b>CO4</b>	Ana	Analyze the electro-optic and acousto-optic effects in fibers										
C	205					n optical							
		M	apping	of cours	se outco	omes wit	h the p	orogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	-	1	-	1	-	1	-	3	-	1	
CO2	3	2	1	1	1	1	-	1	-	3	-	1	
CO3	2	2	-	1	-	1	-	1	-	3	-	1	
CO4	3	2	1	1	1	-	-	1	-	3	-	1	
CO5	3	2	1	1	1	-	-	1	-	3	-	1	

- 1. **Optical fibre and its properties:** Introduction, basic fibre construction, propagation of light, modes and the fibre, refractive index profile, types of fibre, dispersion, data rate and band width, attenuation, leaky modes, bending losses, cut-off wavelength, mode field diameter, other fibre types. *(Lectures 7)*
- 2. **Fiber fabrication and cable design:** Fibre fabrication, mass production of fiber, comparison of the processes, fiber drawing process, coatings, cable design requirements, typical cable design, testing. *(Lectures 5)*
- 3. **Optics of anisotropic media:** Introduction, the dielectric tensor, stored electromagnetic energy in anisotropic media, propagation of monochromatic plane waves in anisotropic media, directions of D for a given wave vector, angular relationships between D, E, H, k and Poynting vector S, the indicatrix, uniaxial crystals, index surfaces, other surfaces related to the uniaxial indicatrix, Huygenian constructions, retardation, biaxial crystals, intensity through polarizer/waveplate/ polarizer combinations. *(Lectures 10)*
- 4. Electro-optic and acousto-optic effects and modulation of light beams: Introduction to the electro-optic effects, linear electro-optic effect, quadratic electro-optic effects, longitudinal electro-optic modulation, transverse electro optic modulation, electro optic amplitude modulation, electro-optic phase modulation, high frequency wave guide, electro-optic modulator, strain optic tensor, calculation of LM for a logitudinal acoustic wave in isotropic medium, Raman-Nath diffraction, Raman-Nath acousto-optic modulator.

(Lectures 10)

5. **Non-linear optics/processes**: Introduction, anharmonic potentials and nonlinear polarization, non-linear susceptibilities and mixing coefficients, parametric and other nonlinear processes, macroscopic and microscopic susceptibilities. *(Lectures 8)* 

# **Text Books:**

1. The Elements of Fibre Optics: S.L. Wymer and Meardon (Regents/Prentice Hall), 1992.

- 1. Lasers and Electro-Optics: C.C. Davis (Cambridge University Press), 1996.
- 2. Optical Electronics: Gathak & Thyagarajan (Cambridge Univ. Press), 1989.
- 3. The Elements of Non-linear Optics: *P.N. Butcher & D. Cotter (Cambridge University Press),* 1991.

									]	Elective	Subjec	t-I	
UC-M 535-19			Ra	diation	Physics	5	L	<b>3, T-1,</b>	P-0	4	Credits	5	
Pre-re	quisite:	Under	standing	g of grad	luate lev	el nucle	ar phys	ics					
studen that the to be ra	ts of M. ey under adiation	Sc. clas rstand t or nucl	s to the he detai ear phy	relative ls of the sicists ir	ly advar underly their ca	nced top ying asp areer.	ics Radi ects and	n <b>Radia</b> iation Ph l can use	iysics and the tec	nd nucle	ar react	ions so	
Course Outcomes: At the end of the course, the student will be able to         CO1       Understand various modes of interaction of electromagnetic radiations and charged particles with matter.         CO2       Distinguish various types of radiations based on their interaction with matter.													
CO2 Distinguish various types of radiations based on their interaction with matter.													
С	203	Lear	n and u	nderstan	d about	differer	nt detect	ors.					
C	204			t analyt				KRF, PIX oscopy.	KE, neut	tron acti	vation		
C	205	Desi	gn expe	eriments	to analy	yze effec	ets of ra	diation o	on vario	us objec	ets.		
		M	apping	of cours	se outco	omes wi	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1	1	-	1	1	1	1	1	2	1	2	
CO2	1	1	1	-	1	2	2	1	2	2	2	2	
CO3	2	1	2	2	2	2	2	2	2	2	2	2	
<b>CO4</b>	2	2	2	2	2	3	3	2	2	2	2	2	
CO5	3	2	2	3	3	3	3	2	2	2	2	2	

(Lectures 10)

#### **Detailed Syllabus:**

1. **Interaction of electromagnetic radiations with Matter:** Different photon interaction processes viz. photoelectric effect, Compton scattering and pair production. Minor interaction processes, Energy and Z dependence of partial photon interaction processes. Attenuation coefficients, Broad and narrow beam geometries. Multiple scattering.

(Lectures 10)

2. **Interaction of charged particles with Matter:** Elastic and inelastic collisions with electrons and atomic nucleus. Energy loss of heavy charged particles. Range-energy relationships, Straggling. Radiative collisions of electrons with atomic nucleus.

(Lectures 10)

3. **Nuclear Detectors and Instrumentation:** General characteristics of detectors, Gas filled detectors, Organic and inorganic scintillation detectors, Semi-conductor detectors [Si(Li), Ge(Li) HPGe]. Room temperature detectors, Gamma ray spectrometers. Gamma ray spectrometry with NaI(Tl) scintillation and semiconductor detectors.

(Lectures 10)

**4. Analytical Techniques:** Principle, instrumentation and spectrum analysis of XRF, PIXE and neutron activation analysis (NAA) techniques. Theory, instrumentation and applications of electron spin resonance spectroscopy (ESR). Experimental techniques and applications of Rutherford backscattering. Applications of elemental analysis and nuclear medicine.

#### **Text Books:**

- 1. The Atomic Nucleus: R.D. Evans, Tata Mc Graw Hill, New Delhi.
- 2. Nuclear Radiation Detectors: S. S. Kapoor and V. S. Ramamurthy, New Age, International, New Delhi.

