M.Tech. (Nanotechnology)

Course Structure and Syllabus (Based on Choice Based Credit System) 2018-19 onwards

IK Gujral Punjab Technical University, Kapurthala

IK Gujral Punjab Technical University

VISION

To be an institution of excellence in the domain of higher technical education that serves as the fountainhead for nurturing the future leaders of technology and techno- innovation responsible for the techno-economic, social, cultural and environmental prosperity of the people of the State of Punjab, the Nation and the World

MISSION

- To provide seamless education through the pioneering use of technology, in partnership with industry and society with a view to promote research, discovery and entrepreneurship and
- To prepare its students to be responsible citizens of the world and the leaders of technology and techno-innovation of the 21st Century by developing in them the desirable knowledge, skill and attitudes base for the world of work and by instilling in them a culture for seamlessness in all facets of life.

OBJECTIVES

- To offer globally-relevant, industry-linked, research-focused, technology- enabled seamless education at the graduate, postgraduate and research levels in various areas of engineering & technology and applied sciences keeping in mind that the manpower so spawned is excellent in quality, is relevant to the global technological needs, is motivated to give its best and is committed to the growth of the Nation;
- To foster the creation of new and relevant technologies and to transfer them to industry for effective utilization;
- To participate in the planning and solving of engineering and managerial problems of relevance to global industry and to society at large by conducting basic and applied research in the areas of technologies;
- To develop and conduct continuing education programmes for practicing engineers and managers with a view to update their fundamental knowledge base and problem-solving capabilities in the various areas of core competence of the University;

- To develop strong collaborative and cooperative links with private and public sector industries and government user departments through various avenues such as undertaking of consultancy projects, conducting of collaborative applied research projects, manpower development programmes in cutting-edge areas of technology, etc;
- To develop comprehensive linkages with premier academic and research institutions within the country and abroad for mutual benefit;
- To provide leadership in laboratory planning and in the development of instructional resource material in the conventional as well as in the audio- visual, the video and computer-based modes;
- To develop programmes for faculty growth and development both for its own faculty as well as for the faculty of other engineering and technology institutions;
- To anticipate the global technological needs and to plan and prepare to cater to them;
- To interact and participate with the community/society at large with a view to inculcate in them a feel for scientific and technological thought and endeavour; and
- To actively participate in the technological development of the State of Punjab through the undertaking of community development programmes including training and education programmes catering to the needs of the unorganized sector as well as that of the economically and socially weaker sections of society.

ACADEMIC PHILOSOPHY

The philosophy of the education to be imparted at the University is to awaken the "deepest **potential**" of its students as holistic human beings by nurturing qualities of self-confidence, courage, integrity, maturity, versatility of mind as well as a capacity to face the challenges of tomorrow so as to enable them to serve humanity and its highest values in the best possible way.

M.Tech. (Nanotechnology)

Duration: 2 Years (Semester System)

This M.Tech (Nanotechnology) Program includes various core, electives, and other interdisciplinary courses. The diverse lab experiments allow students to understand the fundamental aspects of the subject. A choice of advanced elective courses offers a glimpse in the frontier areas of research and allow students to work on one-year research project as an integral part of their M.Tech (Nanotechnology) programme. The programme also provide adequate exposure to the students for pursuing higher education in the field of technology and Physics (Ph.D.) and other job opportunities in academia and industry.

PROGRAM EDUCATIONAL OBJECTIVES: The Program Educational Objectives are the knowledge skills and attitudes, which the students have at the time of post-graduation. At the end of the program, the student will be able to:

PEO1	Apply the scientific knowledge of Physics, Mathematics, Chemistry, and Engineering for deeper understanding of the matter at nanoscale.
PEO2	Identify, formulate, research literature, and analyze advanced scientific problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PEO3	Design solutions for advanced scientific problems and design system components or processes.
PEO4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PEO5	Create, select, and apply appropriate techniques, resources, and modern scientific and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PEO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional scientific practice.
PEO7	Communicate effectively on complex Scientific/Technological activities with the Scientific/engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PEO8	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of scientific and technological change.

PROGRAM OUTCOMES: At the end of the program, the student will be able to:

PO1	Apply principles of basic science concepts in understanding, analysis and prediction of matter at Nano scale.
PO2	To introduce interdisciplinary subjects/concepts/ideas for interdisciplinary application of Science and engineering concepts.
PO3	To introduce advanced ideas and techniques required in emergent area of nanotechnology.
PO4	To develop human resource with specialization in theoretical and experimental techniques required for career in academia and Nano technology driven industry.
PO5	Engage in lifelong learning and adapt to changing professional and societal needs.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Understand and apply principles of physics, chemistry and engineering for understanding
	the scientific phenomenon in nano domain.
PSO2	Understand and apply mathematical techniques for describing and deeper understanding
	of nano systems.
PSO3	Understand and apply quantum mechanical methods for particles in various physical
	systems and processes.
PSO4	Understand and apply inter-disciplinary concepts and computational simulation for
	understanding and describing the natural phenomenon.
PSO5	Understand and apply principles of quantum mechanics for understanding the nano
	systems in quantum realm.
PSO6	Provide exposure in various specialization of Nanotechnology
PSO7	Provide exposure to advanced experimental/theoretical methods for measurement,
	observation, and fundamental understanding of phenomenon at nano scale and nano
	systems.
PSO8	Engage in research and life-long learning to adapt to changing environment.

Semester-I

	Course Code	Course name	Type of Course	Load Allocation		ation	Total Marks	Credit s
Sr.N				L	T	P		
1	MTNT5110- 18	Quantum Mechanics	С	3	1	-	100	4
2	MTNT5111- 18	Mathematical and statistical Methods at nanoscale	С	3	1	-	100	4
3	MTNT51XX	Elective-I	E	3	1	-	100	4
4	MTNT51XX	Elective-II	E	3	1	-	100	4
5	MTNT5112- 18	Numerical Methods Lab	С	-	-	4	50	2
6	MTNT5113- 18	Synthesis of Nanomaterial Lab	С	-	-	4	50	2
7	MTNT5114- 18	Research Methodology and IPR	Α	2	-	-	50	2
8	MTNT51XX	Audit Course -1	Α	2	-	-	-	-
		TOTAL		16	4	8	550	22

C: Core Course; A: Audit Course; E: Elective Course

Electives

	Elective-I		Elective-II
MTNT5116-18	Advanced Material Science	MTNT5120-18	Optical Properties Of Nanomaterials
MTNT5117-18	Elements of Physical Chemistry	MTNT5121-18	Nano Electronics
MTNT5118-18	Processing and Properties of Nanostructured Materials	MTNT5122-18	Nanomaterials, Surface Interface and Catalysis
MTNT5119-18	Solid State Physics	MTNT5123-18	Synthesis and Characterization of Nanomaterials

Semester-II

	Course Code	Course name	Type of Course	Load Allocation		tion	Total Marks	Credit s
Sr.No.				L	Т	Р		
1	MTNT5210-18	Physics and Chemistry of Nanomaterials	С	3	1	-	100	4
2	MTNT5211-18	Nano biotechnology	С	3	1	-	100	4
3	MTNT52XX	Elective-III	Е	3	1	-	100	4
4	MTNT52XX	Elective-IV	E	3	1	-	100	4
5	MTNT5212-18	Characterization of Nanomaterials Lab	C	-	-	4	50	2
6	MTNT5213-18	Material Simulation Lab	С	-	-	4	50	2
7	MTNT5214-18	Mini Project	C	-	-	4	50	2
8	MTNT52XX	Audit Course -2	A	2	-	-	-	-
		TOTAL		14	4	12	550	22

C: Core Course; E: Elective course; A: Audit Course

Electives

	Elective-III		Elective-IV
MTNT5217-18	Carbon Nanostructures and Applications	MTNT5221-18	Cellular Biochemistry
MTNT5218-18	Nanostructured Materials for Clean Energy	MTNT5222-18	Bio safety And Hazards of Nano Materials
MTNT5219-18	Nanotoxicology	MTNT5223-18	Advanced Drug Delivery Systems
MTNT5220-18	Imaging Techniques for Nanotechnology	MTNT5224-18	Structures, Spectra and Properties of Biomolecules

Semester-III

	Course Code	Course Name	Type of Course	Load	Load Allocation		Total Marks	Credits
Sr.No				L	Т	Р		
1	MTNT531XX	Elective-V	E	3	1	-	100	4
2	MTNT531XX	Open Elective	OE	3	1	-	100	4
3	MTNT5314- 18	Project Work (preliminary) (Students have to initiate the project work and at the end of the semester should present a progress seminar)	D	-	-	20	250	10
		TOTAL		6	2	20	450	18

OE: Open Elective; D: Dissertation

Electives

	Elective-V		Open Elective
MTNT5315-18	Nanotechnology in Food and Agriculture	MTNT5319-18	Business Analytics
MTNT5316-18	Nanotechnology in Health Care	MTNT5320-18	Industry Safety
MTNT5317-18	Biomaterials	MTNT5321-18	Operation research
MTNT5318-18	Quantum Computing	MTNT5322-18	Cost Management of Engineering Projects

Semester-IV

	Course Code	Course Name	Type of Course	Load Allocation		tion	Total Marks	Credits
Sr.No.				L	Т	Р		
1	MTNT5411- 18	Project Work (Students have to submit the final project report at the end of the semester which will be evaluated followed by a seminar presentation and viva – voce examination)	D	-	-	32	400	16
		TOTAL		-	-	-	400	16

D: Dissertation

Audit Course 1					
S.No.	Course code	Name of the Course			
1	MTNT5124-18	English for Research paper writing			
2	MTNT5125-18	Disaster Management			
3	MTNT5126-18	Sanskrit for Technical Knowledge			
4	MTNT5127-18	Value Education			
		Audit Course 2			
5	MTNT5225-18	Constitution of India			
6	MTNT5226-18	Pedagogy studies			
7	MTNT5227-18	Stress management of Yoga			
8	MTNT5228-18	Personality Development through life enlightenment skills			

Credit structure

S. No.	Type of Courses	Credits
1	Core courses	26
2	Elective Courses	24
3	Minor Project /preliminary project	12
4	Major Project	16
5	Total credits	78

Examination and Evaluation

S. No.		Weightage	Remarks
1.	Mid term/sessional Tests	24%	Best of two mid semester test will be considered for evaluation.
2	Attendance/Seminar	6%	
3	Assignments	10%	
4	End semester examination	60%	Conduct and checking of the answer sheets will at the Department level in case of University teaching Department or Autonomous institutions. For other colleges examination will be conducted at the university level.
5	Total	100%	Marks may be rounded off to nearest integer.
Practic	al		
1	Daily evaluation of practical record/Viva Voice/Attendance etc.	60%	Internal evaluation
2	Final Practical Performance + Viva Voice	40%	External evaluation
3	Total	100%	Marks may be rounded off to nearest integer.

Semester-I

MTNT511	0-18 (Quantum Mech	anics		L	-3,T-1,P-0	4 C	redits				
Pre-requisi	te: Non	ie										
Course Ob	jectives	The objectiv	e of the co	ourse on Qu	uantum M	echanics is t	o equip th	e M.Tech.				
at nanoscale	h the que the and the the	heoretical treat	tment requ	ired in diff	or develop	oing basic und irses taught i	n this clas	s and for				
developing	a strong	background if	he/she cho	poses to pur	sue resear	ch in Nanote	chnology a	s a career.				
Course Out	tcomes	At the end of	the course	the student	will be a	ble to						
	CO1 Understand the use of basic quantum concepts for describing nano systems and											
	proces	Understand the use of basic quantum concepts for describing nano systems and processes.										
CO2	Under	Understand and use the quantum methods for describing nano systems.										
CO3	Under	Jnderstand theory of ensembles required for describing nano systems.										
CO4	Under	Jnderstand advanced quantum techniques to describe the nano systems.										
CO5	CO5 Use density functional theory quantum methods for describing quantum systems.											
Mapping of course outcomes with the program outcomes												
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8										
CO1	3	3	3	3	3	3	3	3				
CO2	3	3	3	3	3	3	3	2				
					2		2					
CO3	3	3	3	3	3	3	3	2				
604	2	2	2	2	2	2	2	2				
	3	5	5	5	2	5	3	2				
<u> </u>	2	2	2	2	2	2)	1				
	5	5		5			2					
	1	I	1	1	1			1				

Unit-I

Introduction to Quantum Mechanics: Failure of Classical Mechanics; Brief discussion of general ideas such as dual nature of particles, Uncertainty principle, Superposition principle etc.; Solutions of Schrondinger Equation for 1-D and 3-D square wells and potential barriers, H-atom. Matrix Mechanics: Operators, Change of basis, eigen-values and Eigen-vectors; Simultaneous eigen vectors, Harmonic Oscillator in matrix mechanics; Exchange operators and identical particles. Angular Momentum: Introduction to angular momentum operators; Eigenvalues and Eigen vectors of L², Lz, Spin and J², Jz.

Unit-II

Approximation Methods: Non-Degenerate and degenerate perturbation theory and application to anharmonic oscillator, variational method with application to ground state of harmonic oscillator and hydrogen atom, General expression from the probability of transition from one state to another, constants and harmonic perturbation. Scattering Theory: Scattering Cross section and scattering amplitude, partial wave analysis, Bohr approximation and its application to potentials.

Unit III

Theory of Ensembles: The mocrocanonical Ensemble theory and its application to ideal gas of monoatomic particles; The canonical ensemble and its thermodynamics; Partition function; Energy fluctuations; Equipartition; A system of harmonic oscillators as canonical ensemble; The grand canonical ensemble and significance of statistical quantities.

Unit-IV

Density Functional Theory: Understand the role of DFT in modern chemistry, Electron correlation effect, pseudopotential, Hohenberg-Kohn Theorem, Degenerate Ground States, Variational Equation, Interacting v-Representability, Functional Differentiability, Effective Single-Particle Equations, Exchange-Correlation Energy Functional, Hellmann-Feynman Theorem, application of DFT for nano structures.

Books and Suggested Readings:

- 1. Quantum Mechanics: Theory and Applications– S. Lokanathan and A. Ghatak, Macmillan India Limited.
- 2. Quantum Mechanics Leonard I. Schiff, Tata Mcgraw Hill.
- 3. Heat and Thermodynamics by M. W. Zymansky, R. H. Dittman, McGraw-Hill.
- 4. Statistical Physics by K. Huang, Wiley.
- 5. A Text book of Quantum Mechanics: P.M. Mathews and K. Venkatesan (Tata McGraw Hill, New Delhi) 2nd edition, 2004.
- 6. Modern Quantum Mechanics: J.J. Sakurai (Addison Wesley, Reading), 2004.
- 7. Quantum Mechanics: J.L. Powell and B. Crasemann (Narosa, New Delhi), 1995.
- 8. Quantum Physics: S. Gasiorowicz (Wiley, New York), 3rd ed. 2003.
- 9. Quantum Physics: Concepts and Applcations: Nouredine Zettili (Wiley, New York), 2009.

