1KGPTU/PS/1039A 25/04/18

I.K. Gujral Punjab Technical University, Kapurthala Department of Physical Sciences

Minutes of Meeting

A meeting of members of Board of Studies (BoS), Physical Sciences (Material Science/Nano Science and Technology) was held on 23.04.2018 in the Department of Physical Sciences, I K Gujral Punjab Technical University, Kapurthala.

The following were present in the meeting:

- 1. Dr. Amit Sarin (Chairperson)
- 2. Dr. Kanchan L. Singh, Member
- 3. Dr. Hitesh Sharma, Member
- 4. Dr. Maninder Kaur, Member
- 5. Dr. A. S. Bhuttar, (Chairperson, ECE, IKGPTU main campus) as Special invitee
- 6. Dr. Gazal Sharma (Food Science, IKGPTU main campus) as Special invitee
- 7. Dr. Jagmeet Bawa (IKGPTU main campus) as Special invitee
- 8. Dr Priyanka Mahajan (IKGPTU main campus) as Special invitee
- 9. Dr. Gaurav Bhragava (Chemistry, IKGPTU main campus) as Special invitee
- 10. Dr. Chander Parkash (Chemistry, IK.GPTU main campus) as Special invitee
- 11. Dr. Varinderjit Singh, Member (Special invitee)
- 12. Dr. Harkirat Singh, Member (Special invitee)
- 13. Dr. Neetika Sharma, Member (Special invitee)
- 14. S. Navdeepak Sandhu, Member

The following members could not attend the meeting:

- 1. Dr. Davinder Mehta, Member
- 2. Dr. Ravi Kumar, Member
- 3. Dr. Rakesh Dogra, Member
- 4. Dr. Arvind Kumar, Member
- 5. Dr. Ranjan Kumar, Member
- 6. Dr. R. K. Bedi, Member
- 7. Dr. Harpreet Kaur Grewal, Member
- 8. Dr. B D Gupta, Member
- 9. Dr. Rajiv Malhotra, Member
- 10. Dr. P. Arumugam, Member

The Board of Studies discussed on all the agenda points and following recommendations were made:

Agenda item 1 To consider the Revision of scheme and syllabus for M.Tech. (Nano Science

implemented in the revised M.Tech. (Nano Science and Technology). All members approved the Program Educational objectives (PEO). Program outcome (PO), Program specific outcomes and Course outcomes(CO) of course subjects for M.Tech. (Nano Science and Technology). The scheme and course syllabus of all core and elective subjects were also approved. The copy of the approved scheme and syllabus with PO and COs is enclosed as **Annexure A**.

Agenda item 2: To approve the program objectives and course outcomes of M.Sc. (Physics) 2016 batch and Engineering Physics (Batch-2011) as per NAAC requirements

All BoS members approved the educational objectives of the old M.Sc.(Physics) 2016 batch and Engineering Physics (Batch-2011) as per NAAC requirements. The copy of the revised scheme and syllabus with PO and COs of M.Sc.(Physics) 2016 batch is enclosed as **Annexure B** and Engineering Physics (Batch-2011) as **Annexure C**.

Sarin

Chairperson- BoS, Physical Sciences

Dean Academics

zzz Annexure-B

M.Sc. Physics

Course Structure and Syllabus (Based on Choice Based Credit System) 2016-17

Scheme & Syllabus (M.Sc. Physics) Batch 2016 & Onwards

Page 1 of 64

DEPARTMENT OF PHYSICAL SCIENCES

VISION

To be a knowledge nerve centre in Physical Sciences, Pure and Applied Research and industry requirements for creating sustainable infrastructure and enhancing quality of life

MISSION

- To offer globally-relevant, industry-linked, research-focused, technology-enabled seamless education at the graduate, postgraduate and research levels in various areas of Physical sciences keeping in mind that the manpower so spawned is excellent in quality, is relevant to the global scientific and technological needs, is motivated to give its best and is committed to the growth of the Nation;
- To develop and conduct continuing education programmes for Science graduates with a view to update their fundamental knowledge base and problem-solving capabilities in the various areas of core specialization of the University;
- 3. To develop comprehensive linkages with premier academic and research institutions within the country and abroad for mutual benefit;

M.Sc. (Physics) Program

Duration: 2 Years (Semester System)

This M.Sc. (Physics) Program includes various core, electives, and other interdisciplinary courses. The diverse lab experiments allow students to understand the fundamental aspects of the subject. A choice of advanced elective courses offers a glimpse in the frontier areas of research and allow students to work on one-year research project as an integral part of their M.Sc. programme. The programme also provide adequate exposure to the students for pursuing higher education in the field of technology (M. Tech.), Physics (M.Phil./Ph.D.) and other job opportunities in academia and industry.

Eligibility:

Pass B.Sc. with 50% marks having Physics as one of the subject. A relaxation of 5% is given in case of candidates belonging to SC/ST category.

PROGRAM EDUCATIONAL OBJECTIVES: The Program Educational Objectives are the knowledge skills and attitudes which the students have at the time of post-graduation. At the end of the program, the student will be able to:

PEO1	Apply the scientific knowledge of Physics, Mathematics, Chemistry, and Physics specialization for deeper understanding of the nature.
PEO2	Identify, formulate, research literature, and analyze advanced scientific problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PEO3	Design solutions for advanced scientific problems and design system components or processes.
PEO4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PEO5	Create, select, and apply appropriate techniques, resources, and modern scientific and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PEO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional scientific practice.
PEO7	Communicate effectively on complex Scientific activities with the Scientific/engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PEO8	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of scientific and technological change.

PO1	Apply principles of basic science concepts in understanding, analysis and prediction
	of physical systems.
PO2	To introduce interdisciplinary subjects/concepts/ideas for interdisciplinary application of Physics concepts.
PO3	To introduce advanced ideas and techniques required in emergent area of Physics.
PO4	To develop human resource with specialization in theoretical and experimental techniques required for career in academia and industry.
PO5	Engage in lifelong learning and adapt to changing professional and societal needs.

PROGRAM OUTCOMES: At the end of the program, the student will be able to:

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

	1
PSO1	Understand and apply principles of physics for understanding the scientific
	phenomenon in classical domain.
PSO2	Understand and apply mathematical techniques for describing and deeper
	understanding of physical systems.
PSO3	Understand and apply statistical methods for describing the classical and quantum
	particles in various physical systems and processes.
PSO4	Understand and apply inter-disciplinary concepts and computational skills for
	understanding and describing the natural phenomenon.
PSO5	Understand and apply principles of Quantum mechanics for understanding the
	physical systems in quantum realm.
PSO6	Provide exposure in various specialization of Physics (Solid State Physics/Nuclear
	Physics/Particle Physics).
PSO7	Provide exposure to advanced experimental/theoretical methods for measurement,
	observation, and fundamental understanding of physical phenomenon/systems.
PSO8	Engage in research and life-long learning to adapt to changing environment.

SEMESTER FIRST

Course Code	Course Title	Load Allocation		Marks Distribution		Total Marks	Credits	
		L	T	P	Internal	External		

Scheme & Syllabus (M.Sc. Physics) Batch 2016 & Onwards

PHS411	Mathematical Physics-I	3	1	-	30	70	100	4
PHS412	Classical Mechanics	3	1	-	30	70	100	4
PHS413	Quantum Mechanics-I	3	1	-	30	70	100	4
PHS414	Statistical Mechanics	3	1	-	30	70	100	4
PHS415	Atomic and Molecular Physics	3	1	-	30	70	100	4
PHS416	Physics Lab-I	-	-	3	25	50	75	3
TOTAL		15	5	3	175	400	575	23

SEMESTER SECOND

Course Code	Course Title		LoadMarksAllocationDistribution		Total Marks	Credits		
		L	T	P	Internal	External		
PHS421	Mathematical Physics-II	3	1	-	30	70	100	4
PHS422	Nuclear Physics	3	1	-	30	70	100	4
PHS423	Quantum Mechanics-II	3	1	-	30	70	100	4
PHS424	Computational Physics	3	1	-	30	70	100	4
PHS425	Condensed matter Physics-I	3	1	-	30	70	100	4
PHS426	Physics Lab-II	-	-	3	25	50	75	3
PHS427	Computational Lab	-	-	3	25	50	75	3
	TOTAL	15	5	6	200	450	650	26

L: Lectures T: Tutorial P: Practical

Course Code	Course Title		Load Marks Distribut		istribution	Total Marks	Credits	
		L	T	P	Internal	External		
PHS531	Condensed Matter Physics-II	3	1	-	30	70	100	4
PHS532	Classical Electrodynamics	3	1	-	30	70	100	4
PHS533	Particle Physics	3	1	-	30	70	100	4
PHS534	Electronics	3	1	-	30	70	100	4
PHS535 PHS536 PHS537 PHS538	6 7		1	-	30	70	100	4
PHS539	Seminar	-	-	-	Satisfactory/Unsatisfactory		2	
PHS540	Physics Lab-III	-	-	3	25	50	75	3
	TOTAL	15	5	3	175	400	575	23

SEMESTER THIRD

SEMESTER FOURTH

Course Code	Course Title		Load Allocation		Marks Distribution		Total Marks	Credits
		L	T	Р	Internal	External		
PHS541 PHS542	Elective Subject-II	3	1	-	30	70	100	4
PHS543 PHS544	Elective Subject-III	3	1	-	30	70	100	4
PHS545	M.Sc. Research Project	12		Satisfactory/Unsat		isfactory	12	
	TOTAL		5	3	60	140	200	20

Elective Subjects:

S.No.	Name of the Subject	Code
1	Fibre optics and non-linear optics	PHS535
2	Plasma Physics	PHS536
3	Nonlinear Dynamics	PHS537
4	Structures, Spectra and Properties of Biomolecules	PHS538
5	Experimental techniques in Nuclear and Particle Physics	PHS541
6	Physics of Nanomaterials	PHS542
7	Environmental Physics	PHS543
8	Science of Renewable source of Energy	PHS544

Examination and Evaluation

S. No.		Weightage	Remarks
1.	Mid term/sessional Tests	25%	Best of two mid semester test will be considered for evaluation.
2	Attendance/Seminar/ Assignments	5%	
3	End semester examination	70%	Conduct and checking of the answer sheets will at the Department level in case of University teaching Department or Autonomous institutions. For other colleges examination will be conducted at the university level.
4	Total	100%	Marks may be rounded off to nearest integer.
Practic	al		
1	Daily evaluation of practical record/Viva Voice/Attendance etc.	50%	Internal evaluation
2	Final Practical Performance + Viva Voice	50%	External evaluation
3	Total	100%	Marks may be rounded off to nearest integer.

PHS411	MATHEMATICAL PHYSICS-I	L-3, T-1, P-0	4 Credits
Scheme & Sy	llabus (M.Sc. Physics) Batch 2016 & Onwards		Page 8 of 64

Pre-requisite	e: None	
i i e i equisite		

Course Objectives: The objective of the course on **Mathematical Physics-I** is to equip the M.Sc. students with the mathematical techniques that he/she needs for understanding theoretical treatment in different courses taught in this class and for developing a strong background if he/she chooses to pursue research in physics as a career.

