# **B.Sc.** (Hons.) Mathematics

Course Structure and Syllabus
(Based on Choice Based Credit System)
Batch 2022 & onwards

## **DEPARTMENT OF MATHEMATICS**

#### **VISION**

To be among the best mathematics departments in the region and to establish a national reputation as a centre for research and teaching in mathematics. Moreover, the department will contribute to the development of students as mathematical thinkers, and to function as productive citizens.

#### MISSION

- To discover, mentor, and nurture mathematically inclined students, and provide them a supportive environment that fosters intellectual growth.
- To prepare our undergraduate and graduate students to develop the attitude and ability to apply mathematical methods and ideas in a wide variety of careers.
- To perform widely recognized research in focused areas of mathematical and statistical theory, methodology, and education.
- To advocate for mathematical sciences and UTEP in schools and the local community.

## **B.Sc.** (Honours Mathematics) Program

## PROGRAM OBJECTIVES

Objective of the program is to catch young and talented students to motivate them to study Mathematics and to nurture them to develop their mathematical reasoning and logics. Other objectives of the program are to inspire students to pursue study in higher mathematics and grow as a skilful mathematician to cater the needs of knowledgeable society.

**Duration:** B.Sc. (Hons) Mathematics is a graduate level program offered by the Department of Mathematical Sciences. This is a 3-years program, consisting of six semesters with two semesters per year.

**Program Code:** BSHM (Bachelor of Science (Hons) in Mathematics)

Eligibility: 10+2 in any stream with Mathematics as one of the subjects with at least 50% marks in aggregate

# **PROGRAM EDUCATIONAL OBJECTIVES:** At the end of the program, the student will be able to:

| PEO1 | Apply principles of basic science concepts in understanding, analysis and prediction |
|------|--------------------------------------------------------------------------------------|
|      | of mathematical systems.                                                             |
| PEO2 | Develop human resource with knowledge, abilities and insight in Mathematics and      |
|      | related fields required for career in academia and industry.                         |
| PEO3 | Engage in lifelong learning and adapt to changing professional and societal needs.   |
|      |                                                                                      |

# PROGRAM SPECIFIC OUTCOMES

At the end of the program,

| PSO1 | Students will be able to understand the nature of Mathematics and shall be ready to study higher 'Abstract Mathematics'.                           |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO2 | Students will be able to visualize the importance of Mathematics and apply the knowledge of Mathematics in Physical, Chemical and Social Sciences. |
| PSO3 | Students will be able to use latest mathematical tools and software.                                                                               |
| PSO4 | Students will be able to formulate computer codes to tackle the complex mathematical problems.                                                     |
| PSO5 | Students will become more confident due to enhanced level of reasoning, logics, skills and shall be able to understand the needs of the society.   |

# **PROGRAM OUTCOMES:** At the end of the program, the student will be able to:

| PO1 | Understand the concepts of different branches of Mathematics.                                                                                                            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO2 | Demonstrate expertise to conduct wide range of scientific modelling.                                                                                                     |
| PO3 | Apply the concepts of mathematics in areas of mechanics, analysis, calculus, algebra, geometry, mathematical modelling etc., in industry, academia, and day-to-day life. |

# Scheme of the Program: B.Sc. (Hons.) Mathematics

# SEMESTER FIRST Contact Hrs. 24 Hrs.

| S.No. | Course Code | Course Type | Course Title Al                                    |   | Load<br>Allocation |   |          |          |     |    | Total<br>Mark<br>s | Cr |
|-------|-------------|-------------|----------------------------------------------------|---|--------------------|---|----------|----------|-----|----|--------------------|----|
|       |             |             |                                                    | L | Т                  | P | Internal | External |     |    |                    |    |
| 1.    | BSHM-101-22 |             | Calculus-I                                         | 4 | -                  | - | 40       | 60       | 100 | 4  |                    |    |
| 2.    | BSHM-102-22 | Compulsory  | Algebra                                            | 5 | 1                  | - | 40       | 60       | 100 | 6  |                    |    |
| 3.    | BSHM-103-22 |             | Programming Lab-I                                  | - | -                  | 4 | 30       | 20       | 50  | 2  |                    |    |
| 4.    | BHHL-115-22 |             | Communicative English                              | 2 | -                  | - | 20       | 30       | 50  | 2  |                    |    |
| 5.*   | BSHP-111-21 |             | Optics                                             | 3 | 1                  | - | 40       | 60       | 100 | 4  |                    |    |
|       | BSHP-113-21 |             | Physics Lab-I                                      | - | -                  | 4 | 30       | 20       | 50  | 2  |                    |    |
|       | UGCA-1902   | Elective    | Fundamentals of<br>Computer and IT                 | 3 | 1                  | - | 40       | 60       | 100 | 4  |                    |    |
|       | UGCA-1906   |             | Fundamentals of<br>Computer and IT<br>(Laboratory) | - | -                  | 4 | 30       | 20       | 50  | 2  |                    |    |
|       | 1           | <u> </u>    | 1                                                  |   | <u> </u>           |   | Total    |          |     | 20 |                    |    |

## L: Lectures T: Tutorial P: Practical Cr: Credits

Note\*: Physics (BSHP-111-21 & BSHP-113-21) are compulsory for the Students with Non-Medical background. Students without Non-medical background should opt Fundamentals of Computer and IT (UGCA-1902 & UGCA-1906).

# SEMESTER SECOND Contact Hrs. 24 Hrs.

| S.No. | Course Code   | Course Type | Course Title               | Load<br>Allocation |   |   | Marks Distribution |          | Total<br>Marks | Cr |
|-------|---------------|-------------|----------------------------|--------------------|---|---|--------------------|----------|----------------|----|
|       |               |             |                            | L                  | T | P | Internal           | External |                |    |
| 1.    | BSHM-201-22   |             | Real Analysis              | 5                  | 1 | - | 40                 | 60       | 100            | 6  |
| 2.    | BSHM-202-22   |             | Differential Equations     | 4                  | - | - | 40                 | 60       | 100            | 4  |
| 3.    | BSHM-203-22   | Compulsory  | Programming Lab-II         | -                  | - | 4 | 30                 | 20       | 50             | 2  |
| 4.*   | BHHL-116A-22  |             | Punjabi Compulsory         |                    |   |   |                    |          |                |    |
|       | Or            |             | Or                         | 2                  | - | - | 20                 | 30       | 50             | 2  |
|       | BHHL-116B-22  |             | Mudli Punjabi              |                    |   |   |                    |          |                |    |
| 5.**  | BHIC-111-22   |             | Chemistry-I                | 3                  | 1 | - | 40                 | 60       | 100            | 4  |
|       | BHIC-112-22   |             | Chemistry Lab-I            | -                  | - | 4 | 30                 | 20       | 50             | 2  |
|       | BBA-GE-201-18 | Elective    | Managerial<br>Economics-II | 5                  | 1 | 0 | 40                 | 60       | 100            | 6  |
|       |               |             | 1                          |                    | 1 | 1 | Total              | 1        |                | 20 |

### L: Lectures T: Tutorial P: Practical Cr: Credits

Note 1\*: Students with Punjabi as a passing subject in 10<sup>th</sup> class will study Punjabi Compulsory (BHHL-116A-22). Students without Punjabi as a subject in 10<sup>th</sup> class will study Mudli Punjabi (BHHL-116B-22).

Note 2\*\*: Chemistry (BHIC-111-22 & BHIC-112-22) is compulsory for the Students with Non-Medical background. Students without Non-medical background should opt Managerial Economics-II (BBA-GE-201-18).

SEMESTER THIRD Contact Hrs. 28 Hrs.

| S.No. | Course Code | Course Type | Course Title                          | Load<br>Allocation |   |   |          | Marks<br>n Distribution |     | Cr |
|-------|-------------|-------------|---------------------------------------|--------------------|---|---|----------|-------------------------|-----|----|
|       |             |             |                                       | L                  | Т | P | Internal | External                |     |    |
| 1.    | BSHM-301-22 |             | Theory of Real Functions              | 5                  | 1 | - | 40       | 60                      | 100 | 6  |
| 2.    | BSHM-302-22 |             | Group Theory I                        | 5                  | 1 | - | 40       | 60                      | 100 | 6  |
| 3.    | BSHM-303-22 | Compulsory  | Multivariable Calculus                | 5                  | 1 | - | 40       | 60                      | 100 | 6  |
| 4.    | BSHM-304-22 |             | Logic and Sets                        | 2                  | - | - | 20       | 30                      | 50  | 2  |
| 5.*   | BSHP-212-21 |             | Elements of modern physics            | 3                  | 1 | - | 40       | 60                      | 100 | 4  |
|       | BSHP-213-21 |             | Physics Lab-III                       | -                  | - | 4 | 30       | 20                      | 50  | 2  |
| 6.*   | UGCA-1914   | Elective    | Programming in Python                 | 3                  | 1 | - | 40       | 60                      | 100 | 4  |
|       | UGCA-1917   |             | Programming in Python<br>(Laboratory) | -                  | - | 4 | 30       | 20                      | 50  | 2  |
|       |             |             |                                       |                    |   |   | Total    | ,                       | 1   | 26 |

## L: Lectures T: Tutorial P: Practical Cr: Credits

Note\*: Physics (BSHP-212-21 & BSHP-213-21) are compulsory for the Students with Non-Medical background. Students without Non-medical background should opt Programming in Python (UGCA-1914 & UGCA-1917).

## **SEMESTER FOURTH**

Contact Hrs. 30 Hrs.

| S.No. | Course Code | Course Type | Course Title                                   | Load<br>Allocation |   |   |          |          |     | Total<br>Mark<br>s | Cr |
|-------|-------------|-------------|------------------------------------------------|--------------------|---|---|----------|----------|-----|--------------------|----|
|       |             |             |                                                | L                  | Т | P | Internal | External |     |                    |    |
| 1.    | BSHM-401-22 |             | Numerical Methods                              | 4                  | - | - | 40       | 60       | 100 | 4                  |    |
| 2.    | BSHM-402-22 |             | Riemann Integration and<br>Series of Functions | 5                  | 1 | - | 40       | 60       | 100 | 6                  |    |
| 3.    | BSHM-403-22 | Compulsory  | Ring Theory and Linear<br>Algebra I            | 5                  | 1 | - | 40       | 60       | 100 | 6                  |    |
| 4.    | BSHM-404-22 |             | Programming Lab-III                            | -                  | - | 4 | 30       | 20       | 50  | 2                  |    |
| 5.    | BSHM-405-22 |             | Graph Theory                                   | 2                  | - | - | 20       | 30       | 50  | 2                  |    |
| 6.*   | BHIC-211-22 |             | Chemistry-II                                   | 3                  | 1 | - | 40       | 60       | 100 | 4                  |    |
|       | BHIC-212-22 |             | Chemistry Lab-II                               | -                  | - | 4 | 30       | 20       | 50  | 2                  |    |
| 7.*   | BBA-401-18  | Elective    | Business Research<br>Methods                   | 5                  | 1 | - | 40       | 60       | 100 | 6                  |    |
|       | 1           | 1           | -                                              |                    |   |   | Total    | •        | ı   | 26                 |    |

## L: Lectures T: Tutorial P: Practical Cr: Credits

Note\*: Chemistry (BHIC-211-22 & BHIC-212-22) is compulsory for the Students with Non-Medical background. Students without Non-medical background should opt Business Research Methods (BBA-401-18).

# **SEMESTER FIFTH**

# Contact Hrs. 30 Hrs.

| S. No. | Course Code | Course Type                           | Course Title                                 |   | Load<br>locat |   |                                 |              | Total<br>Mark<br>s     | Cr |
|--------|-------------|---------------------------------------|----------------------------------------------|---|---------------|---|---------------------------------|--------------|------------------------|----|
|        |             |                                       |                                              | L | T             | P | Internal                        | Externa<br>l |                        |    |
| 1.     | BSHM-501-22 |                                       | Partial Differential Equations               | 4 | -             | - | 40                              | 60           | 100                    | 4  |
| 2.     | BSHM-502-22 | Compulsory                            | Group Theory-II                              | 5 | 1             | - | 40                              | 60           | 100                    | 6  |
| 3.     | BSHM-503-22 | Compulsory                            | Introduction to Number Theory                | 5 | 1             | - | 40                              | 60           | 100                    | 6  |
| 4.     | BSHM-504-22 |                                       | Mathematical Statistics                      | 5 | 1             | - | 40                              | 60           | 100                    | 6  |
| 5.     | BSHM-505-22 |                                       | Programming Lab-IV                           | - | -             | 4 | 30                              | 20           | 50                     | 2  |
| 6.     | EVS-101 A   |                                       | Environmental Science                        | 2 | -             | - | 20                              | 30           | 50                     | 2  |
| 7.     | BSHM-506-22 | Value Added<br>Course<br>(Compulsory) | Computer Algebra System and Related Software | - | -             | 2 | Satisfactory/<br>Unsatisfactory |              | Non<br>-<br>Cre<br>dit |    |
|        | I           | 1                                     |                                              |   | I             |   | Total                           |              |                        | 26 |

L: Lectures T: Tutorial P: Practical Cr: Credits

SEMESTER SIXTH Contact Hrs. 28 Hrs.

| S.No. | Course Code | Course Type                           | Course Title                         |   | Load |   | Marks<br>on Distribution        |          | Tot<br>al<br>Mar<br>ks | Cr             |
|-------|-------------|---------------------------------------|--------------------------------------|---|------|---|---------------------------------|----------|------------------------|----------------|
|       |             |                                       |                                      | L | T    | P | Internal                        | External |                        |                |
| 1.    | BSHM-601-22 |                                       | Complex Analysis                     | 5 | 1    | - | 40                              | 60       | 100                    | 6              |
| 2.    | BSHM-602-22 |                                       | Ring Theory and Linear<br>Algebra-II | 5 | 1    | - | 40                              | 60       | 100                    | 6              |
| 3.    | BSHM-603-22 | Compulsory                            | Theory of Equations                  | 5 | 1    | - | 40                              | 60       | 100                    | 6              |
| 4.    | BSHM-604-22 | -                                     | Mathematical Modeling                | 4 | -    | - | 40                              | 60       | 100                    | 4              |
| 5.    | BSHM-605-22 | -                                     | Programming Lab-V                    | - | -    | 4 | 30                              | 20       | 50                     | 2              |
| 6.    | BSHM-606-22 | Value Added<br>Course<br>(Compulsory) | Scientific Documentation Tool        | - | -    | 2 | Satisfactory/<br>Unsatisfactory |          |                        | Non-<br>Credit |
|       | 1           | 1                                     | 1                                    |   | 1    | I | Total                           |          |                        | 24             |

# L: Lectures T: Tutorial P: Practical Cr: Credits

#### **Examination and Evaluation**

| Theory   |                                                                                   |                    |                                                                        |
|----------|-----------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------|
| S. No.   | Evaluation criteria                                                               | Weightage in Marks | Remarks                                                                |
| 1        | Mid term/sessional Tests                                                          | 24                 | Internal evaluation (40 Marks) MSTs, Quizzes, assignments, attendance, |
| 2        | Attendance                                                                        | 6                  | etc., constitute internal evaluation.                                  |
| 3        | Assignments/Seminars/Presentation s/Continuous Evaluation                         | 10                 | Average of two mid semester test will be considered for evaluation.    |
| 4        | End semester examination                                                          | 60                 | External evaluation                                                    |
| 5        | Total                                                                             | 100                | Marks may be rounded off to nearest integer.                           |
| Practica | al                                                                                |                    |                                                                        |
| 1        | Evaluation of practical record/ Viva<br>Voice/Attendance/Seminar/<br>Presentation | 30                 | Internal evaluation                                                    |
| 2        | Final Practical Performance + Viva-<br>Voce                                       | 20                 | External evaluation                                                    |
| 3        | Total                                                                             | 50                 | Marks may be rounded off to nearest integer.                           |

## Instructions for Paper-Setter in B. Sc (Hons.) Mathematics

## A. Scope

- 1. The question papers should be prepared strictly in accordance with syllabus and format as prescribed by the University.
- 2. The question paper should cover the entire syllabus with uniform distribution among each unit and weightage of marks for each question.
- 3. The language of questions should be simple, direct, and documented clearly and unequivocally so that the candidates may have no difficulty in appreciating the scope and purpose of the questions. The length of the expected answer should be specified as far as possible in the question itself.
- 4. The distribution of marks to each question/answer should be indicated in the question paper properly.

## B. Type and difficulty level of question papers

- 1. Questions should be framed in such a way as to test the student's intelligence and understanding of the applied aspects of the subject. The weightage of the marks as per the difficulty level of the question paper shall be as follows:
  - i) Easy question 30%
  - ii) Average questions 50%
  - iii) Difficult questions 20%
- 2. The numerical content of the question paper should be up to 40%.

# C. Format of question paper

- 1. Paper code and Paper-ID should be mentioned properly.
- 2. The question paper will consist of three sections: Sections-A, B and C.
- 3. Section-A is COMPULSORY consisting of TEN SHORT questions carrying two marks each (total 20 marks) covering the entire syllabus.
- 4. The Section-B consists of FOUR questions of eight marks each covering Unit I & II of syllabus (Taking two questions from each Unit I & II).
- 5. The Section-C consists of FOUR questions of eight marks each covering Unit III & IV of syllabus (Taking two questions from each Unit III & IV).
- 6. Sub-parts of the questions in Section B and C should be preferred for numerical/conceptual questions.
- 7. Attempt any five questions in all, selecting at least two questions from each of the two sections.

# **Question paper pattern for MST:**

| Roll No:                                         | No of pages:            |  |  |  |  |  |  |  |
|--------------------------------------------------|-------------------------|--|--|--|--|--|--|--|
| IK Gujral Punjab Technical University- Jalandhar |                         |  |  |  |  |  |  |  |
| Department of Mathematical Sciences              |                         |  |  |  |  |  |  |  |
| Academic Session:                                |                         |  |  |  |  |  |  |  |
| Mid-Semester Test: I/II (Regular/reappear)       | Date:                   |  |  |  |  |  |  |  |
| <b>Programmse:</b> B.Sc. (Hons.) Mathematics     | Semester:               |  |  |  |  |  |  |  |
| Course Code:                                     | Course:                 |  |  |  |  |  |  |  |
| Maximum Marks: 24                                | Time: 1 hour 30 minutes |  |  |  |  |  |  |  |

\* Note: Section A is compulsory; Attempt any two questions from Section B and one question from Section C.

| Sec        | tion: A    | Marks | Cos |  |  |  |
|------------|------------|-------|-----|--|--|--|
| 1          |            | 2     |     |  |  |  |
| 2          |            | 2     |     |  |  |  |
| 3          |            | 2     |     |  |  |  |
| 4          |            | 2     |     |  |  |  |
| Section: B |            |       |     |  |  |  |
| 5          |            | 4     |     |  |  |  |
| 6          |            | 4     |     |  |  |  |
| 7          |            | 4     |     |  |  |  |
| Sec        | Section: C |       |     |  |  |  |
| 8          |            | 8     |     |  |  |  |
| 9          |            | 8     |     |  |  |  |

# **Details of Course Objectives**

| CO1 |  |
|-----|--|
| CO2 |  |
| CO3 |  |
| CO4 |  |
| CO5 |  |

I. K. Gujral Punjab Technical University, Kapurthala

**SEMESTER-I** 

| <b>BSHM-101</b> | -22                                                                                | (                   | Calculus-I           | L-                 | 4, T-0, P-0       | 4 Credits         |  |
|-----------------|------------------------------------------------------------------------------------|---------------------|----------------------|--------------------|-------------------|-------------------|--|
| Pre-requisit    | e: Elen                                                                            | nentary calculus o  | f senior secondary   | y level.           | -                 |                   |  |
| Course Obj      | ectives:                                                                           | The objectives o    | f this course are to | o make the stude   | nts understand th | ne following:     |  |
|                 |                                                                                    |                     | differential calcu   |                    |                   | C                 |  |
| 2. The          | geomet                                                                             | rical meaning of t  | functions, limits, o | continuity, deriva | ntives, mean valu | e theorems.       |  |
| 3. App          | lication                                                                           | s of derivatives.   |                      |                    |                   |                   |  |
| 4. The          | definiti                                                                           | on of Higher orde   | er derivatives and   | its basic applicat | ions.             |                   |  |
| 5. The          | usabili                                                                            | ty of Higher ord    | er derivatives to    | establish Taylor   | 's theorem, Lei   | bnitz theorem and |  |
| Mac             | laurin t                                                                           | heorem.             |                      |                    |                   |                   |  |
| Course Outc     | omes: A                                                                            | At the end of the c | ourse, the student   | s will be able to  |                   |                   |  |
|                 |                                                                                    |                     | 0.75100              |                    |                   |                   |  |
| CO1             |                                                                                    |                     | oncepts of Differe   | ential and Integra | l Calculus.       |                   |  |
| CO2             |                                                                                    | lize all concepts g |                      |                    |                   |                   |  |
| CO3             | Sketch curves of the functions intuitively with the help of Differential Calculus. |                     |                      |                    |                   |                   |  |
| CO4             | Apply                                                                              | y the knowledge o   | of Differential and  | Integral Calculu   | IS.               |                   |  |
| CO5             | Unde                                                                               | rstand the fundam   | ental relation bet   | ween differential  | and Integral Cal  | culus.            |  |
|                 |                                                                                    | Mapping of c        | ourse outcomes v     | with the prograi   | n outcomes        |                   |  |
|                 |                                                                                    | PSO 1               | PSO 2                | PSO 3              | PSO 4             | PSO 5             |  |
| CO1             |                                                                                    | <b>√</b>            | ✓                    | <b>√</b>           | <b>✓</b>          | <b>√</b>          |  |
| CO2             |                                                                                    |                     |                      |                    | <b>√</b>          |                   |  |
| CO3             |                                                                                    |                     |                      |                    | <b>√</b>          |                   |  |
| CO4             |                                                                                    |                     |                      |                    | ✓                 |                   |  |
| CO5             |                                                                                    |                     |                      |                    | <b>√</b>          |                   |  |

Course Title: Calculus-I Course Code: BSHM-101-22

#### UNIT-I

Functions, their limits and continuity: Real line, intervals, order properties of real numbers, the least upper bound and the greatest lower bound properties, Archimedean property. Functions, Graphs of functions, Exponential functions, Inverse functions and Logarithmic functions, implicitly defined functions, some special functions, one-one functions, onto functions, composition of functions, limit of a function, calculating limits through limit laws, limits using L' Hospital's rule, The precise definition of limit and continuity ( $\epsilon$ - $\delta$  definition), continuous functions and classification of discontinuities, uniform continuity.