MTNT5111	at nanoscale												
Pre-requisi	te: Noi	ne											
Course Obj mathematica of nanoscien including m differentiation equations ar	jectives al meth nce and natrix t on and nd simu	s: The main ob ods that are ess d technology. theory, approx integration, n ilation and Mo	pjective of sential to the This court imation umerical nte - Carl	f this course the solution rse covers a of functions solution of o methods	e is to pro of advan broad s s using different	ovide the student ced problems end pectrum of math polynomial inter tial equations an	t with a r counterec- nematica rpolation d partial	repertoire of d in the field l techniques d, numerical differential					
Course Out	tcomes	: At the end of	the cours	se, the stude	nt will b	e able to							
C01	Unde proce	Understand the use of basic mathematical techniques for describing nano systems and processes.											
CO2	Unde	rstand and use	the nume	erical metho	ds for de	scribing nano sy	stems.						
CO3	Unde	nderstand statistical methods required for describing nano systems.											
CO4	Unde	nderstand quantum statistics to solve the nano systems.											
CO5	Use quantum statistical methods for describing quantum systems.												
	Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8					
C01	3	3	3	3	3	3	3	3					
CO2	3	3	3	3	3	3	3	2					
CO3	3	3	3	3	3	3	3	2					
CO4	3	3	3	3	2	3	3	2					
CO5	3	3	3	3	2	2	2	1					

UNIT I

Solution of Linear Systems: Cramer's Rule - Gaussian elimination and Gauss Jordon methods - Cholesky decomposition method – Gauss Seidel iteration method – Eigenvalue problems : Power method with deflation for both symmetric and non symmetric matrices and Jacobi method for symmetric matrices.

UNIT II

Interpolation: Lagrange's interpolation - Newton's divided differences - Hermite's interpolation – Newton's forward and backward differences – Numerical differentiation – Numerical integration : Trapezoidal and Simpson's rules - Gaussian quadrature : 2 and 3 point rules.

UNIT III

Initial value problems for first and second order ODEs : Single step methods - Taylor's series method – Euler's and modified Euler's methods - Runge - Kutta method of fourth order - Multi step methods : Milne's and Adam Bashforth methods - Boundary value problems : Finite difference approximations to derivatives - Finite difference method of solving second order ODEs . Classification of second order PDE's - Finite difference approximations to partial derivatives -Elliptic equations : Solution of Laplace and Poisson equations.

UNIT VI

Random numbers: Random number algorithms and generators – Estimation of areas and volumes by Monte Carlo techniques - Numerical integration - Computing volumes – Simulation.

Unit-V

Quantum Statistical Methods: Quantum states and phase space, the density matrix, a few examples, An ideal gas in quantum mechanical ensembles; statistics of occupation numbers; Basic concepts and thermodynamic behavior of an ideal bose gas, Bose-Einstein Condensation.

Reference Books:

- 1. Mathematical Methods for Physicists: G. Arfken and H.J. Weber (Academic Press, SanDiego) 7th edition, 2012.
- 2. Mathematical Physics: P.K. Chattopadhyay (Wiley Eastern, New Delhi), 2004.
- 3. Mathematical Physics: A.K. Ghatak, I.C. Goyal and S.J. Chua (MacMillan, India, Delhi), 1986.
- 4. Mathematical Methods in the Physical Sciences M.L. Boas (Wiley, New York) 3rd edition,2007.
- 5. Special Functions: E.D. Rainville (MacMillan, New York), 1960.
- 6. Mathematical Methods for Physics and Engineering: K.F. Riley, M.P. Hobson and S.J. Bence (Cambridge University Press, Cambridge) 3rd ed., 2006.

MTNT51	16-18	Advanced Material Science				L-3,T-1,P-0	4	Credits					
Pre-requis	ite: None	2											
Course Of M.Tech. str which will research in	ojectives: udents wi be taught various d	The object th the conc in this class omain of N	tive of the epts requir and for de anoenginee	course on ed for unde veloping a ering as a ca	Advanced erstanding strong bac areer.	I Material S various prop kground if he	cience is perties of t e/she choo	to equip the the materials ses to pursue					
Course Ou	tcomes:	At the end o	of the cours	e, the stude	ent will be	able to							
CO1	Unders	Understand basic elements of crystal structure of material											
CO2	Unders	Understand accurate description of structure of crystalline solids											
CO3	Unders	Jnderstand type of binding in solids with focus on nanomaterials											
CO4	Descrit	Describe and understand basics of electronic properties of solids											
CO5	Descrit	Describe and understand behavior of defects in solids											
	N	Mapping of	course ou	tcomes wit	h the pro	gram outcon	nes						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8					
CO1	3	3	3	3	3	3	3	3					
CO2	3	3	3	3	3	3	3	2					
CO3	3	3	3	3	3	3	3	2					
CO4	3	3	3	3	2	3	3	2					
CO5	3	3	3	3	2	2	2	1					

Unit-I

Crystal structure: Crystal systems, Crystal classes, Bravais lattice. Unit cell: Wigner-Seitz cell, equivalent positions in a unit cell. Notations of planes and directions. Atomic packing: packing fraction, Co-ordination number. Symmetry operations, point groups and space groups.

Unit-II

X-ray diffraction: Concept of reciprocal lattice, X-ray diffraction, Bragg law. Experimental diffraction methods: Rotating crystal method and Powder method.

Unit-III

Crystal binding: Types of binding, Van der Waals-London interaction, Repulsive interaction. Born's theory for lattice energy in ionic crystals, Ideas of metallic binding, Hydrogen Bonding

Unit-IV

Lattice vibrations: Vibrations of monoatomic lattices. First Brillouin zone. Quantization of lattice vibrations - Concept of Phonon, Phonon momentum. Specific heat of lattice (qualitative). Vibrations of monoatomic lattices. First Brillouin zone

Unit-V

Energy bands in solids: Formation of energy bands. Free electron model: free electrons in one and three dimensional potential wells, electrical conductivity, density of states, concept of Fermi energy. Semiconductors: Intrinsic and extrinsic semiconductors, concept of majority and minority carriers. Statistics of electrons and holes.

Unit- VI

Defects in solids: Point defects: Schottky and Frenkel defects and their equilibrium concentrations. Plane defects: grain boundary and stacking faults. Plane defects: grain boundary and stacking faults

Text and reference Books

- 1. Introduction to Solid State Physics, C. Kittel, Wiley Eastern.
- 2. A practical approach to X-Ray diffraction analysis by C.Suryanarayana.
- 3. Semiconductor Physics, P. S. Kireev, MIR Publishers.
- 4. Solid State Physics, A. J. Dekkar, Prentice Hall Inc.
- 5. Introduction to Superconductivity, M. Tinkham, McGraw-Hill, International Editions.
- 6. Elementary Solid State Physics: Principles and applications, M. A. Omar, Addison-Wesley.

MTNT511	7-18	Elements of	Physical	Chemistry		L-0,T-0,P-4	2 C	redits				
Pre-requisi	ite: Noi	ne			I							
Course Ob M.Tech. stu theoretical background	jective s udents descrip if he/sl	s: The objective with the concentrion of nanostic the chooses to p	ve of the c pepts of p tructures t pursue rese	ourse on El hysical che to be taugh earch in Na	lements emistry nt in thi noscienc	of Physical Cher that he/she need s class and for ce and Engineeri	mistry is to ls for und developing ng as a car	equip the erstanding g a strong eer.				
Course Ou	tcomes	: At the end of	the cours	e, the stude	nt will b	e able to						
CO1	Unde	Understand basic elements of nano material chemistry										
CO2	Unde	rstand accurate	e descripti	on of Surfa	ce Chen	nistry						
CO3	Unde	rstand type of	Colloids v	vith focus o	n nanon	naterials						
CO4	Descr	Describe and understand basics of Crystalline Structure of solids										
CO5	Describe and understand Phase Transformations in nucleation											
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8				
CO1	3	3	3	3	3	3	3	3				
CO2	3	3	3	3	3	3	3	2				
CO3	3	3	3	3	3	3	3	2				
CO4	3	3	3	3	2	3	3	2				
CO5	3	3	3	3	2	2	2	1				

Unit-I

Introduction: The scope of nano material chemistry, the nanoscale systems, Defining nano dimensional materials, Size effects in nano materials, Application and technology development, General methods available for the synthesis of nano dimensional materials. Atomic and Molecular Basics: Particles and Bonds, Chemical bonds in Nano technology, the shapes of molecules, additional aspects of bonding, molecular geometry: VSEPR Model, hybridization Van der Waals interactions, Dipole–Dipole Interactions, Ionic Interactions, Metal bonds, Covalent bonds, coordinative bonds, Hydrogen bridge bonds and polyvalent bonds.

Unit-II

Surface Chemistry: Adsorption and absorption, Adsorption isotherms, Freundlich adsorption isotherm, Langmuir adsorption isotherm, B.E.T. theory of multilayer adsorption, Gibbs adsorption isotherm, Application of adsorption.

Unit-III

Colloids: Classification of Colloids, Preparation of colloidal solutions, Purification of colloidal solution, Properties of colloidal solution, Emulsion, Gels, Uses of colloids, Micelle formation, The critical micellization concentration, Factors affecting the c.m.c.

Unit-IV

Crystalline Structure: Crystalline and amorphous solids, Isotropy and anisotropy, Crystal systems, Elements of symmetry, Space lattice and unit cell, Bravais lattice, Miller indices, imperfection in a crystal, points defects, line defects, Dislocations. Thermodynamics of surfaces: Introduction, Surface energy and its consequences, Thermodynamics of surfaces, The Gibbs adsorption equation, Thermodynamic behaviour of small particles, Homogenous nucleation.

Unit-V

Phase Transformations: Mechanisms of phase transformation; homogeneous and heterogeneous nucleation; spinodal decomposition; grain growth; precipitation in solid solution; transformation with constant composition; order-disorder transformations; Martensitic transformation.

Books and suggested reading:

- 1. Physical Chemitry by P. W. Attkins, Oxford Press.
- 2. Introduction to Modern Colloid Science by Robert J. Hunter, Oxford University Press.
- 3. Nanoscale Materials in Chemistry by Kenneth J. Khabhunde (ed.) Wiley Interscience.
- 4. Thermodynamics and Statistical Mechanics by A N Tikhonov, Peter Theodore Landsberg.
- 5. Thermodynamics and Statistical Mechanics by John M. Seddon, J. D. Gale.
- 6. Physical Chemistry, 1st Edition by David H. Ball, Brookes Cole.

MTNT51	18-18	Processing	and Prope	erties of]	L-3,T-1,P-0	4 C	redits				
		Nanostruct	tured Mate	erials								
Pre-requisi	te: None	,										
Course Ob Materials is for understa a strong bac	jectives: to equip nding na kground	The objection the M.Tech. nostructured if he/she cho	ve of the c students w materials in poses to pur	ourse on F ith the con- n different o sue researc	Processing cepts of p courses tak h in Nano	and Propert hysical chem ught in this cl otechnology a	ies of Nandistry that he ass and for a career.	ostructured e/she needs developing				
Course Out	tcomes:	At the end of	f the course	, the studer	t will be	able to						
CO1	To lear	n basic mate	rial science	with speci	al, empha	size on nanoi	naterials					
CO2	To kno	o know about processes in handling polymers and nanostructured materials										
CO3	To und	o understand various forms of nanomaterials and polymers for special applications										
CO4	Unders	nderstand Metal/Ceramic Powder synthesis methods for composite										
CO5	Unders	Inderstand the environmental impact of nanostructured materials										
	Ν	Apping of	course outc	comes with	the prog	ram outcom	es					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8				
C01	3	3	3	3	3	3	3	3				
CO2	3	3	3	3	3	3	3	2				
CO3	3	3	3	3	3	3	3	2				
CO4	3	3	3	3	2	3	3	2				
CO5	3	3	3	3	2	2	2	1				

UNIT I

Classification of engineering materials - Tensile testing – Stress strain curve – Flow stress - Mechanical properties – Formability - Deformation processes - Mechanics of metal working – Metal forming - forging, rolling, extrusion, wire drawing – Superplastic forming – Bulk nanostructured materials by Severe Plastic Deformation (SPD) - Comparison of processes.

UNIT II

Defects in solids – classifications of defects – Microstructure – grain size, grain boundary, effects of processing and defects – Processing, microstructure, properties correlations – Mechanical Properties and processing - grain size evolution and grain size control; HallPetch relation- strengthening mechanisms; work hardening - grain boundary strengthening – solid solution strengthening – precipitation hardening - effects of diffusion on strength and flow of materials.

UNIT III

Engineering plastics – Pellets and sheets – Glass transition temperature of polymers – Melt flow index – Polymer processing tools and process conditions - injection moulding, thermoforming, vacuum and pressure assisted forming.

UNIT IV

Metal/Ceramic Powder synthesis - Selection and characterization of powders – compacting and sintering - Production of Porous and Dense Composite Components: Advanced composite materials - Metal- polymer- and ceramic- based composites and their properties – Fabrication of composite materials.

UNIT V

Properties of nanocrystalline materials required for structural, energy, environmental, textile and catalytic applications; processing techniques; techniques for retaining the nanocrystalline structure in service. Pervoskite structures, catalytic applications

Books and suggested reading:

1. A. Padmanabhan, "Mechanical Properties of Nanostructured Materials", Materials Science and Engineering, A 304-306 (2001) 200-205.

2. C. Koch, "Nanostructured Materials: Processing, Properties and Applications", 2nd Edition, Ed.: 2007

3. G. E. Dieter, adapted by D Bacon, "Mechanical Metallurgy", SI Metric edition, McGraw Hill, Singapore, 1988.

4. H. Gleiter, "Nanocrystalline Materials", Progress in Materials Science Vol. 33, pp. 223 -315, 1989

5. R. Asthana, A. Kumar and N. Dahotre "Materials Science in Manufacturing" Butterworth-Heinemann, Elsevier 2006.

MTNT511	19-18Solid State PhysicsL-3,T-1,P-04 Credits										
Pre-requisi	te: None	9									
Course Ob	jectives	The object	ive of the	course on S	Solid Sta	ate Physics is	to equip	the M.Tech.			
students wit	th the cor	icepts of con	densed pha	use of matter	that he/s	she needs for u	nderstand	ling different			
academics of	or researc	ch in Nanosc	ience and l	Nanotechnol	ogy as a	i career.		es to pursue			
Course Out	tcomes:	At the end o	f the course	e, the studer	t will be	e able to					
CO1	Understand basic elements of crystal structure of condensed matter										
CO2	Unders crystal	Understand accurate description of lattice dynamics and thermal properties of crystalline solids									
CO3	Unders	Understand origin of energy bands in solids with focus on semiconductors									
CO4	Descri	Describe and understand basics of transport properties across solids									
CO5	Describe and understand magnetic and dielectric behavior of solids										
	ľ	Mapping of	course out	comes with	the pro	ogram outcom	es				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	3	3	3	3	3	3	3	3			
CO2	3	3	3	3	3	3	3	2			
CO3	3	3	3	3	3	3	3	2			
CO4	3	3	3	3	2	3	3	2			
C05	3	3	3	3	2	2	2	1			

Unit-I

Crystal binding and Elastic constants: Binding in solids; Cohesive energy, Crystals of Inert gases, ionic crystal, Covalent Crystals, Analysis of elastic strains: dilation, stress components; Elastic Compliance and Stiffness: elastic constants, elastic waves in cubic crystals.

Unit-II

Lattice Dynamics and Thermal Properties: Vibrations of crystal with monatomic and two atom per primitive Basis; Quantization of Elastic waves, Phonon momentum; Inelastic scattering by phonons, Phonon Heat Capacity, Planck Distribution, normal modes; Density of states, Debye T3 model; Einstein Model; anharmonic crystal interactions; thermal conductivity expansion.

Unit-III

Energy Band Theory: Electrons in a periodic potential: Bloch theorem, Nearly free electron model; Kronig Penney Model; Electron in a periodic potential; tight binding method; Wigner-Seitz Method Semiconductor Crystals, Band theory of pure and doped semiconductors; effective mass elementary idea of semiconductor superlattices.