#### **Reference Books:**

- 1. Radiation Detection and Measurements: G. F. Knoll, Wiley & Sons, New Delhi.
- 2. Introductory Nuclear Physics: K. S. Krane, Wiley & Sons, New Delhi.
- 3. An Introduction to X-ray Spectrometry: Ron Jenkin, Wiley.
- 4. Techniques for Nuclear and Particle Physics Experiments: W. R. Leo, Narosa Publishing House, New Delhi.
- 5. Introduction to experimental Nuclear Physics: R.M. Singru, Wiley & Sons, New Delhi

# **Elective Subject -I**

	MSPH- 6-19		Non	linear I	<b>)</b> ynamio	cs	L	-3, T-1, 1	P-0	4	Credits			
Pre-re	equisite	Unders	standing	of grad	uate lev	el physi	cs		L					
the M. Hamil	Sc. stud tonian s	ents wit ystems.	th the ba	sics of	the rece	ntly eme	erging r	Nonline esearch be able	field of					
<ul> <li>CO1 Understand basic knowledge of nonlinear dynamics and phenomenology of chaos.</li> <li>CO2 Apply the tools of dynamical systems theory in context to models.</li> </ul>														
C														
CO3       Learn skills by solving problems on solving nonlinear problems using numeric methods.												erical		
C	CO4	Und	erstand	Hamilto	on appro	ach for o	describi	ng vario	us phys	ical syst	em.			
C	CO5	Quar	ntify cla	ssical cl	naos and	l Quantu	ım chao	os.						
		Ma	apping	of cours	se outco	omes wit	th the p	orogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	-	1	-	1	2	1	2	2	2	2		
CO2	2	2	1	2	1	1	1	1	1	2	1	1		
CO3	3	2	-     2     1     1     2     1     1     2     1     1											
CO4	2	2	-	2	1	1	2	1	1	2	1	1		
CO5	2	2	-	2	1	1	2	1	1	2	1	1		

Scheme & Syllabus (M.Sc. Physics) Batch 2019 & Onwards

Page 50 of 73

#### **Detailed Syllabus:**

- Phenomenology of Chaos: Linear and nonlinear systems, A nonlinear electrical system, Biological population growth model, Lorenz model; determinism, unpredictability and divergence of trajectories, Feigenbaum numbers and size scaling, self similarity, models and universality of chaos. (Lectures 8)
- 2. **Dynamics in State Space:** State space, autonomous and nonautonomous systems, dissipative systems, one dimensional state space, Linearization near fixed points, two dimensional state space, dissipation and divergence theorem. Limit cycles and their stability, Bifurcation theory, Heuristics, Routes to chaos. Three-dimensional dynamical systems, fixed points and limit cycles in three dimensions, Lyapunov exponents and chaos. Three dimensional iterated maps, U-sequence. (Lectures 10)
- 3. **Hamiltonian System**: Non-integrable systems, KAM theorem and period doubling, standard map. Applications of Hamiltonian Dynamics, chaos and stochasticity.

(Lectures 8)

4. **Quantifying Chaos**: Time series, Lyapunov exponents. Invariant measure, Kolmogorov - Sinai entropy. Fractal dimension, Statistical mechanics and thermodynamic formalism.

(Lectures 7)

5. **Quantum Chaos**: Quantum Mechanical analogies of chaotic behaviour, Distribution of energy eigenvalue spacing, chaos and semi-classical approach to quantum mechanics.

(Lectures 7)

#### **Text Books:**

1. Chaos and Non Linear Dynamics: R.C. Hilborn (Oxford Univ. Press), 2001.

- 1. Chaos in Dynamical Systems: E. Ott (Cambridge Univ. Press), 2001.
- 2. Applied Nonlinear Dynamics: A.H. Nayfeh and B. Balachandran (Wiley), 1995.
- 3. Chaos in Classical and Quantum Mechanics: M.C. Gutzwiller (Springer-Verlag), 1990.

# **Elective Subject -II**

	ASPH- 7-19		Pl	asma P	hysics		L-	<b>3, T-1,</b> ]	P-0	4	Credits	5		
Pre-re	quisite:	Course	on Elec	etrodyna	mics				I					
	-				bjective allengin					<b>ysics</b> is s.	to expo	ose the		
Course	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to					
C	01		erstand asma.	the orig	in of pl	asma, c	ondition	is of pla	sma foi	rmation	and pro	perties		
C	02		-		n the si to descri					approac a.	ch and	kinetic		
CO3Classify propagation of electrostatic and electromagnetic waves in magnetized and non-magnetized plasmasCO4Describe the basic transport phenomena such as plasma resistivity, diffusion ar														
C	04				ransport ignetize	-		-		•	, diffusi	on and		
C	05	therr					-			o be i /ze the s				
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	1	-	1	1	1	1	2	2	1	2		
CO2	1	1	1 1 - 1 1 1 1 2 2 1 2											
CO3	1	1	1 1 - 1 1 1 1 2 2 1 2											
CO4	1	1	1	-	1	1	1	1	2	2	1	2		
CO5	1	3	2	2	2	2	1	1	2	2	1	2		

Scheme & Syllabus (M.Sc. Physics) Batch 2019 & Onwards

- 1. **Introduction:** Plasma State, elementary concepts and definitions of temperature and other parameters, occurrence and importance of plasma for various applications, Production of Plasma in the laboratory, Physics of glow discharge, electron emission, ionization, breakdown of gases, Paschen's laws and different regimes of E/p in a discharge, Townsend discharge and the evolution of discharge. *(Lectures 8)*
- 2. **Plasma diagnostics:** Probes, energy analyzers, magnetic probes and optical diagnostics, preliminary concepts. *(Lectures 5)*
- 3. **Single particle orbit theory:** Drifts of charged particles under the effect of different combinations of electric and magnetic fields, Crossed electric and magnetic fields, Homogenous electric and magnetic fields, spatially varying electric and magnetic fields, time varying electric and magnetic fields, particle motion in large amplitude waves.