Course O	utcomes: At	the end of	the course,	the student	will be abl	le to		
CO1		e and expre e transform	1 2	al law in ter	rms of tense	ors and sim	plify it by u	use of
CO2	Understar	Understand the use of complex variables for solving definite integral.						
CO3	Solve par	tial differen	ntial equation	ons using bo	oundary va	lue problem	IS.	
CO4	Understand the integral equations to solve the physics problems.							
CO5	Use statistical methods to analysis the experimental data.							
	Марріі	ng of cours	e outcome	s with the j	program sj	pecific outo	comes	
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	2
CO3	3	3	3	3	3	3	3	2

CO4

CO5

- 1. Vector fields and Tensors: Scalar and Vector fields, Scalar and Vector products: Curl, Divergent and Introduction to tensors and definitions, contraction, direct product. Quotient rule, Levi-Civita symbol, Non-Cartesian tensors, metric tensor, Covariant differentiation.
- 2. **Complex Variables**: Introduction, Cauchy-Riemann conditions, Cauchy's Integral formula, Laurent expansion, singularities, calculus of residues, evaluation of definite integrals, Dispersion relation.
- 3. **Differential Equations:** Partial differential equations of theoretical physics, boundary value problems, Neumann & Dirichlet Boundary conditions, separation of variables, singular points, series solutions, second solution.
- 4. **Integral Equations:** Definitions and classifications, integral transforms and generating functions. Neumann series, Separable Kernels, Hilbert-Schmidt theory. Green's functions in one dimension.
- 5. **Numerical Techniques:** Roots of functions, Interpolation, Extrapolation, Differentiation, integration by trapezoid and Simpson's rule, RungeKutta method and finite difference method.
- **6. Elementary Statistics:** Introduction to probability theory, random variables, Binomial, Poisson and Normal distribution

Text Books:

1. Mathematical Methods for Physicists: G. Arfken and H.J. Weber (Academic Press, SanDiego) 7th edition, 2012.

Reference Books:

- 1. Mathematical Physics : P.K. Chattopadhyay (Wiley Eastern, New Delhi), 2004.
- 2. Mathematical Physics : A.K. Ghatak, I.C. Goyal and S.J. Chua (MacMillan, India, Delhi), 1986.
- 3. Mathematical Methods in the Physical Sciences *M.L. Boas (Wiley, New York) 3rd edition, 2007.*
- 4. Special Functions : E.D. Rainville (MacMillan, New York), 1960.
- 5. Mathematical Methods for Physics and Engineering: K.F.Riley, M.P.Hobson and S.J. Bence (Cambridge University Press, Cambridge) 3rd ed., 2006.

PHS412		CLASSIC	AL MECH	ANICS	L	-3, T-1, P-0	4	Credits
Pre-requis	ite: None							
students of	M.Sc. stud ern branche	lents in the es of physic	Lagrangian s such as Q	and Hamilto	onian for	assical Mecl malisms so th Quantum Fiel	hat they ca	an use these
	-			, the student				
CO1	Understa	and the neco	essity of Ac	tion, Lagran	gian, and	l Hamiltonian	formalis	m.
CO2	Describe	e the motior	n of a mecha	anical systen	n using L	agrange-Han	nilton for	nalism.
CO3	Use d'Al of motio	-	nciple and o	calculus of v	ariations	to derive the	e Lagrang	e equations
CO4		Understand essential features of a classical problem (like motion under central force, periodic motions), use them to set up and solve the appropriate physics problems.						
CO5	physics	e.g., molec	cular specti	-	s, vibrati	n is importan ons of atom		
	Марр	ing of cour	se outcome	es with the p	orogram	specific outo	comes	
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	3	3	3	3	1	2	2	3
CO2	3	3	3	3	2	2	2	3
CO3	3	3	3	3	2	2	2	3
CO4	3	3	3	3	2	2	2	3
C05	3	3	3	3	1	2	1	3

1. Lagrangian Formulation: Mechanics of a system of particles; constraints of motion, generalized coordinates, d'Alembert Principle and Lagrange's velocity-dependent forces and the dissipation function, Applications of Lagrangian formulation.

(Lectures 7)

2. **Hamilton's Principles:** Calculus of variations, Hamilton's principle, Lagrange's equation from Hamilton's principle, extension to nonholonomic systems, advantages of variational principle formulation, symmetry properties of space and time and conservation theorems.

(Lectures 7)

3. **Hamilton's Equations:** Legendre Transformation, Hamilton's equations of motion, Cyclic coordinates, Hamilton's equations from variational principle, Principle of least action.

(Lectures 7)

- 4. Canonical Transformation and Hamilton-Jacobi Theory: Canonical transformation and its examples, Poisson's brackets, Equations of motion, Angular momentum, Poisson's Bracket relations, infinitesimal canonical transformation, Conservation Theorems. Hamilton- Jacobi equations for principal and characteristic functions, Action-angle variables for systems with one-degree of freedom. (Lectures 10)
- 5. Rigid Body Motion: Independent co-ordinates of rigid body, orthogonal transformations, Eulerian Angles and Euler's theorem, infinitesimal rotation, Rate of change of a vector, Coriolis force, angular momentum and kinetic energy of a rigid body, the inertia tensor, principal axis transformation, Euler equations of motion, Torque free motion of rigid body, motion of a symmetrical top. *(Lectures 10)*

TUTORIALS: Relevant problems given at the end of each chapter in different books.

Text Books:

- 1. Classical Mechanics: *H. Goldstein, C.Poole and J.Safko (Pearson Education Asia, New Delhi),* 3rd ed 2002.
- 2. Classical Mechanics of Particles and Rigid Bodies: K.C. Gupta (Wiley Eastern, New Delhi), 1988.

PHS413	(Quant	um Mecha	nics-I		L-	3, T-1, P-0	4 C	redits
Pre-requisi	ite: wa	ave me	chanics,						
the student techniques	s of N of vec	M.Sc.	class to th aces, angu	ne formal s lar momen	structure of	the sub ation th	intum Mech bject and to leory, and sca airement.	equip the	m with the
Course Ou	tcome	es: At 1	the end of	the course,	the student	will be a	able to		
CO1	τ	Unders	tand the ne	eed for qua	ntum mecha	nical for	rmalism and	basic princ	ciples.
CO2	r		ns, eigen	-	-		of vector s uncertainty	-	
CO3		Better understanding of the mathematical foundations of angular momentum of a system of particles.							
CO4		Applica equatio		various a	pproximatio	n meth	ods in solv	ring the S	Schrodinger
CO5	I	Apply 1	the perturb	ation theor	y to scatterin	ıg matri	x and partial	wave anal	ysis.
	Μ	lappin	g of cours	e outcome	s with the p	rogram	specific out	comes	
	PSC	01	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	2		3	3	3	3	3	2	2
CO2	2		3	3	3	3	3	2	1
CO3	1		3	3	3	3	3	2	3
CO4	-		3	3	3	3	3	3	3
CO5	-		3	3	3	3	3	1	2

- 1. Linear Vector Space and Matrix Mechanics: Vector spaces, Schwarz inequality, Orthonormal basis, Operators: Projection operator, Hermitian and Unitary operators, change of basis, Eigenvalue and Eigenvectors of operators, Dirac's bra and ket notation, commutators, Simultaneous eigenvectors, Postulates of quantum mechanics, uncertainty relation, Harmonic oscillator in matrix mechanics, Time development of states and operators, Heisenberg, Schroedinger and Interaction representations, Exchange operator and identical particles, Density Matrix and Mixed Ensemble. *(Lectures 12)*
- 2. Angular Momentum: Angular part of the Schrödinger equation for a spherically symmetric potential, orbital angular momentum operator. Eigen values and eigenvectors of L2 and Lz. Spin angular momentum, General angular momentum, Eigen values and eigenvectors of J2 and Jz. Representation of general angular momentum operator, Addition of angular momenta, C.G. coefficients. *(Lectures 7)*
- 3. **Stationary State Approximate Methods:** Non-Degenerate and degenerate perturbation theory and its applications, Variational method with applications to the ground states of harmonic oscillator and other sample systems. *(Lectures 7)*
- 4. **Time Dependent Perturbation:** General expression for the probability of transition from one state to another, constant and harmonic perturbations, Fermi's golden rule and its application to radiative transition in atoms, Selection rules for emission and absorption of light.

(Lectures 7)

5. Scattering Theory: Scattering Cross-section and scattering amplitude, partial wave analysis, Low energy scattering, Green's functions in scattering theory, Born approximation and its application to Yukawa potential and other simple potentials. Optical theorem, Scattering of identical particles. *(Lectures 7)*

Text Books:

- 1. A Text book of Quantum Mechanics: P.M. Mathews and K. Venkatesan (Tata McGraw Hill, New Delhi) 2nd edition, 2004.
- 2. Quantum Mechanics: V.K. Thankappan (New Age, New Delhi), 2004.

Reference Books:

- 1. Quantum Mechanics: M.P. Khanna, (Har Anand, New Delhi), 2006.
- 2. Modern Quantum Mechanics: J.J. Sakurai (Addison Wesley, Reading), 2004.
- 3. Quantum Mechanics: J.L. Powell and B. Crasemann (Narosa, New Delhi), 1995.
- 4. Quantum Physics: S. Gasiorowicz (Wiley, New York), 3rd ed. 2003.

PHS414	Stati	stical Mecl	hanics		L-3, T-	1, P-0	4 Cr	edits		
Pre-requis	ite: None					I				
Course Ob M.Sc. stude the macroso	ent with the	e technique	s of Ensem	ble theory	so that he	/she can u	se these to			
Course Ou	tcomes: A	t the end of	the course,	the studen	t will be at	ole to				
C01		Understand Equations of state and thermodynamic potentials for elementary systems of particles.								
CO2	Lear	Learn Modern aspects of equilibrium and non-equilibrium statistical Physics.								
CO3		Describe the features and examples of Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac statistics.								
CO4		x with va uations.	rious moo	dels of p	hase tran	sitions a	nd thermo	-dynamical		
CO5	Desc	ribe physic	al quantitie	s in quantu	m systems.					
	Mappi	ng of cours	e outcome	s with the	program s	pecific ou	tcomes			
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8		
CO1	3	3	1	1	2	3	3	3		
CO2	1	-	-	-	-	-	2	1		
CO3	3	3	2	2	2	2	3	3		
CO4	2	3	2	1	2	1	2	3		
CO5	2	3	3	2	3	2	3	3		

- 1. The Statistical Basis of Thermodynamics: The macroscopic and microscopic states, contact between statistics and thermodynamics, classical ideal gas, Gibbs paradox and its solution. *(Lectures 8)*
- 2. Ensemble Theory: Phase space and Liouville's theorem, the microcanonical ensemble theory and its application to ideal gas of monatomic particles; The canonical ensemble and its thermodynamics, partition function, classical ideal gas in canonical ensemble theory, energy fluctuations, equipartition and virial theorems, a system of quantum harmonic oscillators as canonical ensemble, statistics of paramagnetism; The grand canonical ensemble and significance of statistical quantities, classical ideal gas in grand canonical ensemble theory, density and energy fluctuations. *(Lectures 8)*
- 3. **Quantum Statistics of Ideal Systems:** Quantum states and phase space, an ideal gas in quantum mechanical ensembles, statistics of occupation numbers; Ideal Bose systems: basic concepts and thermodynamic behaviour of an ideal Bose gas, Bose-Einstein condensation, discussion of gas of photons (the radiation fields) and phonons (the Debye field); Ideal Fermi systems: thermodynamic behaviour of an ideal Fermi gas, discussion of heat capacity of a free electron gas at low temperatures, Pauli paramagnetism.

(Lectures 10)

- 4. **Elements of Phase Transitions:** Introduction, a dynamical model of phase transitions, Ising model in zeroth approximation. *(Lectures 4)*
- 5. **Fluctuations:** Thermodynamic fluctuations, random walk and Brownian motion, introduction to nonequilibrium processes, diffusion equation. *(Lectures 3)*

TUTORIALS: Relevant problems given in the end of each chapter in the text book.

Text Books :

1. Statistical Mechanics: R.K. Pathria and P.D. Beale (Butterworth-Heinemann, Oxford), 3rd edition, 2011.

Reference Books :

- 1. Statistical Mechanics: K. Huang (Wiley Eastern, New Delhi), 1987.
- 2. Statistical Mechanics: B.K. Agarwal and M. Eisner (Wiley Eastern, New Delhi) 2nd edition, 2011.
- 3. Elementary Statistical Physics: C. Kittel (Wiley, New York), 2004.
- 4. Statistical Mechanics: S.K. Sinha (Tata McGraw Hill, New Delhi), 1990.