Unit-IV

Transport Theory: Electronic transport from classical kinetic theory; Introduction to Boltzmann transport equation; electrical and thermal conductivity of metals; thermoelectric effects; Hall effect and magneto resistance.

Unit-V

Dielectrics and Ferro Electrics: Polarization mechanisms, Dielectric function from oscillator strength, Clausius-Mosotti relation; piezo, pyro- and ferro-electricity; Dipole theory of ferroelectricity; thermodynamics of ferroelectric transition.

Text and Reference Books:

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, New York), 8th ed. 2005.
- 2. Quantum Theory of Solids: C. Kittel (Wiley, New York) 1987.
- 3. Principles of the Theory of Solids: J. Ziman (Cambridge University Press) 1972
- 4. Solid State Theory: Walter A. Harrison (Tata McGraw-Hill, New Delhi) 1970.
- 5. Liquid Crystals: S. Chandrasekhar (Cambridge University), 2nd ed. 1992.

MTNT512	20-18	Optical Pro	operties of I	Nanomate	rials	L-3,T-1,P-0	4 C	redits				
Pre-requisi	te: None											
Course Obj	jectives:	The objectiv	ve of the cou	urse on Opt	tical Pro	operties Of Nanc	omaterials	is to equip				
for understa	students inding dif	fferent cour	ses taught in	n this class	and for	r developing a s	strong bac	kground if				
he/she choo	ses to put	rsue researcl	n in Nanosci	ience & Na	notechn	ology as a caree	er.	-				
Course Out	tcomes: A	At the end o	f the course,	, the studen	t will be	e able to						
CO1	Underst	Understand basic properties of nanoparticles										
CO2	Underst	Inderstand accurate description of optical properties of material at nanoscale										
CO3	Underst	tand basics of	of non-linear	r optics								
CO4	Describ	escribe and understand basics of Plasmonics										
CO5	underst	nderstand application of nanomaterials with novel optical behavior										
	Ν	Iapping of	course outc	comes with	the pro	ogram outcome	S					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8				
CO1	3	3	3	3	3	3	3	3				
CO2	3	3	3	3	3	3	3	2				
CO3	3	3	3	3	3	3	3	2				
CO4	3	3	3	3	2	3	3	2				
CO5	3	3	3	3	2	2	2	1				

UNIT-I

Nanoparticles: Metal Nanoparticles, Alloy Nanoparticles, Stabilization in Sol, Glass, and other media, Change of bandgap, Blueshift, Colour change in sol, glass, and composites, Plasmon Resonance.

UNIT-II

Optical Properties: Optical luminescence and fluorescence from direct, bandgap semiconductor nanoparticles, surface trap passivation in core-shell nanoparticles, carrier injection, polymer-nanoparticle LED's and solar cells, electroluminescence; barriers to nanoparticle lasers; doping nanoparticles, Mn-ZnSe phosphors; light emission from indirect semiconductors, light emissionfrom Si nanodots.

UNIT-III

Non-linear Optics: Maxwell's Equations, Bloch's Theorem, Photonic Band Gap and Localized Defect States, Transmission Spectra, Nonlinear Optics in Linear Photonic Crystals, Guided Modes in Photonic Crystals Slab, 1-D Quasi Phase Matching, Nonlinear Photonic Crystal Analysis, Applications of Nonlinear Photonic Crystals Devices, Materials: LiNbO3, Chalcogenide Glasses, etc, Wavelength Converters, etc

UNIT-V

Plasmonics: Introduction, merging photonics and electronics at nanoscale dimensions, single photon transistor using surface plasmon, nanowire surface plasmons-interaction with matter, single emitter as saturable mirror, photon correlation, and integrated systems. All optical modulation by plasmonic excitation of quantum dots, Channel plasmon-polariton guiding by subwavelength metal grooves, Near-field photonics: surface plasmon polaritons and localized surface plasmons, Slow guided surface plasmons at telecom frequencies.

Text and Reference Books:

- 1. Nanoplasmonics, From fundamentals to Applications vol 1 & 2-S. Kawata & H Masuhara 2006.
- 2. Nanotechnology for Microelectronics and Optoelectronics J. M. Martinez-Duart, Raúl J.
- 3. Martín-Palma, Fernando Agullo-Rueda 2006
- 4. Springer Handbook of Nanotechnology by Bharat Bhushan 2004.
- 5. The Handbook of Photonics By Mool Chand Gupta, John Ballato 2007.

MTNT512	21-18	Ν	ano-electi	onics		L-3,T-1,P-0	4	Credits				
Pre-requis	ite: Non	2										
Course Ob with the con for develop career.	jectives: ncepts of bing a str	The objective nano scale of ong backgro	ve of the co electronic the ound if he/	urse on Nar hat he/she n she chooses	no Electron needs for un s to pursue	ics is to equi nderstanding research in	p the M.Te nano scale Nanotech	ech. students e electronics nology as a				
Course Ou	tcomes:	At the end o	of the cours	e, the stude	nt will be a	able to						
CO1	Explai	Explain the nanoscale Semiconductor materials.										
CO2	Discus	s the basics	of Plasmon	ic								
CO3	Charac	terize the Pr	inciple and	l working o	f Spintroni	cs						
CO4	Descri	Describe the fabrication of Photonic crystals.										
CO5	Unders	stand current	t research a	reas in elec	tronics at r	nanoscale						
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8				
C01	3	3	3	3	3	3	3	3				
CO2	3	3	3	3	3	3	3	2				
CO3	3	3	3	3	3	3	3	2				
CO4	3	3	3	3	2	3	3	2				
CO5	3	3	3	3	2	2	2	1				

Unit-I

Semiconductors: Tuning the band gap of nanoscale semiconductors, Quantum Confinement, Single Electron transistor, the colors and uses of quantum dots, Semiconductor nanowires- Fabrication strategies, quantum conductance effects in semiconductor nanowires, fabrication of porous Silicon. Fabrication of Nanobelts

Unit-II

Plasmonics: Introduction, single Emitter Properties, Ideal single photon transistor, Plasmonic Nano wires, Plasmonic Nano-lithography. Applications of Plasmonics

Unit-III

Spintronics: Introduction, Datta-Das Spin transistor, Johnoson Slisbee Spin Injection experiment, theory of spin injection through space charge region, spin relaxation in Bulk Semiconductors. Applications of Spintronic devices.

Unit-IV

Photonic crystals: Linear photonics crystals-Maxwell's equation, Bloch's theorem, transmission spectra, Nonlinear Photonic crystals, Fabrication of Photonic crystals (1-D and 2-D) applications of nonlinear photonic crystals devices

Unit-V

Solar energy devices: Solar cell basic working principles, basic principle of HOMO &LUMO, Bulk Heterojunction polymer solar cells, Dye Sensitized Solar cells, working of quantum dot solar cells. Applications of Solar energy devices

Unit-VI

Research topics: Electron Properties of Organic and Inorganic Light Emitting Diodes, Organic and inorganic Thin film Photovoltaics, Spintronics devices for memory and logic applications.

Text and referene Books:

- 1. Nanotechnology enabled sensors by Kouroush Kalantar Zadeh, Benjamin Fry, Springer Verlag New York, (2007).
- 2. W. Ranier, Nano Electronics and Information Technology, Wiley, 2003.
- 3. K.E. Drexler, Nano systems, Wiley, (1992).
- 4. M.C. Gupta, J. Ballato, The Handbook of Photonics.

MTNT512	FNT5122-18Nanomaterials, Surface Interface and CatalysisL-3,T-1,P-04 Credits							redits		
Pre-requisi	te: Noi	ne								
Course Ob Catalysis is that he/she r background	bjective to equineeds for if he/sl	es: The object ip the M.Tech or understand he chooses to	ctive of th n. students ing differen pursue rese	ne course or with the con- nt courses tau earch in Nan	n Nan cepts re ught in oscience	omaterials, Survey elated to the surf this class and fo be & Nanotechno	rface Inte ace of name of developing action of the second second action of the second second second action of the second second second second second action of the second second second second second second second action of the second second action of the second second action of the second second action of the second	rface and nomaterials ng a strong career.		
Course Out	tcomes	: At the end c	of the cours	e, the studen	t will b	e able to				
CO1	Descr their	tibe the surfaction states, and surfactions and surfactions and surfactions and surfactions and surfactions and surfactions are surfacted as the surface states are surface states as the surface state states are surface states as the surface state states are surface states as the surface state state states are surface states as the surface state state states are surface states are surface states as the surface state state states are surface states are sur	ce-interface	e concept and	l its pro	perties especial	ly surface of	energy and		
CO2	Expla their I	Explain the binding of molecules to the surface, physio and chemio adsorptions and their kinetic models, thin films and their properties with epitaxial growth								
CO3	Demo with t	Demonstrate the surface interface effects, and its characterization, coating surfaces with thin films.								
CO4	Illusti lithog	rate the surfac graphic pattern	e segregati	ion and self-a	assemb printing	ly of block copc g.	lymer, nor	1-		
CO5	Discu mater	iss the Nanost ials and appli	ructure cat cations.	alytic materi	als like	Pt, Pd and Fe, o	colloidal ar	nd porous		
		Mapping of	course ou	tcomes with	the pr	ogram outcom	es			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		
CO1	3	3	3	3	3	3	3	3		
CO2	3	3	3	3	3	3	3	2		
CO3	3 3 3 3 2									
CO4	3	3	3	3	2	3	3	2		
CO5	3	3	3	3	2	2	2	1		

Unit-I

Introduction: definitions, Surface energy and surface states, surface tension. Surface, Interface and Bulk- Surface - Surface electronic structure. Surface energy, surface tension

Unit-II

Surfaces and Interfaces: Binding of molecules to the surface, adsorption phenomenon chemisorption, and physorptions diffusion, nucleation. Adsorption isotherms, Ideal and real surface, surface states. Electron spectroscopy. Interaction of particles and radiation with surfaces, diffraction, secondary emission. Different properties of thin films and bulk, charge transport through thin films. Epitaxial growth. Different properties of thin and bulk films

Unit-III

Principles of Surface and Interface Chemistry: surface-interface energy and tension, wetting, characterization of surfaces and interfaces. Techniques for Manipulating Surfaces: adsorption of surfactants and macromolecules, physical grafting of macromolecules. physical grafting of macromolecules

Unit-IV

Structured Coatings: surface segregation and self-assembly in films of blends and copolymers, films by Langmuir-Blodgett. Non-Lithographic Patterning Methods: micro phase separation in copolymers, dewetting processes, microcontact printing, other uses of self assembly for pattern creation. other uses of self-assembly for pattern creation.

Unit-V

Nanostructure & Meosoporous materials & Applications: Nanostructured metals like Pt, Pd and Fe, nanostructured ceramics like silica, silcate and alumina, pillared clays, colloids and porous materials. Mesoporous- application with suitable examples, unipore size, bimodal pore size, supramolecular chemistry. colloids and porous materials.

Text and reference Books:

- 1. Handbook of Surface and Interface analysis, J.C. Riviere and S.Myhra, Marcell Decker Inc., 1998.
- 2. Nanstructured catalsysts- SL Scott, CM crudden and CW Jones.
- 3. Basic principles in applied catalysis-Mandfredlaerns.
- 4. Nanotechnology in catalysis- Pinzhan.
- 5. Chemistry of Nanomaterials, CNR Rao, A Muller and AK Cheetam.

MTNT512	22-18	Synthesis a Nanomater	nd Chara ials	cterization	of	L-3,T-1,P-0	4 0	Credits			
Pre-requisi	ite: Non	e									
Course O	bjective	s: The obj	ective of	the course	e on S	ynthesis and	Character	ization of			
Nanomater	rials is to	equip the N	A.Tech. stu	dents with	the conc	cepts of synthesis	s and chara	acterization			
taught in th	is class a	and for deve	loping a st	rong backg	round if	f he/she chooses	to pursue	research in			
Nanotechno	ology as	a career.					-				
Course Ou	tcomes:	At the end o	of the cours	se, the stude	ent will l	be able to					
CO1	Understand the physical methods for synthesis of nanoparticles.										
CO2	Under	stand the che	emical met	hods for syn	nthesis c	of nanoparticles.					
CO3	Under	stand the bio	logical me	thods for sy	nthesis	of nanoparticles.					
CO4	Under	Understand the various characterization techniques of nano materials									
CO5	Under	Understand various Lithographic Techniques for fabrication at nanoscale									
	Mapping of course outcomes with the program outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	3	3	3	3	3	3	3	3			
CO2	3	3	3	3	3	3	3	2			
CO3	3	3	3	3	3	3	3	2			
CO4	3	3	3	3	2	3	3	2			
CO5	3	3	3	3	2	2	2	1			

Unit-I

Physical Methods: Inert gas condensation, Arc discharge, RF-plasma, Plasma arc technique, Ion sputtering, Laser ablation, Laser pyrolysis, Ball Milling, Molecular beam epitaxy, Chemical vapour deposition method and other variants, Electrodeposition.

Unit-II

Chemical Methods: Metal nanocrystals by reduction, Solvothermal synthesis, Photochemical synthesis, Electrochemical synthesis, Nanocrystals of semiconductors and other materials by arrested precipitation, Thermolysis routes, Sonochemical routes, Liquid-liquid interface, Hybrid methods, Solvated metal atom dispersion, Post-synthetic size-selective processing. Solgel, Micelles and microemulsions, Cluster compounds.

Unit-III

Biological Methods of Synthesis:Use of bacteria, fungi, Actinomycetes for nanoparticle synthesis, Magnetotactic bacteria for natural synthesis of magnetic nanoparticles; Mechanism of formation; Viruses as components for the formation of nanostructured materials; Synthesis process and application, Role of plants in nanoparticle synthesis

Unit-IV

Characterization Techniques: X-ray diffraction, X-ray photoelectron and auger electron spectroscopy(XPS, AES), Scanning Probe Microscopy, SEM, TEM, Electron energy loss(EELS), Scanning tunneling microscopy(STM) and spectroscopy(STS), Atomic force microscopy(AFM), Magnetic force microscopy(MFM), Chemical Force Microscopy(CFM),Optical microscope and their description, operational principle and application for analysis of nanomaterials, UV-VIS-IR Spectrophotometers, Focused ion beam, nanolithography, Principle of operation and application for band gap measurements, Magnetic and electrical measurements and Infrared/ Raman, EPR and NMR.

Unit-V

Lithographic Techniques: AFM based nanolithography and nanomanipulation, E beam lithography and SEM based nanolithography and nanomanipulation, Ion beam lithography, oxidation and metallization. Mask and its application. Deep UV lithography, X-ray based lithography.

Books and suggested readings:

- 1. Semiconductor Nanostructures and Nanodevices Vol 1-5-A. A. Balandin, K. L. Wang.
- 2. Springer Handbook of Nanotechnology: Bharat Bhushan
- 3. Nanofabrication towards biomedical application: Techniques, tools, Application and impact : *Ed. Challa S., S. R. Kumar, J. H. Carola*.