### **UNIT-II**

**Differentiation:** Derivative of a function, the derivative as a function, derivatives of polynomials and exponential functions, the product and quotient rules, rates of change in natural and social sciences, derivatives of trigonometric, inverse trigonometric, logarithmic, and hyperbolic functions, the chain rule, implicit differentiation, differentiation of determinants.

#### **UNIT-III**

**Applications of derivative:** maximum and minimum values, increasing and decreasing functions, Intermediate value theorems: Rolle's theorem, Lagrange's theorem, Cauchy's mean value theorem, how derivatives affect the shape of graph, concavity, convexity, the second derivative test, points of inflexion.

#### **UNIT-IV**

Higher order derivatives, calculation to the n<sup>th</sup> derivative, determination of n<sup>th</sup> derivative of rational functions. The n<sup>th</sup> derivative of the products of power of sines and cosines, Leibnitz's theorem, the n<sup>th</sup> derivative of the product of two functions, Maclaurin's theorem, Taylor's theorem.

# **TEXT BOOKS**

1. Shanti Narayan and P. K. Mittal, Differential Calculus, S. Chand, 2015

- 2. James Stewart, Calculus, 5th Edition, Brooks/Cole (Thomson), 2003.
- 3. Robert Wrede and Murray R. Spiegel, Advanced Calculus, 3<sup>rd</sup> Edition, Schaum's Outline Series (McGraw Hill), 2010.
- 4. Maurice D Weir, Frank R. Giordano and Joel Hass, Thomas' Calculus, 11th Edition, Pearson, 2008.
- 5. N. Piskunov, Differential and Integral Calculus, Mir Publishers, Moscow (CBS Publishers & Distributors, India), 1996.

| BSHM-102-                                                      | 22      |                      | Algebra             | L                | -5, T-1, P-0      | 6 Credits          |  |  |  |
|----------------------------------------------------------------|---------|----------------------|---------------------|------------------|-------------------|--------------------|--|--|--|
| Pre-requisite: - Complex numbers, Sets, Relation and Functions |         |                      |                     |                  |                   |                    |  |  |  |
| Course Obje                                                    | ctives: | This course is de    | signed to introduc  | e the basic not  | ons of algebra.   | The major          |  |  |  |
| focus of the c                                                 | ourse v | will be on: De Mo    | ivre's theorem &    | its applications | , matrices and th | eir use in         |  |  |  |
| system of equ                                                  | ations  | ; theoretical found  | lation of theory of | equations and    | their solutions.  |                    |  |  |  |
| Course Outc                                                    | omes:   | At the end of the    | course, the studer  | its will be able | to                |                    |  |  |  |
| CO1                                                            | Use tl  | he De Moivre's th    | eorem for solving   | problems cond    | erning powers of  | of complex numbers |  |  |  |
|                                                                | and co  | omplex roots of po   | olynomials etc.     |                  |                   |                    |  |  |  |
| CO2                                                            | Use n   | natrices in solving  | system of equation  | ons.             |                   |                    |  |  |  |
| CO3                                                            | Demo    | onstrate linear inde | ependence and de    | pendence of a s  | et of vectors.    |                    |  |  |  |
| CO4                                                            | Find i  | inverse of a matrix  | using Gauss-Jor     | dan method.      |                   |                    |  |  |  |
| CO5                                                            | Demo    | onstrate the nature  | of solutions of po  | olynomial equat  | ions and use Ca   | rdano's method,    |  |  |  |
|                                                                | Ferra   | ri method and Des    | scarte's method for | r finding soluti | ons of equations  |                    |  |  |  |
|                                                                |         | Mapping of co        | ourse outcomes v    | vith the progra  | nm outcomes       |                    |  |  |  |
|                                                                |         | PSO 1                | PSO 2               | PSO 3            | PSO 4             | PSO 5              |  |  |  |
| CO1                                                            |         | ✓                    | ✓                   | ✓                | ✓                 | ✓                  |  |  |  |
| CO2                                                            |         | <b>✓</b>             | ✓                   | <b>√</b>         | <b>√</b>          | ✓                  |  |  |  |
| CO3                                                            |         |                      |                     | <b>√</b>         |                   |                    |  |  |  |
| CO4                                                            |         |                      |                     |                  |                   | <b>√</b>           |  |  |  |
| CO5                                                            |         |                      |                     |                  | ✓                 |                    |  |  |  |

Course Title: Algebra

Course Code: BSHM-102-22

#### Unit I

**Polynomials and Complex Numbers:** Polynomials, The remainder and factor theorem, Synthetic division, Factored form of a polynomial, Fundamental theorem of algebra, Polar representation of complex numbers, De Moivre's theorem for integer and rational indices and their applications. The nth roots of unity.

### Unit II

**Roots of a Polynomial:** Relations between the roots and the coefficients of polynomial equations, Theorems on imaginary, integral and rational roots Fundamental theorem of symmetric polynomials (without proof). Evaluation of symmetric functions of roots, Rational roots of polynomials with integral coefficients. Descartes rule of sign.

#### **Unit III**

**Cubic and Biquadratic Equations:** Strum's theorem (statement only), Solution of cubic equation using Cardano's method, and biquadratic equation by Descartes method and Ferrari's method.

#### **Unit IV**

**System of Equations**: Systems of linear equations (homogeneous and non-homogeneous), Row reduction and echelon forms, Row rank, column rank and their equivalence, Vector equations, The matrix equation Ax = b, Solution sets of linear systems, Gauss elimination method, Consistency of Linear System of equations, Augmented matrices, The inverse of a matrix, Gauss Jordon method.

- Andreescu, Titu & Andrica Dorin, Complex Numbers from A to...Z. (2nd ed.). Birkhäuser (2014).
- Dickson, Leonard Eugene First Course in the Theory of Equations. The Project Gutenberg E-Book (http://www.gutenberg.org/ebooks/29785), (2009)
- Kolman, Bernard, & Hill, David R., Introductory Linear Algebra with Applications (7th ed.). Pearson Education, Delhi. First Indian Reprint 2003.

| BSHM-103-2                                                                                                  | 22                                                                                                      | Progra              | amming Lab-I        | L                  | 0, T-0, P-4     | 2 Credits        |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------|---------------------|--------------------|-----------------|------------------|--|--|--|--|
| Pre-requisite                                                                                               | Pre-requisite: Knowledge of basic concepts in Mathematics, such as, graphs, functions, conics, matrices |                     |                     |                    |                 |                  |  |  |  |  |
| etc.                                                                                                        |                                                                                                         |                     |                     |                    |                 |                  |  |  |  |  |
| Course Objectives: This course is designed to introduce the basic knowledge of computer programming t       |                                                                                                         |                     |                     |                    |                 |                  |  |  |  |  |
| simple algebraic operations on matrices and to visualize the geometry of curves and conics. two dimensions. |                                                                                                         |                     |                     |                    |                 |                  |  |  |  |  |
| The major focus of this course will be on geometric definition of two-dimensional shapes and a rigorous     |                                                                                                         |                     |                     |                    |                 |                  |  |  |  |  |
| discussion on                                                                                               | their j                                                                                                 | properties and use. |                     |                    |                 |                  |  |  |  |  |
| Course Outco                                                                                                | omes:                                                                                                   | At the end of the   | course, the studen  | its will be able t | 0               |                  |  |  |  |  |
| CO1                                                                                                         | Expla                                                                                                   | ain the basic conce | pts of programmi    | ng.                |                 |                  |  |  |  |  |
| CO2                                                                                                         | Appl                                                                                                    | y the knowledge o   | f programming in    | different Matri    | x Operations.   |                  |  |  |  |  |
| CO3                                                                                                         | Use p                                                                                                   | programming in pl   | otting and visualiz | zation of graphs   | of algebraic an | d transcendental |  |  |  |  |
|                                                                                                             | functions.                                                                                              |                     |                     |                    |                 |                  |  |  |  |  |
| CO4                                                                                                         | Obtai                                                                                                   | in Surface of revol | ution of curves.    |                    |                 |                  |  |  |  |  |
| CO5                                                                                                         | Study                                                                                                   | further the tracing | g of conics.        |                    |                 |                  |  |  |  |  |
|                                                                                                             |                                                                                                         |                     | ourse outcomes v    |                    | m outcomes      |                  |  |  |  |  |
|                                                                                                             |                                                                                                         | PSO 1               | PSO 2               | PSO 3              | PSO 4           | PSO 5            |  |  |  |  |
| CO1                                                                                                         |                                                                                                         | ✓                   | ✓                   | ✓                  | ✓               | ✓                |  |  |  |  |
| CO2                                                                                                         |                                                                                                         | <b>√</b>            | ✓                   | ✓                  | <b>√</b>        | ✓                |  |  |  |  |
| CO3                                                                                                         |                                                                                                         |                     |                     |                    | ✓               |                  |  |  |  |  |
| CO4                                                                                                         |                                                                                                         |                     |                     |                    |                 | ✓                |  |  |  |  |
| CO5                                                                                                         |                                                                                                         | ✓                   | ✓                   | <b>√</b>           | ✓               | ✓                |  |  |  |  |

**Course Title: Programming Lab-I** 

Course Code: BSHM-103-22

The following topics to be practiced using MATLAB:

- i) Introduce the programming through MATLAB
- ii) Perform Matrix Operations, such as, Addition, Multiplication, inverse, Transpose etc.
- Plot the graphs of algebraic and transcendental functions (For example,  $e^{ax+b}$ ,  $\log(ax+b)$ ,  $\frac{1}{ax+b}$ , with constants a, b, etc.)
- iv) Obtain the surface of revolution of curves.
- v) Trace of conics in Cartesian Coordinates /Polar Coordinates.
- vi) Applications of derivative.

- 1. Higham, D.J. and Higham, N.J., MATLAB Guide, 2nd Edition. Society for Industrial and Applied Mathematics (SIAM), 2005.
- 2. Gilat, A., MATLAB: An Introduction with Applications, 5th Edition. John Wiley & Sons, 2014.

| BHHL           | -115-22                                                  | Commu          | nicative English      | L-2, T-0,<br>P-0 | 2 Credits                                        |  |  |  |  |  |
|----------------|----------------------------------------------------------|----------------|-----------------------|------------------|--------------------------------------------------|--|--|--|--|--|
| Pre-requisite: | Pre-requisite: Basic proficiency in Communication Skills |                |                       |                  |                                                  |  |  |  |  |  |
| Course objecti | ives:                                                    |                |                       |                  |                                                  |  |  |  |  |  |
| •              | To help the st                                           | udents becom   | ne proficient in LSR  | W-Listening      | , Speaking, Reading &                            |  |  |  |  |  |
|                | Writing skills                                           |                |                       |                  |                                                  |  |  |  |  |  |
| •              | To help the stu                                          | idents becom   | e independent users   | of the Englis    | sh language                                      |  |  |  |  |  |
| •              | To develop in                                            | them vital cor | mmunication skills, i | ntegral to the   | eir personal, social, and                        |  |  |  |  |  |
|                | professional in                                          | nteractions    |                       |                  |                                                  |  |  |  |  |  |
| •              | To teach them                                            | the appropria  | ate language of profe | essional com     | munication                                       |  |  |  |  |  |
| •              | To prepare the                                           | m for the job  | market in their resp  | ective doma      | ins of specialization.                           |  |  |  |  |  |
| Course Outco   | mes: At the end                                          | of the cours   | e, the students will  |                  |                                                  |  |  |  |  |  |
| CO1            | acquire basic p                                          | roficiency in  | reading &listening,   | writing and      | speaking skills                                  |  |  |  |  |  |
| CO2            | be able to unde                                          | rstand spoker  | n and written English | language, pa     | articularly the language                         |  |  |  |  |  |
|                | of their chosen                                          | technical fie  | ld.                   |                  |                                                  |  |  |  |  |  |
| CO3            | be able to conv                                          | erse fluently. | •                     |                  |                                                  |  |  |  |  |  |
| CO4            | be able to prod                                          | uce their owr  | n clear and coherent  | texts.           |                                                  |  |  |  |  |  |
| CO5            | _                                                        | fice environn  | nents, important reac |                  | as interviews, group<br>s well as writing skills |  |  |  |  |  |
| N              |                                                          |                | es with the Progran   | 1 Specific O     | utcomes                                          |  |  |  |  |  |
|                | PSO1                                                     | PSO2           | PSO3                  | PSO4             | PSO5                                             |  |  |  |  |  |
| CO1            | -                                                        | -              | -                     | -                | <b>√</b>                                         |  |  |  |  |  |
| CO2            | -                                                        | -              | -                     | -                | <b>√</b>                                         |  |  |  |  |  |
| CO3            | -                                                        | -              | -                     | -                | <b>✓</b>                                         |  |  |  |  |  |
| CO4            | -                                                        | -              | -                     | -                | <b>√</b>                                         |  |  |  |  |  |
| CO5            | -                                                        | -              | -                     | -                | <b>√</b>                                         |  |  |  |  |  |

**Course Title: Communicative English** 

Course Code: BHHL-115-22

### **UNIT I-(Literature)**

## (A) The Poetic Palette (Orient Black Swan, Second Edition, 2016)

The following poems from this anthology are prescribed:

- 1. Pippa's Song: Robert Browning
- 2. I Sit and Look Out: Walt Whitman
- 3. Women's Rights: Annie Louise Walker

## (B) Prose Parables (Orient Black Swan, 2013)

The following stories from the above volume are prescribed:

- 1. Grief: Anton Chekov
- 2. The Doctor's Word: R.K. Narayan
- 3. The Doll's House: Katherine Mansfield

#### **UNIT-II**

Vocabulary: Synonyms, Antonyms; Standard Abbreviations; One-word substitution

Grammar: Subject-Verb Agreement; Noun- Pronoun Agreement; Use of phrases and clauses in sentences; Sentence

Structures; Transformation of Sentences

## **UNIT-III**

**Reading and Understanding:** Comprehension; Summarizing; Paraphrasing; Translation (from Hindi/Punjabi to English and vice-versa); Précis Writing

## **UNIT-IV**

**Mechanics of Writing & Speaking Skills:** Business letters; Report writing; Career Documents- Job applications, Resume/CV writing, Conversations & Dialogues, Formal Presentations; Dynamics of Group Discussion.

## **Text & Reference Books:**

- 1. John Eastwood, Oxford Practice Grammar, Oxford University Press, 2014.
- 2. Michael Swan, Practical English Usage, OUP, 1995
- **3.** F.T. Wood, *Remedial English Grammar*, Macmillan, 2007.
- 4. William Zinsser, On Writing Well, Harper Resource Book, 2001.
- 5. Sanjay Kumar and Pushp Lata, *Communication Skills*, Oxford University Press, 2011.
- **6.** Liz Hamp-Lyons and Ben Heasly, *Study Writing*, Cambridge University Press, 2006.

| BSHP-111-                  | 111-21 Optics L-3, T-1, P-0                                                    |                                       |                                                                                                     |                            | 04 Credits                                   |  |  |  |  |  |  |
|----------------------------|--------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------|--|--|--|--|--|--|
| Pre-requisi                | Pre-requisite: Understanding of senior secondary level Physics and Mathematics |                                       |                                                                                                     |                            |                                              |  |  |  |  |  |  |
| Diffraction<br>Students wi | and Polariza                                                                   | tion among students ed with knowledge | course is to develop bases. They also learn about to measure wavelength, bound if he/she chooses to | t the LASER refractive inc | and its applications. lex, and other related |  |  |  |  |  |  |
| Course Ou                  | tcomes: At th                                                                  | ne end of the course,                 | the student will be able t                                                                          | to                         |                                              |  |  |  |  |  |  |
| CO1                        | Identify ar                                                                    |                                       | concepts and terminolog                                                                             | gy used in opti            | cs and other related                         |  |  |  |  |  |  |
| CO2                        | _                                                                              |                                       | ence and phenomenon of                                                                              | interference a             | and their applications                       |  |  |  |  |  |  |
| CO3                        |                                                                                |                                       | Fraunhofer's diffraction                                                                            |                            |                                              |  |  |  |  |  |  |
| CO4                        |                                                                                |                                       | the polarization of liganalyze the polarization i                                                   |                            |                                              |  |  |  |  |  |  |
| CO5                        |                                                                                |                                       | lasers, its principle, prope                                                                        |                            |                                              |  |  |  |  |  |  |
|                            |                                                                                |                                       | tcomes with the progra                                                                              |                            |                                              |  |  |  |  |  |  |
|                            | P                                                                              | SO1 PS                                | O2 PSO3                                                                                             | PSO4                       | PSO5                                         |  |  |  |  |  |  |
| CO1                        | -                                                                              | ✓                                     | -                                                                                                   | ✓                          | ✓                                            |  |  |  |  |  |  |
| CO2                        | -                                                                              | ✓                                     | -                                                                                                   | <b>√</b>                   | <b>√</b>                                     |  |  |  |  |  |  |
| CO3                        | -                                                                              |                                       |                                                                                                     |                            |                                              |  |  |  |  |  |  |
| CO4                        | -                                                                              | ✓                                     | -                                                                                                   | <b>√</b>                   | <b>✓</b>                                     |  |  |  |  |  |  |
|                            | -                                                                              |                                       |                                                                                                     |                            |                                              |  |  |  |  |  |  |

**Course Title: Optics** 

**Course Code: BSHP-111-21** 

#### **PART-A**

### **UNIT I**

**Interference:** Definition and properties of wave front, Temporal and Spatial Coherence, Young's double slit experiment, Lloyd's single mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films, Fringes of equal inclination (Haidinger Fringes), Newton's Rings: Measurement of wavelength and refractive index, Interferometer: Michelson Interferometer-(1) idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, Fabry-Perot interferometer.

#### **UNIT-II**

**Diffraction:** Huygens Principle, Huygens-Fresnel Diffraction theory, Fraunhofer diffraction: Single slit. Circular aperture, Rayleigh criterion of resolution, Resolving Power of a telescope, Double slit, Multiple slits, Diffraction grating, Resolving power of grating. Fresnel Diffraction: Fresnel's Assumptions, Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light, Theory of a Zone Plate: Multiple Foci of a Zone Plate, Fresnel diffraction pattern of a straight edge and circular aperture.

## **PART-B**

#### **UNIT-III**

**Polarization:** Plane polarized light, Representation of Unpolarized and Polarized light, Polarization by Reflection, Brewster's law, Malus Law, Polarization by Selective absorption by Crystals, Polarization by Scattering, Polarization by Double Refraction, Nicol Prism, Huygen's theory of Double Refraction, Polaroid, Elliptically and Circularly polarized lights, Quarter and Half wave plates.