PHS415	5	Ato	omic and I	Molecular	Physics	L-3, T-1	l, P-0	4 Cre	edits
Pre-requisi	Pre-requisite: None								
Course Ob the student Vibrational,	s of	M.Sc.	Physics	is to equip					
Course Ou	tcom	es: At	the end of	the course,	the studen	t will be ab	le to		
CO1		Unde	rstand basi	c elements	of atomic a	nd molecu	lar spectro	scopy	
CO2		Understand classical/Quantum description of electronic, vibrational and rotational spectra							
CO3		Correlate spectroscopic information of known and unknown molecules with their physical description							s with their
CO4		Unde	rstand and	use Raman	Spectrosco	opy for ana	lysis of mo	lecules	
CO5		Under analys	-	n Resonance	e Spectrosc	opy with fo	ocus on NI	MR for mol	ecular
	N	lappin	ig of cours	se outcome	s with the	program s	pecific ou	tcomes	
	PSO	D1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	3		3	3	2	3	2	2	3
CO2	3		3	3	3	3	3	3	3
CO3	3		3	3	3	3	3	3	3
CO4	3		3	3	2	3	3	3	3
CO5	3		3	3	2	3	3	3	3

- Electronic Spectroscopy of Atoms: Bohr-Sommerfeld model of atomic structure, Electronic wave function and atomic quantum numbers – hydrogen spectrum – orbital, spin and total angular momentum - fine structure of hydrogen atom – many electron spectrum: Lithium atom spectrum, angular momentum of many electrons – term symbols – the spectrum of helium and alkaline earths – equivalent and non-equivalent electrons –X-ray photoelectron spectroscopy. (Lectures 8)
- Electronic Spectroscopy of Molecules: Diatomic molecular spectra: Born-Oppenheimer approximation vibrational spectra and their progressions Franck-Condon principle dissociation energy and their products –rotational fine structure of electronic-vibration transition molecular orbital theory the spectrum of molecular hydrogen change of shape on excitation chemical analysis by electronic spectroscopy reemission of energy fundamentals of UV photoelectron spectroscopy. (Lectures 9)
- 3. Microwave and Raman Spectroscopy: Rotation of molecules and their spectra diatomic molecules intensity of line spectra the effect of isotropic substitution non-rigid rotator and their spectra polyatomic molecules (linear and symmetric top molecules) Classical theory of Raman effect pure rotational Raman spectra (linear and symmetric top molecules). *(Lectures 8)*
- 4. **Infra-red and Raman Spectroscopy:** The energy of diatomic molecules Simple Harmonic Oscillator the Anharmonic oscillator the diatomic vibrating rotator vibration-rotation spectrum of carbon monoxide –breakdown of Born-Oppenheimer approximation the vibrations of polyatomic molecules –influence of rotation on the spectra of polyatomic molecules (linear and symmetric top molecules) Raman activity of vibrations vibrational Raman spectra vibrations of Spherical top molecules.

(Lectures 8)

 Spin Resonance Spectroscopy Spin and magnetic field interaction – Larmor precession – relaxation time – spin-spin relaxation - spin–lattice relaxation - NMR chemical shift coupling constants – coupling between nuclei – chemical analysis by NMR – NMR for nuclei other than hydrogen – ESR spectroscopy - fine structure in ESR. (Lectures 8)

Text Books:

1. Fundamentals of Molecular Spectroscopy by Colin N. Banwell and Elaine M. McCash (Tata McGraw-Hill Publishing Company limited).

Reference Books:

- 1. Physical method for Chemists (Second Edition) by Russell S. Drago (Saunders College Publishing).
- 2. Introduction to Atomic Spectra: H.E. White-Auckland McGraw Hill, 1934.
- 3. Spectroscopy Vol. I, II & III: Walker & Straughen
- 4. Introduction to Molecular spectroscopy: G.M. Barrow-Tokyo McGraw Hill, 1962.
- 5. Spectra of diatomic molecules: Herzberg-New York, 1944.
- 6. Molecular spectroscopy: Jeanne L. McHale

PHS416	Physics Lab- I	L-3, T-1, P-0	4 Credits
		-)) -	

Scheme & Syllabus (M.Sc. Physics) Batch 2016 & Onwards

Pre-requisite: None

Course Objectives: The aim and objective of the laboratory on Physics Lab is to expose the students of M.Sc. class to experimental setups in electronics so that they can verify some of the things read in theory here or in earlier classes and develop confidence to handle sophisticated equipment.

Course Outco	mes: At the end of the course, the student will
CO1	Acquire hands on experience of handling and building electronics circuits.
CO2	Be familiar with the various components such as resistors, capacitor, inductor, IC
	chips and how to use these components in circuits.
CO3	Be able to understand the construction, working principles and V-I characteristics
	of various devices such as PN junction diodes, UJT, TRIAC etc.
CO4	
	Capable of using components of digital electronics for various applications.
CO5	
	Able to design and perform scientific experiments as well as accurately record and analyze the results of experiments.

Mapping of course outcomes with the program specific outcomes

		1	1	1				
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	2	2	1	2	2	3	3
CO2	1	2	2	1	-	2	2	3
CO3	1	3	3	1	2	3	3	2
CO4	-	3	-	2	1	3	3	2
CO5	2	2	3	3	2	3	3	3

List of experiments:

- 1. Study the forward and reverse characteristics of a Zener diode.
- 2. Construction of adder, subtracter, differentiator and itergrator circuits using the given OP-Amp.
- 3. Study the static and drain characteristics of a JFET
- 4. Construction of an Astable multivibrator circuit using transistor
- 5. Construction of a single FET amplifier with common source configuration
- 6. Construction of an A/D converter circuit and study its performance
- 7. Construction of an D/A converter circuit and study its performance
- 8. Construction of a low-pass filter circuit and study its output performance
- 9. Construction of a high-pass filter circuit and study its output performance
- 10. Electron Spin Resonance Spectrometer Experiment
- 11. Four Probe Method- Determination of resistivity of semiconductor at different temperature
- 12. To study pulse amplitude, Pulse width and Pulse position modulation
- 13. To study the frequency response of an operational amplifier
- 14. To study the characteristics of multivibrators- bistable, Astable, monostable
- 15. To find the wavelength of sodium light using Michelson interferometer.

PHS421		Mathem	atical Phys	ics-II	L-3, T-	-1, P-0	4 Cr	edits	
Pre-requisi	ite: N	one							
the M.Sc. theoretical background	Stud treat	ves: The aim ar ents with the ment in differ /she chooses to	mathematic ent courses pursue rese	cal techniques taught in earch in physical sectors in the sector of the	ues that this classics as a ca	he/she nee s and for areer.	ds for un	derstanding	
	tcom	es: At the end of	of the course	e, the studen	t will able	10			
CO1		Apply of group	theory in a	all the branc	hes of Phy	vsics.			
CO2	CO2 Use Fourier series and transformations as an aid for analyzing experimental data.								
CO3	D3 Use integral transform to solve mathematical problems of interest in Physics.								
CO4		Understand the Physics.	e application	ns of Delta	and gamm	a functions	s in all the	branches of	
CO5		Develop mathe	ematical ski	lls to solve o	quantitativ	e problems	in physics		
	N	lapping of cou	rse outcom	es with the	program	specific ou	tcomes		
	PSG	D1 PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO1	1	3	1	3	3	1	2	3	
CO2	1	3	2	2	2	2	2	3	
CO3	1	3	2	2	2	2	2	3	
CO4	1	3	2	3	2	-	2	3	
CO5	1	3	3	2	2	1	1	3	

- 1. **Group Theory :**What is a group ? Multiplication table, conjugate elements and classes, subgroups, Isomorphism and Homomorphism, Definition of representation and its properties, Reducible and irreducible representations, Schur's lemmas (only statements), characters of a representation. Example of C4v, Topological groups and Lie groups, three dimensional rotation group, special unitary groups SU(2) and SU(3).
- 2. Delta and Gamma Functions :Dirac delta function, Delta sequences for one dimensional function, properties of delta function, Gamma function, factorial notation and applications, Beta function.
- **3. Special Functions :**Bessel functions of first and second kind, Generating function, integral representation and recurrence relations for Bessel's functions of first kind, orthogonality. Legendre functions : generating function, recurrence relations and special properties, orthogonality, various definitions of Legendre polynominals. Associated Legendre functions: recurrence relations, parity and orthogonality, Hermite functions, Laguerre functions.
- 4. Fourier Series and Integral Transforms : Fourier series, Dirichlet conditions. General properties. Advantages and applications, Gibbs phenomenon. Fourier transforms, Development of the Fourier integral, Inversion theorem, Fourier transforms of derivatives; Momentum representation. Laplace transforms, Laplace transforms of derivatives, Properties of Laplace transform, Inverse Laplace transformation.

Text Books :

Group Theory for Physicists : A.W. Joshi (Wiley Eastern, New Delhi) 2011.
 Mathematical Methods for Physicists : G. Arfken and H.J. Weber, (Academic Press, San Diego) 7th edition, 2012.

Reference Books :

1. Matrices and Tensors in Physics : A. W. Joshi (Wiley Eastern, New Delhi) 2005.

2. Numerical Mathematical Analysis, J.B. Scarborough (Oxford Book Co., Kolkata) 4th edition.

- 3. A First Course in Computational Physics: P.L. Devries (Wiley, New York) 1994.
- 4. Mathematical Physics : P.K. Chatopadhyay (Wiley Eastern, New Delhi) 2011.

5. Introduction to Mathematical Physics : C. Harper (Prentice Hall of India, New Delhi) 2006.

PHS422		Nuc	lear Physic	S	L-3, T	-1, P-0	4 Cr	edits			
Pre-requisi	te: N	lone									
students of radioactive	M.S deca	ves: The aim a c. class to the ys, nuclear forcular ues used in stud	basic aspecters, nuclear	ts of Nucle models, and	ar Physics	s like stati	c properties	s of nuclei,			
Course Out	tcom	es: At the end	of the course	e, the studen	t will be a	ble to					
CO1		Understand structure and properties of nuclei, radioactive decay, and different types of nuclear reactions.									
CO2		Understand Quantum behavior of atoms in external electric and magnetic fields.									
CO3		Compare various nuclear models and properties of the nucleus.									
CO4		Understand ab	out nuclear	forces and t	heir depen	dence on w	arious para	meters.			
CO5		Describe vario	ous types of	nuclear reac	tions and	their prope	rties.				
	N	Iapping of cou	rse outcom	es with the	program	specific ou	itcomes				
	PS	D1 PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8			
CO1	1	2	3	3	3	3	3	3			
CO2	1	3	1	3	3	3	3	3			
CO3	1	3	1	3	3	3	3	3			
CO4	1	3	1	3	3	3	3	3			
C05	1	3	2	3	2	3	3	3			

- 1. **Nuclear Models:** Liquid drop model, Binding energy; fission and fusion, Experimental evidence for shell effects, Shell Model, Spin-Orbit coupling, Magic numbers, Application of Shell Model like Angular momenta and parities of nuclear ground states, Collective model-nuclear vibrations spectra and rotational spectra. *(Lectures 8)*
- 2. **Static properties of nucleus:** Nuclear radii and measurements, nuclear binding energy (review), nuclear moments and systematic, wave-mechanical properties of nuclei, hyperfinestructure, effect of external magnetic field, Nuclear magnetic resonance. (*Lectures 5*)
- 3. **Nuclear decay:** Review of barrier penetration of alpha decay & Geiger-Nuttal law. Beta decays, Fermi theory, Kurie plots and comparative half-lives, Allowed and forbidden transitions, Experimental evidence for Parity-violation in beta decay, Electron capture probabilities, Double beta decay, Neutrino, detection of neutrinos, measurement of the neutrino helicity. Multipolarity of gamma transitions, internal conversion process, transition rates. *(Lectures 6)*
- 4. **Nuclear forces:** Evidence for saturation of nuclear density and binding energies (review), types of nuclear potential, Ground and excited states of deuteron, dipole and quadrupole moment of deuteron, n-p scattering at low energies, partial wave analysis, scattering length, spin-dependence of n-p scattering, effective-range theory, coherent and incoherent scattering, central and tensor forces, p-p scattering, exchange forces & single and triplet potentials, meson theory of nuclear forces. (Lectures 8)
- 5. Neutron physics: Neutron production, slowing down power and moderating ratio, neutron detection. *(Lectures 3)*
- 6. Nuclear reactions: Nuclear reactions and cross-sections, Resonance, Breit–Wigner dispersion formula for l=0 and higher values, compound nucleus, Coulomb excitation, nuclear kinematics and radioactive nuclear beams. *(Lectures 4)*

Text Books :

1.Nuclear Physics : Irving Kaplan (Narosa), 2002.

2. Theory of Nuclear Structure : R.R. Roy and B.P. Nigam (New Age, New Delhi) 2005.

Reference Books :

1.Basic Ideas and Concepts in Nuclear Physics : K. Hyde (Institute of Physics) 2004.