MTNT51	12-18	Nur	nerical Me	thods Lab		L-0,T-0,P-4	2 C	redits				
Pre-requisi	te: None						_					
Course Ob students wit treatment in chooses to p	jectives: h the app differen oursue res	The objecti lication of 1 t courses ta search in Na	ve of the conumerical to ught in this unotechnolo	ourse on Nu echniques t s class and ogy as a car	imerical hat he/s for deve eer.	I Methods Lab is he needs for unde eloping a strong l	to equip th erstanding backgroun	ne M.Tech. theoretical d if he/she				
Course Out	tcomes: A	At the end c	of the course	e, the stude	nt will	be able to						
CO1	Apply l physica	Apply basics knowledge of computational skills required for describing various physical systems.										
CO2	Program	Programme with the C++ or any other high-level language.										
CO3	Use of	Use of various numerical methods in describing/solving physics problems.										
CO4	Solve p problem	olve problem, critical thinking and analytical reasoning as applied to scientific roblems.										
CO5	Explore new areas of research in physics and allied fields of science and technology.											
	Ν	Iapping of	course out	tcomes wit	h the p	rogram outcome	S					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8				
C01	3	3	3	3	3	3	3	3				
CO2	3	3	3	3	3	3	3	2				
CO3	3	3	3	3	3	3	3	2				
CO4	3	3	3	3	2	3	3	2				
C05	3	3	3	3	2	2	2	1				

Programming using a suitable high level language (Matlab/Mathematica/Scilab/ Octave)

- 1. To find the standard deviation, mean, variance, moments etc. of at least 25 entries.
- 2. To choose a set of 10 values and find the least squared fitted curve.
- 3. Find y for a given x by fitting a set of values with the help of cubic spline fitting technique.
- 4. To find the Roots of an Algebraic Equation by Bisection method and secant method
- 5. To find the Roots of an Algebraic Equation by Newton-Raphson Method.
- 6. To find the Roots of Linear Equations by Gauss Elimination Method.
- 7. To find the Roots of Linear Equations by Gauss-Seidal Iterative Method.
- 8. Find first order derivative at given x for a set of values with the help of Lagrange interpolation.
- 9. To perform numerical integration of a function by Trapezoidal Rule.
- 10. To perform numerical integration of a function by Simpson's Rule.
- 11. To perform numerical integration of a function by Weddle's rule.
- 12. To solve a Differential Equation by Euler's method and Modified Euler's Method.
- 13. To solve a Differential Equation by Runge Kutta method.
- 14. To find the determinant of a matrix and its eigenvalues and eigenvectors.

Note: Students are expected to perform atleast 10-12 experiments from the list.

Text Books:

- 1. Numerical Mathematical Analysis, J.B. Scarborough (Oxford & IBH Book Co.) 6th ed., 1979.
- 2. A first course in Computational Physics: P.L. DeVries (Wiley) 2nd edition, 2011.

Reference Books:

- 1. Computer Applications in Physics: S. Chandra (Narosa) 2nd edition, 2005.
- 2. Computational Physics: R.C. Verma, P.K. Ahluwalia and K.C. Sharma (New Age) 2000.
- 3. Object Oriented Programming with C++: Balagurusamy, (Tata McGrawHill) 4th edition 2008.

MTNT5113-18		Synthesis of Nanomaterial Lab]	L -0,T-0,P-4	2 Credits	
Pre-requisite: None								
Course Objectives: The objective of the course on Synthesis of Nanomaterial Lab is to equip the M.Tech. students with the application of various synthesis methods for nanomaterials required for understanding different courses taught in this class and for developing a strong background if he/she chooses to pursue research in Nanoscience and Nanotechnology as a career.								
Course Outcomes: At the end of the course, the student will be able to								
CO1	Apply the physical methods for synthesis of nanoparticles.							
CO2	Apply the chemical methods for synthesis of nanoparticles.							
CO3	Apply the biological methods for synthesis of nanoparticles.							
CO4	Understand the limitations of the synthesis techniques.							
CO5	Understand various advancement in Techniques for synthesis at nanoscale.							
Mapping of course outcomes with the program outcomes								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
C01	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	2
CO3	3	3	3	3	3	3	3	2
CO4	3	3	3	3	2	3	3	2
CO5	3	3	3	3	2	2	2	1

- 1. Ball milling route for making nanoparticles and particle size distribution estimation.
- 2. Physical vapor deposition and chemical vapor deposition techniques for thin film deposition.
- 3. Fabrication of suitable structures on thin films for device applications.
- 4. To synthesize metal nanostructures and investigate their optical behavior.
- 5. Synthesis and Characterization of carbon nanotubes by cracking of gas mixture
- Bottom-up synthesis and characterization of PVP capped intrinsic & extrinsic ZnS QDs (using Na₂ SxH₂O as sulphur precursor).
- 7. Sol-gel synthesis and characterization of CdS nanocrystals.
- 8. Preparation and characterization of ZnO nanoparticles embedded in silica matrix
- 9. Microwave assisted synthesis of ZnO nanoparticles.
- 10. Eco-Friendly Bio-Chemical synthesis of nanomaterials.
- 11. To investigate refluxing and distillation techniques for synthesis of II-VI ceramic nanostructures.
- 12. To study solvothermal synthesis method of nanoparticles.
| MTNT5114-18 | | Research | Methodol | ogy and IP | R L | -0,T-0,P-4 | 2 C | redits | | | |
|--|--|--------------------------------------|-------------------------------|----------------------------|---------------|------------------------------|--|----------------|--|--|--|
| | | | | | | | | | | | |
| Pre-requisi | te: None | | | | | | | | | | |
| Course Ob | jectives: 7 | The objectiv | ve of the co | ourse on Re | esearch Me | thodology an | d IPR is to | equip the | | | |
| M.Tech. students with the application of numerical techniques that he/she needs for understanding theoretical treatment in different courses taught in this class and for developing a strong background | | | | | | | | | | | |
| if he/she chooses to pursue research in Nanotechnology as a career. | | | | | | | | | | | |
| Course Outcomes: At the end of the course, the student will be able to | | | | | | | | | | | |
| | Course outcomes. At the end of the course, the student will be able to | | | | | | | | | | |
| CO1 | Understand research problem formulation. | | | | | | | | | | |
| CO2 | Analyze | Analyze research related information | | | | | | | | | |
| CO3 | Follow re | Follow research ethics | | | | | | | | | |
| CO4 | Understa | nd that toda | y's world i | s controlled | l by Comp | uter, Inform | ation Tech | nology, | | | |
| | but tomorrow world will be ruled by ideas, concept, and creativity | | | | | | | | | | |
| CO5 | Understa | nding that v | when IPR w | ould take s | uch impor | tant place in | growth of | , | | | |
| | Individua
Intellectu | ils & nation
al Property | , it is needle
Right to be | ess to emphe
e promoted | among stu | ed of inform
dents in gen | nation about the second s | ut
ineering | | | |
| | in particu | ılar. | 8 | · ····· | | | | | | | |
| CO6 | Understa | nd that IPR | protection | provides ar | n incentive | to inventors | s for furthe | r research | | | |
| | work and | l investment | t in R & D, | which lead | s to creation | on of new ar | nd better pr | oducts, | | | |
| | | | | | | benefits. | | | | | |
| | Ma | apping of c | ourse outc | omes with | the progr | am outcom | es | | | | |
| | | | | | | | | | | | |
| | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | | | |
| CO1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | |
| CO2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | | | |
| CO3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | | | |
| CO4 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 2 | | | |
| CO5 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | | | |

Unit I

Defining a research problem: Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations.

Unit II

Literature review: Effective literature studies approaches, analysis Plagiarism, Research ethics.

Unit III

Effective technical writing: how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

Unit IV

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit V

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

Unit VI

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students".

Text and Reference books:

- 1. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 2. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 3. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 4. Mayall, "Industrial Design", McGraw Hill, 1992.
- 5. Niebel, "Product Design", McGraw Hill, 1974.
- 6. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 7. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 8. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Semester-II

MTNT521	10-18	Physics and	l Chemistry	of Materia	als L-	3,T-1,P-0	4 C	redits		
Pre-requis	ite: None									
Course Ob the M.Tech behavior o courses tau research in	jectives: ' n. students f nanomat ght in thi Nanoscier	The objectives with the content of the objectives with the content of the content	re of the cour oncepts of he/she need for develop technology a	rse on Phys Physics and s for under bing a stron as a career.	ics and Ch l chemistry standing t g backgro	emistry of required theoretical f und if he/s	² Materials for understa treatment in he chooses	is to equip anding the n different to pursue		
Course Ou	Course Outcomes: At the end of the course, the student will be able to									
CO1	Underst	and and des	cribe Physic	al and cher	nical aspec	ts of Nano	materials			
CO2	Underst	and and des	cribe diffusi	on at nanos	cale					
CO3	Underst	and and des	cribe surfac	e defects in	nanostruct	ures				
CO4	Underst	and and des	cribe differe	ent classification	ation of na	nostructure	S			
CO5	Underst	and and des	cribe growtl	n of Nano s	ystems					
	Mapping of course outcomes with the program outcomes									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		

CO1	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	2
CO3	3	3	3	3	3	3	3	2
CO4	3	3	3	3	2	3	3	2
CO5	3	3	3	3	2	2	2	1

UNIT I

Physics Aspects: Size effect on thermal, electrical, electronic, mechanical, optical and magnetic properties of nanomaterials- surface area and aspect ratio- band gap energy- quantum confinement size effect.

UNIT II

Chemistry Aspects: Photochemistry and Electrochemistry of nanomaterials –Ionic properties of nanomaterials-Nano catalysis - Nanoscale heat transfer - Electron transport in transition metals and semiconducting nanostructures

UNIT III

Diffusion And Surface Defects: Fick's Law-mechanisms of diffusion - influence of pressure and temperature- Kirkendall effect -surface defects in nanomaterials - effect of microstructure on surface defects – interfacial energy.

UNIT IV

Nanostructures: Classifications of nanomaterials - Zero dimensional, one-dimensional and two dimensional nanostructures- Kinetics in nanostructured materials- multilayer thin films and superlattice clusters of metals, semiconductors and nanocomposites.

UNIT V

Nanosystems: Nanoparticles through homogeneous and heterogeneous nucleation-Growth controlled by surface and diffusion process- Oswald ripening process - influence of reducing agents-solid state phase segregation- Mechanisms of phase transformation- grain growth and sintering precipitation in solid solution- hume rothery rule

Text books and suggested readings:

1. A. S. Edelstein and R. C. Cammarata, "Nanomaterials: Synthesis, Properties and Applications", Institute of Physics Pub., 1998.

2. G. Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, 2004.

3. G.A. Ozin and A.C. Arsenault, "Nanochemistry : A chemical approach to nanomaterials", Royal Society of Chemistry, 2005.

4. Joel I. Gersten, "The Physics and Chemistry of Materials", Wiley, 2001.

5. K.W. Kolasinski, "Surface Science: Foundations of Catalysis and Nanoscience", Wiley, 2002.

6. Physical Chemistry – Atkins Peter, Paula Julio.

MTNT52	NT5211-18Nano biotechnologyL-3,T-1,P-0										
Pre-requisi	te: None										
Course Objectives: The objective of the course on Nano biotechnology is to equip the M.Tech. students with the concepts of biotechnology required for understanding the behavior of nano biomaterials that he/she needs for for developing a strong background if he/she chooses to pursue research in Nanoscience & Nanotechnology as a career											
Course Outcomes: At the end of the course, the student will be able to											
CO1	Understand the basics of Biotechnology										
CO2	Explain the application	Explain the interaction between biomolecules and nanoparticle surface and its applications.									
CO3	Optimize	Optimize the synthesis of Biocompatibility of Nanomaterials									
CO4	Analyze	Analyze different types of DNA based Nanostructures									
CO5 Identify the risk assessments involved bio nano materials											
	Ma	apping of co	ourse outco	omes with	the progra	im outcom	28				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
C01	3	3	3	3	3	3	3	3			
CO2	3	3	3	3	3	3	3	2			
CO3	3 3 3 3 3 2										
CO4	3	3	3	3	2	3	3	2			
CO5	3	3 3 3 2 2 2 1									

Unit –I

Introduction to the science of nano as nanobiotechnology Development of nanobiotechnology - timelines and progress, overview. Basics of biology - cell, organelles and nucleic acids as genetic material. Bio macromolecules - Carbohydrates, lipids, proteins and Nucleic acids.

Unit –II

Nanomaterial in biotechnology - nanoparticles, quantum dots, nanotubes and nanowires. Biosensors ; different classes -molecular recognition elements, transducing elements.

Unit –III

Applications of molecular recognition elements in nanosensing of different analytes. Application of various transducing elements as part of nanobiosensors. Miniaturized devices in nanobiotechnology - types and applications, lab on a chip concept. Cell as Nanobio-machine, link between the signalling pathways & molecular movements as well as neuron function

Unit –IV

Biological nanoparticles production - plants and microbial. Nanobiotechnological applications in health and disease - infectious and chronic. Nanobiotechnological applications in Environment and food - detection and mitigation

References:

- 1. Jain K.K, Nanobiotechnology in Molecular Diagnostics Current Techniques and Applications, Taylor and Francis Publications 2006.
- 2. Nanobiotechnology: Concepts, Applications and Perspectives (2004), Christof M.Niemeyer (Editor), Chad A. Mirkin (Editor), Wiley VCH.
- 3. Nanobiotechnology II more concepts and applications. (2007) Chad A Mirkin and Christof M. Niemeyer (Eds), Wiley VCH.
- 4. Nanotechnology in Biology and Medicine: Methods, Devices, and Applications.

MTNT5217	7-18	Carbo	on Nanos	tructures	and		L-3 ,T-1,P-0	4 C	redits			
		Applic	ations									
Pre-requisi	te: No	one										
Course Ob	jective	es: The	objective	of the cour	rse on Carb	on Nar	nostructures and	Applicati	ons is to			
equip the M	Tech.	. student	ts with th /she choo	e various c	arbon nano we research	structu	res that he/she r	needs for d	eveloping			
Course Out	Course Outcomes: At the end of the course, the student will be able to											
	rse Outcomes: At the end of the course, the student will be able to											
C01	Expl their	Explain the different nanostructures like whiskers, cones and polyhedral crystalsand their structure properties and application										
CO2	Desc mecl	Describe the type of carbon nanotubes and different synthesis methods and growth nechanisms.										
CO3	Dem grap	Demonstrate the graphite derivatives, fullerenes and its type, nano-diamond, graphene, different synthesis methods and their functionalization and applications										
CO4	Iden	dentify the application of carbon nanostructure for different day-to-day applications.										
CO5	Differentiate the nanostructure catalytic materials like Pt, Pd and Fe, colloidal and porous materials.											
		Марр	oing of co	ourse outco	omes with t	the pro	ogram outcome	S				
	PO1	P	202	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	3	3		3	3	3	3	3	3			
CO2	3	3		3	3	3	3	3	2			
CO3	3	3		3	3	3	3	3	2			
CO4	3 3 3 3					2	3	3	2			
C05	3	3		3	3	2	2	2	1			

Unit-I

Nanostructures: Graphite, Whiskers, Cones, and Polyhedral crystals, structure, Properties and applications. Graphite.

Unit-II

Carbon Nanotubes (CNT): History, types of CNTs, synthesis methods, CVD method, Laser ablation and electric arc processes, growth mechanisms, purification and characterization methods, solid disordered carbon nanostructures. purification and characterization methods.

Unit-III

Properties and applications of CNTs: electrical, vibrational, mechanical, optical properties and Raman spectroscopy of CNTS, carbon cluseters, decoration of CNT by nano metals and metal oxides, Applications-Lithium ion battery, fuel cells, sensor applications, applications to nanoelectronics, nanocomposites. decoration of CNT by nano metals and metal oxides.