### **UNIT-IV**

Laser and Application: Lasers, Spontaneous emission, Stimulated absorption, Stimulated emission, Einstein coefficients, Einstein relations, Conditions for Laser actions, Population inversion, Different types of Laser Pumping mechanism: Optical Pumping, Electric Discharge and Electrical pumping, Resonators, Two, Three and Four level laser systems, Ruby laser, He-Ne gas Laser, Semiconductor laser, CO2 laser, applications of laser: Holography, Principle of Holography.

# **Text and Reference Books:**

- 1. Optics: A.K. Ghatak (Tata-McGraw Hill), 1992.
- 2. Fundamentals of Optics: F.A. Jenkins and H.E. White (McGraw Hill), 1981.
- 3. A Textbook of Optics: Subrahmaniyam N. & et al., S. Chand Publishing, 2006.
- 4. O. Svelto: Principles of Lasers, Springer Science & Business Media, 2010.

| BSHP-11     | 3-21                                                                                                     | Physics Lab          | o-I L-0,           | T-0, P-4     | 2             | Credits          |  |  |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------|----------------------|--------------------|--------------|---------------|------------------|--|--|--|--|--|
| Pre-requi   | Pre-requisite (If any): High-school education                                                            |                      |                    |              |               |                  |  |  |  |  |  |
|             | Course Objectives: The aim and objective of the lab course is to introduce the students to the formation |                      |                    |              |               |                  |  |  |  |  |  |
| structure o | structure of electromagnetism and phenomenon of wave optics so that they can use these as per the        |                      |                    |              |               |                  |  |  |  |  |  |
| requireme   | requirement.                                                                                             |                      |                    |              |               |                  |  |  |  |  |  |
| Course O    | Course Outcomes: At the end of the course, the student will be able to                                   |                      |                    |              |               |                  |  |  |  |  |  |
| CO1         |                                                                                                          | Able to verify the   | e theoretical con  | cepts/laws 1 | earnt in theo | ory courses.     |  |  |  |  |  |
| CO2         |                                                                                                          | Trained in carry     | ing out precise    | measurem     | ents and ha   | ndling sensitive |  |  |  |  |  |
|             |                                                                                                          | equipment.           |                    |              |               |                  |  |  |  |  |  |
| CO3         |                                                                                                          | Understand the       | methods use        | d for esti   | mating and    | l dealing with   |  |  |  |  |  |
|             |                                                                                                          | experimental und     | certainties and sy | ystematic "e | rrors".       |                  |  |  |  |  |  |
| CO4         |                                                                                                          | Learn to draw co     | onclusions from    | data and de  | evelop skills | in experimental  |  |  |  |  |  |
|             |                                                                                                          | design.              |                    |              |               | •                |  |  |  |  |  |
| CO5         |                                                                                                          | Document a tech      | nical report whi   | ch communi   | icates scient | ific information |  |  |  |  |  |
|             |                                                                                                          | in a clear and cor   | ncise manner.      |              |               |                  |  |  |  |  |  |
|             | Mapp                                                                                                     | oing of course outco | omes with the p    | rogram out   | tcomes        |                  |  |  |  |  |  |
|             |                                                                                                          | 700                  | 702                |              | <b>DO</b> 4   | 707              |  |  |  |  |  |
|             | PO1                                                                                                      | PO2                  | PO3                |              | PO4           | PO5              |  |  |  |  |  |
| CO1         | -                                                                                                        | ✓                    | -                  | ✓            |               | $\checkmark$     |  |  |  |  |  |
| CO2         | -                                                                                                        | ✓                    | -                  | <b>√</b>     |               | ✓                |  |  |  |  |  |
| CO3         | -                                                                                                        | ✓                    | -                  | ✓            |               | ✓                |  |  |  |  |  |
| CO4         | -                                                                                                        | ✓                    | -                  | ✓            |               | ✓                |  |  |  |  |  |
| CO5         | -                                                                                                        | ✓                    | -                  | ✓            |               | ✓                |  |  |  |  |  |

**Course Title: Physics Lab-I** 

Course Code: BSHP-113-21

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

## List of experiments:

- 1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses.
- 2. To study the laser beam characteristics like; wavelength, aperture, spot size, etc. using diffraction grating.
- 3. To study the diffraction using laser beam and thus to determine the grating element.
- 4. To study wavelength and laser interference using Michelson's Interferometer.
- 5. To find the refractive index of a material/glass using spectrometer.
- 6. To find the refractive index of a liquid using spectrometer.
- 7. To determine the angle of prism and resolving power of a prism.
- 8. To study the magnetic field of a circular coil carrying current using a Steward and Gees Tangent Galvanometer.
- 9. Determine the radius of circular coil using the Circular coil.
- 10. To study B-H curve using CRO.
- 11. To find out polarizability of a dielectric substance.
- 12. To find out the horizontal component of earth's magnetic field (B<sub>h</sub>).

#### **Text and Reference Books:**

- 1. A Textbook of Practical Physics, I. Prakash & Ramakrishna, 11<sup>th</sup> Edn, 2011, Kitab Mahal.
- 2. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 3. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 4. Practical Physics, C L Arora. S. Chand & Company Ltd.
- 5. http://www.vlab.co.in

| UGCA-19      | 92 Fundamentals of Computer and IT                          | L-3, T-1, P-0           | 4 Credits               |
|--------------|-------------------------------------------------------------|-------------------------|-------------------------|
| Pre-requisit | re: NA                                                      |                         |                         |
| Course Out   | <b>comes:</b> At the end of the course, the student will be | e able to               |                         |
| CO1          | Understanding the concept of input and output of            | levices of Computers    |                         |
| CO2          | Learn the functional units and classify types of            | computers, how they p   | process information and |
|              | how individual computers interact with other c              | omputing systems and    |                         |
|              | devices.                                                    |                         |                         |
| CO3          | Understand an operating system and its working              | g, and solve common r   | problems related        |
|              | to operating systems                                        |                         |                         |
| CO4          | Learn basic word processing, Spreadsheet and F              | resentation Graphics Se | oftware skills.         |
| CO5          | Study to use the Internet safely, legally, and res          | onsibly                 |                         |

**Course Title: Fundamentals of Computer and IT** 

Course Code: UGCA-1902

#### **UNIT-I**

**Human Computer Interface:** Concepts of Hardware and Software; Data and Information. **Functional Units of Computer System:** CPU, registers, system bus, main memory unit, cache memory, Inside a computer, SMPS, Motherboard, Ports and Interfaces, expansion cards, ribbon cables, memory chips, processors.

**Devices:** Input and output devices (with connections and practical demo), keyboard, mouse, joystick, scanner, OCR, OMR, bar code reader, web camera, monitor, printer, plotter. **Memory:** Primary, secondary, auxiliary memory, RAM, ROM, cache memory, hard disks, optical disks.

**Data Representation:** Bit, Byte, Binary, Decimal, Hexadecimal, and Octal Systems, Conversions and Binary Arithmetic (Addition/ Subtraction/ Multiplication) Applications of IT.

## **UNIT II**

**Concept of Computing, Types of Languages:** Machine, assembly and High-level Language; Operating system as user interface, utility programs.

**Word processing:** Editing features, formatting features, saving, printing, table handling, page settings, spell-checking, macros, mail-merge, equation editors.

### **UNIT-III**

**Spreadsheet:** Workbook, worksheets, data types, operators, cell formats, freeze panes, editing features, formatting features, creating formulas, using formulas, cell references, replication, sorting, filtering, functions, Charts & Graphs.

**Presentation Graphics Software:** Templates, views, formatting slide, slides with graphs, animation, using special features, presenting slide shows.

#### **UNIT-IV**

Electronic Payment System: Secure Electronic Transaction, Types of Payment System: Digital Cash, Electronic Cheque, Smart Card, Credit/Debit Card E-Money, Bit Coins and Crypto currency, Electronic Fund Transfer (EFT), Unified Payment Interface (UPI), Immediate Payment System (IMPS), Digital Signature and Certification Authority. Introduction to Bluetooth, Cloud Computing, Big Data, Data Mining, Mobile Computing and Embedded Systems and Internet of Things (IoT)

Scheme & Syllabus (B.Sc. Hons. Mathematics) Batch 2022 & Onwards

- 1. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 2. A. Goel, Computer Fundamentals, Pearson Education, 2010.
- 3. P. K. Sinha & P. Sinha, Fundamentals of Computers, BPB Publishers, 2007.
- 4. R.K. Jain, IT Tools, Khanna Publishing House.
- 5. Satish Jain, Ambrish Rai & Shashi Singh, Introduction to Information Technology, Paperback Edition, BPB Publications, 2014.
- 6. www.sakshat.ac.in
- 7. <a href="https://swayam.gov.in/course/4067-computer-fundamentals">https://swayam.gov.in/course/4067-computer-fundamentals</a>

| UGCA-1906        | Fundamentals of Computer and IT<br>Laboratory                                    | of Computer and IT L-0, T-0, P-4 2 Credits |       |  |  |  |
|------------------|----------------------------------------------------------------------------------|--------------------------------------------|-------|--|--|--|
| Pre-requisite (I | f any): NA                                                                       |                                            |       |  |  |  |
| CO1              | Familiarizing with Open Office (Word processing, Spreadsheets and Presentation). |                                            |       |  |  |  |
| CO2              | To acquire knowledge on editor, spread sheet ar                                  | nd presentation softw                      | vare. |  |  |  |
| CO3              | The students will be able to perform documentation and accounting operations.    |                                            |       |  |  |  |
| CO4              | Students can learn how to perform presentation                                   | skills.                                    |       |  |  |  |

**Course Title: Fundamentals of Computer and IT (Laboratory)** 

Course Code: UGCA-1906

## List of experiments:

- ➤ Word Orientation: The instructor needs to give an overview of word processor. Details of the four tasks and features that would be covered Using word Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter.
  - 1) Using word to create Resume:

Features to be covered: Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in Word.

- 2) Creating an Assignment
  - Features to be covered: Formatting Styles, inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.
- 3) Creating a Newsletter
  - Features to be covered: Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes and Paragraphs
- 4) Creating a Feedback form
  - Features to be covered: Forms, Text Fields, Inserting objects, Mail Merge in Word.
- **Excel Orientation:** The instructor needs to tell the importance of Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered Excel Accessing, overview of toolbars, saving excel files.
  - 1) Creating a Scheduler
    - Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text
  - 2) Creating an Assignment
    - Features to be covered: Formatting Styles, inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.
  - 3) Creating a Newsletter
    - Features to be covered: Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes and Paragraphs

4) Creating a Feedback form

Features to be covered: Forms, Text Fields, Inserting objects, Mail Merge in Word.

#### **Presentation Orientation:**

- 1) Students will be working on basic power point utilities and tools which help them create basic power point presentation.
  - Topic covered includes: PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows
- 2) This session helps students in making their presentations interactive.
  - Topics covered include: Hyperlinks, Inserting-Images, ClipArt, Audio, Video, Objects, Tables and Charts
- 3) Concentrating on the in and out of Microsoft power point. Helps them learn best practices in designing and preparing power point presentation.
  - Topics covered includes: Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes, etc), Inserting Background, textures, Design Templates, Hidden slides, Auto content wizard, Slide Transition, Custom
- 4) Animation, Auto Rehearsing
- 5) Power point test would be conducted. Students will be given model power point presentation which needs to be replicated
- > Internet and its Applications: The instructor needs to tell the how to configure Web Browser and to use search engines by defining search criteria using Search Engines
  - 1) To learn to setup an e-mail account and send and receive e-mails.
  - 2) Tolearntosubscribe/postonablogandtousetorrentsforaccelerateddownloads.
  - 3) Hands on experience in online banking and making an online payment for any domestic bill.

- 1. R.K. Jain, IT Tools, Khanna Publishing House.
- 2. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 3. Turban, Rainer and Potter, Introduction to information technology, John Wiley and Sons.
- 4. Joseph Brady & Ellen F Monk, Problem Solving Cases in Microsoft Excel, Thomson Learning.

I. K. Gujral Punjab Technical University, Kapurthala

**SEMESTER-II** 

| BSHM-201-                          | -22                                                                      | Re                                       | al Analysis          |                            | L-5, T-1, P-0                              | 6 Credits                                                              |  |  |  |
|------------------------------------|--------------------------------------------------------------------------|------------------------------------------|----------------------|----------------------------|--------------------------------------------|------------------------------------------------------------------------|--|--|--|
| Pre-requisite: Elementary calculus |                                                                          |                                          |                      |                            |                                            |                                                                        |  |  |  |
| concepts of R and infima. T        | Real line<br>They wi                                                     | e and its property.<br>Il use monotone c | Students will und    | derstand the<br>em for the | e bounded, unbound<br>calculation of squar | and the fundamental<br>led and limit suprema<br>re roots. They observe |  |  |  |
| _                                  |                                                                          |                                          | s.They can apply     | various test               | tsto check the conve                       | ergence or divergence                                                  |  |  |  |
| of sequences                       |                                                                          | nes.<br>At the end of the c              | ourse the student    | ما د ما النبي              | 10 to                                      |                                                                        |  |  |  |
| Course Outco                       | mes. A                                                                   | at the end of the c                      | ourse, the student   | is will be ab              | ne to                                      |                                                                        |  |  |  |
| CO1                                | Under                                                                    | rstand the basic co                      | oncepts of Real lin  | ne and its p               | roperty.                                   |                                                                        |  |  |  |
| CO2                                | Under                                                                    | rstand the bounde                        | d, unbounded and     | l limit supre              | ema and infima.                            |                                                                        |  |  |  |
| CO3                                | Use of monotone convergence theorem for the calculation of square roots. |                                          |                      |                            |                                            |                                                                        |  |  |  |
| CO4                                | Check                                                                    | the convergence                          | and divergence s     | equences as                | nd infinite series.                        |                                                                        |  |  |  |
| CO5                                |                                                                          |                                          | of various test to e | establish the              | e convergence and o                        | livergence sequences                                                   |  |  |  |
|                                    | and in                                                                   | finite series.                           |                      |                            |                                            |                                                                        |  |  |  |
|                                    |                                                                          | Mapping of co                            | ourse outcomes v     | with the pr                | ogram outcomes                             |                                                                        |  |  |  |
|                                    |                                                                          | PSO 1                                    | PSO 2                | PSO                        | 3 PSO 4                                    | PSO 5                                                                  |  |  |  |
| CO1                                |                                                                          | ✓                                        | ✓                    | -                          | -                                          | ✓                                                                      |  |  |  |
| CO2                                |                                                                          | <b>√</b>                                 | ✓                    | -                          | -                                          | ✓                                                                      |  |  |  |
| CO3                                | 203                                                                      |                                          |                      |                            |                                            |                                                                        |  |  |  |
| CO4                                | 04                                                                       |                                          |                      |                            |                                            |                                                                        |  |  |  |
| CO5                                |                                                                          | <b>✓</b>                                 | <b>√</b>             | -                          | -                                          | <b>√</b>                                                               |  |  |  |

Course Title: Real Analysis Course Code: BSHM-201-22

## **UNIT-I**

**Real Numbers:** Field and order structure of R, Bounded above sets, Bounded below sets, Bounded Sets, Unbounded sets, Supremum and Infimum.

#### **UNIT-II**

**Completeness of**  $\mathbb{R}$ : Completeness Property of R, The Archimedean Property, Density of Rational (and Irrational) numbers in R, Intervals. Limit points of a set, Isolated points, Closed sets, Countable and Uncountable sets.

#### **UNIT-III**

**Sequences:** Sequences, Limit points of a sequence, Limit Inferior and Superior, Convergent Sequences, Non convergent sequences (Definitions), Cauchy's sequence, Cauchy's General Principle of Convergence, Algebra of sequences, Some Important Theorem, [Ref. Text Book 1], Monotonic sequences.

#### **UNIT-IV**

**Infinite Series:** Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, D'Alembert's Ratio Test, Rabb's. Gauss and Logrithmic test (Statement of these three tests only). Cauchy's Root test, Integral test, Alternating series, Leibniz test, Absolute and Conditional convergence.

## **TEXT BOOKS:**

1. S. C. Malik and Savita Arora, Mathematical Analysis, New Age International (P) Ltd., New Delhi, 2017.

- 1. R.G. Bartle and D. R. Sherbert, Introduction to Real Analysis, 3rd Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2002.
- 2. Gerald G. Bilodeau, Paul R. Thie, G.E. Keough, An Introduction to Analysis, 2nd Ed., Jones & Bartlett, 2010.
- 3. Brian S. Thomson, Andrew. M. Bruckner and Judith B. Bruckner, Elementary Real Analysis, Prentice Hall, 2001.
- 4. S.K. Berberian, A First Course in Real Analysis, Springer Verlag, New York, 1994.

| BSHM-2    | 202-22             | Differe             | ntial Equations      | L-4,                               | , T-0, P-0          | 4 Credits         |  |
|-----------|--------------------|---------------------|----------------------|------------------------------------|---------------------|-------------------|--|
| Pre-requi | <b>isite:</b> - Fu | nctions, Differenti | ation, Integration   |                                    | <b>1</b>            |                   |  |
| Course C  | )hiaatiyaa         | • The Objective of  | f this course is to  | introduce ordiner                  | w differential ag   | uations and basi  |  |
|           |                    | -                   |                      | introduce ordinar s course further | -                   |                   |  |
| •         |                    | •                   |                      | tial equations app                 | •                   | •                 |  |
| and techn | •                  | iditions of various | ordinary differen    | tiai equations app                 | caring in variou    | s fields ofscienc |  |
|           | •                  | At the end of the   | course the studer    | nte will be able to                |                     |                   |  |
| Course    | outcomes.          | At the cha of the   | course, the studen   | its will be able to                |                     |                   |  |
| CO1       | Unde               | erstand the basic d | efinitions to know   | about ordinary di                  | fferential equation | ons, its          |  |
|           |                    | us types and their  |                      | J                                  | 1                   | ,                 |  |
| CO2       |                    |                     |                      | st order differentia               | l equation.         |                   |  |
| CO3       |                    |                     |                      | out existence and                  |                     | lution ofinitial  |  |
|           |                    | problem.            | •                    |                                    | •                   |                   |  |
| CO4       | Unde               | erstand the applica | tions of differentia | al equations in dif                | ferent type of      |                   |  |
|           | Phenomenon.        |                     |                      |                                    |                     |                   |  |
| CO5       | Appl               | y power series me   | thod to obtain ser   | ies solutions of dif               | ferential equation  | ns.               |  |
|           |                    |                     |                      |                                    |                     |                   |  |
|           |                    | Mapping of c        | ourse outcomes v     | vith the program                   | outcomes            |                   |  |
|           |                    | PSO 1               | PSO 2                | PSO 3                              | PSO 4               | PSO 5             |  |
| CO        | <b>D1</b>          | ✓                   | ✓                    | -                                  | -                   | <b>√</b>          |  |
| CO        | 02                 | <b>√</b>            | <b>√</b>             | -                                  | -                   | <b>√</b>          |  |
| CO3       |                    |                     |                      |                                    |                     | 1                 |  |
| CC        | )3                 | <b>√</b>            | V                    |                                    |                     | •                 |  |
| CO        |                    | √<br>✓              | <b>√</b>             | -                                  | -                   | <b>✓</b>          |  |

**Course Title: Differential Equations** 

Course Code: BSHM-202-22

# Unit I

**Differential equations:** General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, Cauchy's linear equation and Bernoulli equations.

#### Unit II

**Mathematical models** (**Linear Models**): Introduction to compartmental model, exponential decay model, lake pollution model (case study of Lake Burley Griffin), drug assimilation into the blood (case of a single cold pill, case of a course of cold pills), exponential growth of population, limited growth of population, limited growth with harvesting.

#### **Unit III**

**Higher Order Linear Differential Equations:** General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneous equations of higher order with constant coefficients, Euler's equation, method of undetermined coefficients, method of variation of parameters.

## **Unit IV**

**Mathematical Models (Non-linear Models):** Equilibrium points, Interpretation of the phase plane, predatory-prey model and its analysis, epidemic model of influenza and its analysis, battle model and its analysis.