(Lectures 8)

- 4. Fluid description of plasmas: distribution functions and Liouville's equation, macroscopic parameters of plasma, two and one fluid equations for plasma, MHD approximations commonly used in one fluid equations and simplified one fluid and MHD equations. dielectric constant of field free plasma, plasma oscillations, space charge waves of warm plasma, dielectric constant of a cold magnetized plasma, ion- acoustic waves, Alfven waves, Magnetosonic waves. (Lectures 10)
- 5. Stability of fluid plasma: The equilibrium of plasma, plasma instabilities, stability analysis, two stream instability, instability of Alfven waves, plasma supported against gravity by magnetic field, energy principle. microscopic equations for my body system: Statistical equations for many body systems, Vlasov equation and its properties, drift kinetic equation and its properties. (Lectures 7)

# **Text Books:**

1. Introduction to Plasma Physics, F.F. Chen

- 1. Principles of Plasma Physics, *Krall and Trievelpice*
- 2. Introduction to Plasma Theory, D.R. Nicholson
- 3. The Plasma State, J.L. Shohet
- 4. Introduction to Plasma Physics, M. Uman
- 5. Principles of Plasma Diagnostic, I.H. Hutchinson

# **Elective Subject-II**

	MSPH- 8-19		ictures, iomolec	-	a and P	ropertie	es L	-3, T-1, 1	P-0	4	Credits	5
Pre-re	quisite:	Unders	standing	g of grad	luate lev	vel chem	istry an	d physic	s			
of Bio	e Objec omolecul ch field o	<b>les</b> is t	o famili	iarize tł	ne M.Sc	. studer	nts with	the bas	sics of	the rece		-
Cours	e Outco	mes: A	t the en	d of the	course,	the stud	ent will	be able	to			
C	201	Desc	cribe va	rious str	uctural	and cher	nical bo	onding a	spects o	f Biomo	lecules	
C	202	es and	their a	applicat	ion to							
C	203		erstand nolecule		various	spectros	scopic t	echnique	es and t	heir app	olication	to the
C	<b>CO4</b>	Und	erstand	the strue	cture-Fu	nction r	elations	hip and	modelir	ng of bio	molecu	les.
C	CO5	Outl	ine and	correlat	e for pro	oviding	solution	to inter	discipli	nary pro	blem.	
		M	apping	of cour	se outco	omes wi	th the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	2	2	1	2	1	2	2	1	2
CO2	2	2	1	2	2	2	2	-	2	2	1	2
CO3	2	2	1	2	1	2	2	-	2	2	1	2
CO4	2	2	1	2	2	2	2	-	2	2	1	2
CO5	2	2	1	2	2	1	2	1	2	2	1	2

- 1. **Structure Aspects of Biomolecule:** Conformational Principles, Conformation and Configuration Isomers and Derivatives, Structure of Polynucleotides, Structure of Polypeptides, Primary, Secondary, Tertiary and Quaternary Structure of Proteins, Structure of Polysaccharides. *(Lectures10)*
- 2. **Theoretical Techniques and Their Application to Biomolecules:** Hard Sphere Approximation, Ramachandran Plot, Potential Energy Surface, Outline of Molecular Mechanics Method, Brief ideas about Semi-empirical and Ab initio Quantum Theoretical Methods, Molecular Charge Distribution, Molecular Electrostatic Potential and Field and their uses. *(Lectures 10)*
- 3. Spectroscopic Techniques and their Application to Biomolecules: Use of NMR in Elucidation of Molecular Structure, Absorption and Fluorescence Spectroscopy, Circular Dichroism, Laser Raman Spectroscopy, IR spectroscopy, Photoacoustic Spectroscopy, Photo-biological Aspects of Nucleic Acids. *(Lectures 10)*
- **4. Structure-Function Relationship and Modeling:** Molecular Recognition, Hydrogen Bonding, Lipophilic Pockets on Receptors, Drugs and Their Principles of Action, Lock and Key Model and Induced fit Model. *(Lectures 10)*

#### **Text Books:**

1. Srinivasan & Pattabhi: Structure Aspects of Biomolecules.

- 1. Govil & Hosur: Conformations of Biological Molecules
- 2. *Price:* Basic Molecular Biology
- 3. *Pullman:* Quantum Mechanics of Molecular Conformations
- 4. Lehninger: Biochemistry
- 5. Mehler & Cordes: Biological Chemistry
- 6. Smith and Hanawait: molecular Photobiology, Inactivation and Recovery

# **Elective Subject - II**

	MSPH- 9-19	Scier Ener		Renewal	ble sour	ce of	L-	<b>3, T-1,</b> ]	P-0 4	4 Credit	ts					
Pre-re	quisite:	Unders	standing	of grad	uate lev	el semic	onducto	or physic	cs							
Source		expose	the M.S					e on <b>Sc</b> e alterna								
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to							
C	201		erstand native fo			nand of	world &	& disting	guish bo	etween	traditior	al and				
C	202	Desc	Describe the concept of solar energy radiation and thermal applications.													
C	203	Anal	yze mal	king of s	solar cel	l and its	types.									
C	<b>CO4</b>	Iden	tify hyd	rogen as	s energy	source,	its stora	age and	transpor	tation n	nethods.					
C	205	Com	pare wi	nd energ	gy, wave	e energy	and oce	ean ther	mal ene	rgy conv	version.					
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	2	1	-	1	-	1	2	1	2	3	2	2				
CO2	2	2	1 2 1 1 1 1 3 1 1													
CO3	3	2	-         2         1         1         2         1         1         3         1         1													
CO4	2	2	-	2	1	1	2	1	1	3	1	1				
CO5	2	2	-	2	1	1	2	1	1	3	1	1				

- 1. **Introduction**: Production and reserves of energy sources in the world and in India, need for alternatives, renewable energy sources. (*Lectures 8*)
- 2. **Solar Energy**: Thermal applications, solar radiation outside the earth's atmosphere and at the earth's surface, Principal of working of solar cell, Performance characteristics of solar cell. Types of solar cell, crystalline silicon solar cell, Thin film solar cell, multijunction solar cell, Elementary ideas of perovskite solar cell, dye synthesized solar cell and Tandem solar cell, PV solar cell, module array, and panel, Applications.