2.Nuclear physics: Experimental and Theoretical, H.S. Hans (New Academic Science) 2nded (2011).

3.Nuclear Physics and its applications by John Liley

4.Nuclear Physics V. Devnathan

DITC (0.0			
PHS423	Quantum Mechanics–II	L-3, T-1, P-0	4 Credits

Scheme & Syllabus (M.Sc. Physics) Batch 2016 & Onwards

Pre-requisite: Preliminary course of Quantum Mechanics

Course Objectives: The aim and objective of the course on **Quantum Mechanics-II** is to introduce the M.Sc. students to the formal structure of the subject and to equip him/her with the techniques of Relativistic quantum mechanics and Quantum field theory so that he/she can use these in various branches of physics as per his/her requirement.

CO1	Understand relativistic effects in quantum mechanics and need for quantum field theory.
CO2	Demonstrate the Lorentz covariant form of Lagrangian and Hamiltonian for scalar, vector fields, electromagnetic fields and their second quantisation.
CO3	Understand the symmetries and the implications of Noether's Theorem in conserved currents and charges.
CO4	Understand the interaction picture, S-matrix, and Wick's Theorem.
CO5	Explain the origin of Feynman diagrams and apply the Feynman rules to derive the amplitudes for elementary processes in QED.

Mapping of course outcomes with the program specific outcomes

	-				-			
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	1	2	2	2	2	2	3
CO2	1	2	2	2	2	2	3	1
CO3	1	2	3	3	2	1	2	2
CO4	1	3	3	3	2	1	2	3
C05	1	2	1	3	2	2	3	3

1. **Relativistic Quantum Mechanics-I:** Klein-Gordon equation, Dirac equation and its plane wave solutions, significance of negative energy solutions, spin angular momentum of the Dirac particle, the non-relativistic limit of Dirac equation.

(Lectures 12)

2. **Relativistic Quantum Mechanics-II:** Electron in electromagnetic fields, spin magnetic moment, spin-orbit interaction, Dirac equation for a particle in a central field, fine structure of hydrogen atom, Lamb shift.

(Lectures 10)

3. **Quantum Field Theory:** Resume of Lagrangian and Hamiltonian formalism of a classical field, Quantization of real scalar field, complex scalar field, Dirac field and e.m. field, Covariant perturbation theory, Wick's theorem, Scattering matrix.

(Lectures 12)

4. **Feynman diagrams**:Feynman diagrams and their applications, Wick's theorem, Scattering matrix, QED.

(Lectures 8)

Text Books:

- 1. Text Book of Quantum Mechanics -P.M. Mathews & K. Venkatesan-Tata McGraw Hill 2010
- 2. Quantum Mechanics G Aruldhas Prentice Hall of India 2006
- 3. Introduction to Quantum Mechanics David J.Griffiths Pearson Prentice Hall, 2005
- 4. Quantum Mechanics A Devanathan Narosa Publishing-New Delhi
- 5. Quantum Mechanics L.I Schiff McGraw Hill 1968
- 6. Quantum Mechanics A.K. Ghatak and S. Loganathan-McMillan India
- 7. Principles of Quantum Mechanics R.Shankar, Springer 2005
- 8. Quantum Mechanics Satya Prakash- KatharNathRamnath Meerut

MSPH 42	4 Com	putational	Physics		L-3, T-1	1, P-0	4 Cre	edits			
Pre-requisite: None											
Course Ob familiarize programmin in solving si	the of M g using an mple phys	A.Sc. stude ny high leve sics problem	ents with el language as.	the numer such as Fo	rical methortran, C++	ods used , etc., so th	in compu	tation and			
Course Out	comes: A	t the end of	the course,	, the studen	t will be at	ole to					
CO1	CO1 Apply basics knowledge of computational physics in solving the physics problems.										
CO2	Prog	ramme with	the C++ o	r any other	high level	language.					
CO3	Use	various nun	nerical meth	nods in solv	ing physic	s problems					
CO4	Anal	Analyze the outcome of the algorithm/program using graphic plots.									
CO5	App	ly physics k	nowledge i	n understar	nding interc	lisciplinary	problem/c	oncepts.			
	Маррі	ng of cours	e outcome	s with the	program s	pecific out	comes				
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8			
CO1	3	3	1	1	2	3	3	3			
CO2	1	-	-	-	-	-	2	1			
CO3	3	3	2	2	2	2	3	3			
CO4	2	3	2	1	2	1	2	3			
CO5	2	3	3	2	3	2	3	3			

1.Introduction to high level language: Need and advantages of high level language in physics, programming in a suitable high level language (Matlab/Mathematica/Scilab/ Octave), input/output, interactive input, loading and saving data, loops branches and control flow. Matrices and Vectors, Matrix and array operations, eigenvalues and eigen vectors. *(Lectures 12)*

2.Sub programs: Advantages of modular programming, built-in functions, scripts, functions, sharing of variables between modules. *(Lectures 8)*

3.Graphics: 2D plots, style options, axis control, overlay plots, subplot, histogram, 3D plots, mesh and surface plots, contour plots. *(Lectures 8)*

4.Numerical computation: Computer programs for: solving linear system of simultaneous equations, nonlinear algebraic equation, roots of polynomials, curve fitting, polynomial curve fitting, least square curve fitting, interpolation, data analysis and statistics, numerical integration, Monte-Carlo simulation, ordinary differential equation, first order and second order ODEs, event location. *(Lectures 15)*

5. List of experiments:

- 1.Black body radiation (computation and graphical representation)
- 2.Reflection and transmission of an electromagnetic wave
- 3. Statistical distributions at different temperatures
- 4.Binding energy curve for nuclei using liquid drop model
- 5.Eigen-value problem: 1-D square potential well
- 6.Eigen-values and wave-functions of a simple harmonic oscillator
- 7.Monte-Carlo simulation

8.Linear/Projectile motion (simulation and solutions)

Text Books:

- 1. Pratap R, "Getting started with MATLAB 7", Oxford Univ. Press, 2006
- 2. Gilat A, "Matlab: An introduction with applications", Wiley, 2008
- 3. Eaton J W, Batchman D and Hauberg S "GNU Octave Manual Version 3", Network Theory Ltd.2008
- 4. Campbell S, Chancelier J P and Nikoukhah R, "Modeling and simulation in Scilab", Springer 2005
- 5. "Mathematica Information Center ('MathSource')": <u>http://library.wolfram.com/infocenter/</u>2009
- 6. Gerald C F and Wheatley P O, "Applied Numerical Analysis", 7th Ed, Addison Wesley, 2003

PHS425	25 Co		PHS425		ondensed	Matter Phy	ysics-I	L-3, T-1	l, P-0	4 Cr	edits
Pre-requisi	te: N	lone									
Course Ob expose the s properties, o used in inve	stude energ estiga	ents of gy band ting th	M.Sc. cla d theory ar lese aspects	ss to the top ad transport s of the mat	pics like el theory so ter in cond	astic consta that they a ensed phas	ants, lattice re equippe e.	e vibrations	s, dielectric		
Course Out CO1	tcom			$\frac{\text{the course,}}{\text{c elements}}$				l matter			
CO2		Unde		urate descr	2				operties of		
CO3		Unde	rstand orig	in of energy	y bands in s	solids with	focus on s	emiconduc	tors.		
CO4		Desci	ibe and un	derstand ba	sics of tran	sport prop	erties acros	ss solids.			
CO5		Desci	ibe and un	derstand m	agnetic and	l dielectric	behavior c	of solids.			
	N	1 appir	ig of cours	e outcome	s with the	program s	pecific ou	tcomes			
	PS	01	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8		
CO1	3		3	3	3	2	1	3	2		
CO2	3		2 3		3	3	3	3	3	3	3
CO3	3		3	3	3	3	3	3	3		
CO4	3		3	3	3	3	3	3	3		
C05	3		3	3	3	3	3	3	3		

1.Elastic constants :

Binding in solids; Stress components, stiffness constant, elastic constants, elastic waves in crystals.

2.Lattice Dynamics and Thermal Properties :

Rigorous treatment of lattice vibrations, normal modes; Density of states, thermodynamic properties of crystal, anharmonic effects, thermal expansion.

3.Energy Band Theory:

Electrons in a periodic potential: Bloch theorem, Nearly free electron model; tight binding method; Semiconductor Crystals, Band theory of pure and doped semiconductors; elementary idea of semiconductor superlattices.

4.Transport Theory:

Electronic transport from classical kinetic theory; Introduction to Boltzmann transport equation; electrical and thermal conductivity of metals; thermoelectric effects; Hall effect and magneto resistance.

5.Dielectric Properties of Materials:

Polarization mechanisms, Dielectric function from oscillator strength, Clausius-Mosotti relation; piezo, pyro- and ferro-electricity.

6.Liquid Crystals :

Thermotropic liquid crystals, Lyotropic liquid crystals, long range order and order parameter, Various phases of liquid crystals, Effects of electric and magnetic field and applications, Physics of liquid crystal devices.

TUTORIALS :Relevant problems given in the books listed below.

Text Books:

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, New York), 8th ed. 2005.
- 2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.

Reference Books:

- 1. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1972
- 2. Solid State Theory: Walter A. Harrison (Tata McGraw-Hill, New Delhi) 1970.
- 3. Liquid Crystals: S. Chandrasekhar (Cambridge University), 2nd ed. 1992.

PHS42	6		Physi	cs Lab-II		L-3, T-	-1, P-0	4 Cr	edits
Pre-requis	ite: N	lone							
	ents t	to experi	mental te	chniques i	n atomic a	nd nuclea	r physics s	that they	students of can verify quipment.
Course Ou	itcom	es: At th	e end of	the course,	the studen	t will be a	ble to		
CO1 Acquire hands on experience of using particle detectors such as GM co a Scintillation counter.									counter and
CO2		handle of	oscillosco	ope for visu	alisation o	f various i	nput and o	utput signa	ls.
CO3		Underst	and the b	basic of nuc	elear safely	managem	ent.		
CO4	CO4 Perform scientific experiments as well as accurately record and analyze results of nuclear experiments.								
CO5		Solve a	oplied nu	clear probl	ems with c	ritical thir	lking and a	nalytical re	asoning.
	N	Iapping	of cours	e outcome	s with the	program	specific ou	tcomes	
	PS	01 F	SO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1	2	,	1	2	1	3	3	3
CO2	1	1 1 1 3 1 3 1							3
CO3	1	1		1	3	1	3	1	2
CO4	1	3		3	3	1	3	3	3
C05	1	3		3	3	1	3	3	3

Note: Students are expected to perform atleast 10 experiments out of following list.

- 1. Determination of e/m of electron by Normal Zeeman Effect using Febry Perot interferometer.
- 2. To verify the existence of Bohr's energy levels with Frank-Hertz experiments.
- 3. Determination of Lande's factor of DPPH using Electron-spin resonance (E.S.R.) spectrometer
- 4. Determination of ionization Potential of Lithium
- 5. Analysis of pulse height of gamma ray spectra
- 6. To study the characteristics of G.M. counter
- 7. To determine the dead time of G.M. counter
- 8. To study absorption of beta particles is matter
- 9. To study Gaussian distribution using G.M. counter
- 10. Source strength of a beta source using G.M counter
- 11. Determination of Planck's constant using Photocell and interference filters.
- 12. Recording and calibrating a gamma ray spectrum by scintillation counter
- 13. Detecting gamma radiation with a scintillation counter
- 14. To study absorption of gamma radiation by scintillation counter
- **15.** Identifying and determining the activity of weakly radioactive samples

Text Books:

- 1. Fundamentals of Molecular Spectroscopy by Colin N. Banwell and Elaine M. McCash (Tata McGraw-Hill Publishing Company limited).
- 2. Physics of Atoms and Molecules by B. H. Bransden and C. J. Joachain.

Reference Books:

- 1. Physical method for Chemists (Second Edition) by Russell S. Drago (Saunders College Publishing).
- 2. Introduction to Atomic Spectra: H.E. White-Auckland McGraw Hill, 1934.
- 3. Spectroscopy Vol. I, II & III: Walker & Straughen
- 4. Introduction to Molecular spectroscopy: G.M. Barrow-Tokyo McGraw Hill, 1962.
- 5. Spectra of diatomic molecules: Herzberg-New York, 1944.