## **TEXT BOOKS:**

- 1. J. N. Kapur, Mathematical Modelling, 1st Ed., New Age International (P) Ltd., New Delhi, 2021.
- 2. Shanti Narayan, Differential Equations and it's Applications,

- 1. Belinda Barnes and Glenn R. Fulford, Mathematical Modeling with Case Studies, A Differential Equation Approach using Maple and MATLAB, 2nd Ed., Taylor and Francis group, London and New York, 2009.
- 2. C.H. Edwards and D.E. Penny, Differential Equations and Boundary Value problems Computing and Modeling, Pearson Education India, 2005.
- 3. S.L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, India, 2004.

| BSHM-203-                                                                                                    | -22                                                                                                    | Progra              | mming Lab-II        |                  | L-0, T-0, P-4     | 2 Credits             |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------|---------------------|------------------|-------------------|-----------------------|--|--|--|--|
| <b>Pre-requisite:</b> Knowledge of basic concepts in Differential equations and Real analysis, such as, ODE, |                                                                                                        |                     |                     |                  |                   |                       |  |  |  |  |
| Order, Degree, Linear Differential Equations, sequence, series, limit point, convergence, divergence, etc.   |                                                                                                        |                     |                     |                  |                   |                       |  |  |  |  |
| _                                                                                                            | Course Objectives: This course is designed to introduce the basic knowledge of computer programming to |                     |                     |                  |                   |                       |  |  |  |  |
| _                                                                                                            |                                                                                                        | -                   |                     | -                | -                 | ences and series. The |  |  |  |  |
| major focus of                                                                                               | of this o                                                                                              | course will be on u | understanding the   | mathematical     | models behind a   | real-life situation.  |  |  |  |  |
|                                                                                                              |                                                                                                        |                     |                     |                  |                   |                       |  |  |  |  |
| Course Outo                                                                                                  | comes:                                                                                                 | At the end of the   | course, the stude   | nts will be able | to                |                       |  |  |  |  |
| CO1                                                                                                          | Expla                                                                                                  | in the basic conce  | epts of MATLAB      | and Mathema      | tica.             |                       |  |  |  |  |
| CO2                                                                                                          | Apply                                                                                                  | y the knowledge o   | f programming in    | different Diff   | erential equation | s.                    |  |  |  |  |
| CO3                                                                                                          | Use p                                                                                                  | rogramming in pl    | otting the solution | n and visualiza  | tion of growth ar | nd decay              |  |  |  |  |
|                                                                                                              | mathe                                                                                                  | ematical models.    |                     |                  |                   |                       |  |  |  |  |
| CO4                                                                                                          |                                                                                                        | -                   | -                   |                  | ence of sequence  | s through plotting.   |  |  |  |  |
| CO5                                                                                                          | Study                                                                                                  | the convergence/    | divergence of inf   | inite series     |                   |                       |  |  |  |  |
|                                                                                                              |                                                                                                        | Mapping of co       | ourse outcomes v    | with the progi   | ram outcomes      |                       |  |  |  |  |
|                                                                                                              |                                                                                                        | PSO 1               | PSO 2               | PSO 3            | PSO 4             | PSO 5                 |  |  |  |  |
| CO1                                                                                                          |                                                                                                        | ✓                   | ✓                   | ✓                | ✓                 | ✓                     |  |  |  |  |
| CO2                                                                                                          |                                                                                                        | ✓                   | ✓                   | <b>√</b>         | <b>√</b>          | <b>✓</b>              |  |  |  |  |
| CO3                                                                                                          | CO3                                                                                                    |                     |                     |                  |                   |                       |  |  |  |  |
| CO4                                                                                                          |                                                                                                        | ✓                   | <b>√</b>            | <b>√</b>         | ✓                 | <b>✓</b>              |  |  |  |  |
| CO5                                                                                                          |                                                                                                        | <b>√</b>            | <b>√</b>            | <b>√</b>         | <b>√</b>          | ✓                     |  |  |  |  |

**Course Title: Programming Lab-II** 

Course Code: BSHM-203-22

The following topics to be practiced using any software:

- vii) Introduce the programming through MATLAB and MATHEMATICA
- viii) Plotting of second order solution family of differential equation.
- ix) Plotting of third order solution family of differential equation.
- x) Growth model (exponential case only).
- xi) Decay model (exponential case only).
- xii) Plotting of recursive sequences.
- xiii) Study the convergence of sequences through plotting.
- xiv) Verify Bolzano-Weierstrass theorem through plotting of sequences and hence identify convergent subsequences from the plot.
- xv) Study the convergence/divergence of infinite series by plotting their sequences of partial sum.
- xvi) Cauchy's root test by plotting nth roots.
- xvii) Ratio test by plotting the ratio of nth and (n+1)th term.

- 1. Gilat, A., MATLAB: An Introduction with Applications, 5th Edition. John Wiley & Sons, 2014.
- 2. Martha L Abell, James P Braselton, Differential Equations with MATHEMATICA, 3rd Ed., Elsevier Academic Press, 2004.

# ਪੰਜਾਬੀ ਲਾਜ਼ਮੀ BHHL-116A-22 ਬੈਚੂਲਰ ਆਫ ਸਾਇੰਸ (ਸਲੇਬਸ) ਸਮੈਸਟਰ -ਦੂਜਾ

Credit-2-0-0

# ਯੁਨਿਟ-1

# ਕਵਿਤਾ ਭਾਗ:

ਭਾਈ ਵੀਰ ਸਿੰਘ: ਚਸ਼ਮਾ

ਪ੍ਰੋ.ਪੁਰਨ ਸਿੰਘ : ਹੱਲ ਵਾਹੁਣ ਵਾਲੇ

ਪ੍ਰੋ.ਮੋਹਨ ਸਿੰਘ : ਕੋਈ ਆਇਆ ਸਾਡੇ ਵਿਹੜੇ

ਅੰਮ੍ਰਿਤਾ ਪ੍ਰੀਤਮ: ਅੰਨਦਾਤਾ

ਡਾ.ਹਰਿਭਜਨ ਸਿੰਘ: ਤੇਰੇ ਹਜ਼ੁਰ ਮੇਰੀ ਹਾਜ਼ਰੀ ਦੀ ਦਾਸਤਾਨ

ਸ਼ਿਵ ਕੁਮਾਰ ਬਟਾਲਵੀ: ਕੰਡਿਆਲੀ ਥੋਰ੍ਹ

ਪਾਸ਼: ਇਨਕਾਰ

ਸੁਰਜੀਤ ਪਾਤਰ: ਹੁਣ ਘਰਾਂ ਨੂੰ ਪਰਤਣਾ

# ਕਹਾਣੀ ਭਾਗ:

ਸੂਜਾਨ ਸਿੰਘ :ਕੁਲਫੀ

ਕੁਲਵੰਤ ਸਿੰਘ ਵਿਰਕ : ਤੁੜੀ ਦੀ ਪੰਡ

ਗੁਰਦਿਆਲ ਸਿੰਘ: ਸਾਂਝ

ਸੰਤੋਖ ਸਿੰਘ ਧੀਰ: ਕੋਈ ਇਕ ਸਵਾਰ

ਮੋਹਨ ਭੰਡਾਰੀ :ਘੋਟਣਾ

ਵਰਿਆਮ ਸਿੰਘ ਸੰਧੁ : ਆਪਣਾ ਆਪਣਾ ਹਿੱਸਾ

ਯੂਨਿਟ-2 (ਭਾਸ਼ਾ ਤੇ ਲਿਪੀ)

ਭਾਸ਼ਾ ਦਾ ਟਕਸਾਲੀ ਰੂਪ, ਭਾਸ਼ਾ ਤੇ ਉਪ-ਭਾਸ਼ਾ ਵਿਚ ਅੰਤਰ, ਪੰਜਾਬੀ ਦੀਆਂ ਉਪ-ਭਾਸ਼ਾਵਾਂ ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਉਪਰ ਪਏ ਪ੍ਰਭਾਵ ਭਾਸ਼ਾ ਤੇ ਲਿਪੀ, ਗੁਰਮੁਖੀ ਲਿਪੀ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ

ਯੂਨਿਟ-3 (ਲੇਖਣੀ-ਕਲਾ)

ਪੈਰ੍ਹਾ ਰਚਨਾ

ਅਨਵਾਦ: ਅੰਗਰੇਜ਼ੀ ਤੋਂ ਪੰਜਾਬੀ, ਪੰਜਾਬੀ ਤੋਂ ਅੰਗਰੇਜ਼ੀ

ਦਫਤਰੀ ਚਿੱਠੀ ਪੱਤਰ

ਸਾਹਿਤ ਦੇ ਰੰਗ (ਸੰਪ.ਡਾ.ਮਹਿਲ ਸਿੰਘ),ਰਵੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ,ਪਹਿਲੀ ਵਾਰ, 2016.

ਮੁਢਲੀ ਪੰਜਾਬੀ BHHL-116B-22 ਬੈਚੂਲਰ ਆਫ ਸਾਇੰਸ (ਸਲੇਬਸ) ਸਮੈਸਟਰ -ਦੂਜਾ

Credit-2-0-0

# ਯੂਨਿਟ-1

ਪੈਂਤੀ ਅੱਖਰੀ ( ਵਰਣਮਾਲਾ), ਅੱਖਰ ਕ੍ਰਮ ਮਾਤਰਾਵਾਂ : ਮੁਢਲੀ ਜਾਣ-ਪਛਾਣ ਲਗਾਖਰ :ਬਿੰਦੀ, ਟਿੱਪੀ, ਅੱਧਕ

ਪੰਜਾਬੀ ਸ਼ਬਦ ਬਣਤਰ: ਮੁਢਲੀ ਜਾਣ-ਪਛਾਣ

ਮੂਲ ਸ਼ਬਦ , ਅਗੇਤਰ, ਪਿਛੇਤਰ

ਸਮਾਨਾਰਥਕ ਸ਼ਬਦ, ਵਿਰੋਧਾਰਥਕ ਸ਼ਬਦ

ਸ਼ੁੱਧ- ਅਸ਼ੁੱਧ: ਦਿੱਤੇ ਪੈਰ੍ਹੇ ਵਿੱਚੋਂ ਅਸ਼ੁੱਧ ਸ਼ਬਦ ਨੂੰ ਸ਼ੁੱਧ ਕਰਨਾ

ਯੁਨਿਟ-2

ਹਫਤੇ ਦੇ ਸੱਤ ਦਿਨਾਂ ਦੇ ਨਾਂ ਬਾਰ੍ਹਾਂ ਮਹੀਨਿਆਂ ਦੇ ਨਾਂ ਰੁੱਤਾਂ ਦੇ ਨਾਂ ਇਕ ਸੌ ਤੱਕ ਗਿਣਤੀ ਸ਼ਬਦਾਂ ਵਿਚ ਰੋਜ਼ਾਨਾ ਵਰਤੋਂ ਦੀ ਪੰਜਾਬੀ ਸ਼ਬਦਾਵਲੀ: ਬਾਜ਼ਾਰ, ਵਪਾਰ,ਰਿਸ਼ਤੇ-ਨਾਤੇ ਤੇ ਕਿੱਤਿਆਂ ਸਬੰਧੀ।

ਯੂਨਿਟ-3

ਸ਼ਬਦ ਸ਼੍ਰੇਣੀਆਂ : ਪਛਾਣ ਤੇ ਵਰਤੋਂ-ਨਾਂਵ, ਪੜਨਾਂਵ, ਵਿਸ਼ੇਸ਼ਣ, ਕਿਰਿਆ, ਕਿਰਿਆ ਵਿਸ਼ੇਸ਼ਣ ਪੰਜਾਬੀ ਵਾਕ ਬਣਤਰ : ਸਧਾਰਣ ਵਾਕ ਸੰਯੁਕਤ ਵਾਕ ਮਿਸ਼ਰਤ ਵਾਕ

| BHIC-111             | -22                                                                            | CHEMI          | STRY-I       | ]       | L-3, T-1, P-0        | Cr            | edits:4        |  |
|----------------------|--------------------------------------------------------------------------------|----------------|--------------|---------|----------------------|---------------|----------------|--|
| Prerequisite: 3      | Prerequisite: Subject knowledge of senior secondary level                      |                |              |         |                      |               |                |  |
| <b>Objective(s):</b> | 1.                                                                             | To teach th    | e fundament  | al con  | cepts of Inorganic   | Chemistry     | and chemical   |  |
|                      |                                                                                | bonding.       |              |         |                      |               |                |  |
|                      | 2.                                                                             |                |              | iples,  | chemical reaction    | and reaction  | n mechanisms   |  |
|                      |                                                                                |                | compounds.   |         |                      |               |                |  |
| At the end of the    |                                                                                |                |              |         |                      |               |                |  |
| CO1.                 |                                                                                |                | amental conc | cepts a | nd postulates of v   | arious theo   | ries regarding |  |
|                      |                                                                                | cture of atom  |              |         |                      |               |                |  |
| CO2.                 |                                                                                |                |              |         | ng to the differen   |               |                |  |
| CO3.                 |                                                                                |                |              |         | organic chemistry    | i.e structure | e, bonding and |  |
|                      |                                                                                | effects in org |              |         |                      |               |                |  |
| CO4.                 |                                                                                |                |              |         | ermediate in organ   |               |                |  |
| CO5.                 |                                                                                |                |              |         | concepts of reaction |               |                |  |
|                      | the study of reaction mechanisms in various types of substitution addition and |                |              |         |                      |               |                |  |
|                      | elimination reactions                                                          |                |              |         |                      |               |                |  |
|                      | N T                                                                            |                |              | 41      | 41                   |               |                |  |
|                      | Maj                                                                            |                |              |         | the program outo     |               | DCO.           |  |
|                      |                                                                                | PSO1           | PSO2         | •       | PSO3                 | PSO4          | PSO5           |  |
| CO1                  |                                                                                | ✓              | -            |         | -                    | <b>√</b>      | ✓              |  |
| CO2                  | CO2                                                                            |                |              |         | ✓                    |               |                |  |
| CO3                  | CO3 🗸                                                                          |                | ✓            |         | ✓                    | ✓             | ✓              |  |
| CO4                  | - / / /                                                                        |                |              |         |                      |               |                |  |
| CO5                  |                                                                                | -              | <b>√</b>     |         | ✓                    | ✓             | ✓              |  |

Course Title: Chemistry-I Course Code: BHIC-111-22

#### Unit-I

**Atomic Structure:** Bohr's theory and its limitations and atomic spectrum of hydrogen atom. Wave mechanics: deBroglie equation, Heisenberg's Uncertainty Principle and its significance, Schrödinger's wave equation, significance of  $\psi$  and  $\psi$ 2. Quantum numbers and their significance. Radial and angular wave functions for hydrogen atom. Radial and angular distribution curves. Shapes of s, p, d and f orbitals. Contour boundary and probability diagrams. Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations.

**Chemical Bonding-I:** Ionic bond: General characteristics, types of ions, size effects, radius ratio rule and its limitations, Packing of ions in crystals, Born-Landé equation with derivation and importance of Kapustinskii expression for lattice energy. Madelung constant, Born-Haber cycle and its application.

#### **Unit-II**

**Chemical Bonding-II:** Covalent bond: Lewis structure, Valence Bond theory (Heitler London approach), Valence shell electron pair repulsion theory (VSEPR), shapes of simple molecules and ions containing lone pairs and bond pairs of electrons, Covalent character in ionic compounds, polarizing power and polarizability. Fajan's rules and consequences of polarization. Molecular orbital theory. Molecular orbital diagrams of diatomic and simple polyatomic molecules N<sub>2</sub>, O<sub>2</sub>, C<sub>2</sub>, B<sub>2</sub>, F<sub>2</sub>, CO NO, and their ions.

#### **Unit-III**

# **Basics of Organic Chemistry Organic Compounds:**

Classification, and Nomenclature, Hybridization, Influence of hybridization on bond properties. Electronic Displacements: Inductive, electromeric, resonance and mesomeric effects, hyper conjugation and their applications; Dipole moment; Homolytic and Heterolytic fission with suitable examples. Curly arrow rules, Electrophiles and Nucleophiles; Nucleophilicity and basicity; Types, shape and their relative stability of Carbocations, Carbanions, Free radicals and Carbenes.

# **Chemistry of Aliphatic Hydrocarbons-I:**

Formation of alkanes, Wurtz Reaction, Wurtz-Fittig Reactions, Free radical substitutions: Halogenation -relative reactivity and selectivity.

## **Unit-IV**

# **Chemistry of Aliphatic Hydrocarbons-II:**

Formation of alkenes and alkynes by elimination reactions, Mechanism of E1, E2, E1cb reactions. Saytzeff and Hofmann eliminations. Reactions of alkenes: Electrophilic additions their mechanisms (Markownikoff/ Anti Markownikoff addition), mechanism of oxymercuration-demercuration, hydroborationoxidation, ozonolysis, reduction (catalytic and chemical).

# **Aromatic Hydrocarbons Aromaticity**:

Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions and heterocyclic compounds with suitable examples. Electrophilic aromatic substitution: halogenation, nitration, sulphonation and Friedel-Craft's alkylation/acylation with their mechanism.

# **Reference Books**

- 1 Lee, J.D. Concise Inorganic Chemistry, ELBS, 1991.
- 2 Cotton, F.A. & Wilkinson, G. Advanced Inorganic Chemistry, Wiley, VCH, 1999
- 3 Douglas, B.E; Mc Daniel, D.H. & Alexander, J.J. Concepts & Models of Inorganic

Chemistry 3rd Ed., John Wiley Sons, N.Y. 1994

- 4 Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 5 Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education)

| BHIC-112-  | -22                                                                                     | Chemi             | stry Lab-I          | L-0, T-0, P        | ·-4        | Credits: 02            |   |
|------------|-----------------------------------------------------------------------------------------|-------------------|---------------------|--------------------|------------|------------------------|---|
| Pre-requis | <b>Pre-requisite:</b> Understanding of senior secondary level Chemistry                 |                   |                     |                    |            |                        |   |
|            |                                                                                         |                   |                     |                    |            | vledge and illustrativ | e |
| experiment | s about va                                                                              | arious types      | of inorganic titrat | tions and general  | organic te | echniques              |   |
| Course Ou  | tcomes:                                                                                 | At the end o      | f the course, the s | tudents will be al | ole to     |                        |   |
| CO1        | Learn th                                                                                | ne quantitati     | ve analysis of var  | ious metal ions/c  | ations and | l anions.              |   |
| CO2        | Underst                                                                                 | and the vari      | ous principles of   | different techniqu | ies involv | ed in the quantitative | e |
|            | analysis                                                                                | <b>.</b>          |                     |                    |            |                        |   |
| CO3        | Learn the basic qualitative techniques                                                  |                   |                     |                    |            |                        |   |
| CO4        | CO4 Learn chromatographic techniques for the identification and separation of compounds |                   |                     |                    |            |                        |   |
| CO5        | Learn a                                                                                 | bout the app      | lications of basic  | techniques         |            |                        |   |
|            | N                                                                                       | <b>Mapping of</b> | course outcomes     | with the progra    | ım outcoı  | nes                    |   |
|            |                                                                                         | PSO1              | PSO2                | PSO3               | PSC        | PSO5                   |   |
| CO1        |                                                                                         | ✓                 | ✓                   | <b>✓</b>           | ✓          | ✓                      |   |
| CO2        |                                                                                         | ✓                 | ✓                   | ✓                  | ✓          | ✓                      |   |
| CO3        | <b>√</b>                                                                                |                   | ✓                   | <b>√</b>           | ✓          | ✓                      |   |
| CO4        | ✓ ✓                                                                                     |                   | <b>√</b>            | <b>√</b>           | ✓          | <b>√</b>               |   |
| CO5        |                                                                                         | ✓                 | ✓                   | ✓                  | ✓          | <b>√</b>               |   |

Course Title: Chemistry Lab-I Course Code: BHIC-112-22

#### Part-I

# (A) Acid-Base Titrations

- (i) Estimation of carbonate and hydroxide present together in mixture.
- (ii) Estimation of carbonate and bicarbonate present together in a mixture.
- (iii) Estimation of free alkali present in different soaps/detergents

# (B) Oxidation-Reduction Titrations

- (i) Estimation of Fe(II) and oxalic acid using standardized KMnO<sub>4</sub> solution.
- (ii) Estimation of oxalic acid and sodium oxalate in a given mixture.
- (iii) Estimation of Fe(II) with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> using internal (diphenylamine, anthranilic acid) and external indicator.