#### (Lectures 11)

3. **Hydrogen Energy**: Environmental considerations, solar hydrogen through photo electrolysis and photocatalytic process, physics of material characteristics for production of solar hydrogen. Storage processes, solid state hydrogen storage materials, structural and electronic properties of storage materials, new storage modes, safety factors, use of hydrogen as fuel; use in vehicles and electric generation, fuel cells.

(Lectures 10)

**4. Other sources**: Nature of wind, classification and descriptions of wind machines, power coefficient, energy in the wind, wave energy, ocean thermal energy conversion (OTEC), system designs for OTEC, basic idea about biogas, biofuel, and biodiesel.

(Lectures 8)

#### **Text Books:**

1. Solar Energy: S.P. Sukhatme (Tata McGraw-Hill, New Delhi), 2008.

- 1. Solar Cell Devices: Fonash (Academic Press, New York), 2010.
- 2. Fundamentals of Solar Cells, Photovoltaic Solar Energy: Fahrenbruch and Bube (Springer, Berlin), 1982.
- 3. Photoelectrochemical Solar Cells: Chandra (New Age, New Delhi).

	ASPH- 0-19	Co	ondense	d Matte	er Physi	cs Lab	L-	<b>3, T-1,</b> ]	P-0	4	Credits			
Pre-re	quisite:	Unders	tanding	of grad	uate lev	el solid	state ph	ysics ex	perime	nts				
to train physics sophist	e Objec the stu- s so the dicated e	udents at they quipme	of M.So can in nt and a	c. class ivestiga nalyze t	to adva te vario he data.	anced ex ous rele	xperime want as	ental tec spects a	hniques and are	s in con	densed	matter		
Course	e Outco	mes: A	t the end	l of the	course,	the stude	ent will	be able	to					
C	01	Meas	sure con	ductivit	y, resist	ivity and	d therm	o-dynan	nical pro	operties	of solid	8.		
C	CO2       Measure magnetic properties and magnetic behavior of magnetic materials.													
CO3 Describe the lattice dynamics of simple lattice structures in terms of dispersion relations.														
С	04		-	-	out scier f experi	ntific ex ments.	perimer	nts as v	vell as	accurate	ely reco	rd and		
C	05	Solv	e proble	m with	critical	thinking	and and	alytical	reasonir	ng.				
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	1	1	1	-	-	2	2	2	2	2		
CO2	2	1	1 1 1 1 2 2 2 2 2											
CO3	1	1	1 1 1 1 2 2 2 2 2											
CO4	2	2	2     2     2     2     2     2     2     2     2     2											
CO5	3	3	2	2	3	2	2	2	2	2	2	2		

# Note: Students are expected to perform atleast ten experiments out of following list.

- 1. To study temperature dependence of conductivity of a given semiconductor crystal using four probe method.
- 2. Verification of curie-weiss law for the electrical susceptibility of a ferroelectric material.
- 3. To determine charge carrier density and Hall coefficient by Hall effect.
- 4. To determine magnetic susceptibility of material using Quink 's tube method.
- 5. To determine energy gap and resistivity of the semiconductor using four probe method.
- 6. To study the B-H loop characteristics.
- 7. To determine dielectric constant of a material with Microwave set up.
- 8. To measure the Curie temperature of a given PZT sample.
- 9. To measure the velocity of ultrasonic wave in liquids.
- 10. To study dispersion relation for Mono-atomic and Diatomic lattices using Lattice dynamic kit.
- 11. To study the properties of crystals using X-Ray Apparatus.

# **Text Books:**

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, New York), 8th ed. 2005.
- 2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.

- 1. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1971
- 2. Solid State Theory: Walter A. Harrison (Tata McGraw-Hill, New Delhi) 1970.
- 3. Liquid Crystals: S. Chandrasekhar (Cambridge University), 2nd ed. 1991.

# **Elective Subject -III**

	MSPH- 1-19	Phys	sics of <b>N</b>	Nanoma	terials		L	-3, T-1,	P-0	4	Credits	5
Pre-re	quisite	Conde	nsed ma	atter phy	vsics				I			
familia study o as care	arize the of differ eer.	e studen rent proj	ts of M. perties o	Sc. to the second	he vario naterial	us aspec s so that	ets relate t they ca	on <b>Phy</b> ed to pre an pursu	eparation e this e	n, chara	cterizati	on and
	201	App	ly the l	knowled		ree elec		be able eory to		d struct	ure of a	metals,
C	202	Acq	uire kno	wledge	of basic	approa	ches to a	synthesi	ze the ir	norganic	nanopa	rticles
CO3         Describe the use of unique optical properties of nanoscale metallic structures for analytical and biological applications												
C	204			-	•	and che materia	-	propertie	es of c	arbon 1	nanotub	es and
C	205				-	operty r arger lei		hips in les.	nanoma	aterials	as well	as the
		Ma	apping	of cour	se outco	omes wi	th the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	2	-	1	2	1	1	2	2	3
CO2	1	2	2	2	-	2	2	1	1	2	2	3
CO3	1	2	2	2	-	2	2	1	1	2	2	3
CO4	1	2	2	2	-	2	2	1	1	2	2	3
CO5	1	2	2	2	-	2	2	1	1	2	2	3

- Introductory Aspects: Free electron theory and its features, Idea of band structure metals, insulators and semiconductors. Density of state in one, two, and three dimensional bands and its variation with energy, Effect of crystal size on density of states and band gap. Examples of nanomaterials. (Lectures 8)
- 2. **Synthesis of Nanomaterials:** Bottom up: Cluster beam evaporation, ion beam deposition, chemical bath deposition with capping techniques and Top down: Ball Milling.