PHS427		Computational LabL-3, T-1, P-04 Credits									
Pre-requisite: None											
Course Obj students of as C++ lang physical dat problems.	M.So guag	e. class e for s	in unders	tanding nur of results f	nerical met	hods, the ut t physics p	sage of hi broblems a	gh level lan and graphic	guage such analysis of		
Course Out	tcom	nes: At	the end of	f the course	, the studen	t will be a	ble to				
CO1		physi	cs problen	ns.		-			solving the		
CO2		Write	programm	ne with the	C++ or any	other hig	h level lan	guage.			
CO3		Learn	use of gra	aphical met	hods in data	a analysis a	and solvin	g physics pr	oblems.		
CO4	CO4 Solve physical problem, enabling development of critical thinking and analytical reasoning.										
C05		-		tion of com sics and alli		physics in	frontier are	eas of pure	and applied		
	N	/lappin	ig of cour	se outcome	es with the	program	specific ou	itcomes			
	PS	01	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8		
CO1	1		2	1	3	3	1	3	3		
CO2	2		2	1	3	3	2	3	3		
CO3	2		2	2	3	3	1	2	3		
CO4	1		3	2	2	3	2	3	2		
CO5	1		2	1	3	3	2	2	3		

- 1. Black body radiation (computation and graphical representation)
- 2. Reflection and transmission of an electromagnetic wave
- 3. Statistical distributions at different temperatures
- 4. Binding energy curve for nuclei using liquid drop model
- 5. Eigen-value problem: 1-D square potential well
- 6. Eigen-values and wave-functions of a simple harmonic oscillator
- 7. Monte-Carlo simulation
- 8. Linear/Projectile motion (simulation and solutions)

Text Books:

- 1. Pratap R, "Getting started with MATLAB 7", Oxford Univ. Press, 2006
- 2. Gilat A, "Matlab: An introduction with applications", Wiley, 2008
- 3. Eaton J W, Batchman D and Hauberg S "GNU Octave Manual Version 3", Network Theory Ltd.2008
- 4. Campbell S, Chancelier J P and Nikoukhah R, "Modeling and simulation in Scilab", Springer 2005
- 5. "Mathematica Information Center ('MathSource')": <u>http://library.wolfram.com/infocenter/</u>2009
- 6. Gerald C F and Wheatley P O, "Applied Numerical Analysis", 7th Ed, Addison Wesley, 2003

PHS53	1	C	ondensed	Matter Phy	vsics-II	L-3, T-	1, P-0	4 Cr	edits	
Pre-requis	ite: N	None								
expose the properties,	stude	ents of gy ban	M.Sc. cla d theory a	iss to the to	pics like el t theory so	astic const that they a	ants, lattic are equippe	e vibration	hysics is to s, dielectric techniques	
	itcon	1		the course	, ,					
CO1		Unde	rstand and	describe O	ptical prop	erties of so	lids			
CO2		Understand and describe magnetic properties of solids								
CO3	Understand use of NMR methods for describing solids									
CO4		Understand and explain the behavior of superconductors								
CO5		Unde	erstand the	effect of de	fects and d	eformation	on the bel	navior of so	olids	
	N	Aappii	ng of cour	se outcome	s with the	program s	pecific ou	tcomes		
	PS	01	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO1	3		3	3	3	2	1	3	2	
CO2	3		3	3	3	3	3	3	3	
CO3	3		3	3	3	3	3	3	3	
CO4	3		3	3	3	3	3	3	3	
C05	3		3	3	3	3	3	3	3	

- 1. **Optical Properties :**Macroscopic theory generalized susceptibility, Kramers- Kronig relations, Brillouin scattering, Raman effect; interband transitions. *(Lectures 8)*
- 2. **Magnetism:**Dia- and para-magnetism in materials, Pauli paramagnetism, Exchange interaction. Heisenberg Hamiltonian mean field theory; Ferro-, ferri-and antiferromagnetism; spin waves, Bloch T3/2 law. *(Lectures 8)*
- 3. **Principles of Magnetic Resonance:** ESR and NMR equations of motion, line width, motional narrowing, Knight shift. *(Lectures 8)*
- 4. **Superconductivity** :Experimental Survey; Basic phenomenology; BCS pairing mechanism and nature of BCS ground state; Flux quantization; Vortex state of a Type II superconductors; Tunneling Experiments; High Tc superconductors. *(Lectures 8)*
- 5. **Disordered Solids :** Basic concepts in point defects and dislocations; Noncrystalline solids: diffraction pattern, glasses, amorphous semiconductors and ferromagnets, heat capacity and thermal conductivity of amorphous solids, nanostructures short expose; Quasicrystals. *(Lectures 8)*

Text Books:

- 1. Introduction to Solid State Physics : C. Kittel (Wiley, New York) 2005.
- 2. Quantum Theory of Solids : C. Kittel (Wiley, New York) 1987.

Reference Books:

- 1. Principles of the Theory of Solids : J. Ziman (Cambridge University Press) 1972.
- 2. Solid State Physics : H. Ibach and H. Luth (Springer, Berlin), 3rd. ed. 2002.
- 3. A Quantum Approach to Solids : P.L. Taylor (Prentice-Hall, Englewood Cliffs), 1970.
- 4. Intermediate Quantum Theory of Solids : A.O.E. Animalu (East-West Press, New Delhi), 1991.
- 5. Solid State Physics : Ashcroft and Mermin (Reinhert & Winston, Berlin), 1976.

PHS532 Classical Electrodynamics L-3, T-1, P-0 4 Credits
--

Scheme & Syllabus (M.Sc. Physics) Batch 2016 & Onwards

Pre-requisite: N	Jone	

Course Objectives: The **Classical Electrodynamics** course covers Electrostatics and Magnetostatics including Maxwell equations, and their applications to propagation of electromagnetic waves in dielectrics; EM waves in bounded media, waveguides, Radiation from time varying sources.

Course Outcomes: At the end of the course, the student will be able to

CO1	Understand and apply the laws of electromagnetism and Maxwell's equations in different forms and different media.						
CO2	Solve the electric and magnetic fields problems for different configurations.						
CO3	Provide solution to real life plane wave problems for various boundary conditions.						
CO4	Calculate reflection and transmission of waves at plane interface.						
CO5	Analyze propagation of electromagnetic waves through different waveguides.						
	Mapping of course outcomes with the program specific outcomes						

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	3	3	1	2	1	2	1	2
CO2	3	3	1	2	2	2	2	2
CO3	3	3	1	3	2	1	2	2
CO4	3	3	2	3	2	2	1	2
CO5	3	3	1	3	2	2	2	2

- 1. **Electrostatics:** Laplace and Poisson's equations, Electrostatic potential and energy density of the electromagnetic field, Multipole expansion of the scalar potential of a charge distribution, dipole moment, quadrupole moment, Multipole expansion of the energy of a charge distribution in an external field, Static fields in material media, Polarization vector, macroscopic equations, classification of dielectric media, Molecular polarizability and electrical susceptibility, Clausius-Mossetti relation, Models of Molecular polarizability, energy of charges in dielectric media (Maxwell stress tensor). *(Lectures 10)*
- 2. **Magnetostatics:** The differential equations of magnetostatics, vector potential, magnetic fields of a localized current distribution, Singularity in dipole field, Fermi-contact term, Force and torque on a localized current distribution. (Magnetic stress tensor)

(Lectures 8)

- 3. **Boundary value problems:** Uniqueness theorem, Dirichlet and Neumann Boundary conditions, Earnshaw theorem, Green's (reciprocity) theorem, Formal solution of electrostatic boundary value problem with Green function, Method of images with examples, Magnetostatic boundary value problems. *(Lectures 8)*
- 4. Time varying fields and Maxwell equations: Faraday's law of induction, displacement current, Maxwell equations, scalar and vector potential, Gauge transformation, Lorentz and Coulomb gauges, Hertz potential, General expression for the electromagnetic fields energy, conservation of energy, Poynting Theorem, Conservation of momentum.

(Lectures 8)

- 5. Electromagnetic Waves: wave equation, plane waves in free space and isotropic dielectrics, polarization, energy transmitted by a plane wave, Poynting theorem for a complex vector field, waves in conducting media, skin depth, Reflection and refraction of e.m. waves at plane interface, Fresnel's amplitude relations, Reflection and Transmission coefficients, polarization by reflection, Brewster's angle, Total internal reflection, Stoke's parameters, EM wave guides, Cavity resonators, Dielectric waveguide, optical fibre waveguide, Waves in rarefied plasma (ionosphere) and cold magneto-plasma, Frequency dispersive characteristics of dielectrics, conductors and plasmas. *(Lectures 8)*
- 6. Radiation from Localized Time varying sources: Solution of the inhomogeneous wave equation in the absence of boundaries, Fields and radiation of a localized oscillating source, electric dipole and electric quadrupole fields, center fed antenna. *(Lectures 4)*

Text Books:

- 1. Classical Electrodynamics: S.P. Puri (Narosa Publishing House) 2011.
- 2. Classical Electrodynamics: J.D. Jackson, (New Age, New Delhi) 2009.
- 3. Introduction to Electrodynamics: D.J. Griffiths (Prentice Hall India, New Delhi) 4th ed., 2012.

- 1. Classical Electromagnetic Radiation: J.B. Marion and M.A. Heald(Saunders College Publishing House) 3rd edition, 1995.
- 2. Electromagnetic Fields, Ronald K. Wangsness (John Wiley and Sons) 2nd edition, 1986.
- 3. Electromagnetic Field Theory Fundamentals: Bhag Singh Guru and H.R. Hiziroglu

PHS533			Partie	cle Physics		L-3, T-1	, P-0	4 Cr	edits		
Pre-requisi	Pre-requisite: course on Quantum mechanics and Quantum field Theory										
The aim and objective of the course on Particle Physics is to introduce the M.Sc. students to the invariance principles and conservation laws, hadron-hadron interactions, relativistic kinematics, static quark model of hadrons and weak interactions so that they grasp the basics of fundamental particles in proper perspective.											
Course Outcomes: At the end of the course, the student will be able to understand											
CO1			Overview of particle spectrum, their interaction and major historical and lates developments.								
CO2		Various invariance principles and symmetry properties in particle physics.							ics.		
CO3		Basic rules of Feynman diagrams and the quark model for hadrons.									
CO4	4 Properties of neutrons and protons in terms of a simple nonreltivistic qui model.							istic quark			
CO5		Weak	interaction	n between q	uarks and l	now that th	is is respo	onsible for β	decay.		
	N	lappin	ig of cours	e outcome	s with the j	program sj	pecific ou	itcomes			
	PSO	D1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8		
CO1	2		2	2	3	3	1	2	3		
CO2	2		2	2	3	3	1	2	3		
CO3	2	2 1 3 3 1					2	3			
CO4	1	1 1 1 3 3 2 3						3	3		
CO5	1		1	2	3	3	2	3	2		

1. **Introduction:** Fermions and bosons, particles and antiparticles, quarks and leptons, interactions and fields in particle physics, classical and quantum pictures, Yukawa picture, types of interactions - electromagnetic, weak, strong and gravitational, units.

(Lectures 7)

- 2. **Invariance Principles and Conservation Laws:** Invariance in classical mechanics and quantum mechanics, Parity, Pion parity, Charge conjugation, Positronium decay, Time reversal invariance, CPT theorem. *(Lectures 7)*
- 3. **Hadron-Hadron Interactions:** Cross section and decay rates, Pion spin, Isospin, Two nucleon system, Pion-nucleon system, Strangeness and Isospin, G-parity, Total and Elastic cross section, Particle production at high energy. *(Lectures 7)*
- Relativistic Kinematics and Phase Space: Introduction to relativistic kinematics, particle reactions, Lorentz invariant phase space, two-body and three-body phase space, recursion relation, effective mass, dalitz, K-3 p-decay, t-θ puzzle, dalitz plots for dissimilar particles, Breit-Wigner resonance formula, Mandelstem variables. (Lectures 7)
- **5. Static Quark Model of Hadrons:** The Baryon decuplet, quark spin and color, baryon octer, quark-antiquark combination. *(Lectures 7)*
- **6.** Weak Interactions: Classification of weak interactions, Fermi theory, Parity non conservation in β-decay, experimental determination of parity violation, helicity of neutrino, K-decay, CP violation in K- decay and its experimental determination.