# Part-II

- (i) Checking the calibration of the thermometer
- (ii) Purification of organic compounds by crystallization using the following solvents: a) Water b) Alcohol, and c) Alcohol-Water.
- (iii) Determination of the melting points of above compounds and unknown organic compounds (Kjeldahl method and electrically heated melting point apparatus)
- (iv) Effect of impurities on the melting point mixed melting point of two unknown organic compounds
- (v) Determination of boiling point of liquid compounds. (boiling point lower than and more than 100°C by distillation and capillary method)
- (vi) Chromatography a) Separation of a mixture of two amino acids by ascending and horizontal paper chromatography b) Separation of a mixture of two sugars by ascending paper chromatography, c) Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC)

# **Reference Books:**

- 1. Vogel, A.I. A Textbook of Quantitative Inorganic Analysis, ELBS.
- 2. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009).
- 3. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson (2012).

| BBA-GE 2<br>18            | 201-                | Managerial Eco                                  | onomics II                         | L-5, T-1, P-0              | 6 Credits               |
|---------------------------|---------------------|-------------------------------------------------|------------------------------------|----------------------------|-------------------------|
| Pre-requisi               | te: Under           | rstanding of basic know                         | ledge of Manage                    | rial Economics             |                         |
| of national<br>macroecono | income,<br>mic envi | inflation and unemp<br>ronment of an economy    | loyment, which for better decision |                            |                         |
| Course Out                | comes: A            | After completion of the                         | course, the stude                  | its shall be able to:      |                         |
| CO1                       | Explai              | n the concept of nationa                        | al income and its                  | measurement using diffe    | erent approaches.       |
| CO2                       | Descri              | be the underlying theor                         | ies of demand and                  | d supply of money in an    | economy.                |
| CO3                       |                     | use of employment and<br>e the economy in quant |                                    | statistics students will l | be able to describe and |
| CO4                       |                     |                                                 |                                    | flation and unemployme     | nt.                     |
| CO5                       | Identif             |                                                 |                                    | he problems caused by      |                         |
|                           |                     | Mapping of course                               | outcomes with t                    | he program outcomes        |                         |
|                           | PSO1                | PSO2                                            | PSO3                               | PSO4                       | PSO5                    |
| CO1                       | -                   | ✓                                               | -                                  | -                          | ✓                       |
| CO2                       | -                   | ✓                                               | -                                  | -                          | ✓                       |
| CO3                       | -                   | ✓                                               | -                                  | -                          | ✓                       |
| CO4                       | -                   | ✓                                               | -                                  | -                          | ✓                       |
| CO5                       | -                   | ✓                                               | -                                  | -                          | <b>√</b>                |

**Course Title: Managerial Economics II** 

**Course Code: BBAGE 201-18** 

# **UNIT-I**

National Income: Measuring National Income. Problems in the measurement of National Income. Theories of Money: Nature and functions of money – Types of money: Near money, inside money and outside money. Theories of demand for money – defining demand for money – Classical theories of demand for money – Friedman's re-statement of Quantity Theory of

Money; Liquidity preference theory and Keynesian Liquidity Trap. Theories of Supply of money; Defining supply of money; Measuring supply of money.

#### **UNIT-II**

Theories of Inflation and Unemployment: Meaning, Types and Theories of Inflation. - Cost of inflation and sacrifice ratio. - Measurement of Inflation in India - Policies to control inflation Meaning and types of unemployment. - Cost of unemployment and Oakun's Law Measurement of unemployment in India. - Concept of Stagflation - Concept of Philips Curve.

#### **Unit-III**

Business cycle: Meaning, types and phases. Monetary, Fiscal and Income policy – Meaning and instruments. Multiplier: Concept, Features and Leakages. Foreign trade multiplier.

#### **Unit-IV**

Macro-economic Framework in Indian Economy–Public Finance–Tax system in India– Financial Administration: Finance Commission.

#### **RECOMMENDED BOOKS:**

- 1. Ahuja, H.L.(2015) Macroeconomics-Theory and Policy. New Delhi: Sultan Chand.
- 2. Jhingan, M.L. (2016) Macro Economic Theory. Delhi: Vrinda Publications Pvt. Ltd
- 3. Dwivedi, D.N.(2017)Macroeconomics: Theory and Practice: Theory & Practice. New Delhi: McGraw Hill.
- 4. Jain, T.R., Khanna, O.P.(2014) Managerial Economics: V.K. Publications
- 5. Dewett, K.K., Navalur, M.H., (2006) Modern Economic Theory: New Delhi: Sultan Chand.

| I. K. Gujral Punjab Techni | ical University, Kapurthala |
|----------------------------|-----------------------------|
|----------------------------|-----------------------------|

SEMESTER-III

| BSHM-301-22                                                                      | Theory o                                                                                                                                       | f Real Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | L-5, T-1, P-0 | 6 Credits           |  |  |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------|---------------------|--|--|
| Pre-requisite: Sequences and Series                                              |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |               |                     |  |  |
| Course Objectiv                                                                  | zos. The objectives of                                                                                                                         | f this course are to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |               |                     |  |  |
| 1. Introduce explore i 2. Develop 3. Introduce 4. Discuss 6. Introduce applicati | mportant application analytical and compete sequential criterion derivative and its appeted Taylor's theorem versions.                         | theory of real funds.  utational skills of state | students. tinuity. Forms of rem | -             | of view and also to |  |  |
|                                                                                  | s: At the end of the c                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | e to          |                     |  |  |
|                                                                                  |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |               |                     |  |  |
| CO1 De                                                                           | al with the basic con                                                                                                                          | cepts of real analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sis rigorousl                   | ly.           |                     |  |  |
| CO2 Us                                                                           | Use the concepts of limit, continuity and derivative in different fields of study.                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |               |                     |  |  |
|                                                                                  | Apply Taylor series in approximating functions, deal with certain inequalities and convex function.                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |               |                     |  |  |
|                                                                                  | Understand different forms of remainder term of Taylor series and also to utilize these remainder terms to assess the error in approximations. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |               |                     |  |  |
| CO5 Ex                                                                           | Expand certain functions in terms of Fourier series.                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |               |                     |  |  |
|                                                                                  | Mapping of co                                                                                                                                  | ourse outcomes w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vith the prog                   | gram outcomes |                     |  |  |
|                                                                                  | PSO 1                                                                                                                                          | PSO 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PSO 3                           | PSO 4         | PSO 5               |  |  |
| CO1                                                                              | ✓                                                                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                               | -             | ✓                   |  |  |
| CO2                                                                              | 2                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |               |                     |  |  |
| CO3                                                                              | 3                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |               |                     |  |  |
| CO4                                                                              | <b>√</b>                                                                                                                                       | <b>√</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                               | -             | <b>√</b>            |  |  |
| CO5                                                                              | ✓                                                                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                               | -             | ✓                   |  |  |

Course Title: Theory of Real Functions Course Code: BSHM-301-22

#### **UNIT-I**

Limits of functions ( $\epsilon - \delta$  approach), sequential criterion for limits, divergence criteria. Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion for continuity, discontinuity criterion. Algebra of continuous functions. Continuous functions on an interval, intermediate value theorem, location of roots theorem, preservation of intervals theorem. (Scope: Section 4.1, 4.2, 4.3, 5.1,5.2, 5.3 of Textbook: Bartle et al. [1]).

#### **UNIT-II**

Uniform continuity, non-uniform continuity criteria, uniform continuity theorem, Lipschitz condition, continuous extension theorem, Weierstrass approximation theorem (without proof), Differentiability of a function at a point and in an interval, Caratheodory's theorem, Chain rule, Darboux's theorem. (Scope: Section 5.4.1-5.4.8, 6.1, 6.2.12 of Textbook: Bartle et al. [1]).

#### **UNIT-III**

Taylor polynomial, Taylor's theorem, estimate of error in approximating a function, convex function, application of Taylor theorem to inequalities and convex functions. (Scope: Section 6.4.1, 6.4.2,6.4.3, 6.4.5, 6.4.6 of Textbook: Bartle et al. [1]).

Inner product of functions, orthogonal functions, orthogonal set of functions, orthonormal set of functions, periodic functions, piecewise continuous function, even and odd functions. (Scope: Section 12.1 of Textbook: Zill [2]).

# **UNIT-IV**

Trigonometric series, Fourier series, sufficient conditions for convergence of a Fourier series, sequence of partial sums of Fourier series, Fourier cosine series, Fourier sine series, Gibbs phenomenon, half range expansions. (Scope: Section 12.2,12.3 of Textbook: Zill [2]).

# **TEXT BOOKS**

- 1. R. Bartle and D.R. Sherbert, Introduction to Real Analysis, John Wiley and Sons, 2003.
- 2. Dennis G. Zill, Advanced Engineering Mathematics, 6<sup>th</sup> Edition, Jones and Bartlett Publishers, 2016.
- 3. Shanti Narayan, M. D. Raisinghania, Elements of Real Analysis, 14<sup>th</sup> Revised Edition, S. Chand & Company LTD, New Delhi, 2013.

# **RECOMMENDED BOOKS:**

- 1. K.A. Ross, Elementary Analysis: The Theory of Calculus, Springer, 2004.
- 2. A. Mattuck, Introduction to Analysis, Prentice Hall, 1999.
- 3. S.R. Ghorpade and B.V. Limaye, A Course in Calculus and Real Analysis, Springer, 2006.

| 22                                    | Froup Theory I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T-1, P-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 Credits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| : Set Theory                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| _                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | petencies to carr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y out their duties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| mes: At the end of th                 | e course, the student                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| learn the basic co                    | ancents like groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e subgroups eve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | elie groups no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | armal cuhoroune                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s, subgroups, cy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | one groups, no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | illiai subgroups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nic structures which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ch are quite sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ificant in modern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| · · · · · · · · · · · · · · · · · · · | perations on argeore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ne structures wind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in are quite sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | incum in modern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                       | ems of group isomor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | phisms and isomo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | orphisms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                       | 8 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| be acquainted with p                  | orerequisite knowled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ge required to lear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n advanced alge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bra.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| apply the learnt tech                 | niques in modern alg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gebra.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Mapping o                             | f course outcomes v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | with the program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| PSO 1                                 | PSO 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PSO 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PSO 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PSO 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| ✓                                     | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| <b>√</b>                              | <b>√</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>√</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 03                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                       | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| <b>✓</b>                              | <b>√</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>✓</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| <b>√</b>                              | <i>J</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | √<br>√                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                       | cially the notion of a all as familiarize you we to provide the learner ilities in a pure Mathemes: At the end of the learn the basic condomomorphisms, etc. learn about binary of mathematics.  understand the theory be acquainted with propagation apply the learnt tech mapping of the provided of the pro | ctives: The main aim of the course is to instally the notion of a group. The course ill as familiarize you with tools essential into provide the learner with the skills, knilities in a pure Mathematical environment mes: At the end of the course, the student learn the basic concepts like groups homomorphisms, etc.  Ilearn about binary operations on algebra mathematics.  understand the theorems of group isomorphisms acquainted with prerequisite knowled apply the learnt techniques in modern algebra mathematics.  PSO 1 PSO 2  PSO 1 PSO 2 | ctives: The main aim of the course is to introduce the studer stally the notion of a group. The course will help prepare it as familiarize you with tools essential in many other areas to provide the learner with the skills, knowledge and compilities in a pure Mathematical environment.  The series of the course, the students will be able to the learn the basic concepts like groups, subgroups, cycle homomorphisms, etc.  I learn about binary operations on algebraic structures which mathematics.  The series of group isomorphisms and isomorphisms and the theorems of group isomorphisms and isomorphisms are concepts.  The series of the students will be able to the students will be able to the students will be able to the series of the students will be able to the stu | ctives: The main aim of the course is to introduce the students to basic conceinably the notion of a group. The course will help prepare you for further a stamiliarize you with tools essential in many other areas of mathematics. To provide the learner with the skills, knowledge and competencies to carrillatives in a pure Mathematical environment.  The series of the course, the students will be able to to the basic concepts like groups, subgroups, cyclic groups, not homomorphisms, etc.  The learn about binary operations on algebraic structures which are quite sign mathematics.  The acquainted with prerequisite knowledge required to learn advanced algebra apply the learnt techniques in modern algebra.  The series of the course outcomes with the program outcomes.  The series of the course outcomes with the program outcomes.  The series of the course outcomes with the program outcomes.  The series of the course outcomes with the program outcomes.  The series of the course outcomes with the program outcomes.  The series of the course outcomes with the program outcomes. |  |

Course Title: Group Theory I Course Code: BSHM-302-22

# **UNIT-I**

**Groups:** Symmetries of a square, Dihedral groups, definition and examples of groups including permutation groups and quaternion groups (illustration through matrices), elementary properties of groups.

# **UNIT-II**

**Subgroups:** Subgroups and examples of subgroups, properties of subgroups, centralizer, center of a group, product of two subgroups, inverse of a subset of a group.

Cosets: Properties of cosets, Lagrange's theorem and consequences including Fermat's Little theorem, Euler's  $\phi$ -function. Scheme & Syllabus (B.Sc. Hons. Mathematics) Batch 2022 & Onwards Page 48 of 104

#### **UNIT-III**

**Cyclic groups:** Properties of cyclic groups, subgroups of cyclic groups, generators of cyclic group, important theorem on cyclic groups.

**Normal Subgroups:** Normal subgroups and their properties, examples of normal subgroups, product of two normal subgroups, normalizer of a subset of a group, quotient groups.

#### UNIT-IV

**Group homomorphisms:** Properties of homomorphisms, Cayley's theorem, properties of isomorphisms, First, Second and Third isomorphism theorems.

#### **Text Book:**

1. V. Khanna and S.K. Bhambari, Abstract Algebra, 5th Ed., Vikas Publishing House, New Delhi, 2016.

# **Books Recommended:**

- 1. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002.
- 2. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.
- 3. Joseph A. Gallian, Contemporary Abstract Algebra, 4th Ed., Narosa Publishing House, New Delhi, 1999.
- 4. Joseph J. Rotman, An Introduction to the Theory of Groups, 4th Ed., Springer Verlag, 1995.
- 5. I.N. Herstein, Topics in Algebra, Wiley Eastern Limited, India, 1975.

| BSHM-303-2     | Multivariable Calculus L-5, T-1, P-0 6 Credits                                                                           |                    |                      |                                                |                     |                                                                            |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|------------------------------------------------|---------------------|----------------------------------------------------------------------------|--|
| Pre-requisite  | : Sets,                                                                                                                  | Binary operation   | S                    | <u>.                                      </u> |                     |                                                                            |  |
| variable funct | ions, li<br>y will ł                                                                                                     | mit, continuity, d | ifferentiability, pa | artial derivati                                | ves, gradient, dive | ic concepts of several<br>rgence, curl, multiple<br>blume of solids, areas |  |
| Course Outco   | mes: A                                                                                                                   | t the end of the c | ourse, the student   | s will be able                                 | e to                |                                                                            |  |
| CO1            | learn the basic concepts like several variable functions, limit continuity, differentiability, partial derivatives, etc. |                    |                      |                                                |                     |                                                                            |  |
| CO2            | learn a                                                                                                                  | about Lagrange m   | nultiplier method.   |                                                |                     |                                                                            |  |
| CO3            | unders                                                                                                                   | stand the concept  | of the directional   | derivatives,                                   | curl, divergence, ş | gradient, etc.                                                             |  |
| CO4            | be acc                                                                                                                   | -                  | e properties of r    | nultiple inte                                  | grals, change of    | coordinates to polar                                                       |  |
| CO5            | apply                                                                                                                    | the learnt techniq | ues to find center   | of mass, vol                                   | lume of solids, are | as of surfaces, etc                                                        |  |
|                |                                                                                                                          | Mapping of c       | ourse outcomes v     | with the pro                                   | gram outcomes       |                                                                            |  |
|                |                                                                                                                          | PSO 1              | PSO 2                | PSO 3                                          | PSO 4               | PSO 5                                                                      |  |
| CO1            |                                                                                                                          | <b>√</b>           | ✓                    | -                                              | -                   | <b>√</b>                                                                   |  |
| CO2            | CO2                                                                                                                      |                    |                      |                                                |                     | ✓                                                                          |  |
| CO3            |                                                                                                                          | -                  | ✓                    |                                                |                     |                                                                            |  |
| CO4            | CO4 \(  \)                                                                                                               |                    | -                    | -                                              | <b>√</b>            |                                                                            |  |
| CO5 \(  \)     |                                                                                                                          |                    |                      | -                                              | <b>√</b>            |                                                                            |  |

Use of Scientific calculator is allowed.

Course Title: Multivariable Calculus

Course Code: BSHM-303-22

#### **UNIT-I**

Functions of several variables, limit and continuity of functions of two variables Partial differentiation, total differentiability and differentiability, sufficient condition for differentiability. Chain rule for one and two independent parameters, Extrema of functions of two variables, method of Lagrange multipliers, constrained optimization problems.

#### **UNIT-II**

Double integration over rectangular region, double integration over non-rectangular region, double integrals in polar coordinates, Triple integrals, Triple integral over a parallelepiped and solid regions. Volume by triple integrals, cylindrical and spherical co-ordinates, change of variables in double integrals and triple integrals.

#### **UNIT-III**

Definition of vector field, divergence and curl, directional derivatives, the gradient, maximal and normal property of the gradient, tangent planes, line integrals, applications of line integrals.

#### **UNIT-IV**

Green's theorem, Stoke's theorem, Divergence theorem, their applications.

## **Books Recommended**

- 1. G.B. Thomas and R.L. Finney, Calculus, 9th Ed., Pearson Education, Delhi, 2005.
- 2. M.J. Strauss, G.L. Bradley and K. J. Smith, *Calculus*, 3rd Ed., Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), Delhi, 2007.
- 3. E. Marsden, A.J. Tromba and A. Weinstein, *Basic Multivariable Calculus*, Springer (SIE), Indian reprint, 2005.
- 4. James Stewart, Multivariable Calculus, Concepts and Contexts, 2nd Ed., Brooks /Cole,

Thomson Learning, USA, 2001.

| BSHM-304-2                                          | 4-22 Logic and Sets L-2, T-0, P-0 2 Cree                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                |                                                       |                                                                      |  |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|--|
| Pre-requisite                                       | : Sets,                                                                                                                           | Binary operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s                                                            |                                |                                                       |                                                                      |  |
| logical operative regarding mer union, intersection | tions. 'nbersh                                                                                                                    | The course will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | help prepare the<br>et, and proper sub<br>difference on sets | student to unset, using proper | nderstand the rel<br>per notation. Perfo<br>notation. | ncepts from sets and<br>ations between sets<br>orm the operations of |  |
| CO1                                                 | learn 1                                                                                                                           | the basic concepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s like propositions                                          | s, truth table, r              |                                                       | tion and disjunction.                                                |  |
| CO2                                                 | learn                                                                                                                             | cations, bicondition about Proposition grant National Nat | nal equivalence,                                             |                                | valences, Predica                                     | tes and quantifiers,                                                 |  |
| CO3                                                 |                                                                                                                                   | stand the concept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | set operations                 | and the laws of                                       | set theory and Venn                                                  |  |
| CO4                                                 | be acquainted with the properties of product set, Composition of relations, Types of relations, Partitions, Equivalence Relations |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                |                                                       |                                                                      |  |
| CO5                                                 | apply the learnt techniques in computer algebra.                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                |                                                       |                                                                      |  |
|                                                     |                                                                                                                                   | Mapping of co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ourse outcomes v                                             | with the prog                  | ram outcomes                                          |                                                                      |  |
|                                                     |                                                                                                                                   | PSO 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PSO 2                                                        | PSO 3                          | PSO 4                                                 | PSO 5                                                                |  |
| CO1                                                 |                                                                                                                                   | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ✓                                                            | <b>√</b>                       | ✓                                                     | ✓                                                                    |  |
| CO2                                                 | )2                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                |                                                       |                                                                      |  |
| CO3                                                 | 03                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                |                                                       |                                                                      |  |
| CO4                                                 | 04                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                |                                                       |                                                                      |  |
| CO5                                                 |                                                                                                                                   | <b>√</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ✓                                                            | <b>√</b>                       | ✓                                                     | ✓                                                                    |  |

Course Title: Logic and Sets Course Code: BSHM-304-22

## **UNIT-I**

**Logic and Sets:** Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions, converse, contra positive and inverse propositions and precedence of logical operators. Propositional equivalence, Logical equivalences.

Predicates and quantifiers: Introduction, Quantifiers, Binding variables and Negations.

# **UNIT-II**

Sets, subsets, Set operations and the laws of set theory and Venn diagrams. Examples of finite and infinite sets. Finite sets and counting principle. Empty set, properties of empty set. Standard set operations. Classes of sets. Power set of a set. Difference and Symmetric difference of two sets. Set identities, Generalized union and intersections.

**Relation:** Product set, Composition of relations, Types of relations, Partitions, Equivalence Relations with example of congruence modulo relation, Partial ordering relations, *n*-ary relations.