(Lectures 8)

- **3. General Characterization Techniques:** Determination of particle size, study of texture and microstructure, Increase in x-ray diffraction peaks of nanoparticles, shift in photo luminescence peaks, variation in Raman spectra of nanomaterials, photoemission microscopy, scanning force <u>(Lectures 8)</u>
- 4. **Quantum Dots:** Electron confinement in infinitely deep square well, confinement in one and two-dimensional wells, idea of quantum well structure, Examples of quantum dots, spectroscopy of quantum dots. (Lectures 8)
- 5. Carbon based Nanomaterials: Synthesis, structural, and electronics properties of fullerenes, carbon nanotubes, and graphene, Functionalisation of carbon Nanomaterials, Applications of carbon based Nanomaterials.

# **Text Books:**

- 1. Nanotechnology-Molecularly Designed Materials: G.M. Chow & K.E. Gonsalves (American Chemical Society), 1996.
- 2. Nanotechnology Molecular Speculations on Global Abundance: B.C. Crandall (MIT Press), 1996.

# **Reference Books:**

- 1. Quantum Dot Heterostructures: D. Bimerg, M. Grundmann and N.N. Ledentsov (Wiley), 1998.
- 2. Introduction to Nanotechnology, Charles P. Poole Jr., Frank J. Owens, Wiley Student edition, John Wiley & Sons Inc. Publishes (2003).
- 3. Nanotechnology: A gentle introduction to the next Big Idea, Mark Ratner & Daniel Ratner, LPE, Pearson Education (2002).
- 4. Nanostructures and Nanomaterials: Synthesis: Properties and Applications, G. Cao, Imperial College Press 2nd edition (2011).
- 5. NANO: The Essentials "Understanding Nanoscience and Nanotechnology": T. Pradeep, Tata McGraw-Hill Publishing Company Limited, New Delhi (2007).
- 6. Advanced Micro- & Nanosystems, CMOS-MEMS: O. Brand and G K. Fedder, Wiley-VCH (2008)
- 7. Nanophotonics: Paras N. Prasad, Wiley- Interscience (2004).
- 8. Biomedical Nanotechnology: NH Malsch, Taylor & Francis Group (2005).

Scheme & Syllabus (M.Sc. Physics) Batch 2019 & Onwards

Elective	Sub	ject	-III
----------	-----	------	------

	MSPH- 2-19		Experin Nuclear		-		L	• <b>3, T-1,</b> ]	P-0	4	Credits	5	
Pre-re	equisite:	Course	e on Nuc	clear and	d Particl	e Physic	cs						
Nuclea	ar and l	Particle	Physic	s is to e	expose t	he stude	nts of N	se on E A.Sc. stu ear phys	idents to	o experi	mental	aspects	
Cours	e Outco	mes: A	t the en	d of the	course,	the stud	ent will	be able	to				
C	201		erstand ations w		-	nental te	chnique	s for des	scribing	interact	ion of		
C	202	Use	error an	alysis fo	or exper	imental	data.						
C	203	Kno	wledge	about th	e differ	ent type	s of the	radiation	n detect	ors.			
C	CO4	App	ly the ki	nowledg	ge of det	ectors fo	or vario	us applic	cations				
C	CO5	-				owledge the world		he exper	imental	method	s used i	n the	
		M	apping	of cour	se outco	omes wi	th the p	orogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	-	2	-	1	-	-	1	_	1	1	1	
CO2	-	-	- 3 3 1 1 1 1										
CO3	-	-	1	2	3	-	1	3	2	2	2	2	
CO4	-	-	1	3	3	1	1	2	2	2	2	2	
C05	-	-	1	3	1	1	1	2	2	2	2	2	

- 1. **Detection of radiations:** Interaction of gamma-rays, electrons, heavy charged particles, neutrons, neutrinos and other particles with matter (Qualitative description only). General properties of Radiation detectors, energy resolution, detection efficiency and dead time, Error propagation in experimental data. (Lectures 8)
- 2. **Detectors:** Introduction to Gas-filled detectors, Proportional counters, space charge effects, energy resolution, time characteristics of signal pulse, position-sensitive proportional counters, Multiwire proportional chambers, Drift chamber. Organic and inorganic scintillators and their characteristics, light collection and coupling to photomultiplier tubes, Semiconductor detectors, Ge and Si(Li) detectors, Charge production and collection processes, Pulse height spectrum. (Lectures 16)
- 3. **Applications of Detectors:** Description of electron and gamma ray spectrum from detector, semiconductor detectors in X- and gamma-ray spectroscopy, Semiconductor detectors for charged particle spectroscopy and particle identification. *(Lectures 8)*
- 4. **Experimental methods:** Large gamma and charge particle detector arrays, heavy-ion reaction analysers, production of radioactive ion beams. Detector systems for high energy experiments: Collider physics (brief account), Particle Accelerators (brief account), Modern Hybrid experiments- CMS. (Lectures 8)

#### **Text Books:**

1. Techniques in Nuclear and particle Experiments by W.R. Leo (Springer), 1994.

- 1. Radiation detection and measurement by Glenn F. Knoll (Wiley), 2010.
- 2. Introduction to Experimental Particle Physics by Richard Fernow (Cambridge University Press), 2001.
- 3. Detectors for particle radiation by Konrad Kleinknecht (Cambridge University Press), 1999.