Unit-VI

Graphite derivatives: Fullerenes and types, nano-diamond, clusters, metal carbide derived carbon nanostructures, synthesis and applications. Graphene: - Background, structure, exfoliation or synthesis methods- physical and methods – micromechanical (scotch t ap emethod), CVD, Chemical approaches -Hammers method, oxidation and reduction of graphite, solvo-thermal synthesis.

Unit-5

Functionalization of carbon nanostructures: (CNT, Graphene and fullerenes)- reactivity, covalent functionalization-oxidative purification, defect functionalization, transformation and modification of carboxylic functionalization like thiolation, halogenations, hydrogenation, sidewall functionalization through electorphilic addition, non-covavlent exohedral functionalization, endohedro functionalization.

Unit-6

Carbon nanostructure applications: Lithium ion battery, fuel cells, hydrogen storage, sensor applications, applications to nano-electronics, nano-composites, nano wires in drug delivery, polymer reinforcement and as filler materials.

References:

1. Science of Fullerenes and Carbon Nanotubes by M.S. Dresselhaus, G. Dresselhaus and P.C. Eklund, Science Direct 1996.

MTNT521	8-18 Nanostructured Materials for Clean Energy					L-3,T-1,P-0	2 C	redits			
Pre-requis	ite: None										
Course Ob equip the M potential of if he/she ch	jectives: T I.Tech. stud `nanotechn ooses to pu	he objectiv lents with t ology for a ursue resear	e of the cou he concepts ddressing en ch in Nanos	rse on Nand of energy of nergy probl science & N	ostructur domains em and t Janotech	red Materials for that he/she need for developing nology as a ca	or Clean E eds for und a strong b reer.	nergy is to lerstanding ackground			
Course Outcomes: At the end of the course, the student will be able to											
	Understand the basic and essential elements of battery materials										
CO2	Explain the mechanism of harnessing solar energy.										
CO3	Discuss the fabrication of solar cell structures.										
CO4	Define and design how hydrogen energy can be stored										
CO5 Analyse the safety and precautionary issues in handling nanomaterials.											
	Mapping of course outcomes with the program outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	3	3	3	3	3	3	3	3			
CO2	3	3	3	3	3	3	3	2			
CO3	3	3	3	3	3	3	3	2			
CO4	3	3	3	3	2	3	3	2			
CO5	3	3	3	3	2	2	2	1			

Unit -I

Battery materials and batteries: Lithium Ion based batteries. Types of batteries

Unit -II

Renewable energy Technology: Energy challenges, nanomaterials and nanostructures in energy harvesting, developments and implementation of nanotechnology based renewable energy technologies. Nanostructures in energy harvesting

Unit -III

Solar cell structures: quantum well and quantum dot solar cells, photo- thermal cells for solar energy harvesting, Thin film solar cells, CIGS solar cells, Dye sensitized solar cells. Dye sensitized solar cells.

Unit –IV

Hydrogen storage Technology: Hydrogen production methods, purification, hydrogen storage methods. Hydrogen storage materials: metal hydrides, Complex metal hydrides and metal-organic framework materials, volumetric and gravimetric storage capacities, hydriding and dehydriding kinetics, high enthalphy formations and thermal management during hydriding reaction, multiple catalytic – degradation of sorption properties, automotive applications. Gravimetric storage capacities.

Unit –V

Fuel cell Technology: Fuel cell Principles, types of fuel cells (Alkaline Electrolyte, Phosphoric acid, Molten Carbonate, solid oxide and direct methanol and Proton exchange fuel cells), Principle and operation of Proton Exchange Membrane (PEM) fuel cell.

Unit – VI

Environmental and Safety issues: Nanoparticles and environment - Nanoparticles in atmospheric environment, Indoor environments Industrial processes and nanoparticles ; Safety of nanoparticles-Problems caused by nanoparticles.

Text & References books:

1. Renewable Energy Resources by J. Twidell and T.Weir, E&FN Spon Ltd.

- 2. Hydrogen from Renewable Energy Source by D.Infield
- 3. Fundamentals of Industrial Catalytic Process by C.H. Bartholomew and Robert J. Farraoto,

John Wiley & Sons Inc.

4. Fuel storage on Board Hydrogen storage in Carbon Nanostructures by R.A. Shatwell

MTNT5219	9-18	N	anotoxicolo	L-	3,T-1,P-0	4 C	redits				
Pre-requisi	te: None										
Course Objectives: The objective of the course on Nanotoxicology is to equip the M.Tech. students with the concepts of toxicology associated with various nanostructures and nanomaterials that he/she needs for for developing a strong background if he/she chooses to pursue research in nanoscience & Nanotechnology as a career.											
Course Outcomes: At the end of the course, the student will be											
CO1	To make students learn various concepts of toxicity, and its effects										
CO2	To mak	To make students learn various concepts about protocols in toxicology studies									
CO3	To help Human.	To help them gain knowledge about the toxicity in Nanoscience, and their effects on Human.									
CO4	To enha	To enhance knowledge on the risk management of nanoparticle exposure									
CO5	CO5 To enhance knowledge on the nanotoxicology - prevention and remedies										
	N	lapping of	course outc	omes with	the progra	am outcom	es				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	3	3	3	3	3	3	3	3			
CO2	3	3	3	3	3	3	3	2			
CO3	3	3	3	3	3	3	3	2			
CO4	3	3	3	3	2	3	3	2			
C05	3	3	3	3	2	2	2	1			

UNIT I

Introduction to Toxicology: Concept of Toxicology-Types of toxicity based on route of entry, nature of the toxin. Toxicodynamics–Dose vs Toxicity Relationships. Toxicokinetics – ADME, LADMET hypothesis. Genotoxicity and carcinogenicity – Mechanisms and Tests. Organ toxicity – Respiratory, dermal, hepato, neuro and nephro.

UNIT II

Nanotoxicology: Characteristics of Nanoparticles that determine Potential Toxicity. Bio-distribution of nanoparticles. Interaction of Nanoparticles with Biomembrane and genes. Evaluation of Nanoparticle transfer using placental models. Nanomaterial toxicity – Pulmonary, dermal, hepato, neuro, ocular and nephro; Estimation of Nanoparticle Dose in Humans. In vitro toxicity studies of ultrafine diesel exhaust particles; Toxicity studies of carbon Nanotubes

UNIT III

Protocols in Toxicology Studies: Methods for toxicity assessment – Cyto, Geno, hepato, neuro, nephrotoxicity. Assessment of toxicokinetics. Assessment of oxidative stress and antioxidant status.

UNIT IV

Animal Models: Types, species and strains of animals used in toxicity studies. Dosing profile for animal models. Studies on toxicology, pathology and metabolism in mouse and rat. Laws and Regulations Governing Animal Care and Use in Research.

UNIT V

Risk Assessment and Execution: Risk assessment of Nanoparticle exposure. Prevention and control of nanoparticles exposure. Regulation and recommendations

REFERENCES:

1. A Reference handbook of nanotoxicology by M.Zafar Nyamadzi 2008.

2. Andreas Luch, 'Molecular, Clinical and Environmental Toxicology Volume 2: Clinical

Toxicology', BirkhauserVerlag AG 2010.

3. John H. Duffus, Howard G. J. Worth, 'Fundamental Toxicology', The Royal Society of

Chemistry 2006.

4. Lucio G. Costa, Ernest Hodgson, David A. Lawrence, Donald J. Reed, William F. Greenlee,

'Current Protocols in Toxicology', John Wiley & Sons, Inc. 2005.

MTNT52	20-18 II N	maging Teo Ianotechno	chniques fo logy	L-	3,T-1, P-0	4 C	redits				
Pre-requisi	te: None				I						
Course Objectives: The objective of the course on Imaging Techniques for Nanotechnology is to equip the M.Tech. students with the concepts of imaging techniques that he/she needs for understanding nanostructures, their limitations and skills required for developing a strong background in experimental methods, if he/she chooses to pursue research in Nanoscience & Nanotechnology as a career.											
Course Out	Course Outcomes: At the end of the course, the student will be able to										
CO1	To learn noninvasive microscopic techniques such as optical and electron microscopy										
CO2	To learn:	o learn invasive microscopic techniques such as atomic microscopy.									
CO3	To learn:	invasive sca	anning elect	tron micros	copy.						
CO4	To learn	invasive tra	nsmission e	electron mic	croscopy.						
CO5	CO5 To understand advancement in various microscopic techniques.										
	Ma	apping of c	ourse outc	omes with	the progra	am outcome	28				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	3	3	3	3	3	3	3	3			
CO2	3	3	3	3	3	3	3	2			
CO3	3	3	3	3	3	3	3	2			
CO4	3	3	3	3	2	3	3	2			
C05	3	3	3	3	2	2	2	1			

UNIT I

Optical Microscopy: Optical microscopy- Use of polarized light microscopy – Phase contrast microcopy – Interference Microscopy – hot stage microscopy - surface morphology – confocal microscopy.

UNIT II

Scanning Electron Microscopy: Basic design of the scanning electron microscopy – Modes of operation– Backscattered electrons – secondary electrons- X-rays – typical forms of contrast– Resolution and contrast – enhancement – Specimen Preparation, Replicas Various-application of SEM.

UNIT III

Transmission Electron Microscopy: Basic principles - Modes of operation – Specimen preparation – Diffraction in imperfect crystals – Dislocations – precipitates – Structure of Grain boundaries and interfaces- HRTEM use in nanostructures.

UNIT IV

Atomic Force Microscopy: Basic concepts-Interaction force-AFM and the optical lever- Scale drawing- AFM tip on nanometer scale structures- force curves, measurements and manipulations-feed back control different modes of operation –contact, non contact and tapping mode-Imaging and manipulation of samples in air or liquid environments-Imaging soft samples. Scanning Force Microscopy-Shear force Microscopy-Lateral Force Microscopy-Magnetic Force microscopy.

UNIT V

Scanning Tunneling Microscopy: Principle- Instrumentation- importance of STM for nanostructures – surface and molecular manipulation using STM -3D map of electronic structure

Text and reference books:

1. J.Goldstein, D.E.Newbury, D.C.Joy, and C.E.Lym, "Scanning Electron Microscopy and

X-Ray Microanalysis", 2003.

2. P.J. Good hew, J.Humphreys, R.Beanland, "Electron Microscopy and Analysis, 2001.

3. R.Haynes, D.P.Woodruff and T.A.Talchar, "Opitcal Microscopy of Materials", Cambridge University Press, 1986.

4. S.L. Flegler, J.W. Heckman and K.L.Klomparens, "Scanning and Transmission Electron

Microscopy: An Introduction", W.H.Freeman & Co, 1993.

MTNT522	21-18	Cel	lular Biocł	nemistry		L-3,T-1,P-0	4	Credits			
Pre-requisi	ite: Non	e									
Course Ob students with bio comport he/she choo	jectives th the contents in poses to put tcomes:	: The object oncepts of bio nano-biotect ursue researc At the end of	ive of the o ology and o hnology or ch in Nanos	course on C chemistry the health car science and se, the stude	Cellular Bio nat he/she e and for Nanotechi ent will be	ochemistry is needs for und developing a nology as a ca able to	to equip erstandin strong ba reer.	the M.Tech. g of cellular ackground if			
CO1 To acquire basic knowledge on cell biology											
CO2	To acc	To acquire basic knowledge on nucleic acids, amino acids									
CO3	To acc	fo acquire knowledge on carbohydrates, lipids and proteins.									
CO4	To acc	To acquire knowledge on Enzymes									
CO5 To know about their metabolisms and energy production.											
	Mapping of course outcomes with the program outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
C01	3	3	3	3	3	3	3	3			
CO2	3	3	3	3	3	3	3	2			
CO3	3	3	3	3	3	3	3	2			
CO4	3	3	3	3	2	3	3	2			
CO5	3	3 3 3 2 2 2 1									

UNIT I

Cell Biology: Eukaryotic and Prokaryotic cells-Structure and functions, Principle of membrane organization. Cytoskeletal proteins, Types of cell division- mitosis and meiosis, Cell cycle and and its regulation. Screening of microbes using nanofluidic chips.

UNIT II

Nucleic Acids: Genome structure and organization in prokaryotes and eukaryotes. Structure and function of nucleic acids. Replication, transcription and translation- mechanism, enzymology and regulation. Central Dogma of life. Two case studies on DNA nanotechnology.

UNIT III

Amino Acids and Proteins: Structure and properties of amino acids. Peptide bond. Proteins-Classification and functions of proteins. Primary, secondary, super secondary, tertiary, quaternary structures and bonding interactions. Enzymes- properties, structure, assay and inhibition. Synzymes, ribozymes.

UNIT IV

Carbohydrates and Lipids: Classification, Nomenclature, Structure, Function of carbohydrates and lipids. Membrane transport.

UNIT V

Metabolism and Energy Production: Integrative Metabolism of biomolecules, Electron transport chain, oxidative phosphorylation, energy production.

Text and reference books:

- 1. Alberts, Bruce, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. Molecular Biology of the Cell. 4th ed. New York: Garland Science, 2002.
- 2. B.Lewin, "Genes IX", International Edition. Sudbury: Jones & Bartlett, 2007.
- 3. Branden, Carl-Ivar, and John Tooze. Introduction to Protein Structure. 2nd ed. New York: Garland Pub., 1991.
- 4. Creighton, E, Thomas, "Proteins: Structures and Molecular Properties", 2nd Ed. New York:
- 5. R. Cantor, P.R.Samuel, "Biophysical Chemistry", W.H., Freeman & Co., 1985.
- 6. Watson, James, T.Baker, S.Bell, A.Gann, M.Levine, and R.Losick. "Molecular Biology of the Gene", 5th ed., San Francisco: Addison-Wesley, 2000.

MTNT522	2-18	Bio safety and Hazards of Nano Materials				3,T-1,P-0	4 C	redits			
Pre-requisi	te: None										
Course Objectives: The objective of the course on Bio safety And Hazards of Nano Materials is to equip the M.Tech. students with the concepts of bio safety, bioethics and patenting that he/she needs for for developing a strong background if he/she chooses to pursue research in Nanoscience and Nanotechnology as a career. Course Outcomes: At the end of the course, the student will be able to											
CO1	CO1 Identify different types of nano materials and its applications										
CO2	Explain	Explain problems and issues of Bio nano materials									
CO3	Understa	Understand the patent of research article									
CO4	Define t	Define the safety and handling of nano materials									
CO5	CO5 Describe the toxic and hazards of Nanomaterials										
Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
C01	3	3	3	3	3	3	3	3			
CO2	3	3	3	3	3	3	3	2			
CO3	3	3	3	3	3	3	3	2			
CO4	3	3	3	3	2	3	3	2			
CO5	3	3	3	3	2	2	2	1			

Unit-I

Introduction: Properties of nanomaterials, Interactions between biomolecules and nanoparticles surface, different types of materials used for the synthesis of hybrid nano-bio assemblies, applications of nano in biology, nanoprobes for clinical biotechnology. Nanomaterials and their applications in agriculture, environment and medicine.

Unit-II

Bioethics: Introduction to Bioethics. Social and ethical issues in Biotechnology. Definition of Biosafety. Biosafety for human health and environment. Social and ethical issues. Use of genetically modified organisms and their release in to the environment.