#### **Books Recommended:**

- 1. R.P. Grimaldi, Discrete Mathematics and Combinatorial Mathematics, Pearson Education, 1998.
- 2. P.R. Halmos, Naive Set Theory, Springer, 1974. 3. E. Kamke, Theory of Sets, Dover Publishers, 1950.

| PHYSICS-C-6 | BSHP-212-21 | Elements of    | L-3, T-1, P- | 4 Credits |
|-------------|-------------|----------------|--------------|-----------|
|             |             | modern physics | 0            |           |

Pre-requisite: Understanding of senior secondary level Physics and Mathematics

**Course Objectives:** The course content covers foundations of modern physics, experiments forming basis of quantum mechanics, Schrodinger equation and applications, uncertainty principle and applications. The topics covered in the course build a foundation of undergraduate physics students to study the advance branches: quantum physics, nuclear physics, particle physics and high energy physics.

| CO1 | Understand the implication of special theory of relativity.                                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------|
| CO2 | Understand and explain the differences between classical and quantum mechanics.                                             |
| CO3 | Identify properties of the nucleus and other sub-atomic particles.                                                          |
| CO4 | Assess whether a solution to a given problem is physically reasonable and solve Schrodinger equation for simple potentials. |
| CO5 | Describe theories explaining the structure of atoms and the origin of the observed spectra.                                 |

# Mapping of course outcomes with the program outcomes

|     | PO1 | PO2      | PO3 | PO4 | PSO5 |
|-----|-----|----------|-----|-----|------|
| CO1 | -   | ✓        | -   | -   | ✓    |
| CO2 | -   | ✓        | -   | -   | ✓    |
| CO3 | -   | ✓        | -   | -   | ✓    |
| CO4 | -   | <b>√</b> | -   | -   | ✓    |
| CO5 | -   | <b>✓</b> | -   | -   | ✓    |

# **Detailed Syllabus:**

#### PART-A

# UNIT -I

**Special Theory of Relativity**: Michelson-Morley Experiment and its outcome, Postulates of Special Theory of Relativity, Lorentz Transformations. Simultaneity and order of events, Lorentz contraction, Time dilation. Relativistic transformation of velocity, frequency, and wave number. Relativistic addition of velocities. Variation of mass with velocity, Massless Particles, Mass-energy Equivalence. Relativistic Doppler effect, Relativistic Kinematics. Transformation of Energy and Momentum. Energy-Momentum Four Vector. (10 Lectures)

#### **UNIT-II**

**Particle Properties of Waves:** Electromagnetic waves, Blackbody Radiation, ultraviolet catastrophe, Rayleigh-Jeans formula, Planck radiation hypothesis, Photoelectric Effect, Compton Scattering, Quantum theory of light: wave and particle nature, X-Rays, X-Ray Diffraction, determination of wavelengths using Compton Effect, Pair-Production. (10 Lectures)

#### PART-B

#### **UNIT-III**

**Dual Nature of Waves and Particles:** Waves of probability, Description of a Waves in general, Group and Phase velocities and relation between them, De Broglie wavelength, wave-particle duality, Matter waves, Davisson-Germer experiment, Two-Slit experiment with electrons, gamma ray microscope thought experiment, Heisenberg uncertainty principle: Derivation and applications- impossibility of a particle following a trajectory, estimating minimum energy of a confined particle; Energy-time uncertainty principle-application to virtual particles and range of interaction.

(10 Lectures)

#### **UNIT-IV**

**Introduction to Quantum mechanics**: Need for Quantum mechanics, Wave description of particles by wave packets, Physical interpretation of a wave function: Born interpretation, probabilities, and normalization time-dependent and time-independent Schrodinger equation for wave function, Solution of stationary-state Schrodinger equation for one dimensional problem: particle in a box. (10 Lectures)

# **Text and Reference Books:**

- 1. 1. Concepts of Modern Physics, Arthur Beiser, 2002, McGraw-Hill.
- **2.** Introduction to Quantum Mechanics, David J. Griffith, 2005, Pearson Education.
- **3.** Introduction to Modern Physics, Rich Meyer, Kennard, Coop, 2002, Tata McGraw Hill.
- **4.** Physics for Scientists and Engineers with Modern Physics, Jewett and Serway, 2010, Cengage Learning.
- **5.** Modern Physics, G.Kaur and G.R. Pickrell, 2014, McGraw Hill.
- **6.** Quantum Mechanics: Theory & Applications, A.K.Ghatak & S.Lokanathan, 2004, Macmillan.
- 7. Modern Physics, J.R. Taylor, C.D. Zafiratos, M.A. Dubson, 2004, PHI Learning.
- **8.** Theory and Problems of Modern Physics, Schaum's outline, R. Gautreau and W. Savin, 2<sup>nd</sup> Edn, Tata McGraw-Hill Publishing Co. Ltd.
- **9.** Quantum Physics, Berkeley Physics, Vol.4. E.H.Wichman, 1971, Tata McGraw-Hill Co.
- **10.** Basic ideas and concepts in Nuclear Physics, K.Heyde, 3<sup>rd</sup> Edn., Institute of Physics Pub.
- **11.** Six Ideas that Shaped Physics: Particle Behave like Waves, T.A.Moore, 2003, McGraw Hill.

| PHYSICS-C   |           | BSHP-213-21 PHYSICS L-0, T-0, 12<br>LAB-III P-4 |                 |                  |                                       |               |                |  |
|-------------|-----------|-------------------------------------------------|-----------------|------------------|---------------------------------------|---------------|----------------|--|
| Pre-requisi | te: Under | standing of senio                               | or secondary le | evel Physics ar  | nd Mathematics                        |               |                |  |
|             |           |                                                 |                 |                  | f quantum mecha<br>and tunneling effe |               | ectric effect, |  |
| Course Ou   | tcomes: A | t the end of the                                | course, the stu | dent will be al  | ole to                                |               |                |  |
| CO1         | Able to   | verify the theor                                | etical concepts | s/laws learnt ii | n theory courses.                     |               |                |  |
| CO2         | Trainec   | l in carrying out                               | precise measu   | rements and h    | andling sensitive                     | equipment.    |                |  |
| CO3         |           | tand the method atic "errors".                  | s used for esti | mating and d     | ealing with exper                     | imental uncer | tainties and   |  |
| CO4         | Learn t   | o draw conclusio                                | ons from data   | and develop sl   | kills in experimen                    | tal design.   |                |  |
| CO5         |           | ent a technical re                              |                 |                  | cientific informat                    |               | and concise    |  |
|             |           | Mapping of c                                    | ourse outcom    | es with the p    | rogram outcome                        | s             |                |  |
|             | PO1       | PO2                                             | PO3             | PO4              | PSO5                                  |               |                |  |
| CO1         | -         | <b>√</b>                                        | -               | -                | ✓                                     |               |                |  |
| CO2         | -         | <b>√</b>                                        | -               | -                | ✓                                     |               |                |  |
| CO3         |           |                                                 |                 |                  |                                       |               |                |  |
| CO4         |           |                                                 |                 |                  |                                       |               |                |  |
| CO5         | -         | <b>√</b>                                        | -               | -                | ✓                                     |               |                |  |

# **Detailed Syllabus:**

Note: Students are expected to perform 8-10 experiments from the list taking at least 2-3 from the virtual lab.

# List of experiment:

- **1.** Measurement of Planck's constant using black body radiation and photo-detector.
- **2.** Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photoelectrons versus frequency of light.
- **3.** To determine work function of material of filament of directly heated vacuum diode.
- **4.** To determine the Planck's constant using LEDs of at least 4 different colours.
- **5.** To determine the wavelength of H-alpha emission line of Hydrogen atom.
- **6.** To determine the ionization potential of mercury.
- **7.** To determine the absorption lines in the rotational spectrum of Iodine vapour.
- **8.** To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- **9.** To setup the Millikan oil drop apparatus and determine the charge of an electron.
- **10.** To show the tunneling effect in tunnel diode using I-V characteristics.
- **11.** To determine (i) wavelength and (ii) angular spread of a laser using plane diffraction grating.
- **12.** Dependence of scattering angle on kinetic energy and impact parameter in Rutherford scattering (mechanical analogue).
- **13.** Measurement of the electrical and thermal conductivity of copper to determine its Lorentz number.
- **14.** To determine energy band gap of a given semiconductor.

#### **Reference Books:**

- **1.** Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- **2.** Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4<sup>th</sup> Edition, reprinted 1985, Heinemann Educational Publishers.
- **3.** A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11<sup>th</sup> Edn, 2011, Kitab Mahal.

| UGCA-1914     |        | Programming in Python |                     |                   | L-3, T-1, P-0      | 4 Credits            |  |
|---------------|--------|-----------------------|---------------------|-------------------|--------------------|----------------------|--|
| Pre-requisite | e: NA  | 1                     |                     |                   |                    |                      |  |
| Course Obje   | ective | s: The main aim of    | the course is to in | ntroduce the stu  | udents to basic co | oncepts from Python. |  |
| Course Outco  | omes:  | At the end of the c   | course, the student | ts will be able t | .co                |                      |  |
| CO1           | Fam    | niliar with Python e  | nvironment, data    | types, operator   | s used in Python   | l <b>.</b>           |  |
| CO2           | Con    | npare and contrast    | Python with other   | programming       | languages.         |                      |  |
| CO3           | Lea    | rn the use of contro  | l structures and n  | umerous native    | e data types with  | their methods.       |  |
| CO4           | Des    | ign user defined fu   | nctions, modules,   | and packages      | and exception ha   | ndling methods.      |  |
| CO5           | Crea   | ate and handle files  | in Python and lea   | arn Object Orie   | ented Programmi    | ng Concepts.         |  |
|               |        | Mapping of c          | ourse outcomes      | with the progr    | am outcomes        |                      |  |
|               |        | PSO 1                 | PSO 2               | PSO 3             | PSO 4              | PSO 5                |  |
| CO1           |        | <b>√</b>              | ✓                   | ✓                 | <b>√</b>           | ✓                    |  |
| CO2           |        | <b>√</b>              | ✓                   | ✓                 | ✓                  | ✓                    |  |
| CO3           | CO3    |                       |                     |                   |                    |                      |  |
| CO4           |        |                       |                     |                   |                    | <b>√</b>             |  |
| CO5           |        | <b>√</b>              | <b>√</b>            | ✓                 | <b>√</b>           | ✓                    |  |

Course Title: Programming in Python Course Code: UGCA-1914

#### **UNIT-I**

Introduction to Python Programming Language: Programming Language, History and Origin of Python Language, Features of Python, Limitations, Major Applications of Python, Getting, Installing Python, Setting up Path and Environment Variables, Running Python, First Python Program, Python Interactive Help Feature, Python differences from other languages. Python Data Types & Input/Output: Keywords, Identifiers, Python Statement, Indentation, Documentation, Variables, Multiple Assignment, Understanding Data Type, Data Type Conversion, Python Input and Output Functions, Import command. Operators and Expressions: Operators in Python, Expressions, Precedence, Associativity of Operators, Non Associative Operators. (12)

#### **UNIT-II**

Control Structures: Decision making statements, Python loops, Python control statements. Python Native Data Types: Numbers, Lists, Tuples, Sets, Dictionary, Functions & Methods of Dictionary, Strings (in detail with their methods and operations). (10)

#### **UNIT-III**

Python Functions: Functions, Advantages of Functions, Built-in Functions, User defined functions, Anonymous functions, Pass by value Vs. Pass by Reference, Recursion, Scope and Lifetime of Variables. Python Modules: Module definition, Need of modules, Creating a module, Importing module, Path Searching of a Module, Module Reloading, Standard Modules, Python Packages. (12)

#### **UNIT-IV**

Exception Handling: Exceptions, Built-in exceptions, Exception handling, User defined exceptions in Python. File Management in Python: Operations on files (opening, modes, attributes, encoding, closing), read() & write() methods, tell() & seek() methods, renaming & deleting files in Python, directories in Python. (10)

Classes and Objects: The concept of OOPS in Python, Designing classes, Creating objects, Accessing attributes, Editing class attributes, Built-in class attributes, Garbage collection, Destroying objects.

# **Text Books:**

**1.** Pooja Sharma, Programming in Python, BPB Publications, 2017. 2. R. Nageswara Rao, Core Python Programming, 2nd Edition, Dreamtech.

#### **Recommended Books:**

- 1. Martin C. Brown, Python, The complete Reference, Mc Graw Hill Education.
- 2. A. Martelli, A. Ravenscroft and S. Holden, Python in a Nutshell, OREILLY.

Course Title: Programming in Python (Laboratory)

**Course Code: UGCA-1917** 

# **List of Assignments:**

| 1.  | Compute sum, subtraction, multiplication, division and exponent of given variables      |
|-----|-----------------------------------------------------------------------------------------|
|     | input by the user.                                                                      |
| 2.  | Compute area of following shapes: circle, rectangle, triangle, square, trapezoid and    |
|     | parallelogram.                                                                          |
| 3.  | Compute volume of following 3D shapes: cube, cylinder, cone and sphere.                 |
| 4.  | Compute and print roots of quadratic equation $ax^2+bx+c=0$ , where the values of a, b, |
|     | and c are input by the user.                                                            |
| 5.  | Print numbers up to N which are not divisible by 3, 6, 9, e.g., 1, 2, 4, 5, 7,          |
| 6.  | Write a program to determine whether a triangle is isosceles or not?                    |
| 7.  | Print multiplication table of a number input by the user.                               |
| 8.  | Compute sum of natural numbers from one to n number.                                    |
| 9.  | Print Fibonacci series up to n numbers e.g. 0 1 1 2 3 5 8 13n                           |
| 10. | Compute factorial of a given number.                                                    |
| 11. | Count occurrence of a digit 5 in a given integer number input by the user.              |
| 12. | Print Geometric and Harmonic means of a series input by the user.                       |
| 13. | Evaluate the following expressions:                                                     |
|     | a. $x-x^2/2!+x^3/3!-x^4/4!+x^n/n!$                                                      |
|     | b. $x-x^3/3!+x^5/5!-x^7/7!+x^n/n!$                                                      |
| 14. | Print all possible combinations of 4, 5, and 6.                                         |
| 15. | Determine prime numbers within a specific range.                                        |
| 16. | Count number of persons of age above 60 and below 90.                                   |
| 17. | Compute transpose of a matrix.                                                          |
| 18. | Perform following operations on two matrices.                                           |
|     | 1) Addition 2) Subtraction 3) Multiplication                                            |
| 19. | Count occurrence of vowels.                                                             |
| 20. | Count total number of vowels in a word.                                                 |

# **Text Books:**

- 1. Programming in Python, Pooja Sharma, BPB Publications, 2017.
- 2. Core Python Programming, R. Nageswara Rao, 2<sup>nd</sup>Ediiton, Dreamtech.

# Reference Books:

- 1. Python, The complete Reference, Martin C. Brown, Mc Graw Hill Education.
- 2. Python in a Nutshell, A. Martelli, A. Ravenscroft, S. Holden, OREILLY

I. K. Gujral Punjab Technical University, Kapurthala

**SEMESTER-IV** 

| BSHM-401-                                                | -22                                                                                             | Numerical Methods L-4, T-0, P-0 4          |                     |               |                       | 4 Credits               |  |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------|---------------|-----------------------|-------------------------|--|--|--|--|
| Pre-requisite                                            | e: Diff                                                                                         | erential and Integr                        | al Calculus         |               |                       |                         |  |  |  |  |
|                                                          |                                                                                                 |                                            |                     |               |                       |                         |  |  |  |  |
| Course Objectives: The objectives of this course are to: |                                                                                                 |                                            |                     |               |                       |                         |  |  |  |  |
|                                                          | 1. Introduce numerical methods for solving continuous problems which are difficult to deal with |                                            |                     |               |                       |                         |  |  |  |  |
| •                                                        | nalytically.  Develop analytical and computational skills of students.                          |                                            |                     |               |                       |                         |  |  |  |  |
|                                                          |                                                                                                 |                                            |                     |               | m of linear algebraid | e equations.            |  |  |  |  |
|                                                          |                                                                                                 | nethods for constru                        |                     |               |                       | o equations.            |  |  |  |  |
|                                                          |                                                                                                 |                                            |                     |               |                       | gration and ordinary    |  |  |  |  |
|                                                          |                                                                                                 | equations.                                 |                     |               |                       |                         |  |  |  |  |
| 6. Deve                                                  | elop ur                                                                                         | nderstating of con                         | nputational mathe   | ematics and   | d also to demonstra   | ate its importance in   |  |  |  |  |
| scien                                                    | ce and                                                                                          | engineering.                               |                     |               |                       |                         |  |  |  |  |
| Course Outco                                             | omes: A                                                                                         | At the end of the c                        | ourse, the student  | ts will be at | ole to                |                         |  |  |  |  |
|                                                          | •                                                                                               |                                            |                     |               |                       |                         |  |  |  |  |
| CO1                                                      | Find                                                                                            | approximate num                            | erical solutions of | f nonlinear   | equations and syste   | m of linear algebraic   |  |  |  |  |
|                                                          | equat                                                                                           |                                            |                     |               |                       |                         |  |  |  |  |
| CO2                                                      |                                                                                                 |                                            |                     | ials when e   | xplicit form of the f | function of interest is |  |  |  |  |
|                                                          |                                                                                                 | nown or complica                           |                     |               |                       |                         |  |  |  |  |
| CO3                                                      |                                                                                                 |                                            |                     | tegral probl  | ems approximately     | when it is difficult to |  |  |  |  |
| CO4                                                      |                                                                                                 | xact evaluation of                         |                     | 1             | 1:00                  | 11:66:1                 |  |  |  |  |
| CO4                                                      |                                                                                                 | y the numerical maly<br>al with them analy |                     | g ordinary    | differential equation | ns when it is difficult |  |  |  |  |
| CO5                                                      |                                                                                                 | •                                          | •                   | nal techniq   | ues in dealing with   | real world problems     |  |  |  |  |
| 002                                                      |                                                                                                 | ring in science an                         | -                   | nar teeming   | des in dealing with   | rear world problems     |  |  |  |  |
|                                                          | occui                                                                                           | <u> </u>                                   |                     | with the nr   | ogram outcomes        |                         |  |  |  |  |
|                                                          |                                                                                                 | mapping or c                               | ourse outcomes      | with the pi   | ogram outcomes        |                         |  |  |  |  |
|                                                          |                                                                                                 | PSO 1                                      | PSO 2               | PSO           | 3 PSO 4               | PSO 5                   |  |  |  |  |
| CO1                                                      |                                                                                                 | <b>✓</b>                                   | <b>√</b>            | -             | -                     | <b>√</b>                |  |  |  |  |
|                                                          |                                                                                                 | •                                          | •                   |               |                       | •                       |  |  |  |  |
| CO <sub>2</sub>                                          |                                                                                                 | ✓                                          | ✓                   | -             | -                     | ✓                       |  |  |  |  |
| ~~~                                                      |                                                                                                 |                                            |                     |               |                       |                         |  |  |  |  |
| CO3                                                      |                                                                                                 | ✓                                          | ✓                   | -             | -                     | ✓                       |  |  |  |  |
| 004                                                      |                                                                                                 |                                            |                     |               |                       |                         |  |  |  |  |
| CO4                                                      |                                                                                                 | <b>✓</b>                                   | <b>√</b>            | -             | -                     | <b>√</b>                |  |  |  |  |
| CO5                                                      |                                                                                                 | ,                                          | <b>√</b>            | _             | _                     |                         |  |  |  |  |
| CO3                                                      |                                                                                                 | <b>✓</b>                                   | <b>~</b>            | _             | -                     | <b>'</b>                |  |  |  |  |
|                                                          |                                                                                                 |                                            |                     |               |                       |                         |  |  |  |  |

Course Title: Numerical Methods Course Code: BSHM-401-22

## **UNIT-I**

Computer representation of numbers, scientific notation, accuracy of numbers, errors and its different types, estimation of errors, propagation of errors, the concepts of stability and condition number. Algorithms and convergence.

Polynomial and transcendental equations: Bisection method, Newton-Raphson's method, Secant method, Regula-Falsi method, General iteration method, Rate of convergence.

# **UNIT-II**

System of linear algebraic equations, Gaussian elimination method, Gauss-Jordan method. Iterative methods: Gauss Jacobi method, Gauss-Seidel method and their convergence analysis.

Interpolation, Lagrange interpolation, Newton's divided difference interpolation, Gregory-Newton's forward and Gregory-Newton's backward difference interpolation formulas, Error in interpolation.

#### **UNIT-III**

Numerical differentiation: methods based on finite differences. Numerical integration: Midpoint rule, Trapezoidal rule, Simpson's rule, Simpson's  $\frac{3}{8}$ -rule, Boole's rule, composite Trapezoidal rule, composite Simpson's rule.

## **UNIT-IV**

Ordinary differential equations, Taylor series method, Euler's methods, Runge-Kutta methods, linear multistep methods: Adams-Bashforth methods, Adams-Moulton methods and Milne-Simpson's method.

#### **TEXT BOOKS**

- 1. M. K. Jain. S. R.K. Iyengar and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, 7<sup>th</sup> Ed., 2019.
- 2. Richard L. Burden and J. Douglas Faires, Numerical Analysis, 9<sup>th</sup> Edition, Cengage Learning, 2012.