Elective Subject -III

	ASPH-	-		-	and Lov	W	L-	3, T-1, I	P-0	4	Credits	5
54.	3-19	Tem	peratu	re Physi	ics							
Pre-re	quisite:	course	in Conc	lensed N	Matter P	hysics						
Physics superco trends importa achieva backgr	s is to onductiv in the e ant tool able tem ound of	b build by b	l funda udents w ental tec blore ric re now is nperatur	imental vill not chnique h physi s close re techni	as we only lea s as wel cs of su to few µ iques as	ell as rn theor ll. Low upercon K. Stud well as	advance retical a tempera ductivity lents will the high	ed undo spects b ature is y. With	erstandi ut also one of latest e introd ercondu	and Low ing in acquain the mos technolo luced to uctors.	the fid ted with t versat ogy the	eld of n latest ile and lowest
	01							superco		vity.		
	00				U		1	1		•		· ·
CO2 Correlate observed experimental properties of superconductors with origin superconductivity.												
C	03	Desc supe	ribe a rconduc	appropri tors.	ate th	eoretica	l mod	lel for	desc	ribing	behavi	or of
С	04		-		High To v temper		-		ors and	theoretic	cal	
С	05		ide expo rconduc		out the o	experim	ental teo	chniques	s for me	easureme	ent of	
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	2	2	2	2	1	2	2	1	2
CO3	1	2	2	2	2	2	2	1	2	2	-	2
CO3	1	2	2	2	2	2	2	-	2	2	3	2
CO4	1	2	2	2	2	2	2	-	2	2	2	2
			1	1			1			1	1	1

Scheme & Syllabus (M.Sc. Physics) Batch 2019 & Onwards

- 1. **Superconductivity:** Introduction, Thermodynamics, The London Equations, penetration depth, Superconductors in magnetic field, Ginzberg-Landau Theory, Type I and II superconductors, BCS theory, second quantization, Cooper Pairing, energy gap Tunnelling, Josephson effects and SIS tunneling. (Lectures 10)
- 2. **Preparation and measurement techniques:** Single crystal growth: Optical image furnace, seeded melt growth, Thin film deposition: Pulsed laser deposition, sputtering, Resistivity measurements, magnetic measurements, Point contact spectroscopy, scanning tunneling microscopy and spectroscopy. (Lectures 10)
- 3. Cryogenics: Thermal and electrical properties of different materials at low temperatures, Cooling methods above 1K, Joule-ThomPOn, Gifford-McMohan, Evaporation cooling, Liquefication of Helium, Cooling methods below 1K, dilution refrigeration, adiabatic demagnetisation. (Lectures 10)
- 4. Introduction to high-Tc superconductors: Discovery of high-Tc superconductors, Mechanisms of superconductivity in high-Tc superconductors, Introduction to high-Tc superconducting compound like YBCO, Synthesis, Structure and properties, Electronics and applications. (Lectures 10)

#### **Text Books:**

1. Introduction to superconductivity: Michael Tinkham, Courier Corporation, 2004.

- 1. Introduction to superconductivity: A.C. Rose-Innes and E.H. Rhoderick, Pergamon Press, 2004.
- 2. Experimental techniques in low temperature physics: G.K. White and P.J. Meeson, Oxford Univ. Press, 2001.
- 3. Experimental low temperature physics: A. Kent, MacMillan Press, 1992.
- 4. The theory of superconductivity in high-TC Cuprates: *P.W. Anderson*, Princeton Series Publications.

# **Elective Subject -IV**

UC-M 544-19		Adv Phys		Condens	sed Mat	ter	L	• <b>3, T-1,</b> ]	P-0	4	Credits	5	
Pre-re	quisite:	course	on Con	densed	Matter I	Physics							
familia superc	rize the	M.Sc. vity, ma	students gnetic r	s with resonance	elatively e techn	y advano iques an	ed topi	ced Cor cs like o dered so	optical j	propertie	es, magi	netism,	
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to				
C	01		-	l and theorie		be the	Optica	l prope	erties	of solid	ds emp	oloying	
CO2Explain various types of magnetic phenomenon in solids, underlying physics, an correlation with the applications.CO3Understand and realize the use of NMR methods for describing solids.													
C	03	Unde	erstand	and real	ize the u	use of N	MR me	thods fo	r descri	bing sol	ids.		
C	<b>CO4</b>	Inter	pret the	phenon	nena, be	havior a	nd appl	ications	of supe	rconduc	ctors.		
C	05	Figu solid		nd perce	eive the	effect o	f deform	nation a	nd diso	rder on t	he beha	vior of	
		Ma	apping	of cours	se outco	omes wi	th the p	orogram	outcor	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	2	2	2	2	1	1	2	2	2	3	
CO2	2	2	2     2     2     1     2     1     2     2     1     2     3										
CO3	3	2	2	2	2	1	2	2	2	2	1	2	
CO4	2	2	2	2	2	2	2	1	2	2	2	2	
CO5	<b>5</b> 3 2 2 1 2						2	2	2	1	2	3	

- 1. **Optical Properties:** Macroscopic theory; Reflectance and Transmittance of a slab; generalized susceptibility, Kramers- Kronig relations, Brillouin scattering, Raman effect in crystals; interband transitions. (Lectures 8)
- 2. **Magnetism:** Dia and para-magnetism in materials; Langevin theory of diamagnetism, quantum theory of diamagnetism and paramagnetism, Exchange interaction. Heisenberg Hamiltonian; Hubbard model; mean field theory; Ferro-, ferri- and antiferromagnetism; Magnons: spin waves, thermal excitation of magnons; Bloch T2/1 law. (Lectures 8)
- 3. Nuclear Magnetic Resonance in Solids: Origin of NMR in solids– equations of motion, line width, motional narrowing, Knight shift. (Lectures 8)
- 4. **Superconductivity:** Experimental Survey; Basic phenomenology; Vortex state of a Type II superconductors; BCS pairing mechanism and nature of BCS ground state; Flux quantization; Tunneling Experiments; High Tc superconductors; Ginzburg-Landau theory; Greens functions at zero temperature; Applications of Greens functions to superconductivity. (Lectures 8)
- 5. **Disordered Solids:** Basic concepts in point defects and dislocations; Noncrystalline solids: diffraction pattern, Glasses, Amorphous semiconductors and Ferromagnets, Heat capacity and Thermal conductivity of amorphous solids; Quasicrystals. (Lectures 8)

# **Text Books:**

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, New York) 2005.
- 2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.