Unit-III

Patenting: Invention in context of "prior art"; Patent databases; Searching International Databases; Country-wise patent searches (USPTO, EPO, India etc.); Analysis and report formation, International patenting-requirement, procedures and costs; Financial assistance for patenting-introduction to existing schemes; Publication of patents-gazette of India

Unit-IV

Biosafety: Introduction; Historical Backround; Introduction to Biological Safety Cabinets; Primary Containment for Biohazards; Biosafety Levels; Biosafety Levels of Specific Microorganisms; Recommended Biosafety Levels for Infectious Agents and Infected Animals; Biosafety guidelines - Government of India; Risk management and communication; Overview of National Regulations and relevant International Agreements including Cartagena Protocol. Identification of nano specific risks – responding to challenge Risk assessment related to nanotechnology-environmental.

Unit-V

Nanotoxicology: Inhalation of nano materials–overview. Introduction Inhalation – deposition and pulmonary clearance of insoluble solids- bio–persistence of Inhaled solid material. Systemic translocation of inhaled particles .pulmonary effects of SWCNT–pulmonary inflammatory Reponses to SWCNT. *In vivo* – interaction of the pulmonary inflammation with oxidative stress–interactions of SWCNTs with macro phages. hazard characterization, exposure assessment and risk calculation.

Text and refercence books:

1.J. B Park, "Biomaterials Science and Engineering", Plenum Press, New York, 1984.

2.P.P. Simeonova, N. Opopol and M.I. Lus ter, "Nanotechnology - Toxicological Issues and Environmental Safety", Springer 2006.

3.Vinod Labhasetwar and Diandra L. Leslie, "Biomedical Applications of nanotechnology", A John Wiley & son Inc, N.J, USA, 2007.

MTNT522	3-18	Advanced Dr	ug Deliver	y Systems	-	L-3,T-1,P-0	4 C	redits				
Pre-requisi	te: Non	e										
Course Ob the M.Tech that he/she Nanoscience	Course Objectives: The objective of the course on Advanced Drug Delivery Systems is to equip the M.Tech. students with the concepts of biology required for development of target drug delivery that he/she needs for developing a strong background if he/she chooses to pursue research in Nanoscience and Nanotechnology as a career.											
Course Outcomes: At the end of the course, the student will be able to												
CO1	To learn about Fundamentals of drug delivery systems											
CO2	To stu	To study the Lipid Based Nanocarriers										
CO3	To stu	dy the Microb	bes and Ant	ibody Base	d Nanoca	arriers						
CO4	To stu	dy the materia	als and tech	niques used	l in Deliv	very systems						
CO5 To learn about Recent development in the area of devices and therapy.												
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8				
CO1	3	3	3	3	3	3	3	3				
CO2	3	3	3	3	3	3	3	2				
CO3	3	3	3	3	3	3	3	2				
CO4	3	3	3	3	2	3	3	2				
C05	3	3 3 3 2 2 2 1										

UNIT I

Theory of Advanced Drug Delivery: Routes of drug delivery, Fundamentals of Nanocarriers - Size, Surface, Magnetic and Optical Properties, Pharmacokinetics and Pharmacodynamics of Nano drug carriers. Critical Factors in drug delivery. Transport of Nanoparticles - In Vitro and Ex Vivo Models.

UNIT II

Polymers: Dendrimers-Synthesis-Nanoscale containers- Dendritic Nanoscafold systems-Biocompatibility of Dendrimers, Gene transfection. pH based targeted delivery- chitosan and alginate. Copolymers in targeted drug delivery- PCL,PLA, PLGA.

UNIT III

Lipid Based Nanocarriers: Liposomes, niosomes and solid lipid nanoparticles. Ligand based delivery by liposomes. Cubosomes.

UNIT IV

Microbes and Antibody Based Nanocarriers: Bacterial dependent delivery of vaccines. Drug delivery and subcellular targeting by virus, Drug packaging and drug loading. Delivery of therapeutics by antibodies and antibodybioconjugates.

UNIT V

Devices For Drug Delivery: Fabrication and Applications of Microneedles, Micropumps, microvalves. Implantable microchips.

Text and reference books:

1. Drug Delivery and Targeting, A.M. Hillery, CRC Press, 2002.

2. Drug Delivery: Engineering Principles for Drug Therapy, M. Salzman, Oxford University Press, 2001.

3. Drug Delivery: Principles and Applications, B. Wang, Wiley Intersceince, 2005.

4. Nanoparticle Technology for Drug Delivery, Ram B. Gupta, Uday B. Kompella Taylor & Francis, 2006.

MTNT52	24-18	Structures	s, Spectra a of Biomoleo	and Proper cules	L-3,T-1,P-0	4 C	redits				
Pre-requisi	te: None						1				
Course Ob	jectives:	The aim and	l objective o	of the course	e on St	tructures, Spect	ra and pro	operties of			
Biomolecul	es is to fa	miliarize the	M.Tech. st	tudents with	the ba	sics of the recent	ly emergin	ig research			
field of dynamics of Structures, Spectra and properties of Biomolecules.											
Course Outcomes: At the end of the course, the student will be able to											
CO1	CO1 Describe various structural and chemical bonding aspects of Biomolecules.										
CO2	Underst Biomole	Understand structure and ttheoretical techniques and their application to Biomolecules.									
CO3	Underst Biomole	Understand use of various spectroscopic techniques and their application to the Biomolecules.									
CO4	Underst	Understand the structure-Function relationship and modeling of biomolecules.									
CO5	Outline and correlate for providing solution to interdisciplinary problem										
	Ν	lapping of (course outc	comes with	the pr	ogram outcome	es				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	3	3	3	3	3	3	3	3			
CO2	3	3	3	3	3	3	3	2			
CO3	3	3 3 3 3 3 2									
CO4	3	3	3	3	2	3	3	2			
C05	3	3 3 3 2 2 2 1									

Unit-I

Structure Aspects of Biomolecule: Conformational Principles, Conformation and Configuration Isomers and Derivatives, Structure of Polynucleotides, Structure of Polypeptides, Primary, Secondary, Tertiary and Quaternary Structure of Proteins, Structure of Polysaccharides.

Unit-II

Theoretical Techniques and Their Application to Biomolecules: Hard Sphere Approximation, Ramachandran Plot, Potential Energy Surface, Outline of Molecular Mechanics Method, Brief ideas about Semi-empirical and Ab initio Quantum Theoretical Methods, Molecular Charge Distribution, Molecular Electrostatic Potential and Field and their uses.

Unit-III

Spectroscopic Techniques and their Application to Biomolecules: Use of NMR in Elucidation of Molecular Structure, Absorption and Fluorescence Spectroscopy, Circular Dichroism, Laser Raman Spectroscopy, IR spectroscopy, Photoacoustic Spectroscopy, Photo-biological Aspects of Nucleic Acids.

Unit-IV

Structure-Function Relationship and Modeling: Molecular Recognition, Hydrogen Bonding, Lipophilic Pockets on Receptors, Drugs and Their Principles of Action, Lock and Key Model and Induced fit Model.

Text and reference books:

- 1. Srinivasan & Pattabhi: Structure Aspects of Biomolecules.
- 2. Govil & Hosur: Conformations of Biological Molecules
- 3. Price: Basic Molecular Biology
- 4. Pullman: Quantum Mechanics of Molecular Conformations
- 5. Lehninger: Biochemistry
- 6. Mehler&Cordes: Biological Chemistry
- 6. Smith and Hanawait: molecular Photobiology, Inactivation and Recovery

MTNT521	2-18	Characterization of Nanomaterials Lab			als L·	•0,T-0,P-4	2 C	redits			
Pre-requisi	Pre-requisite: None										
Course Objectives: The objective of the course on Characterization of Nanomaterials Lab is to equip the M.Tech. students with the application of characterization techniques that he/she needs for studying properties of nanomaterials required in different courses taught in this class and for developing a strong background if he/she chooses to pursue research in Nanotechnology as a career.											
Course Outcomes: At the end of the course, the student will be able to											
CO1	Apply th	e X-ray diff	raction (XF	RD) of nano	materials.						
CO2	Apply th	e EM based	experimen	tal data of r	nanopartic	les.					
CO3	Apply th	e Spectrosc	opic charac	terization o	f nanopart	icles.					
CO4	Understa	nd the limit	ations of th	e characteri	ization tec	hniques.					
CO5	Understa	nd various	UV-Vis. At	osorption sp	ectroscop	y of nanoma	terials.				
Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	3	3	3	3	3	3	3	3			
CO2	3	3	3	3	3	3	3	2			
CO3	3	3	3	3	3	3	3	2			
CO4	3	3	3	3	2	3	3	2			
CO5	3	3	3	3	2	2	2	1			

- 1. X-ray diffraction (XRD): Phase analysis of binary mixture; indexing of XRD peaks and lattice structure refinement.
- 2. Selective area electron diffraction: Software based structural analysis based on TEM based experimental data from published literature. (Note: Later experiment may be performed in the lab based on availability of TEM facility).
- 3. SEM: Comparative microstructural analysis using FESEM on (i) cleaved HOPG, (ii) cleaved Mica, (iii) Glass, (iv) Si and (v) oxide sample (e.g., BaTiO3).
- 4. EDXA (SEM based): EDXA of a multicomponent sample.
- 5. Complex impedance spectroscopy for electronic property evaluation (e.g., on BaTiO3).
- 6. Surface area and pore volume measurements of nanoparticles (a standard sample and a new sample, if available).
- 7. To investigate the optical properties of certain nanosized semiconducting oxides.
- 8. To study the size quantization effects in semiconducting nanosystems using optical and emission tools.
- 9. Spectroscopic characterization of metallic, semiconducting and insulating nanoparticles.
- 10. Particle size and lifetime analysis using dynamic light scattering.
- 11. To analyze the thickness, Optical transmission and reflectivity of thin film of Al.
- 12. To work out the charge, Zeta potential and xize distribution of colloidal solution of nanoparticle using dynamic light scattering method.
- 13. To determine the elemental contents in nanoalloys using different analytical techniques.
- 14. To investigate photo-catalytic activity of nanomaterials.
- 15. To study the Band Gap of Nano crystals using UV-Vis. Absorption spectroscopy.

MTNT521	3-18	Material Simulation Lab				L-0,T-0,P-4	2 (Credits	
Pre-requisite: None									
Course C M.Tech. s theoretica if he/she c	Dbjective students v Il treatme chooses t	es: The object with the appl nt in differer o pursue rese	ctive of th ication of nt courses t earch in Na	e course on numerical t aught in this anotechnolo	Synthesis echniques s class and ogy as a ca	of Nanomateri that he/she ne for developin treer.	al Lab is t eds for un g a strong	o equip the derstanding background	
Course Ou	tcomes:	At the end c	of the cours	se, the stude	ent will be	able to			
CO1	CO1 Apply basics knowledge of computational skills required for describing various physical systems.								
CO2	Progra	mme with th	ne C++ or a	any other hi	gh level la	anguage.			
CO3	Use of	various nun	nerical met	thods in des	cribing/so	lving Physics	problems.		
CO4	Solve problem, critical thinking and analytical reasoning as applied to scientific problems.								
CO5	Explor	e new areas	of researc	h in physics	and allied	l fields of scie	nce and tee	chnology.	
	Mapping of course outcomes with the program outcomes								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	
CO1	3	3	3	3	3	3	3	3	
CO2	3	3	3	3	3	3	3	2	
CO3	3	3	3	3	3	3	3	2	
CO4	3	3	3	3	2	3	3	2	
CO5	3	3	3	3	2	2	2	1	

- 1. Simulation of Ising Model using Metropolis Algorithms.
- 2. Simulation of Potts Model and its application in studying magnetic properties.
- 3. Ab Initio Quantum mechanical simulation of of electrical, optical and structural properties.
- 4. Force field Method simulation of thermodynamic, Kinetic and electrical properties.

MTNT5214	-18 Mini Project				L-0,T-0,P-4	2 C	redits		
Pre-requisite: None									
Course Objectives: The objective of the course on Mini Project is to equip the M.Tech. students with the exposure to various domains of planning and writing about the research project that he/she needs for for developing a strong background if he/she chooses to pursue research in Nanotechnology as a career.									
Course Outcomes: At the end of the course, the student will be able to									
C01	design and carry out scientific experiments as well as accurately record and analyze the results of experiments/theory.								
CO2	skilled i scientifi	in problem s ic problems	olving, criti	ical thinking	g and ar	nalytical reasoni	ng as appl	ied to	
CO3	clearly formats	communication to both scie	te the results entists and the	s of scientif ne public at	ic work large.	in oral, written	and electr	onic	
CO4	explore	new areas o	of research i	n physics a	nd allied	d fields of scient	ce and tech	nnology.	
CO5	apprecia behavio	ate the centr	al role of ph	nysics in ou	r society	y and use this as	s a basis fo	r ethical	
Mapping of course outcomes with the program outcomes									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	
CO1	3	3	3	3	3	3	3	3	
CO2	3	3	3	3	3	3	3	2	
CO3	3	3	3	3	3	3	3	2	
CO4	3	3	3	3	2	3	3	2	
CO5	3	3	3	3	2	2	2	1	
Detailed Syllabus:									

Minor Project on Current Trends in Nanotechnology covering Synthesis Process, Fabrication

and Characterization of nanomaterials and their applications in devices.

Note: Minor Project work is to be carried out and submitted within the stipulated time in consultation with the concerned guide of the candidate.

Semester-III

MTNT531	5-18 Nanotechnology in Food and Agriculture			L·	-3,T-1,P-0	4 C	redits		
Pre-requisite: None									
Course Objectives: The objective of the course on Nanotechnology in Food and Agriculture is to equip the M.Tech. students with the concepts of nanotechnology required in the field of food and agriculture that he/she needs for developing a strong background if he/she chooses to pursue research in Nanotechnology as a career.									
Course Outcomes: At the end of the course, the student will be able to									
C01	Define intermolecular as well as hydrophilic and hydrophobic interactions, soluble polymers, self assembly in plant cells.								
CO2	Introduce the nanotechnology in food, food production, antimicrobial functionality, functional materials in food nanotechnology.								
CO3	Explain the nanotechnology in Agricultural field, different Enzyme and DNA based biosensors, RFIDs tag, Nano-sensors networks.								
CO4	Defir dielee	ne ad	vanced pro heating, m	cessing tech	hniques for rocessing, a	food proc and self-lif	essing like i e analysis of	nfrared pro	ocessing, acteristics.
C05	Eluci distri	date butic	food qualit n, nanoma	y, safety ar terials for f	nd security	of agricult ations.	ural product	, packaging	g and
Mapping of course outcomes with the program outcomes									
	PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3		3	3	3	3	3	3	3
CO2	3		3	3	3	3	3	3	2
CO3	3		3	3	3	3	3	3	2
CO4	3		3	3	3	2	3	3	2
CO5	3		3	3	3	2	2	2	1

Unit-I

Intermolecular Interactions: Introduction, Hydrophobic and Hydrophilic Interactions, Dispersion Interaction, Electrostatic Interactions, Steric Interactions Involving Soluble Polymers. Self-Assembly, Plant Cells, Organized Self-Assembled Structures.

Unit-II

Nanotechnology in Food: Introduction, Food Production, Antimicrobial Functionality, Visual Indicators, Physics and Structures in Food Bionanotechnology, Information and Communication Technology, Fibrillar Structures, Plate-Like Structures, Spherically Symmetric Structures, Bicontinuous Structures in Protein–Polysaccharide Systems, Gastronomy and the Nanodomain: Molecular Gastronomy, functional materials in food nanotechnology.

Unit-III

Nanotechnology in Agricultural: Introduction, Biosensors, Enzyme Biosensors and Diagnostics, DNA-Based Biosensors and Diagnostics, Radiofrequency Identification (RFID), Integrated Nanosensor Networks: Detection and Response, Precision Agriculture, Potential Changes in Farming Methods and Sustainable Agriculture.