# **RECOMMENDED BOOKS:**

- 1. Brian Bradie, A Friendly Introduction to Numerical Analysis, Pearson Education, 2007.
- 2. K. E. Atkinson, An Introduction to Numerical Analysis, 2<sup>nd</sup> Ed., Wiley, 1989.
- 3. C.F. Gerald and P.O. Wheatley, Applied Numerical Analysis, Pearson Education, India, 2008.
- 4. Uri M. Ascher and Chen Greif, A First Course in Numerical Methods, 7th Ed., PHI Learning Private Limited, 2013.
- 5. John H. Mathews and Kurtis D. Fink, Numerical Methods using Matlab, 4th Ed., PHI Learning Private Limited, 2012.

| BSHM-402-                                                                                                  | -22                                                                                  | Riemann Integra       | tion and Series of  | ,             | L-5, T-1, P-0         | 6 Credits       |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------|---------------------|---------------|-----------------------|-----------------|--|--|--|--|--|
|                                                                                                            |                                                                                      | Functions             |                     |               |                       |                 |  |  |  |  |  |
| <b>Pre-requisite:</b> Functions, limit, continuity, differentiability, integrability, sequence and series  |                                                                                      |                       |                     |               |                       |                 |  |  |  |  |  |
|                                                                                                            |                                                                                      |                       |                     |               |                       |                 |  |  |  |  |  |
| <b>Course Objectives:</b> The objectives of this course are to make the students understand the following: |                                                                                      |                       |                     |               |                       |                 |  |  |  |  |  |
|                                                                                                            | 1. Riemann integration and their basic properties, Fundamental theorems of Calculus. |                       |                     |               |                       |                 |  |  |  |  |  |
|                                                                                                            |                                                                                      | and uniform conver    | •                   | e of function | ons                   |                 |  |  |  |  |  |
|                                                                                                            |                                                                                      | infinite series of fu |                     |               |                       |                 |  |  |  |  |  |
|                                                                                                            |                                                                                      | niform convergenc     |                     |               |                       |                 |  |  |  |  |  |
| Course Outco                                                                                               | omes:                                                                                | At the end of the c   | ourse, the students | will be at    | ole to                |                 |  |  |  |  |  |
| CO1                                                                                                        | Defi                                                                                 | ne Riemann Stielt     | ties integral and   | illustrate    | the properties of     | integration and |  |  |  |  |  |
| COI                                                                                                        |                                                                                      | rentiation            | ijes integral and   | mustrate      | the properties of     | integration and |  |  |  |  |  |
| CO2                                                                                                        |                                                                                      | ire the knowledge     | of sequence and s   | eries.        |                       |                 |  |  |  |  |  |
| CO3                                                                                                        | 1                                                                                    |                       |                     |               | eries by different To | est.            |  |  |  |  |  |
|                                                                                                            | Have the knowledge of uniformly convergence of series by different Test.             |                       |                     |               |                       |                 |  |  |  |  |  |
| CO4                                                                                                        |                                                                                      | •                     |                     |               | nd minimum value      | of functions.   |  |  |  |  |  |
| CO5                                                                                                        | To u                                                                                 | nderstand the state   |                     |               |                       |                 |  |  |  |  |  |
|                                                                                                            |                                                                                      | Mapping of cour       | rse outcomes with   | the prog      | ram outcomes          |                 |  |  |  |  |  |
|                                                                                                            |                                                                                      | PSO 1                 | PSO 2               | PSO           | 3 PSO 4               | PSO 5           |  |  |  |  |  |
| CO1                                                                                                        |                                                                                      | <b>✓</b>              | ✓                   | -             | -                     | ✓               |  |  |  |  |  |
| CO2                                                                                                        | CO2                                                                                  |                       |                     |               |                       |                 |  |  |  |  |  |
| CO3                                                                                                        | CO3 / /                                                                              |                       |                     |               |                       |                 |  |  |  |  |  |
| CO4                                                                                                        |                                                                                      |                       |                     |               |                       | <b>√</b>        |  |  |  |  |  |
| CO5                                                                                                        |                                                                                      |                       |                     |               |                       | ✓               |  |  |  |  |  |

**Course Title: Riemann Integration and Series of Functions** 

Course Code: BSHM-402-22

#### **UNIT-I**

Riemann integration; inequalities of upper and lower sums; Riemann conditions of integrability. Riemann sum and definition of Riemann integral through Riemann sums; equivalence of two definitions;

# **UNIT-II**

Riemann integrability of monotone and continuous functions, Properties of the Riemann integral; definition and integrability of piecewise continuous and monotone functions. Intermediate Value theorem for Integrals; Fundamental theorems of Calculus. Improper integrals; Convergence of Beta and Gamma functions.

#### **UNIT-III**

Pointwise and uniform convergence of sequence of functions; Cauchy's general principle of uniform convergence, A test for uniform convergence of sequence of functions, Countinuity of the uniform limit of a uniformly convergent sequence of continuous functions, Integrability of uniform limit of a uniformly convergent sequence of integrable functions. Derivability of the point-wise limit of a sequence of derivable functions if the derivatives are continuous and the sequence of derivatives is uniformly convergent

#### **UNIT-IV**

Infinite Series of functions, Test for uniform convergence of a series; Cauchy's general principle of convergence and Weierstrass M-Test for uniform convergence. Abel's test and Dirichlet's test. Weierstrass Approximation Theorem.

# RECOMMENDED BOOKS

- 1. Shanti Narayan, Dr. M.D. Raisinghania, Elements of Real Analysis, S. Chand & Company, New Delhi.
- 2. K.A. Ross, Elementary Analysis, The Theory of Calculus, Undergraduate Texts in Mathematics, Springer (SIE), Indian reprint, 2004.
- 3. R.G. Bartle D.R. Sherbert, Introduction to Real Analysis, 3rd Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2002.
- 4. Charles G. Denlinger, Elements of Real Analysis, Jones & Bartlett (Student Edition), 2011.

| BSHM-403-2                                                                                                        | 22                                                                                                                                                                                                                      | Ring Theory           | and Linear Algel    | bra I        | L-5, T-1, P-0     | 6 Credits               |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|--------------|-------------------|-------------------------|--|--|--|--|
| Pre-requisite: Set Theory, Group Theory                                                                           |                                                                                                                                                                                                                         |                       |                     |              |                   |                         |  |  |  |  |
|                                                                                                                   |                                                                                                                                                                                                                         |                       |                     |              |                   |                         |  |  |  |  |
| <b>Course Objectives:</b> The main aim of the course is to introduce the students to basic concepts from abstract |                                                                                                                                                                                                                         |                       |                     |              |                   |                         |  |  |  |  |
| algebra, especially the notion of a ring and vector space. The course will help prepare you for further study     |                                                                                                                                                                                                                         |                       |                     |              |                   |                         |  |  |  |  |
| _                                                                                                                 | in abstract algebra as well as familiarize you with tools essential in many other areas of mathematics. The other aim of this course is to provide the learner with the skills, knowledge and competencies to carry out |                       |                     |              |                   |                         |  |  |  |  |
|                                                                                                                   |                                                                                                                                                                                                                         |                       |                     |              |                   | npetencies to carry out |  |  |  |  |
|                                                                                                                   |                                                                                                                                                                                                                         | ponsibilities in a pr |                     |              |                   |                         |  |  |  |  |
| Course Outco                                                                                                      | mes:                                                                                                                                                                                                                    | At the end of the c   | ourse, the students | s will be ab | le to             |                         |  |  |  |  |
| CO1                                                                                                               | learn                                                                                                                                                                                                                   | the basic conc        | ents like groups    | . subgrour   | os, cyclic groups | s, normal subgroups,    |  |  |  |  |
|                                                                                                                   |                                                                                                                                                                                                                         | omorphisms, etc.      | epus mie groups     | , 50.581501  | s, ejene groups   | , normal suegroups,     |  |  |  |  |
| CO2                                                                                                               |                                                                                                                                                                                                                         |                       | rations on algebra  | ic structure | s which are quite | significant in modern   |  |  |  |  |
|                                                                                                                   |                                                                                                                                                                                                                         | ematics.              |                     |              | •                 |                         |  |  |  |  |
| CO3                                                                                                               | unde                                                                                                                                                                                                                    | rstand the theorem    | s of group isomor   | phisms and   | isomorphisms.     |                         |  |  |  |  |
|                                                                                                                   |                                                                                                                                                                                                                         |                       |                     |              |                   |                         |  |  |  |  |
| CO4                                                                                                               |                                                                                                                                                                                                                         | quainted with pren    |                     |              | to learn advanced | algebra.                |  |  |  |  |
| CO5                                                                                                               | apply                                                                                                                                                                                                                   | the learnt techniq    | •                   |              |                   |                         |  |  |  |  |
|                                                                                                                   |                                                                                                                                                                                                                         | Mapping of co         | ourse outcomes v    | vith the pro | ogram outcomes    |                         |  |  |  |  |
|                                                                                                                   |                                                                                                                                                                                                                         | PSO 1                 | PSO 2               | PSO :        | 3 PSO 4           | PSO 5                   |  |  |  |  |
| CO1                                                                                                               |                                                                                                                                                                                                                         | <b>√</b>              | ✓                   | -            | -                 | ✓                       |  |  |  |  |
| CO2                                                                                                               | 02                                                                                                                                                                                                                      |                       |                     |              |                   |                         |  |  |  |  |
| CO3                                                                                                               | 3                                                                                                                                                                                                                       |                       |                     |              |                   |                         |  |  |  |  |
| CO4                                                                                                               | CO4                                                                                                                                                                                                                     |                       |                     |              |                   |                         |  |  |  |  |
| CO5                                                                                                               | CO5                                                                                                                                                                                                                     |                       |                     |              |                   |                         |  |  |  |  |
|                                                                                                                   |                                                                                                                                                                                                                         |                       |                     |              |                   |                         |  |  |  |  |

Course Title: Ring Theory and Linear Algebra I

Course Code: BSHM-403-22

#### **UNIT-I**

**Ring Theory:** Definition and examples of rings, properties of rings, integral domains and fields, characteristic of a ring,

**Subrings and Ideals:** subrings, ideals, ideal generated by a subset of a ring, operations on ideals, principal, prime and maximal ideals.

#### **UNIT-II**

**Ring Homomorphism:** Quotient rings, Ring homomorphisms, properties of ring homomorphisms, Isomorphism theorems I, II and III.

#### **UNIT-III**

**Vector Spaces:** Vector spaces, vector subspaces, algebra of subspaces, disjoint subspaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces, cosets of subspaces, quotient spaces, dimension of quotient spaces.

#### **UNIT-IV**

**Linear transformations**: Linear transformation, matrix representation of a linear transformation, properties of linear transformations, null space, range, rank and nullity of a linear transformation, algebra of linear transformations. Isomorphisms invertibility and isomorphisms, matrix of a linear transformation with respect to basis.

#### Text Book:

1. V. Khanna and S.K. Bhambari, Abstract Algebra, 5th Ed., Vikas Publishing House, New Delhi, 2016.

#### **Books Recommended:**

- 1. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002.
- 2. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.
- 3. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Algebra, 4th Ed., Prentice Hall of India Pvt. Ltd., New Delhi, 2004.
- 4. Joseph A. Gallian, Contemporary Abstract Algebra, 4th Ed., Narosa Publishing House, New Delhi, 1999.
- 5. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.

- 6. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.
- 7. S. Kumaresan, Linear Algebra- A Geometric Approach, Prentice Hall of India, 1999.
- 8. Kenneth Hoffman, Ray Alden Kunze, Linear Algebra, 2nd Ed., Prentice-Hall of India Pvt. Ltd., 1971.
- 9. D.A.R. Wallace, Groups, Rings and Fields, Springer Verlag London Ltd., 1998

Course Title: Programming Lab-III Course Code: BSHM-404-22

# **List of Practicals (using any software)**

- 1. Calculate the sum  $1/1 + 1/2 + 1/3 + 1/4 + \dots + 1/N$ .
- 2. To find the absolute value of an integer.
- 3. Enter 100 integers into an array and sort them in ascending order.
- 4. Bisection Method.
- 5. Newton Raphson Method.
- 6. Secant Method.
- 7. Regulai Falsi Method.
- 8. LU decomposition Method.
- 9. Gauss-Jacobi Method.
- 10. SOR Method or Gauss-Siedel Method.
- 11. Lagrange Interpolation or Newton Interpolation.
- 12. Simpson's rule.

# **RECOMMENDED BOOKS:**

1. John H. Mathews and Kurtis D. Fink, Numerical Methods using Matlab, 4th Ed., PHI Learning Private Limited, 2012.

| BSHM-405-22                            |            | Graph Theory        |                    | L-                | 2, T-0, P-0       | 2 Credits           |  |  |  |
|----------------------------------------|------------|---------------------|--------------------|-------------------|-------------------|---------------------|--|--|--|
| Pre-requisite: Sets, Binary operations |            |                     |                    |                   |                   |                     |  |  |  |
| •                                      |            |                     |                    |                   |                   | concepts of graphs, |  |  |  |
|                                        |            |                     |                    |                   |                   | be able to identify |  |  |  |
| edges and ve                           | ertices, t | find the degree of  | a vertex, express  | travelling salesn | nan's problem.    |                     |  |  |  |
| Course Outc                            | omes: A    | At the end of the c | ourse, the student | s will be able to |                   |                     |  |  |  |
| CO1                                    |            | the basic concep    |                    | seudo graphs, c   | omplete graphs,   | bi-partite graphs,  |  |  |  |
| CO2                                    |            | about Eulerian cir  |                    | n cycles.         |                   |                     |  |  |  |
| CO3                                    | under      |                     | ot of the adjacen  | cy matrix, weig   | thted graph, trav | velling salesman's  |  |  |  |
| CO4                                    | be ac      | -                   | e properties of si | hortest path, Di  | kstra's algorithr | n, Floyd-Warshall   |  |  |  |
| CO5                                    | apply      | the learnt techniq  | jues in computer a | algebra.          |                   |                     |  |  |  |
|                                        |            | Mapping of c        | ourse outcomes v   | with the progra   | n outcomes        |                     |  |  |  |
|                                        |            | PSO 1               | PSO 2              | PSO 3             | PSO 4             | PSO 5               |  |  |  |
| CO1                                    |            | ✓                   | ✓                  | -                 | -                 | <b>√</b>            |  |  |  |
| CO2                                    |            | <b>√</b>            | ✓                  | -                 | -                 | <b>✓</b>            |  |  |  |
| CO3                                    |            |                     |                    |                   |                   | <b>√</b>            |  |  |  |
| CO4                                    |            |                     |                    |                   |                   | <b>√</b>            |  |  |  |
| CO5                                    |            | <b>√</b>            | <b>√</b>           | -                 | -                 | <b>√</b>            |  |  |  |

Course Title: Graph Theory Course Code: BSHM-405-22

# **UNIT-I**

**Graphs:** Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bi-partite graphs, isomorphism of graphs.

# **UNIT-II**

**Paths and Circuits:** Introduction with examples, Eulerian circuits, Hamiltonian cycles, the adjacency matrix, weighted graph, travelling salesman's problem, shortest path, Dijkstra's algorithm, Floyd-Warshall algorithm.

# **Books Recommended:**

- 1. B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge, 1990.
- 2. Edgar G. Goodaire and Michael M. Parmenter, Discrete Mathematics with Graph Theory, 2nd Edition, Pearson Education (Singapore) P. Ltd., Indian Reprint 2003.
- 3. Rudolf Lidl and Gunter Pilz, Applied Abstract Algebra, 2nd Ed., Undergraduate Texts in Mathematics, Springer (SIE), Indian reprint, 2004.

| BHIC-21                                                          | 1-22                                                                                                                                                                                                                                                                                                                                                              | Chemistry-II     | -              | L-3, T-1,       | P-0 C          | Credits: 4     |  |  |  |  |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|-----------------|----------------|----------------|--|--|--|--|
| Pre-requisite: Understanding of senior secondary level chemistry |                                                                                                                                                                                                                                                                                                                                                                   |                  |                |                 |                |                |  |  |  |  |
| the fundam<br>and ionic ed<br>due weight                         | <b>Course Objectives:</b> This course will equip students with the necessary knowledge concerning the fundamentals in the basic areas of physical chemistry viz. different states of matter, solutions, and ionic equilibrium. The problem-solving skills of students are expected to be enhanced through due weightage given to numerical problems in each unit. |                  |                |                 |                |                |  |  |  |  |
| Course Ou                                                        | itcomes: At the en                                                                                                                                                                                                                                                                                                                                                | d of the course. | , the student  | will be able t  | 0.0            |                |  |  |  |  |
| CO1                                                              | Understand the b                                                                                                                                                                                                                                                                                                                                                  | pasic principles | and theories   | pertaining to   | different st   | ates of matter |  |  |  |  |
| CO2                                                              | Solve various pr                                                                                                                                                                                                                                                                                                                                                  | oblems related   | to pH          | -               |                |                |  |  |  |  |
| CO3                                                              | Define the various                                                                                                                                                                                                                                                                                                                                                | us laws pertaini | ng to gaseou   | is state and so | olutions.      |                |  |  |  |  |
| CO4                                                              | Familiarize with                                                                                                                                                                                                                                                                                                                                                  | the different co | olligative pro | perties of sol  | utions and the | ne concept of  |  |  |  |  |
|                                                                  | abnormal molec                                                                                                                                                                                                                                                                                                                                                    |                  |                |                 |                |                |  |  |  |  |
| CO5                                                              | Understand the b                                                                                                                                                                                                                                                                                                                                                  |                  |                | •               |                |                |  |  |  |  |
|                                                                  | Mapping of                                                                                                                                                                                                                                                                                                                                                        | f course outcor  | nes with the   | e program o     | itcomes        |                |  |  |  |  |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                   | PO1              | PO2            | PO3             | PO4            | PO5            |  |  |  |  |
|                                                                  | CO1                                                                                                                                                                                                                                                                                                                                                               | <b>√</b>         | ✓              | ✓               | <b>√</b>       | ✓              |  |  |  |  |
|                                                                  | CO2                                                                                                                                                                                                                                                                                                                                                               |                  |                |                 |                |                |  |  |  |  |
| CO3                                                              |                                                                                                                                                                                                                                                                                                                                                                   |                  |                |                 |                | ✓              |  |  |  |  |
|                                                                  | CO4                                                                                                                                                                                                                                                                                                                                                               | ✓                | ✓              | ✓               | ✓              | ✓              |  |  |  |  |
|                                                                  | CO5                                                                                                                                                                                                                                                                                                                                                               | ✓                | ✓              | ✓               |                |                |  |  |  |  |

Course Title: Chemistry-II Course Code: BHIC-211-22

#### UNIT-I

**States of Matter:** The kinetic molecular theory of gases, Postulates and derivation of kinetic gas equation and various gas laws, The ideal gas law: Applications, Behaviour of real gases: Deviations from ideal gas behaviour, compressibility factor, Z and its variation with pressure for different gases. Causes of deviation from ideal behavior. Van der Waals equation of state, its derivation and application in explaining real gas behaviour. Critical state, relation between critical constants and vander Waal constants, Numericals based on above concepts.

#### **UNIT-II**

**Liquid and Solid State:** Physical properties of liquids; vapour pressure, surface tension and its effects, coefficient of viscosity and effect of temperature and pressure. Liquid Crystals: their types and applications. Nature of the solid state, law of constancy of interfacial angles, law of rational indices, Miller indices, elementary ideas of symmetry, symmetry elements and symmetry operations, qualitative idea of point and space groups, seven crystal systems and fourteen Bravais lattices; X-ray diffraction, Bragg's law. Defects in Crystals.

#### **UNIT-III**

**Ionic equilibria:** Concept of Acids and Bases, degree of ionization, factors affectingdegree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect; dissociation constants of mono-, di-and triprotic acids. Buffer solutions; buffer capacity, buffer range, buffer action. Salt Hydrolysis, Acid Base Titrations, Solubility and solubility product of sparingly soluble salts – applications of solubility product principle.

#### **UNIT-IV**

**Solutions and Colligative Properties:** Ways of expressing the concentration, Colligative properties: derivation of expression and determination of molecular masses (i) relative lowering of vapour pressure, Raoult's Law. (ii) elevation of boiling point, (iii) Depression of freezing point, (iv) osmotic pressure, effects of Osmosis and Semi permeability, Reverse Osmosis. Applications in calculating molar masses of normal, dissociated, and associated solutes in solution, Van't Hoff Factor, Numerical problems based on above concepts.