(Lectures 7)

1.

Text Books:

1. Introduction to High Energy Physics : D.H. Perkins (Cambridge University Press), 42000.

Reference Books:

- 1. Elementary Particles : I.S. Hughes (Cambridge University Press), 3rded. 1991.
- 2. Introduction to Quarks and Partons : F.E. COse (Academic Press, London), 1979.
- 3. Introduction to Particle Physics : M.P. Khanna (Prentice Hall of India, New Delhi), 2004.

	PHS534	Electronics	L-3, T-1, P-0	4 Credits
--	--------	-------------	---------------	-----------

Scheme & Syllabus (M.Sc. Physics) Batch 2016 & Onwards

Pre-requisite	: Basic k	cnowledge	about el	ectronics

Course Objectives: The aim and objective of the course on **Electronics** is to introduce the students of M.Sc. class to the formal structure of the subject and to equip them with the knowledge of semiconductor physics, basic circuit analysis, first-order nonlinear circuits, OPAMP based analog circuits and introduction to digital electronics so that they can use these in various branches of physics as per their requirement.

Course Out	Course Outcomes: At the end of the course, the student will be able to									
CO1	Understand working of Different Semiconductor devices (Construction, Working Principles and V-I characteristics) and their applications.									
CO2	Learn about the construction and working of Thyristors and various applications of Thyristors.									
CO3	Understand Analog and Digital Instruments and their applications.									
CO4	Enable them for using Boolean algebra and Karnaugh maps.									
CO5	Introduce them to the Sequential and Integrated circuits.									
Mapping of course outcomes with the program specific outcomes										
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8		
CO1	3	2	2	2	3	1	3	3		
CO2	2	2	1	1	1	1	3	2		
CO3	-	1	1	1	-	2	3	3		
CO4	-	3	-	-	-	-	3	2		
CO5	-	2	2	2	1	3	3	1		

- Analog and Digital Instruments: Introduction-Basic Emitter Follower Voltmeter; FET Input Voltmeter; Voltage Follower Voltmeter; Amplifier Type OP AMP Voltmeter; Voltage to Current Converter; Current Measurement with Analog Electronic Instrument; Time Base; Basic Digital Frequency Meter System; Reciprocal Counting Technique; Digital Voltmeter System; Digital LCR Measurements. (Lectures 8)
- 2. UJTs and Thyristors: Operational Principle of UJT: UJT Relaxation Oscillator circuit; PNPN Diode: Characteristics- As a Relaxation Oscillator-Rate Effect; SCR: V-I Characteristics Gate Triggering Characteristics; DIAC and TRIAC; Thyristors: Basic Parameters- As Current Controllable Devices- Thyristors in Series and in Parallel; Applications of Thyristors-As a Pulse Generator, BistableMultivibrator, Half and Full Wave Controlled Rectifier, TRIAC based AC power control, SCR based Crowbar Protection; Gate Turn-Off Thyristors; Programmable UJT. (Lectures 10)
- 3. **Digital Integrated Circuits:** 7400 TTL; TTL Parameters; TTL-MOSFET's; CMOS FET's;Three State TTL Devices; External drive for TTL Loads; TTL Driving External Loads; 74C00 CMOS; CMOS Characteristics; TTL to CMOS Interface; CMOS to TTL interface; Current Tracers. *(Lectures 7)*
- 4. Integrated Circuits as Analog System Building Blocks: Electronic Analog Computation; Active Filters: Butterworth Filter-Practical Realization-High Pass Filter-Band Pass Filter-Band Reject Filter; Delay Equalizer; Switched Capacitor Filters; Comparators; Sample and Hold Circuits; Waveform Generators: Square Wave Generator Pulse Generator-Triangle wave Generator-Sawtooth Generator; Regenerative Comparator: Schmitt Trigger.
- 5. Integrated Circuits as Digital System Building Blocks: Binary Adders: Half Adder-Parallel Operation-Full Adder-MSI Adder-Serial Operation; Decoder/Demultiplexer: BCD to Decimal Decoder-4-to-16 line Demultiplexer; Data Selector/Multiplexer:16-to-1 Multiplexer; Encoder; ROM:Code Converters-Programming the ROM-Applications; RAM:Linear Selection-Coincident Selection-Basic RAM ElementsBipolar RAM-Static and Dynamic MOS RAM; Digital to Analog Converters: Ladder Type D/A Converter-Multiplying D/A Converter; Analog to Digital Converters: Successive Approximation A/D Converter. *(Lectures 8)*

Text Books:

- 1. Text Book of Electronics: S. Chattopadhyay, New Central Book Agency P.Ltd., Kolkata, 2006.
- 2. Digital Principles and Applications: A.P. Malvino and D.P. Leach, Tata McGraw-Hill, Publishing Co., New Delhi.

- 1. Electronics Principles and Applications: *A.B. Bhattacharya*, New Central Book Agency P.Ltd., Kolkata, 2007.
- 2. Integrated Electronics Analog and Digital Circuits and Systems: *J. Millman, C.C Halkins and C. Parikh*, 2nd Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2010.

PHS535	5	Fibre	Optics an	d Non-line	ear optics	L-3, T-1	, P-0	4 Cre	edits		
Pre-requis	ite: N	None									
and Nonlin	Course Objectives: Course Objectives : The aim and objective of the course on Fibre Optics and Nonlinear Optics is to expose the M.Sc. students to the basics of the challenging research field of optical fibres and their use in nonlinear optics.										
Course Outcomes: At the end of the course, the student will be able to											
CO1		Unde	rstand the s	structure of	optical fibe	er and desc	ribe proper	rties of opti	cal fibers.		
CO2		Unde	Understand and compare the various processes of fibers fabrication								
CO3		Understand the principles of fiber optics communication in different media									
CO4		Analyze the electro-optic and acousto-optic effects in fibers									
CO5		Unde	rstand non-	linear effec	ets in optica	l fibers.					
	N	Aappi r	ig of cours	e outcome	s with the _l	program sj	pecific out	comes			
	PS	01	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8		
CO1	-		2	-	2	-	1	2	3		
CO2	-		2	-	2	-	-	1	3		
CO3	-		1	-	2	-	-	1	3		
CO4	-		2	-	2	-	-	1	3		
C05	-		2	-	2	-	-	1	3		

- 1. **Optical fibre and its properties:** Introduction, basic fibre construction, propagation of light, modes and the fibre, refractive index profile, types of fibre, dispersion, data rate and band width, attenuation, leaky modes, bending losses, cut-off wavelength, mode field diameter, other fibre types. *(Lectures 7)*
- 2. **Fiber fabrication and cable design:** Fibre fabrication, mass production of fiber, comparison of the processes, fiber drawing process, coatings, cable design requirements, typical cable design, testing. *(Lectures 5)*
- 3. **Optics of anisotropic media:** Introduction, the dielectric tensor, stored electromagnetic energy in anisotropic media, propagation of monochromatic plane waves in anisotropic media, directions of D for a given wave vector, angular relationships between D, E, H, k and Poynting vector S, the indicatrix, uniaxial crystals, index surfaces, other surfaces related to the uniaxial indicatrix, Huygenian constructions, retardation, biaxial crystals, intensity through polarizer/waveplate/ polarizer combinations. *(Lectures 10)*
- 4. Electro-optic and acousto-otpic effects and modulation of light beams: Introduction to the electro-optic effects, linear electro-optic effect, quadratic electro-optic effects, longitudinal electro-optic modulation, transverse electro optic modulation, electro optic amplitude modulation, electro-optic phase modulation, high frequency wave guide, electro-optic modulator, strain optic tensor, calculation of LM for a logitudinal acoustic wave in isotropic medium, Raman-Nath diffraction, Raman-Nath acousto-optic modulator.

(Lectures 10)

5. **Non-linear optics/processes**: Introduction, anharmonic potentials and nonlinear polarization, non-linear susceptibilities and mixing coefficients, parametric and other nonlinear processes, macroscopic and microscopic susceptibilities. *(Lectures 8)*

Text Books:

1. The Elements of Fibre Optics: S.L. Wymer and Meardon (Regents/Prentice Hall), 1993.

Reference Books:

- 1. Lasers and Electro-Optics: C.C. Davis (Cambridge University Press), 1996.
- 2. Optical Electronics: Gathak & Thyagarajan (Cambridge Univ. Press), 1989.
- 3. The Elements of Non-linear Optics: P.N. Butcher & D. Cotter (Cambridge University Press), 1991.

Elective Subject -I

Scheme & Syllabus (M.Sc. Physics) Batch 2016 & Onwards

PHS536		Plasm	a Physics		L-3, T-1	1, P-0	4 Cre	dits	
Pre-requisi	te: Course	on Electroc	lynamics						
Course Ob M.Sc. stude								expose the	
Course Out	comes: A	t the end of	the course,	the studen	t will be ab	ole to			
CO1		Understand the origin of plasma, conditions of plasma formation and properties of plasma.							
CO2		Distinguish between the single particle approach, fluid approach and kinetic statistical approach to describe different plasma phenomena.							
CO3		Classify propagation of electrostatic and electromagnetic waves in magnetized and non-magnetized plasmas							
CO4		Describe the basic transport phenomena such as plasma resistivity, diffusion mobility for both magnetized and non-magnetized plasmas.							
C05	thern	nulate the nodynamic ibrium.			-	-			
	Маррі	ng of cours	e outcome	s with the	program s	pecific ou	tcomes		
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO1	3	-	2	2	3	3	1	-	
CO2	3	3	3	3	3	3	1	-	
CO3	3	3 3 3 3 3 3					2	-	
CO4	3	3	3	3	3	3	1	1	
C05	3	3	3	3	3	3	2	1	

- 1. **Introduction:** Plasma State, elementary concepts and definitions of temperature and other parameters, occurrence and importance of plasma for various applications, Production of Plasma in the laboratory, Physics of glow discharge, electron emission, ionization, breakdown of gases, Paschen's laws and different regimes of E/p in a discharge, Townsend discharge and the evolution of discharge. *(Lectures 8)*
- 2. **Plasma diagnostics:** Probes, energy analyzers, magnetic probes and optical diagnostics, preliminary concepts. *(Lectures 5)*
- 3. **Single particle orbit theory:** Drifts of charged particles under the effect of different combinations of electric and magnetic fields, Crossed electric and magnetic fields, Homogenous electric and magnetic fields, spatially varying electric and magnetic fields, time varying electric and magnetic fields, particle motion in large amplitude waves.

(Lectures 8)

- 4. Fluid description of plasmas: distribution functions and Liouville's equation, macroscopic parameters of plasma, two and one fluid equations for plasma, MHD approximations commonly used in one fluid equations and simplified one fluid and MHD equations. dielectric constant of field free plasma, plasma oscillations, space charge waves of warm plasma, dielectric constant of a cold magnetized plasma, ion- acoustic waves, Alfven waves, Magnetosonic waves. *(Lectures 10)*
- 5. **Stability of fluid plasma:** The equilibrium of plasma, plasma instabilities, stability analysis, two stream instability, instability of Alfven waves, plasma supported against gravity by magnetic field, energy principle. microscopic equations for my body system: Statistical equations for many body systems, Vlasov equation and its properties, drift kinetic equation and its properties. *(Lectures 7)*

Text Books:

1. Introduction to Plasma Physics, F.F. Chen

- 1. Principles of Plasma Physics, *Krall and Trievelpice*
- 2. Introduction to Plasma Theory, D.R. Nicholson
- 3. The Plasma State, J.L. Shohet
- 4. Introduction to Plasma Physics, M. Uman
- 5. Principles of Plasma Diagnostic, I.H. Hutchinson

PHS537	,	Nonline	ar Dynami	ics	L-3, T-	1, P-0	4 Cr	edits		
Pre-requisi	te: None									
Course Ob the M.Sc. st Hamiltonian	tudents wit n systems.	h the basics	s of the rece	ently emerg	ing researc	ch field of				
C01		s: At the end of the course, the student will be able to Understand basic knowledge of nonlinear dynamics and phenomenology of chaos								
CO2	App	Apply the tools of dynamical systems theory in context to models								
CO3		Learn skills by solving problems on solving nonlinear problems using numerical methods.								
CO4	Unde	erstand Han	nilton appro	bach for des	scribing va	rious phys	ical system			
CO5	Quar	ntify classic	al chaos an	d Quantum	chaos					
	Маррі	ng of cours	se outcome	s with the	program s	pecific ou	tcomes			
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8		
CO1	2	3	3	3	3	2	3	1		
CO2	-	3	3	3	3	2	3	1		
CO3	1	3	3	3	3	1	3	1		
CO4	3	3	3	3	3	1	3	2		
CO5	3	3	3	3	3	2	3	2		

- 1. **Phenomenology of Chaos**: Linear and nonlinear systems, A nonlinear electrical system, Biological population growth model, Lorenz model; determinism, unpredictability and divergence of trajectories, Feigenbaum numbers and size scaling, self similarity, models and universality of chaos. *(Lectures 8)*
- 2. **Dynamics in State Space:** State space, autonomous and nonautonomous systems, dissipative systems, one dimensional state space, Linearization near fixed points, two dimensional state space, dissipation and divergence theorem. Limit cycles and their stability, Bifurcation theory, Heuristics, Routes to chaos. Three-dimensional dynamical systems, fixed points and limit cycles in three dimensions, Lyapunov exponents and chaos. Three dimensional iterated maps, U-sequence. *(Lectures 10)*
- 3. **Hamiltonian System**: Non-integrable systems, KAM theorem and period doubling, standard map. Applications of Hamiltonian Dynamics, chaos and stochasticity.