Unit-IV

Advanced Processing Technologies: Introduction, Preservation Methods, Drying Techniques, Conventional methods and its limitation, Infrared processing, di-electric heating, microwave processing, batch type and conveyor type systems, shelf-life, analysis of food characteristics.

Unit-V

Food Quality, Safety, and Security: Introduction, Improving Quality, Safety, and Security of Agricultural Production, Food Processing, Packaging and Distribution. Concerns about using Nanotechnology in Food Production. Reasons to Package Food Products, Physical Properties of Packaging Materials. Safety Assessment of Oral-Exposure Engineered Nanomaterials for Food Application. Toxicity aspects of nanofood, modification of nano materials to avoid toxic effect and commercial aspect.

Text Books:

1. Lynn J. Frewer, Willem Norde, Arnout Fischer, Frans Kampers "Nanotechnology in the Agri-Food Sector" John Wiley and Sons, 2010.

2. S.Choudhary, 'Applied Nanotechnology in Agriculture', Arise Publication, 2011.

MTNT5	T5316-18Nanotechnology in Health CareL-3,T-1,P-04					4 C	redits			
Pre-requisite: None										
Course Ob in Health (nanoscienc	Djectives: T Care that ar we and techn	he main ol e essentia ology	bjective of the solution of th	his course is attain of adva	to provide inced prob	the student volume st	with Nanot ntered in t	echnology he field of		
Course Oi	itcomes: A	t the end c	of the course	e, the student	will be ab	le to				
CO1	To be int	roduced to	o recent adv	ancements ir	n nano meo	dicine.				
CO2	learn dev	velopments	s in nanostru	uctured mate	rials used	for medical	implants			
CO3	learn about nano diagnostics.									
CO4	Learn ha	rmful effe	cts of nanop	oarticles						
CO5	understa	nd need of	nanotechno	ology in heal	th care					
	Mapping of course outcomes with the program outcomes									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		
CO1	3	3	3	3	3	3	3	3		
CO2	3	3	3	3	3	3	3	2		
CO3	3	3	3	3	3	3	3	2		
CO4	3	3	3	3	2	3	3	2		
CO5	3	3	3	3	2	2	2	1		

UNIT I

Trends In Nanobiotechnology: Nanotechnology in gene therapy. Stem Cell technology. PCR, ELISA, DNA Profiling and Blotting techniques-Nanoprobes.

UNIT II

Nanoimmuno Technology: Nanoimmunoassay and nano-immunosensors- Bio-Barcode Assay- use of magnets, gold, DNA and antibodies. Immunodiagnostics for cancer and central nervous system disorders.

UNIT III

Nanotechnology Based Medical Diagnostics: Improved diagnosis by *in vivo* imaging - detection of tumors, plaque and genetic defects. Nanobot medical devices. Cantilever Sensors.

UNIT IV

Prosthetic and Medical Implants: Prosthesis and implants. neural, ocular, cochlear, dental implants. implants and prosthesis of skin, limb, bone. Artficial organ and Organ transplant. Nanofibre scaffold technology.

UNIT V

Biomedical Applications Of Nanotechnology: Nano-bioconjugates and their significance. Nanoscaffolds. Magnetic Nanoparticles. Multifunctional Inorganic and organic nanoparticles and their biomedical applications

Text and Reference books:

- 1. Biosensors and modern biospecific analytical techniques, Wilson & Wilson's.
- 2. Chemical Sensors and Biosensors; Brian, R Eggins; Wiley; New York, Chichester; 2002.
- 3. Comprehensive Analytical Chemistry; Ed. L Gorton; Elsevier, Amsterdam.
- 4. Electrochemical Methods: Fundamentals and Applications; Allen J Bard and Larry R Faulkner; Wiley, New York, Chichester : 2nd ed.; 2001. London; 2005.

MTNT531	7-18 Biomaterials					-3,T-1,P-0	4 C	redits		
Pre-requisite: None										
Course Objectives: The objective of the course is to know the classification of biomaterial, their bulk and surface properties and characterization to prepare the students to find a place in biomedical field. To learn the various biological responses to the materials and biomechanics .To have an exposure on the clinical context of their use, manufacturing processes and testing, cost, sterilization, packaging and regulatory issues. Course Outcomes: At the end of the course, the student will be able to										
CO1	Learn abo	out the basi	ic understar	nding and c	lassificatio	on of nano bi	omaterial			
CO2	Understa	nd the Bulk	and surfac	e characteri	zation					
CO3	Understa	nd the metl	nods for Te	sting bioco	mpatibility	I				
CO4	Learn abo	out Tissue r	eplacement	implants w	vith bioma	terials				
CO5	Learn abo	out the Arti	ficial organ	s with bion	naterials					
	Mapping of course outcomes with the program outcomes									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		
CO1	3	3	3	3	3	3	3	3		
CO2	3	3	3	3	3	3	3	2		
CO3	3	3	3	3	3	3	3	2		
CO4	3	3	3	3	2	3	3	2		
CO5	3	3	3	3	2	2	2	1		

UNIT I

Introduction and Classification: Introduction and classifications; Metals: different types, properties and interaction with the tissue, Polymers: classification and properties, Ceramics: Types, properties and interactions with the tissue, Composites: matrix and reinforcing agents/fillers and properties, Cell adhesion, host- tissue reactions. Tissue derived biomaterials: Structure and properties of collagen and collagen-rich tissues, Biotechnology of collagen, design of resorbable collagen-based medical implants soft.

UNIT II

Bulk and Surface Characterization: Bulk Characterization: XRD, FT-IR, SEM, energy dispersive X-ray (EDX), DSC, TGA, dielectric analysis (DEA); Surface analysis: XPS, SIMS, AES, surface enhances Raman spectroscopy (SERS), AFM/STM; Structural properties of tissues-bone, teeth and elastic tissues, Effects of sterilization on material properties.

UNIT III

Testing Biocompatibility: blood and tissue compatibility; degradation of biomaterials in biological environment, toxicity tests, sensitization, carcinogenicity, mutagenicity and special tests; In vitro and In vivo testing, implant associated infections, biocompatibility enhancement using carona discharge and plasma processes, surface coatings; Ethical considerations, good manufacturing practice, standards, Regulatory issues.

UNIT IV

Tissue Replacement Implants with Biomaterials: Tissue replacements, sutures, surgical tapes, adhesive, percutaneous and skin implants, maxillofacial augmentation, blood interfacing implants, hard tissue replacement implants, internal fracture fixation devices, Joint replacements.

UNIT V

Artificial Organs with Biomaterials: Artificial heart, prosthetic cardiac valves, limb prosthesis, externally powered limb prosthesis, Dental implants.

Text and reference books:

1. D. Shi, Ed., "Biomaterials and Tissue Engineering", Berlin, New York: Springer, 2004.

2. Joon Park, D.B. Joseph, "Biomaterials: Principles and Applications", CRC, Press, 2003.

3. Kay C. Dee, David A. Puleo and Rena Bizios, "An Introduction to Tissue-Biomaterial Interactions", John wiley, 2002.

4. L. Hench and J. Jones, "Biomaterials, Artificial Organs and Tissue Engineering",

Woodhead Publishing in Materials, 2002.

MTNT531	8-18 Quantum Computing					L-0,T-0,P-4	2	Credits		
Pre-requisite: None										
Course Objectives: The objective of the course on Quantum Computing is to equip the M.Tech. students with the concepts of quantum information that he/she needs for for developing a strong background if he/she chooses to pursue research in Nanotechnology as a career.										
Course Outcomes: At the end of the course, the student will be able to										
CO1	CO1 Gain facility of some of the many concepts and techniques in second generation nanotechnology.									
CO2	Unders	tand the phy	vsics of info	rmation pro	ocessing.					
CO3	Unders	tand quantu	m algorithm	ns and quar	ntum error	correction.				
CO4	Know t	he reversibl	e computing	g.						
CO5	Unders	tand the bas	ic architectu	ure of quan	tum comr	nunication an	d key dist	ribution.		
Mapping of course outcomes with the program outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		
CO1	3	3	3	3	3	3	3	3		
CO2	3	3	3	3	3	3	3	2		
CO3	3	3	3	3	3	3	3	2		
CO4	3	3	3	3	2	3	3	2		
CO5	3	3	3	3	2	2	2	1		
Unit-I

Foundations of quantum and classical computing – quantum mechanics, reversible computation, and quantum measurement, quantum logic

Unit-II

Simple quantum protocols and algorithms – teleportation and superdense coding, the Deutsch-Jozsa and Simon's algorithm, Grover's quantum search algorithm, and Shor's quantum factoring algorithm, Shor's factoring algorithm and Grover's search algorithm

Unit-III

Foundations of quantum communication – noise and quantum channels, and quantum key distribution, quantum error correction, quantum communication and key distribution

Unit-IV

Reversible computation, charge recovery logic, adiabatic circuits, or adiabatic computing. Relation to thermodynamics, Physical reversibility, Logical reversibility

- 1. Lange K.-J., McKenzie P., Tapp A. (2000), "Reversible space equals deterministic space", Journal of Computer and System Sciences, 60: 354–367, doi:10.1006/jcss.1999.1672.
- 2. Perumalla K.S. (2014), Introduction to Reversible Computing, CRC Press.

MTNT5319	T5319-18Business AnalyticsL-3,T-1,P-0					·3,T-1,P-0	4 C	redits
Pre-requisi	Pre-requisite: None							
Course Ob	jectives: '	The objecti	ve of the co	ourse on \mathbf{B}	usiness A	nalytics is t	o equip th	e M.Tech.
background	if he/she	chooses to 1	ousiness an	arytic that strial researc	the/sne ne	technology	as a career	g a strong
ouonground	11 110, 5110							
Course Out	tcomes: A	t the end of	f the course,	the student	will be ab	ole to		
CO1	Understa	and the role	of business	analytics w	vithin an o	rganization.		
CO2	Analyze	data using	statistical ar	nd data mini	ing technic	ques and unc	lerstand rel	lationships
	between	the underly	ing busines	s processes	of an orga	nization.		
CO3	To gain	an understa	nding of ho	w managers	s use busin	ess analytics	s to formul	ate and
	solve bu	siness prob	lems and to	support ma	nagerial de	ecision maki	ng.	
CO4	To becom	ne familiar	with proces	sses needed	to develop	o, report, and	l analyze b	usiness
	data.							
CO5	Analyze	and solve p	problems fro	om different	industries	such as mai	nufacturing	g, service,
	retail, so	ftware, ban	king and fin	ance, sports	s, pharmac	eutical, aero	ospace etc	
	Μ	apping of	course outc	omes with	the progra	am outcome	es	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	2
CO3	3	3	3	3	3	3	3	2
CO4	3	3	3	3	2	3	3	2
CO5	3	3	3	3	2	2	2	1

Unit-I

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organisation, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling and estimation methods overview.

Unit-II

Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

Unit-III

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predicative Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling

Unit-IV

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.

Unit-V

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making.

Unit-VI

Recent Trends: Recent trends in Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism.

Text and reference books:

1. Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Pearson FT Press.

2. Business Analytics by James Evans, persons Education.

MTNT53	20-18	Industry Sa	fety		L-	3,T-1,P-0	4 C	redits
Pre-requis	ite: None							
Course Ob with the con if he/she ch	Course Objectives: The objective of the course on Industry Safety is to equip the M.Tech. students with the concepts of maintenance engineering that he/she needs for developing a strong background if he/she chooses to pursue industry as a career.							
Course Ou	tcomes: A	At the end of	the course,	the student	will be ab	le to		
CO1	Underst	and basics of	f Industrial	safety				
CO2	Learn F	undamentals	of mainten	ance engine	eering			
CO3	Underst	and Wear an	d Corrosion	n and their j	prevention			
CO4	Learn m	nethods of Fa	ult tracing					
CO5	Learn co	oncepts of Pe	eriodic and	preventive	maintenan	ce:		
	Ν	Iapping of c	ourse outc	omes with	the progra	am outcom	28	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	2
CO3	3	3	3	3	3	3	3	2
CO4	3	3	3	3	2	3	3	2
CO5	3	3	3	3	2	2	2	1

Unit-I

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Unit-II

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-III

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

Unit-IV

Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit-V

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets,

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

MTNT532	1-18	Ope	eration rese	earch	L-	-3,T-1,P-0	4 C	redits
Pre-requisi	Pre-requisite: None							
Course Ob students with he/she choo	Course Objectives: The objective of the course on Operation research is to equip the M.Tech. students with the concepts of operation research methods for developing a strong background if he/she chooses to pursue research in Nanotechnology as a career.							
Course Out	tcomes: A	t the end of	the course,	the student	will be ab	ole to		
CO1	apply the	e dynamic p	rogrammin	g to solve p	roblems of	f discreet va	riables	
CO2	apply the	e dynamic p	rogrammin	g to solve p	roblems of	f continuous	variables	
CO3	apply the	e concept of	non-linear	programmi	ng			
CO4	carry ou	t sensitivity	analysis					
CO5	model th	ne real world	l problem a	nd simulate	it.			
	Μ	apping of c	ourse outc	omes with	the progra	am outcome	es	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	2
CO3	3	3	3	3	3	3	3	2
CO4	3	3	3	3	2	3	3	2
C05	3	3	3	3	2	2	2	1

Unit -I

Optimization Techniques: Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit-II

Formulation of a LPP: Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Unit-III

Nonlinear Programming Problem: Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit-IV

Scheduling and Sequencing: single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit -V

Competitive Models: Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

Text and references books:

1. H.A. Taha, Operations Research, An Introduction, PHI, 2008.

2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982. Model Curriculum of Engineering & Technology PG Courses [Volume-I] [328].

3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008.

4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009.

5. Pannerselvam, Operations Research: Prentice Hall of India 2010.

6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010.

MTNT5322	2-18	Cost Mana	gement of Projects	Engineerin	g	L-3,T-1,P-0	L-3,T-1,P-0 4 Credits	
Pre-requisi	Pre-requisite: None							
Course Objectives: The objective of the course on Cost Management of Engineering Projects is to equip the M.Tech. students with the concepts of managing engineering projects for developing a strong background if he/she chooses to pursue industry as a career.								
Course Out	tcomes:	At the end of	f the course,	the student	will b	e able to		
C01	Under	stand Strategi	c Cost Man	agement Pr	ocess			
CO2	Under	stand Cost co	ncepts for n	nanagement	of Pro	ojects		
CO3	Learn	about the var	ious stages (of project ex	xecutio	n		
CO4	Under	stand the basi	c of Cost B	ehavior and	Profit	Planning Margi	nal Costing	5
CO5	Under	stand Quantit	ative techni	ques for cos	st mana	agement		
		Mapping of o	course outc	omes with	the pr	ogram outcome	es	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
C01	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	2
CO3	3	3	3	3	3	3	3	2
CO4	3 3 3 3 2 3 3 2						2	
CO5	3	3	3	3	2	2	2	1

Unit-I

Introduction: Introduction and Overview of the Strategic Cost Management Process.

Unit-II

Effective Cost: Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Unit-III

Project: Project meaning, Different types, why to manage, cost overruns centres, various stages of project execution : conception to commissioning. Project execution as conglomeration of technical and non technical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team : Role of each member. Importance Project site : Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.