- 1. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1971.
- 2. Solid State Physics: H. Ibach and H. Luth (Springer, Berlin), 3rd. ed. 2001.
- 3. A Quantum Approach to Solids: P.L. Taylor (Prentice-Hall, Englewood Cliffs), 1970.
- 4. Intermediate Quantum Theory of Solids: A.O.E. Animalu (East-West Press, New Delhi), 1991.
- 5. Solid State Physics : Ashcroft and Mermin (Reinhert & Winston, Berlin), 1976.

# **Elective Subject -IV**

	MSPH- 5-19		Advan	ced Par	ticle Ph	ysics	L·	• <b>3, T-1,</b> ]	P-0	4	Credits	5	
Pre-re	quisite:	course	on part	icle phy	sics								
studen field th scheme high er	e Objec ts of M. heory, st es so tha hergy ph	Sc. clas candard t they u ysics.	ss to the model understa	of parti of parti and these	ely adva cle phy e aspect	nced top sics, QC s proper	bics rela D and ly and a	ted to sy quark n are well	ymmetr nodel, a equippe	y breaki nd vario	ng in qu ous unif	antum	
Cours	e Outco	mes: A	t the en	d of the	course,	the stud	ent will	be able	to				
C	201				-	and loca and Hig		e symme nanism.	etries of	system	, invaria	ance of	
CO2       Need for standard model of particle physics and its limitations and the propertie of QCD.         CO3       Define the problem of divergencies in quentum field theories and the													
CO3         Define the problem of divergencies in quantum field theories and the renormalisation methods.													
C	204		-				•	f the run ions -QC	0	upling c	onstant	in	
C	205	Give	en expos	sure abo	ut the pl	hysics be	eyond tl	ne Stand	ard Mo	del.			
		M	apping	of cour	se outco	omes wi	th the p	orogram	outcor	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	2	2	2	2	2	-	2	2	2	2	
CO2	2	1	1 2 2 2 2 - 2 2 2 2										
CO3	1	2	1	2	2	2	2	-	2	2	1	2	
CO4	1	1	2	1	2	2	2	-	1	2	1	2	
CO5	1	2	2	1	2	2	2	-	2	2	3	2	

- 1. **Symmetries and Symmetry Breaking in QFT:** Continuous groups: Lorentz group SO(1,2) and its representations, Unitary groups and Orthogonal groups and their representations, Discrete symmetries: Parity, Charge Conjugation and Time reversal Invariance, CP, CPT. (Lectures 10)
- 2. Global and Local invariances of the Action: Approximate symmetries, Noethers theorem, Spontaneous breaking of symmetry and Goldstone theorem, Higgs mechanism, Abelian and Non-Abelian gauge fields, Lagrangian and gauge invariant coupling to matter fields. (Lectures 10)
- 3. **Standard Model of Particle Physics:** SU(2) x SU(1) x U(1) gauge theory, Coupling to Higgs and Matter fields of 2 generations, Gauge boson and fermion mass generation via spontaneous symmetry breaking, CKM matrix, Low energy Electroweak effective theory, Elementary electroweak scattering processes. (Lectures 10)
- 4. QCD and quark model: Asymptotic freedom and Infrared slavery, confinement hypothesis, Approximate flavor symmetries of the QCD lagrangian, Classification of hadrons by flavor symmetry: SU(1) and SU(2) multiplets of Mesons and Baryons, Chiral symmetry and chiral symmetry breaking, Sigma model, Parton model and Deep inelastic scattering structure functions. (Lectures 10)

#### **Text Books:**

- 1. Gauge Theory of Elementary Particle Physics: T.P Cheng & L.F. Li (Oxford).
- 2. An Introductory Course of Particle Physics: Palash Pal (CRC Press).

- 1. First Book of Quantum Field Theory: A. Lahiri & P. Pal, Narosa, New Delhi.
- 2. Introduction to Quantum Field Theory: M. Peskin & D.V. Schroeder. (Levant Books).
- 3. Dynamics of the Standard Model: J.F. Donoghue (Cambridge University Press).

# **Elective Subject -IV**

	MSPH- 6-19	Environment			al Phys	sics	L	-3, T-1,	, T-1, P-0		4 Credits		
Pre-re	quisite:	Knowl	edge of	classica	l physic	s							
of M a proper	e Objec Sc phys ly and a e Outco	ics to t re well	he recei equippe	nt advar d to pur	ncement sue a ca	s in thi reer in e	s field s environr	so that nent phy	they une sics and	derstand	these	aspects	
C	CO1 Understand the different types of pollution that occur in the Earth's environment											nment	
CO2 Apply the laws of radiation to Solar and Terrestrial Radiation													
C	O3 Describe the main reservoirs and exchanges in the global carbon cycle and explain the challenges involved in reducing CO2 emissions												
C	<b>CO4</b>	App	Application in the Renewable sources of energy										
C	205			ibe how pollution and climate are modelled on different scales, ranging the local environment to the global Earth system.									
		Ma	apping	of cours	se outco	omes wi	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	2	2	2	2	2	2	2	1	2	3	
CO2	2	1	2	2	2	2	2	2	2	2	2	2	
CO3	2	2	2	2	2	2	2	2	2	1	2	2	
CO4	1	2	1	2	2	2	2	2	2	2	-	3	
CO5	1	2	2	2	2	2	2	2	2	2	2	2	