(Lectures 8)

4. **Quantifying Chaos**: Time series, Lyapunov exponents. Invariant measure, Kolmogorov - Sinai entropy. Fractal dimension, Statistical mechanics and thermodynamic formalism.

(Lectures 7)

5. **Quantum Chaos**: Quantum Mechanical analogies of chaotic behaviour, Distribution of energy eigenvalue spacing, chaos and semi-classical approach to quantum mechanics.

(Lectures 7)

Text Books:

1. Chaos and Non Linear Dynamics: R.C. Hilborn (Oxford Univ. Press), 2001.

Reference Books:

- 1. Chaos in Dynamical Systems: E. Ott (Cambridge Univ. Press), 2002.
- 2. Applied Nonlinear Dynamics: A.H. Nayfeh and B. Balachandran (Wiley), 1995.
- 3. Chaos in Classical and Quantum Mechanics: M.C. Gutzwiller (Springer-Verlag), 1990.

Elective Subject -I

PHS538	3	Structures, Spectra and Properties of BiomoleculesL-3, T-1, P-04 Credits							
Pre-requis	ite: N	None							
	ecule	s is to	familiariz	the M.S	c. students	with the	basics of	the recently	properties y emerging
Course Ou	tcon	nes: At	the end of	the course	, the studen	t will be a	ble to		
CO1		Desci	ribe variou	s structural	and chemic	cal bondin	g aspects of	of Biomolec	cules.
CO2			rstand str olecules.	ucture and	d theoretic	al technio	ques and	their app	lication to
CO3			rstand use olecules.	of various	spectrosco	pic techni	ques and	their application	ation to the
CO4		Unde	rstand the	structure-F	unction rela	tionship a	nd model	ing of biom	olecules.
CO5		Outli	ne and cor	relate for p	roviding sol	ution to in	terdiscipli	nary proble	m
	N	Aappir	ng of cour	se outcome	es with the	program s	specific ou	itcomes	
	PS	01	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	3		3	3	3	3	2	3	2
CO2	3		3	3	3	3	3	3	3
CO3	3	3 3 3 3 3 3							3
CO4	CO4 3								
CO5	3		3	3	3	3	2	3	2

- 1. Structure Aspects of Biomolecule: Conformational Principles, Conformation and Configuration Isomers and Derivatives, Structure of Polynucleotides, Structure of Polypeptides, Primary, Secondary, Tertiary and Quaternary Structure of Proteins, Structure of Polysaccharides. (Lectures10)
- 2. Theoretical Techniques and Their Application to Biomolecules: Hard Sphere Approximation, Ramachandran Plot, Potential Energy Surface, Outline of Molecular Mechanics Method, Brief ideas about Semi-empirical and Ab initio Quantum Theoretical Methods, Molecular Charge Distribution, Molecular Electrostatic Potential and Field and their uses. (Lectures 10)
- 3. Spectroscopic Techniques and their Application to Biomolecules: Use of NMR in Elucidation of Molecular Structure, Absorption and Fluorescence Spectroscopy, Circular Dichroism, Laser Raman Spectroscopy, IR spectroscopy, Photoacoustic Spectroscopy, Photo-biological Aspects of Nucleic Acids. *(Lectures 10)*
- **4. Structure-Function Relationship and Modeling:** Molecular Recognition, Hydrogen Bonding, Lipophilic Pockets on Receptors, Drugs and Their Principles of Action, Lock and Key Model and Induced fit Model. *(Lectures 10)*

Text Books:

1. Srinivasan & Pattabhi: Structure Aspects of Biomolecules.

- 1. Govil & Hosur: Conformations of Biological Molecules
- 2. *Price:* Basic Molecular Biology
- 3. *Pullman:* Quantum Mechanics of Molecular Conformations
- 4. *Lehninger:* Biochemistry
- 5. Mehler&Cordes: Biological Chemistry
- 6. *Smith and Hanawait:* molecular Photobiology, Inactivation and Recovery

PHS539		SeminarL-0, T-2, P-02 Credits								
Pre-requisi	te: Kno	wledge of spo	ecific branc	h of physics	6					
		s: The aim of earch in Theorem					to prelim	inaries and		
Course Out	tcomes:	At the end o	f the course	e, the studen	t will be a	ble to				
CO1	E	xplain the sig	nificance a	nd value of j	problem in	physics.				
CO2		esign and car experiments	5	ntific experi	ments as v	well as acc	urately reco	ord the data		
CO3		Critically analyse the experimental strategies, and decide which one is most appropriate for answering specific questions.								
CO4		ommunicate t		•		ntext of a t	opic related	l to		
CO5		xplore new a chnology.	areas of re	esearch in	physics a	nd allied	fields of s	cience and		
	Map	ping of cour	se outcom	es with the	program	specific ou	itcomes			
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8		
CO1	3	3	3	3	3	3	3	3		
CO2	3	2	3	3	3	3	3	3		
CO3	3	3 3 3 3 3 3 3								
CO4	4 2 3 2 3 3 3 3 3									
CO5	2	3	3	3	3	3	3	3		

Guidelines for the seminar:

The aim of Seminar in M.Sc. 3th semesters is to expose some of the students to preliminaries and methodology of research and as such it may consist of review of some research papers, development of a laboratory experiment, fabrication of a device, working out some problem, analysis of data, etc. related to research Project work which can be in Experimental Physics or Theoretical Physics in the thrust as well as non-thrust research areas of the department.

A student opting for this course will be attached to one teacher of the department in the start of the 3rd semester. These seminars are aimed to develop in-depth subject knowledge and skill. Besides subject expertise, they help train students in the presentation and communication skill.

PHS540		Physics Lab-IIIL-3, T-1, P-04 Credits										
Pre-requisi	te: None											
Course Ob students of they can inv and analyze	M.Sc. clas vestigate va the data.	s to advanc arious relev	ed experin ant aspects	nental techn s and are co	niques in confident to	ondensed handle so	matter phys	ics so that				
Course Ou							perties of s	alide				
				•	2	1						
CO2							netic mater					
CO3		Describe the lattice dynamics of simple lattice structures in terms of dispersion relations.										
CO4		gn and carr		-	riments as	s well as a	accurately 1	record and				
CO5	Solve	e problem w	vith critical	thinking a	nd analytic	al reasonir	g.					
	Mappi	ng of cours	e outcome	s with the	program s	pecific ou	tcomes					
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8				
CO1	3	3	-	3	3	2	2	3				
CO2	3	3	-	3	3	3	2	3				
CO3	3	3 3 2 3 3 2 2 3										
CO4	CO4 3 3 2 3 3 3 2 3											
C05	3	3	2	3	3	3	2	3				

Note: Students are expected to perform atleast ten experiments out of following list.

- 1. To study temperature dependence of conductivity of a given semiconductor crystal using four probe method.
- 2. Temperature dependence of a ceramic capacitor-verification of curie-weiss law for the electrical susceptibility of a ferroelectric material.
- 3. To determine charge carrier density and Hall coefficient by Hall effect.
- 4. To determine energy gap and resistivity of the semiconductor using four probe method.
- 5. To determine magnetic susceptibility of material using Quink 's tube method.
- 6. To determine energy gap and resistivity of the semiconductor using four probe method.
- 7. To trace hysteresis loop and calculate retentivity, coercivity and saturation magnetization.
- 8. To study the series and parallel characteristics of photovoltaic cell
- 9. To study the spectral characteristics of photovoltaic cell.
- 10. To determine the g-factor using ESR spectrometer.

Text Books:

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, New York), 8th ed. 2005.
- 2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.

- 1. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1972
- 2. Solid State Theory: Walter A. Harrison (Tata McGraw-Hill, New Delhi) 1970.
- 3. Liquid Crystals: S. Chandrasekhar (Cambridge University), 2nd ed. 1992.

Elective Subject -II

PHS54	1	1	-	tal Technic d Particle	-	L-3, T-	-1, P-0	4 Cr	redits
Pre-requis	ite: (Course	on Nuclea	r and Partic	cle Physics				
Nuclear a	nd Pa	article	Physics is	to expose		s of M.Sc.	students to	o experime	hniques in ntal aspects ysics.
Course Ou	itcon	nes: At	the end of	f the course	e, the studer	it will be a	ble to		
C01		1	rstand var ions with	1	mental tech	niques for	describing	interaction	of
CO2		Use v	arious stat	tistical met	hods for exp	perimental	data.		
CO3		Knowledge about the different types of the radiation detectors and the applications.							
CO4		Introc	luced to n	eutron phys	sics, method	ls to detect	tor slow an	d fast neutr	ons.
CO5			-		nowledge al the world.	pout the ex	perimental	methods u	sed in the
	N	Mappin	ig of cour	se outcom	es with the	program	specific ou	tcomes	
	PS	01	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	1		2	1	2	3	3	3	3
CO2	1		3	3	2	1	3	3	3
CO3	1	1 1 3 1 3 3							
CO4	CO4 1 3 1 3 3 3 3								3
CO5	1		3	1	3	1	3	3	3

- 1. Detection of radiations: Interaction of gamma-rays, electrons, heavy charged particles, neutrons, neutrinos and other particles with matter. General properties of Radiation detectors, energy resolution, detection efficiency and dead time. Statistics and treatment of experimental data. Gas-filled detectors, Proportional counters, space charge effects, energy resolution, time characteristics of signal pulse, position-sensitive proportional counters, Multiwire proportional chambers, Drift chamber, Time projection chamber. Organic and inorganic scintillators and their characteristics, light collection and coupling to photomultiplier tubes and photodiodes, description of electron and gamma ray spectrum from detector, Cherenkov detector. Semiconductor detectors, Ge and Si(Li) detectors, Charge production and collection processes, semiconductor detectors in X- and gamma-ray spectroscopy, Pulse height spectrum, Compton-suppressed, Semiconductor detectors for charged particle spectroscopy and particle identification. *(Lectures 18)*
- 2. Electromagnetic and Hadron calorimeters: Motion of charged particles in magnetic field, Magnetic dipole and quadrupole lenses, beta ray spectrometer. Detection of fast and slow neutrons - nuclear reactions for neutron detection. General background and detector shielding. *(Lectures 10)*
- 3. Experimental methods: Detector systems for heavy-ion reactions : Large gamma and charge particle detector arrays, multiplicity filters, electron spectrometer, heavy-ion reaction analysers, nuclear lifetime measurements (DSAM and RDM techniques), production of radioactive ion beams. Detector systems for high energy experiments :Collider physics (brief account), Particle Accelerators (brief account), Secondary beams, Beam transport, Modern Hybrid experiments- CMS and ALICE. *(Lectures 15)*

Text Books:

1. Techniques in Nuclear and particle Experiments by W.R. Leo (Springer), 1994.

- 1. Radiation detection and measurement by Glenn F. Knoll (Wiley), 2010.
- 2. Introduction to Experimental Particle Physics by Richard Fernow (Cambridge University Press), 2001.
- 3. Detectors for particle radiation by Konrad Kleinknecht (Cambridge University Press), 1999.