Unit-IV

Cost Behavior and Profit Planning Marginal Costing: Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.Quantitative techniques for cost management, Linear Programming, PERT/CPM Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi.
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting.
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting.
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher.
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

MTNT531	4-18 Project						L-	0,T-0,P-8	4	Credits
Pre-requisi	te: No	ne								
			1	6.4		•	x 7 1	• , , • •		. 1
the applicat	jective	s: The	ie objectiv ents for de	e of the co veloping a	ourse on Prostrong bac	roject V skorour	Nork nd if l	is to train . ne/she choo	M.Tech. s	tudents with sue research
in Nanotech	nology	/ as a	career.	veroping u	strong out	.Kgrour	iu ii i		beb to pur	Suc rescuren
Course Out	tcome	s: At	the end of	the course	e, the stude	nt will	be ab	le to		
CO1	desig the re	n and esults	d carry out of experir	scientific nents and	experimen simulation	ts as w studies	ell as	accurately	record an	d analyze
CO2	skille scien	ed in tific	problem so and Techn	olving, crit ical proble	tical thinking thinking the second	ng and	analy	tical reason	ning as app	plied to
CO3	clear form	ly co ats to	mmunicate both scier	e the result ntists and t	ts of scient he public a	ific wor at large	rk in	oral, writte	n and elec	tronic
CO4	explo nano	ore ne techn	ew areas of ology.	fresearch	in physics	and alli	ied fi	elds of nano	oscience a	nd
CO5	appre beha	eciate vior	the centra	l role of p	hysics in o	ur soci	ety ar	nd use this a	as a basis	for ethical
		Ma	pping of c	ourse out	comes wit	h the p	rogra	am outcom	ies	
	PO1		PO2	PO3	PO4	POS	5	PO6	PO7	PO8
C01	3		3	3	3		3	3	3	3
CO2	3		3	3	3		3	3	3	2
CO3	3		3	3	3		3	3	3	2
CO4	3		3	3	3		2	3	3	2
CO5	3		3	3	3		2	2	2	1
Detailed Sy	llabus	:		·						
Project on Current Trends in Nanotechnology covering Synthesis Process, Fabrication										
and Charact	erizati	on of	nanomate	rials and t	heir applic	ations i	n dev	vices.		
Note: Project is to be carried out and submitted within the stipulated time in										

consultation with the concerned guide of the candidate.

Semester-IV

MTNT54	11-18	Dissertatio	n]	L-0,T-0,P-0	16	Credits
Pre-requis	Pre-requisite: None							
Course Ol the applica	bjective	s: The object concepts for c	ive of the developing	course on P a strong ba	roject Wor ckground i	k is to train N f he/she choos	1.Tech. s ses to put	students with rsue research
Course Ou	utcomes	s: At the end	of the cours	se, the stude	ent will be a	able to		
CO1	desig the re	n and carry o esults of expe	ut scientifi riments.	c experimer	nts as well a	as accurately 1	ecord an	id analyze
CO2	skilled in problem solving, critical thinking and analytical reasoning as applied to scientific problems.							
CO3	clear form	ly communicates to both sci	ate the resu entists and	Its of scient the public	ific work i at large.	n oral, written	and elec	etronic
CO4	explo	ore new areas	of research	n in physics	and allied	fields of scien	ce and te	echnology.
CO5	appre behav	eciate the cent vior	ral role of	physics in c	our society	and use this a	s a basis	for ethical
	1	Mapping of	course ou	tcomes wit	h the prog	ram outcome	es	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	2
CO3	3	3	3	3	3	3	3	2
CO4	3	3	3	3	2	3	3	2
CO5	3	3	3	3	2	2	2	1
Detailed S	Detailed Syllabus: Dissertation on Current Trends in Nanotechnology covering Synthesis Process Fabrication							

and Characterization of nanomaterials and their applications in devices.

Note: Dissertation work is to be carried out and submitted within the stipulated time in

consultation with the concerned guide of the candidate.

Audit Course 1

MTNT5124	-18	English for Research paper writing	L-2,T-0,P-0	0 Credits		
Pre-requisit	te: No	ne				
Course Obi	ective	s. The objective of the course on English f a	r Research naner	writing is to equin		
the M.Tech.	stude	ents with the concepts of English writing t	that he/she needs	for writing research		
papers, rese	arch p	projects and reports for developing a stron	ng background to	engage in effective		
scientific wr	iting i	n lifelong learning process.				
Course Out	comes	s: At the end of the course, the student will	be able to			
CO1	write	professional quality essays, critically evalu	ate, revise and edi	t their own writings.		
CO2	use 1	ibrary and online resources, assess and c	cite those sources	properly, wherever		
	neces	ssary.				
CO3	edit 1	their own writing as well as the writing or reh paper	of their peers, to	produce a scientific		
COA	formi	lion with the termineless of the writing and				
C04	Tami	thar with the terminology of the writing pro	icess.			
CO5	will diver	be amply prepared to be a responsible cit se society.	izen in a globally	interconnected and		
Detailed Sy	llabus	:				
1. Planning a Sentences, E	and Pr Being (eparation, Word Order, Breaking up long se Concise and Removing Redundancy, Avoid	entences, Structurin ling Ambiguity and	ng Paragraphs and I Vagueness		
2 Clarifying and Plagiaris	Who I sm, Se	Did What, Highlighting Your Findings, Here extension of a Paper, Abstracts. Introduction	dging and Criticisi	ng, Paraphrasing		
3 Review of	the Li	terature, Methods, Results, Discussion, Con	nclusions, The Fin	al Check.		
4 key skills a skills are new Literature,	4 key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,					
5 skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions						
6 useful phra Reference H	6 useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Reference Books:					
1. The 2. Fresh	Nortor 1man (n Introduction to Literature, 12 th edition. Composition Course Packet, 2016 - 2017.				

3. A Christmas Carol by Charles Dickens.

MTNT5125-18	Disaster Management	L-2,T-0,P-0	0 Credits

Pre-requisite: None

Course Objectives: The objective of the course on **Disaster Management** is to equip the M.Tech. students with the understanding of the basic concepts of Disaster Management that he/she needs for developing a lifelong learning skill.

Course Outcomes: At the end of the course, the student will be able to

CO1	To provide basic conceptual understanding of disasters and its relationships with development.
CO2	To gain understand approaches of Disaster Risk Reduction (DRR) and the relationship between vulnerability, disasters, disaster prevention and risk reduction.
CO3	To understand Medical and Psycho-Social Response to Disasters.
CO4	To prevent and control Public Health consequences of Disasters.
CO5	To enhance awareness of Disaster Risk Management institutional processes in India.

Detailed Syllabus:

Unit-I

Introduction: Disaster: Definition, Factors and Significance; Difference Between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Unit-II

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts. **Unit-III**

Disaster Prone Areas in India Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics

Unit-IV

Disaster Preparedness and Management Preparedness: Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness. **Unit-V**

Risk Assessment Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.

Unit-VI

Disaster Mitigation Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India. **Reference books:**

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, Pardeep Et.Al. (Eds.)," Disaster Mitigation Experiences and Reflections", Prentice Hall Of India, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi.

MTNT5126-18	Sanskrit for Technical Knowledge	L-2,T-0,P-0	0 Credits
			1

Pre-requisite: None

Course Objectives: The objective of the course on **Sanskrit for Technical Knowledge** is to equip the M.Tech. students with the technical knowledge which has been express in Sanskrit that he/she needs developing a strong background of our rich ancient technical knowledge.

Course Outcomes: At the end of the course, the student will be able to

CO1	Understand the basic Sanskrit language
CO2	Learning of Sanskrit to improve brain functioning
CO3	Understand the Ancient Sanskrit literature about science & technology
CO4	enhancing the memory power
CO5	The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Detailed Syllabus:

Unit-I

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences

Unit-II

Order Introduction of roots Technical information about Sanskrit Literature

Unit-III

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics.

- 1. "Abhyaspustakam" Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

MTNT5127	-18	Value Education	L-2,T-0,P-0	0 Credits		
Pre-requisi	te: Un	iversal Human Values				
Course Obj with the con a strong bac	Course Objectives: The objective of the course on Value Education is to equip the M.Tech. students with the concepts of value education that he/she needs for professional development for developing a strong background for lifelong learning process.					
Course Out	tcome	: At the end of the course, the student w	vill be able to			
CO1	Lear	n about the importance of value education	on			
CO2	Lear	n about the nature, society and larger sy	stems			
CO3	deve	loping clarity of human relationships				
CO4	Unde	erstand the relation between ethics and o	levelopment of societ	у		
CO5	Sens	itize towards issues in society and natur	e.			
Detailed Sy	llabus	:				
UNIT I						
Living in ha	rmony	y as an individual				
UNIT II						
Establishing	harm	ony in family				
UNIT III						
Building a s	ociety	based on trust				
UNIT IV						
Understandi	ng coe	existence with rest of nature				
Text and re 1. Hum New 2. Jeeva 3. Hum 4. The 5. On E 6. Diar 7. Life	eference an Va Delhi an Vid an Va Story Educat ies of 2 and Pl	Se books: lues and Professional Ethics by RR Ga , 2010. lya: E.K Parichaya, A Nagaraj, Jeevan V lues, A.N. Tripathi, New Age Intl. Publ of My Experiments with Truth - by Mol ion - The Mother. Anne Frank - Anne Frank. hilosophy of Swami Vivekananda.	ur, R Sangal, G P Ba /idya Prakashan, Ama ishers, New Delhi, 20 nandas Karamchand C	agaria, Excel Books, arkantak, 1999. 04. Gandhi.		

Audit Course-2

MTNT5225	-18	Constitution of India	L-2, T-0,P-0	0 Credits
Pre-requisit	te: No	ne		
Course Obj	ective	s: The objective of the course on Constitu	ition of India is to	equip the M.Tech.
students wit	h the	concepts of political system in India that	he/she needs for a	developing a strong
background	about	tabric of the nation.		
Course Outcomes: At the end of the course, the student will be able to				
CO1	Learn about the perspective of the Constitution of India			
CO2	Learn about the fundamental rights			
CO3	Learn about the fundamental duties and legal status			
CO4	Learn about the federal structure of India			
CO5	Lear	n about the constitutional powers of importa	ant constitutional o	offices
Detailed Sy	llabus	:		
Unit-I History of]	Mali	ag of the Indian Constitution, History	rafting Committe	a (Composition &
Working)	VIAKII	ig of the indian Constitution: History L	nanning Committee	z, (Composition &
Unit-II				
Philosophy of the Indian Constitution: Preamble, Salient Features				
Unit-III	6 0		1	D 1' D 1 <i>i i</i>
Contours of Freedom Ri	f Con abt aa	stitutional Rights & Duties: Fundamenta	al Rights, Right to	Equality, Right to
Right to Constitutional Remedies. Directive Principles of State Policy. Fundamental Duties				
Unit-IV				
Organs of Governance: Parliament, Composition, Qualifications and Disqualifications Powers and				
Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer				
of Judges, Qualifications, Powers and Functions,				
Unit-5 Local Administration: District's Administration head: Role and Importance Municipalities:				
Introduction. Mayor and role of Elected Representative. CEO of Municipal Corporation.				
Panchayati raj: Introduction, PRI: Zila Panchayat, Elected officials and their roles, CEO Zila				
Panchayat: Position and role. Block level: Organizational Hierarchy (Different departments),				
village level: Role of Elected and Appointed officials, Importance of grass root democracy				
Unit-VI Election Commission: Election Commission: Bala and Eurotioning Chief Election Commissioner				
and Election Commission: Election Commission: Role and Functioning. Institute and Bodies				
for the welfa	for the welfare of SC/ST/OBC and women.			montate and Doulos

- D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.
 The Constitution of India, 1950 (Bare Act), Government Publication.

MTNT5226	5-18	Pedagogy studies	L-2,T-0,P-0	0 Credits
Pre-requisite: None				
Course Ob students wit background	jective th the skill re	es: The objective of the course on Pedag concepts of teaching methodology that a equired for academic career.	gogy studies is to he/she needs for o	equip the M.Tech. developing a strong
Course Outcomes: At the end of the course, the student will be able to				
CO1	Teac	hing: culture and education in present-day	society	
CO2	Lear	n about teaching strategies		
CO3	Lear	n about Strategies for learning and participa	ation at university	
CO4	Lear	n about Comparative education		
CO5	Unde	erstand importance of Research, developme	ent and innovation	of the curriculum

Unit-I

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.

Unit-II

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

Unit-III

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical Practices, Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies. **Unit-IV**

Professional development: alignment with classroom practices and follow up support, Peer support, Support from the head teacher and the community, Curriculum and assessment, Barriers to learning: limited resources and large class sizes

Unit-V

Research gaps and future directions, Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

References:

Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2):245-261.
 Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.

MTNT5227-18		Stress management of Yoga	L-2,T-0,P-0	0 Credits
Pre-requisite: None				
Course Objectives: The objective of the course on Stress management of Yoga is to equip the M.Tech. students with the concepts of stress management that he/she needs for developing a strong background for lifelong healthy learning.				
Course Outco	omes	: At the end of the course, the student will	be able to	
CO1 U	Understand the importance of life management skills			
CO2 a	achieve overall health of body and mind			
СОЗ І	Learn about the effects of stress on body			
CO4 I	Learn about yoga for enhancing quality of life			
CO5 I	Importance of engaging in life long learning process			
Detailed Sylla	abus	:		
Unit-I				
Definitions of	Eigh	nt parts of yog. (Ashtanga)		
Unit-II Yam and Niyam. Do`s and Don`t`s in life. i) Ahinsa, satya, astheya, bramhacharya and aparigraha ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan				
Unit-III Asan and Pranayam i) Various yog poses and their benefits for mind & body ii)Regularization of breathing techniques and its effects-Types of pranayam				
References:				
1. 'Yogic Asanas for Group Tarining-Part-I" : Janardan Swami Yogabhyasi Mandal, Nagpur 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata				
MTNT5228-1	8	Personality Development through life	I_2 T_0 P_0	0 Credits

TNT5228-18	Personality Development through life	L-2, T-0, P-0	0 Credits	
	enlightenment skills			

Pre-requisite: None

Course Objectives: The objective of the course on **Personality Development through life enlightenment skills** is to equip the M.Tech. students with the basic of personality development skills that he/she needs for developing a strong background if he/she chooses to pursue progress in career.

Course Outcomes: At the end of the course, the student will be able to

CO1	Understand the importance of improving personality
CO2	achieve the highest goal happily
CO3	become a person with stable mind, pleasing personality and determination
CO4	Learn about the Time Management
CO5	awaken wisdom in students

Detailed Syllabus:

Unit-I

Neetisatakam-Holistic development of personality: Verses- 19,20,21,22 (wisdom); Verses- 29,31,32 (pride & heroism); Verses- 26,28,63,65 (virtue); Verses- 52,53,59 (dont's); Verses- 71,73,75,78 (do's)

Unit-II

Approach to day to day work and duties: Shrimad Bhagwad Geeta : Chapter 2-Verses 41, 47,48, ;Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17,

23, 35,; Chapter 18-Verses 45, 46, 48.

Unit-III

Statements of basic knowledge.: Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68; Chapter 12 -Verses 13, 14, 15, 16,17, 18; Personality of Role model. Shrimad Bhagwad Geeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42,; Chapter 4-Verses 18, 38,39; Chapter18 – Verses 37,38,63

References:

- 1. "Srimad Bhagavad Gita" by Swami Swarupananda Advaita Ashram (Publication
- 2. Department), Kolkata
- 3. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath,
- 4. Rashtriya Sanskrit Sansthanam, New Delhi.