- 1. **Essentials of Environmental Physics**: Structure and thermodynamics of the atmosphere, Composition of air, Greenhouse effect, Transport of matter, energy and momentum in nature, Stratification and stability of atmosphere, Lass of motion, hydrostatic equilibrium, General circulation of the topics, Elements of weather and climate of India.
- 2. **Solar and Terrestrial Radiation:** Physics of radiation, Interaction of light with matter, tayleigh and Mie scattering, Laws of radiation (Kirchoffs law, Planck's law, Beer's law, Wien's displacement law, etc.), Solar and terrestrial spectra, UV radiation, Ozone depletion problem, IR absorption energy balance of the earth atmosphere system.
- 3. Environmental Pollution and degradation: Elementary fluid dynamics, Diffusion, Turbulence and turbulent diffusion, Factors governing air, Water and noise pollution, Air and water quality standards, Waste disposal, Heat island effect, Land and sea breeze, Puffs and plumes, Gaseous and particulate matters, Wet and dry deposition.
- 4. **Environmental Changes and remote sensing:** Energy sources and combustion processes, Renewable sources of energy, Solar energy, Wind energy, bioenergy, hydropower, fuel cells, nuclear energy, Forestry and bioenergy.
- 5. **Global and Regional Climate:** Elements of weather and climate, Stability and vertical motion of air, Horizontal motion of air and water, Pressure gradient forces, Viscous forces, Reynolds number, Enhanced Greenhouse Effect, Energy balance-a Zero-dimensional Greenhouse model, Global climate models.

# Suggested Readings/Books :

- 1. Egbert Boeker & Rienk Van Groundelle: Environmental Physics (John Wiley).
- 2. J. T Hougtion: The Physics of atmosphere (Cambridge University Press, 1977).
- 3. J Twidell and J Weir: Renewable energy Resources (Elbs, 1988).
- Sol Wieder: An introduction t solar energy for scientists and Engineers (John Wiley, 1982)
- 5. R. N. Keshavamurthy and M. Shanker Rao: The Physics of Monsoons (Allied Publishers, 1992).
- 6. G.J. Haltiner and R.T. Williams: Numerical Weather Prediction (John Wiley, 1980).

UC-MSPH- 547-19				Dissert	ation		L-	0, T-12,	P-0	12	Credit	S	
Pre-re	quisite	Knowl	edge of	specific	c branch	of phys	ics						
studen Physic develo	ts to prosent to the stude stude of the second student to the second student to the second student to the second student student to the second student stu student student studentstan student student student student student student	elimina ents ge of a labo	ries and t the contactory e	metho pportur	dology nity to ent.	Research of resear participa the stud	rch in 7 ate in	Theoreti some o	cal Phy ngoing	sics and	l Experi	mental	
C	201	-	Explain the significance and value of problem in physics, both scientifically and in the wider community.										
C	202		Design and carry out scientific experiments as well as accurately record the results of experiments.										
CO3 Critically analyse and evaluate experimental strategies, and decide whic appropriate for answering specific questions.									which is	s most			
C	2 <b>04</b>	to co	Research and communicate scientific knowledge in the context of a topic related to condensed matter physics/Nuclear/High Energy Physics, in oral, written and electronic formats to both scientists and the public at large.										
C	205	-	Explore new areas of research in physics and allied fields of science and technology.										
		M	apping	of cour	se outco	omes wit	th the p	orogran	n outcoi	mes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	1	3	1	2	2	2	2	3	2	3	
CO2	3	3	3	2	2	2	1	2	2	2	2	2	
CO3	2	2	2	2	2	2		2	2	2	1	3	
CO4	1	1	-	1		2	2	2	2	3	1	3	
CO5	-	2	2	1	-	1		2	2		2	2	

# **Guidelines for the Dissertation:**

The aim of project work in M.Sc. 4th semesters is to expose the students to preliminaries and methodology of research and as such it may consist of review of some research papers, development of a laboratory experiments, fabrication of a device, working out some problem, participation in some ongoing research activity, analysis of data, etc.. Project work can be based upon Experimental Physics, Theoretical Physics, or Simulation (quantum based softwares, HPCC, etc.) in the thrust as well as non-thrust research areas of the Department.

A student opting for this course will be attached to one teacher of the Department before the end of the 3rd semester. A report about the work done in the project (typed on both the sides of the paper and properly bound) will be submitted by a date to be announced by the Head of Department.

Assessment of the work done under the project will be carried out by a committee on the basis of effort put in the execution of the project, interest shown in learning the methodology, report prepared, grasp of the problem assigned and viva-voce/seminar, etc. as per course guidelines.

Annexure-IV

# **Personality Development**

# UNIT I Building up and enrichment of Vocabulary

Learning Derivatives, Prefixes and Suffixes; Homonyms & Homophones; Pairs/Group of words; Synonyms & Antonyms; One word substitution; Foreign words & Phrases

# UNIT II

# **Application of Business Communication**

# (a) Speaking Module

- Oral communication-Everyday Interactions, Group Discussions, Public speaking;
- Conversation Skills; Business Etiquette;
- Presentation Skills- combating stage fright, preparing power point presentations
- Non- Verbal Communication in Oral & Power Point Presentations; Telephonic Skills;
- Preparation for job interview- practice through mock interview

# (b) Effective Writing Mechanism

- Descriptive and argumentative essays,
- Scientific & Technical Writing- writing abstracts & summaries, research papers;
- Writing business letters, emails; memos;
- Drafting Reports- training reports, project reports, varied business reports;
- Career Documents: Preparing a selling resume, CVs, covering letters, Preparing Portfolio etc.

# **Suggested Readings:**

- 1. Practical English Usage. Michael Swan. OUP. 1995.
- 2. On Writing Well. William Zinsser. Harper Resource Book. 2001
- 3. Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- 4. Communication Skills. Sanjay Kumar and Pushp Lata. Oxford University Press. 2011.
- 5. Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press
- 6. English Language Skills. Aruna Koneru. McGraw Hill Education (India) Private Limited. 2015.

# File No.I/159/2019-ME