Elective Subject -II

PHS542	1	Physics of NanomaterialsL-3, T-1, P-04 Credits																
Pre-requisi	te: (Conder	ised matte	er physics														
field as care	the s fference er.	tudents nt prop	of M.Sc. perties of t	to the varie he nanoma	ous aspects terials so th	related to plat they can	preparation n pursue t	n, character										
C01	Ol Demonstrate techniques of microscopy for investigations on the nanometer and atomic scales																	
CO2		-	Acquire knowledge of basic approaches to synthesize inorganic colloidal nanoparticles and their self-assembly in solution and surfaces															
CO3		Understand and describe the use of unique optical properties of nanoscale metallic structures for analytical and biological applications																
CO4				e physical mesoporous		cal proper	rties of c	arbon nan	otubes and									
CO5			-	operty relati t larger leng	-	nanomater	ials as wel	l as the con	cepts,									
	N	Aappir	ig of cour	se outcome	s with the	program s	pecific ou	tcomes										
	PS	01	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8									
CO1	-		3	3	3	3	3	3	3									
CO2	2		3	3	3	3	3	3	3									
CO3	2	3 3 3 3 3 3 3																
CO4	O4 - 3 3 3 3 3 3 3 3								3									
CO5	-		3	3	3	3	3	3 3 3 3 3 3 3										

- Introductory Aspects: Free electron theory and its features, Idea of band structure—metals, insulators and semiconductors. Density of state in one, two and three dimensional bands and its variation with energy, Effect of crystal size on density of states and band gap. Examples of nanomaterials. (Lectures 8)
- 2. **Preparation of Nanomaterials:** Bottom up: Cluster beam evaporation, ion beam deposition, chemical bath deposition with capping techniques and Top down: Ball Milling.

(Lectures 8)

- **3. General Characterization Techniques:** Determination of particle size, study of texture and microstructure, Increase in x-ray diffraction peaks of nanoparticles, shift in photo luminescence peaks, variation in Raman spectra of nanomaterials, photoemission microscopy, scanning force *(Lectures 8)*
- 4. Quantum Dots: Electron confinement in infinitely deep square well, confinement in one and two-dimensional wells, idea of quantum well structure, Examples of quantum dots, spectroscopy of quantum dots. *(Lectures 8)*
- **5.** Other Nanomaterials: Properties and applications of carbon nanotubes and nanofibres, Nanosized metal particles, Nanostructured polymers, Nanostructured films and Nano structured semiconductors. *(Lectures 8)*

Books:

- 1. Nanotechnology-Molecularly Designed Materials: G.M. Chow & K.E. Gonsalves (American Chemical Society), 1996.
- 2. Nanotechnology Molecular Speculations on Global Abundance: B.C. Crandall (MIT Press), 1996.
- 3. Quantum Dot Heterostructures: D. Bimerg, M. Grundmann and N.N. Ledentsov (Wiley), 1998.
- 4. Nanoparticles and Nanostructured Films-Preparation, Characterization and Application: J.H.Fendler (Wiley), 1998.
- 5. Nanofabrication and Bio-system: H.C. Hoch, H.G. Craighead and L. Jelinski (Cambridge Univ. Press), 1996.
- 6. Physics of Semiconductor Nanostructures: K.P. Jain (Narosa), 1997.
- 7. Physics of Low-Dimension Semiconductors: J.H. Davies (Cambridge Univ. Press) 1998.
- 8. Advances in Solid State Physics (Vo.41): B. Kramer (Ed.) (Springer), 2001.

Elective Subject -III

PHS543	3 Env	ironmental	Physics		L-3, T-	1, P-0	4 Cr	edits	
Pre-requis	ite: none								
		The objectiv oronmental				l Physics is	s to build fu	indamental	
Course Ou	itcomes: A	t the end of	the course	, the studen	t will be al	ole to			
CO1	Und	erstand the	essential of	the enviro	nmental ph	iysics			
CO2	App	ly the solar	and terrestr	ial radiatio	ns to the e	arth atmosp	ohere syster	n.	
CO3	Dese	cribe the fac	tors respon	sible for en	virnmenta	l pollution	and degrad	ation.	
CO4		Provide exposure to envoronmental changes and understand the idea of remote sensing.							
CO5	Prov char	vide exposur iges.	re to the stu	denst abou	t the globa	l and regio	nal environ	mental	
	Mapp	ing of cours	se outcome	s with the	program s	specific ou	tcomes		
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO1	1	3	3	3	3	3	3	1	
CO2	2	3	3	3	3	3	3	1	
CO3	2	2 3 3 3 3 3						-	
CO4	2	3	3	3	3	3	3	-	
C05	2	3	3	3	3	3	3	1	

- 1. Essentials of Environmental Physics: Structure and thermodynamics of the atmosphere, Composition of air, Greenhouse effect, Transport of matter, energy and momentum in nature, Stratification and stability of atmosphere, Lass of motion, hydrostatic equilibrium, General circulation of the topics, Elements of weather and climate of India. *(Lectures 10)*
- 2. Solar and Terrestrial Radiation :Physics of radiation, Interaction of light with matter, tayleigh and Mie scattering, Laws of radiation (Kirchoffs law, Planck's law, Beer's law, Wien's displacement law, etc.), Solar and terrestrial spectra, UV radiation, Ozone depletion problem, IR absorption energy balance of the earth atmosphere system *(Lectures 8)*
- **3.** Environmental Pollution and degradation: Elementary fluid dynamics, Diffusion, Turbulence and turbulent diffusion, Factors governing air, Water and noise pollution, Air and water quality standards, Waste disposal, Heat island effect, Land and sea breeze, Puffs and plumes, Gaseous and particulate matters, Wet and dry deposition. *(Lectures 8)*
- 4. Environmental Changes and remote sensing: Energy sources and combustion processes, Renewable sources of energy, Solar energy, Wind energy, bioenergy, hydropower, fuel cells, nuclear energy, Forestry and bioenergy. *(Lectures 7)*
- 5. Global and Regional Climate: Elements of weather and climate, Stability and vertical motion of air, Horizontal motion of air and water, Pressure gradient forces, Viscous forces, Reynolds number, Enhanced Greenhouse Effect, Energy balance-a Zero-dimensional Greenhouse model, Global climate models. *(Lectures 10)*

Text and Reference Books

- 1. Egbert Boeker & Rienk Van Groundelle: Environmental Physics (John Wiley).
- 2. J. T Hougtion: The Physics of atmosphere (Cambridge University Press, 1977).
- 3. J Twidell and J Weir: Renewable energy Resources (Elbs, 1988).
- 4. Sol Wieder: An introduction t solar energy for scientists and Engineers (John Wiley, 1982)
- 5. R. N. Keshavamurthy and M. Shanker Rao: The Physics of Monsoons (Allied Publishers, 1992).
- 6. G.J. Haltiner and R.T. Williams: Numerical Weather Prediction (John Wiley, 1980).

Elective Subject -III

PHS544		Sci		enewable so Energy	ource of	L-3, T-	1, P-0	4 Credits	
Pre-requisi	te: N	None						<u> </u>	
	to ex	pose t	he M.Sc.					of renewal	
Course Out	tcom	nes: At	the end of	f the course,	, the studen	t will be al	ole to		
CO1		Knov	v the energ	gy demand c	of world and	d India.			
CO2		Unde	rstand trac	litional and	alternative	form of en	ergy.		
CO3		Unde	rstand con	cept of sola	r energy ra	diation, ma	aking of s	solar cell and	its types.
CO4		Ident	ify hydrog	en as energ	y source, its	s storage a	nd transp	ortation meth	nods.
CO5		Com	pare wind	energy, wav	e energy ar	nd ocean th	nermal er	ergy convers	sion.
	N	Aappii	ıg of cour	se outcome	s with the	program s	specific o	outcomes	
	PS	01	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	-		3	-	3	1	2	2	3
CO2	-		2	-	3	1	2	2	3
CO3	-	3 - 3 2 1 3							3
CO4	CO4 - 3 - 3 2 1 3 3								3
CO5	-		3	-	3	1	1	3	3

- 1. **Introduction**: Production and reserves of energy sources in the world and in India, need for alternatives, renewable energy sources. *(Lectures 8)*
- 2. Solar Energy: Thermal applications, solar radiation outside the earth's atmosphere and at the earth's surface, fundamentals of photovoltaic energy conversion. Direct and indirect transition semi-conductors, interrelationship between absorption coefficients and band gap recombination of carriers. Types of solar cells, p-n junction solar cell, Transport equation, current density, open circuit voltage and short circuit current, description and principle of working of single crystal, polycrystalline and amorphous silicon solar cells, conversion efficiency. Elementary ideas of Tandem solar cells, solid-liquid junction solar cells and semiconductor-electrolyte junction solar cells. Principles of photo electrochemical solar cells. Applications. *(Lectures 12)*
- 3. **Hydrogen Energy**: Environmental considerations, solar hydrogen through photo electrolysis and photocatalytic process, physics of material characteristics for production of solar hydrogen. Storage processes, solid state hydrogen storage materials, structural and electronic properties of storage materials, new storage modes, safety factors, use of hydrogen as fuel; use in vehicles and electric generation, fuel cells, hydride batteries.

(Lectures 10)

4. Other sources: Nature of wind, classification and descriptions of wind machines, power coefficient, energy in the wind, wave energy, ocean thermal energy conversion (OTEC), system designs for OTEC. *(Lectures 8)*

Text Books:

1. Solar Energy: S.P. Sukhatme (Tata McGraw-Hill, New Delhi), 2008.

- 1. Solar Cell Devices: Fonash (Academic Press, New York), 2010.
- 2. Fundamentals of Solar Cells, Photovoltaic Solar Energy: Fahrenbruch and Bube (Springer, Berlin), 1983.
- 3. Photoelectrochemical Solar Cells : Chandra (New Age, New Delhi).

PHS545		Research Project workL-0, T-12, P-012 Credits									
Pre-requisi	te: K	Inowle	dge of spe	cific branch	n of physics						
Course Ob preliminarie Students get laboratory e	s an t the xper	d met opport iment.	hodology unity to pa	of research articipate in	n in Theor some ongo	etical Physical PhysicaP	sics and ch activit	Experiment	al Physics.		
Course Out	tcom	es: At	the end of	the course,	the studen	t will be ab	ole to				
CO1	CO1 Explain the significance and value of problem in physics, both scientifically and in the wider community.										
CO2			n and car s of experi		entific expe	eriments as	s well as	accurately	record the		
CO3		Critically analyse and evaluate experimental strategies, and decide which is most appropriate for answering specific questions.									
CO4		to cor	ndensed ma	atter physic		ligh Energ	y Physics	ntext of a tog , in oral, wr	-		
CO5		-	ore new a ology.	reas of res	search in j	physics an	d allied	fields of s	cience and		
	N	lappin	ig of cours	se outcome	s with the	program s	pecific o	utcomes			
	PS	01	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8		
CO1	3		3	3	3	3	3	3	3		
CO2	3	2 3 3 3 3 3							3		
CO3	3	3 3 3 3 3 3 3									
CO4	2	3 2 3 3 3 3 3									
C05	2		3	3	3	3	3	3	3		

Guidelines for the Project:

The aim of project work in M.Sc. 4th semesters is to expose the students to preliminaries and methodology of research and as such it may consist of review of some research papers, development of a laboratory experiment, fabrication of a device, working out some problem, participation in some ongoing research activity, analysis of data, etc.. Project work can be in Experimental or Theoretical Physics in the thrust as well as non-thrust research areas of the department.

A student opting for this course will be attached to one teacher of the department before the end of the 3rd semester. A report about the work done in the project (typed on both the sides of the paper and properly bound) will be submitted by a date to be announced by the Head of Department.

Assessment of the work done under the project will be carried out by a committee on the basis of effort put in the execution of the project, interest shown in learning the methodology, report prepared, grasp of the problem assigned and viva-voce/seminar, etc. as per course guidelines.