#### **RECOMMENDED BOOKS:**

- 1. P.W. Atkins & J. de Paula, Atkin's Physical Chemistry, Oxford University Press (2006).
- 2. S.H. Maron & C.F. Prutton, Principles of Physical Chemistry, 1<sup>st</sup> edition, Oxford and IBH (1958).
- 3. G.W. Castellan, Physical Chemistry, 4<sup>th</sup> edition, Narosa (2004)
- 4. I.N. Levine, Physical Chemistry 6<sup>th</sup> Ed., Tata Mc Graw Hill (2010)
- 5. T. Engel & P. Reid, Physical Chemistry 3<sup>rd</sup> Ed., Prentice-Hall (2012)

| BHIC-212-     | -22                                                                                                      | Chemis           | stry Lab-II         | L-0, T-0, P         | -4 Credi         | ts: 02             |  |
|---------------|----------------------------------------------------------------------------------------------------------|------------------|---------------------|---------------------|------------------|--------------------|--|
| Pre-requisi   | i <b>te:</b> Un                                                                                          | derstanding of   | senior secondary    | level Chemistry     |                  |                    |  |
| Course Ob     | <b>Course Objectives:</b> To provide students practical knowledge and skills about various topics taught |                  |                     |                     |                  |                    |  |
| in theory cla | ass of p                                                                                                 | physical chemis  | stry, which in turr | will enhance the    | ir problem solvi | ing and analytical |  |
| skills.       |                                                                                                          |                  |                     |                     |                  |                    |  |
| Course Ou     | tcome                                                                                                    | s: At the end of | f the course, the s | students will be ab | ole to           |                    |  |
| CO1           | Undo                                                                                                     | retand the besi  | a procedures for    | carrying out a phy  | reical chamistry | proctical like     |  |
| COI           |                                                                                                          |                  | •                   | lutions, handling   | •                |                    |  |
|               |                                                                                                          | precision.       | dardization of so   | iutions, nanding    | me equipment a   | and measuring      |  |
| CO2           | _                                                                                                        |                  | ical and practica   | l aspects and know  | y about the lim  | its of the         |  |
| CO2           |                                                                                                          | rimental error.  | icai and practica   | i aspects and know  | w about the iiii | its of the         |  |
| CO3           |                                                                                                          |                  | us physical paran   | neters for the vari | oue probleme u   | ndor               |  |
| 003           |                                                                                                          | deration.        | us physical paran   | neters for the vari | ous problems u   | iidei              |  |
| CO4           |                                                                                                          |                  | studied in the the  | ory port            |                  |                    |  |
| CO4           | V CI II                                                                                                  | •                |                     | s with the progra   | m outcomes       |                    |  |
|               |                                                                                                          | PSO1             | PSO2                | PSO3                | PSO4             | PSO5               |  |
| CO1           |                                                                                                          | ./               | ./                  | ./                  | ./               | 1505               |  |
|               |                                                                                                          | V                | <u> </u>            | · ·                 | <u> </u>         | V                  |  |
| CO2           |                                                                                                          |                  |                     | <b>√</b>            |                  |                    |  |
| CO3           |                                                                                                          | ✓                | ✓                   | ✓                   | ✓                | ✓                  |  |
| CO4           |                                                                                                          | ✓                | ✓                   | ✓                   | ✓                | ✓                  |  |

# Course Title: Chemistry Lab-II Course Code: BHIC-212-22

# **UNIT-I**

Preparation and Standardization of Solutions.

# **UNIT-II**

Surface tension measurements.

- a) Determine the surface tension by (i) drop number (ii) drop weight method.
- b) Study the variation of surface tension of detergent solutions with concentration.

#### **UNIT-III**

Viscosity measurement using Ostwald's viscometer.

- a) Determination of viscosity of aqueous solutions of (i) polymer (ii) ethanol and (iii) sugar at room temperature.
- b) Study the variation of viscosity of sucrose solution with the concentration of solute.

#### **UNIT-IV**

pH metry

- a) Study the effect on pH of addition of HCl/NaOH to solutions of acetic acid, sodium acetate and their mixtures.
- b) Preparation of buffer solutions of different pH;
- (i) Sodium acetate-acetic acid
- (ii) Ammonium chloride-ammonium hydroxide
- c) pH metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base.
- d) Determination of dissociation constant of a weak acid.

- 1. J.B. Yadav, Practical Physical Chemistry, Krishna
- 2. Findlay, Practical Physical Chemistry, Longman, New York

# Course Title: Business Research Methods Course Code: BBA-401-18

**Course Objective:** The course aims at equipping students with an understanding of the research process, tools and techniques in order to facilitate managerial decision making.

Course Outcomes (COs): After completion of the course, the students shall be able to:

**CO1:** Explain the objectives and process of conducting research and its application in business.

**CO2:** Analyse the different types of research design and experimental errors.

**CO3:** Understand various techniques of sampling and methods of data collection.

**CO4:** Examine different types of scales and appraise about data preparation and analysis.

**CO5:** Identify and prepare various types of reports.

#### **UNIT I**

**Research Methodology:** definition, objectives, scope in management research, process of Research and limitations. Research Design: Formulating the Research Problem, Choice of Research Design, Types of Research Design, Sources of Experimental Errors

# **UNIT II**

**Sampling:** Advantages and Limitation of Sampling, Sampling process, Types of Sampling: Non-probability sampling techniques, Probability sampling techniques, Sampling and non-sampling errors. Data collection: primary, secondary data collection, observation methods and survey methods.

# **UNIT III**

Measurement Concept, Levels of measurement—Nominal, Ordinal, Interval and Ratio Attitude Measurement: Comparative scaling techniques, Non-comparative scaling techniques, Questionnaire Designing: Types, Guidelines for developing a good questionnaire

#### **UNIT IV**

**Data Preparation And Analysis:** Editing, Coding, Cross Tabulation and Practices through Excel (Basic Concepts) Report Writing: Types of Research Reports, Guidelines for Writing a Report, Report Format, Guidelines for evaluating a report.

# **Suggested Readings:**

- 1. K.V. Rao: Research Methodology, Sterling Publishers
- 2. Srivastava and Rego: Business Research Methodology Tata McGraw Hill
- 3. Rajinder Nargundhkar: Marketing Research, Tata McGraw Hill
- 4. Cooper and Schindler, Business Research Methods, Tata McGraw Hill
- 5. C.R. Kothari: Research Methodology, New Age International Publishers

I. K. Gujral Punjab Technical University, Kapurthala

**SEMESTER-V** 

| BSHN      | <b>A-501-22</b>                 | Partial D           | ifferential Equat   | ions             | L-4, T-0, P-0       | 4 Credits            |  |  |
|-----------|---------------------------------|---------------------|---------------------|------------------|---------------------|----------------------|--|--|
| Pre-req   | Pre-requisite: Calculus and ODE |                     |                     |                  |                     |                      |  |  |
| Course    | Objectives:                     | The objective or    | f this course is to | introduce par    | tial differential e | equations (PDEs) and |  |  |
| their met | thods of solu                   | tions. The major    | focus of the cour   | se will be on d  | liscussion of vari  | ous solution methods |  |  |
| and their | implementa                      | tions for solving   | a given PDE with    | n associated co  | onditions.          |                      |  |  |
|           |                                 |                     |                     |                  |                     |                      |  |  |
| Course    | Outcomos                        | At the and of the   | course, the studer  | ote will be able | n to                |                      |  |  |
| Course    | Outcomes. A                     | At the end of the   | course, the studen  | its will be able |                     |                      |  |  |
| CO1       | Evaluate P                      | DE of both first    | and second order.   |                  |                     |                      |  |  |
| CO2       | Analyze pa                      | artial differential | equations and tra   | nsform into ca   | nonical form.       |                      |  |  |
| CO3       | Apply part                      | ial derivative equ  | uation techniques   | to predict the   | behavior of certa   | in phenomena.        |  |  |
| CO4       | Create info                     | ormation from pa    | rtial derivative me | odels and relat  | e it with real pro  | blems.               |  |  |
| CO5       | Apply spec                      | cific techniques t  | o conduct research  | h and produce    | innovative resul    | ts.                  |  |  |
|           |                                 | Mapping of c        | ourse outcomes v    | with the prog    | ram outcomes        |                      |  |  |
|           |                                 | PSO 1               | PSO 2               | PSO 3            | PSO 4               | PSO 5                |  |  |
| C         | CO1                             |                     | J                   | -                | -                   | <b>150</b> 5 √       |  |  |
|           |                                 | •                   | •                   |                  |                     | · ·                  |  |  |
| C         | CO2                             |                     |                     |                  |                     |                      |  |  |
|           | CO3 / / /                       |                     |                     |                  |                     |                      |  |  |
|           |                                 |                     |                     |                  |                     |                      |  |  |
| C         | CO4                             |                     |                     |                  |                     | ✓                    |  |  |
| CO5 / /   |                                 |                     |                     | <i>J</i>         |                     |                      |  |  |
|           |                                 | •                   | •                   |                  |                     | •                    |  |  |

**Course Title: Partial Differential Equations** 

Course Code: BSHM-501-22

| L | T | P |
|---|---|---|
| 4 | 0 | 0 |

#### UNIT-I

Partial Differential Equations – Basic concepts and Definitions, Mathematical Problems. First Order Equations: Classification, Construction and Geometrical Interpretation. Method of Characteristics for obtaining General Solution of Quasi Linear Equations. Canonical Forms of First-order Linear Equations.

# **UNIT-II**

Non-linear partial differential equation of the first order, Cauchy's method of characteristics for solving Non-linear PDE, compatible systems of first order equations, Charpit's method, Jacobi's method.

#### **UNIT-III**

Method of Separation of Variables for solving first order partial differential equations. Derivation of Heat equation, Wave equation. Classification of second order linear equations as hyperbolic, parabolic or elliptic. Reduction of second order Linear Equations to canonical forms.

#### **UNIT-IV**

The Cauchy problem, the Cauchy-Kowalewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems, Semi-Infinite String with a fixed end, Semi-Infinite String with a Free end, Equations with non-homogeneous boundary conditions.

# **RECOMMENDED BOOKS:**

- **1.** Tyn Myint-U and Lokenath Debnath, Linear Partial Differential Equations for Scientists and Engineers, 4th edition, Springer, Indian reprint, 2006.
- 2. S.L. Ross, Differential equations, 3rd Ed., John Wiley and Sons, India, 2004.
- **3.** Martha L Abell, James P Braselton, Differential equations with MATHEMATICA, 3rd Ed., Elsevier Academic Press, 2004.

Scheme & Syllabus (B.Sc. Hons. Mathematics) Batch 2022 & Onwards

Page 78 of 104

| <ul> <li>Course Objectives: The main objective of the course is to introduce the students to learn basic from abstract algebra, especially the notion of group automorphisms, Group actions. The course prepare the students to apply the concepts like Cayley's theorem, Sylow's theorems, etc. in abstract as well as utilize them in many other areas of mathematics.</li> <li>Course Outcomes: At the end of the course, the students will be able to</li> <li>CO1 Understand the basic concepts like group automorphism, cyclic groups, consubgroup, etc.</li> <li>CO2 Apply group actions on algebraic structures which are quite significant in mathematics.</li> <li>CO3 Understand the theorems, namely, Cayley's theorem, Sylow's theorems, Cauchy</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|--|
| from abstract algebra, especially the notion of group automorphisms, Group actions. The course prepare the students to apply the concepts like Cayley's theorem, Sylow's theorems, etc. in abstract as well as utilize them in many other areas of mathematics.  Course Outcomes: At the end of the course, the students will be able to  CO1 Understand the basic concepts like group automorphism, cyclic groups, consubgroup, etc.  CO2 Apply group actions on algebraic structures which are quite significant in mathematics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |  |  |  |  |  |  |  |
| from abstract algebra, especially the notion of group automorphisms, Group actions. The course prepare the students to apply the concepts like Cayley's theorem, Sylow's theorems, etc. in abstract as well as utilize them in many other areas of mathematics.  Course Outcomes: At the end of the course, the students will be able to  CO1 Understand the basic concepts like group automorphism, cyclic groups, consubgroup, etc.  CO2 Apply group actions on algebraic structures which are quite significant in mathematics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |  |  |  |  |  |  |  |
| prepare the students to apply the concepts like Cayley's theorem, Sylow's theorems, etc. in abstract as well as utilize them in many other areas of mathematics.  Course Outcomes: At the end of the course, the students will be able to  Understand the basic concepts like group automorphism, cyclic groups, consubgroup, etc.  Apply group actions on algebraic structures which are quite significant in mathematics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •         |  |  |  |  |  |  |  |
| as well as utilize them in many other areas of mathematics.  Course Outcomes: At the end of the course, the students will be able to  CO1 Understand the basic concepts like group automorphism, cyclic groups, cor subgroup, etc.  CO2 Apply group actions on algebraic structures which are quite significant in mathematics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •         |  |  |  |  |  |  |  |
| Course Outcomes: At the end of the course, the students will be able to  CO1 Understand the basic concepts like group automorphism, cyclic groups, cor subgroup, etc.  CO2 Apply group actions on algebraic structures which are quite significant in mathematics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t algebra |  |  |  |  |  |  |  |
| CO1 Understand the basic concepts like group automorphism, cyclic groups, consubgroup, etc.  CO2 Apply group actions on algebraic structures which are quite significant in mathematics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |  |  |  |  |  |  |  |
| CO1 Understand the basic concepts like group automorphism, cyclic groups, consubgroup, etc.  CO2 Apply group actions on algebraic structures which are quite significant in mathematics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |  |  |  |  |  |  |  |
| subgroup, etc.  CO2 Apply group actions on algebraic structures which are quite significant in mathematics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |  |  |  |  |  |  |  |
| Apply group actions on algebraic structures which are quite significant in mathematics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nmutator  |  |  |  |  |  |  |  |
| mathematics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | modern    |  |  |  |  |  |  |  |
| CO3 Understand the theorems, namely, Cayley's theorem, Sylow's theorems, Cauchy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | theorem,  |  |  |  |  |  |  |  |
| etc.  CO4 Apply introductory knowledge to learn advanced algebra.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |  |  |  |  |  |  |  |
| 11 7 7 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |  |  |  |  |  |  |  |
| CO5 Apply the learnt techniques in modern algebra.  Mapping of course outcomes with the program outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |  |  |  |  |  |  |  |
| wrapping of course outcomes with the program outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |  |  |  |  |  |  |
| PSO 1 PSO 2 PSO 3 PSO 4 PSO 4 PSO 4 PSO 4 PSO 5 | SO 5      |  |  |  |  |  |  |  |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>√</b>  |  |  |  |  |  |  |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ✓         |  |  |  |  |  |  |  |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>√</b>  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |  |  |  |  |  |  |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ✓         |  |  |  |  |  |  |  |
| CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |  |  |  |  |  |  |  |

Course Title: Group Theory-II Course Code: BSHM-502-22

| L | T | P |
|---|---|---|
| 5 | 1 | 0 |

#### Unit-I

**Automorphism**: Inner automorphism, automorphism groups, automorphism groups of finite and infinite cyclic groups, applications of factor groups to automorphism groups.

# **Unit-II**

**Conjugate Classes:** Conjugate element of a group, Theorems relating to relations of conjugacy, conjugate class of an element, Theorems relating to order of conjugacy classes, class equation of a groups.

#### Unit-III

**Direct Product:** Properties of external direct products, external direct product of cyclic groups, Internal direct products.

**Finite Abelian Groups:** Cauchy's theorem for finite abelian groups, Converse of Lagrange theorem for abelian groups.

# **Unit-IV**

**Sylow's Theorems:** p —groups, Sylow's theorems and consequences, Finite abelian group as direct product of Sylow's p —subgroups, Fundamental Theorem of finite abelian groups.

#### **Reference Books:**

1. V.K. Khanna and S.K. Bhambri, A course in Abstract Algebra, 5<sup>th</sup> Ed., Vikas Publishing House Pvt. Ltd, Noida.

# **Recommended Books:**

- 1. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002.
- 2. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.
- 3. Joseph A. Gallian, Contemporary Abstract Algebra, 4th Ed., Narosa Publishing House, 1999.
- 4. David S. Dummit and Richard M. Foote, Abstract Algebra, 3rd Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2004.
- 5. J.R. Durbin, Modern Algebra, John Wiley & Sons, New York Inc., 2000.
- 6. D. A. R. Wallace, Groups, Rings and Fields, Springer Verlag London Ltd., 1998.

Scheme & Syllabus (B.Sc. Hons. Mathematics) Batch 2022 & Onwards

Page 80 of 104

| BSHM-503-       | -22                               | Introduction       | n to Number The        | ory          | L-5, T-1, P-0       | 6 Credits               |  |  |
|-----------------|-----------------------------------|--------------------|------------------------|--------------|---------------------|-------------------------|--|--|
| Pre-requisite   | Pre-requisite: Elementary Algebra |                    |                        |              |                     |                         |  |  |
| ~ ~ ~           |                                   |                    |                        |              |                     |                         |  |  |
| •               |                                   | •                  |                        |              | <u> </u>            | rs, their development,  |  |  |
| • •             |                                   | •                  |                        |              | • •                 | nantine equations, etc. |  |  |
|                 |                                   |                    |                        |              |                     | remainder theorem,      |  |  |
| divisibility te | sts in i                          | real life problems | as well as utilize the | nem in man   | y other areas of ma | atnematics.             |  |  |
| Course Outo     | comes                             | At the end of the  | course, the studen     | ts will be a | ble to              |                         |  |  |
| CO1             | Unde                              | erstand the basic  | concepts like Ar       | chimedean    | property, Euclid    | Algorithm, Sieve of     |  |  |
|                 |                                   | osthenes, etc.     | •                      |              |                     |                         |  |  |
| CO2             | App                               | ly solvability of  | congruence equa        | tions, Diop  | hantine equations.  | , etc which is quite    |  |  |
|                 | _                                 | ficant in modern n |                        |              |                     |                         |  |  |
| CO3             |                                   |                    |                        | Remainder    | Theorem, Fermat     | 's theorem, Wilson's    |  |  |
| GO4             |                                   | em, Euler theorem  |                        | 1 1          | 1 .1                |                         |  |  |
| CO4             |                                   | y introductory kno |                        | avancea nu   | mber theory.        |                         |  |  |
| COS             | Crea                              | te new techniques  | ourse outcomes v       | rith the nu  | anom outoomos       |                         |  |  |
|                 |                                   | Mapping of C       | ourse outcomes v       | viui uie pro | ogram outcomes      |                         |  |  |
|                 |                                   | PSO 1              | PSO 2                  | PSO 3        | PSO 4               | PSO 5                   |  |  |
| CO1             |                                   | <b>✓</b>           | ✓                      | -            | -                   | ✓                       |  |  |
| CO2             | 02                                |                    |                        |              |                     |                         |  |  |
| CO3             | CO3                               |                    |                        |              |                     | ✓                       |  |  |
| CO4             | CO4                               |                    |                        |              |                     |                         |  |  |
| CO5             |                                   | <b>√</b>           | ✓                      | -            | -                   | ✓                       |  |  |

# Course Title: Introduction to Number Theory Course Code: BSHM-503-22

| L | T | P |
|---|---|---|
| 5 | 1 | 0 |

# Unit-I

**Properties of Numbers:** Well ordering Principle, Archimedean Property, Principle of finite induction, Binomial theorem, Triangular number, Sum, difference, and product of triangular numbers.

# **Unit-II**

**Divisibility Theory:** division Algorithm, Greatest common divisor (GCD) and its properties, Euclid's Algorithm, Least common multiplier and its properties, Relation between GCD and LCM, Linear Diophantine equations, Solvability theorems, solutions of Linear Diophantine Equations.

#### **Unit-III**

**Primes and their Distribution:** Fundamental theorem of arithmetic, irrational numbers, Sieve of Eratosthenes to check the primality, Golbach conjecture, Euclid's Infinite prime number theorem, Product of consecutive 'r' integers.

# **Unit-IV**

**Theory of Congruences:** Basic properties of congruences, Special divisibility tests, Linear congruences and their incongruent solutions, Chinese remainder theorem, Fermat's Little theorem, Wilson's theorem, Euler's theorem.

# **Reference Books:**

7. David M. Burton, Elementary Number Theory, 7th Ed., Tata McGraw-Hill, 2007, Print.

# **Recommended Books:**

1. Neville Robinns, Beginning Number Theory, 2nd Ed., Narosa Publishing House Pvt. Ltd. 2007.

| BSHM-504-                   | -22        | Mathen               | natical Statistics   |               | L-5, T-1, P-0        | 6 Credits                                     |
|-----------------------------|------------|----------------------|----------------------|---------------|----------------------|-----------------------------------------------|
| Pre-requisite               | e: Calc    | culus and basic alg  | ebra                 |               |                      |                                               |
| students. The applications. | major      | focus of the cour    | rse will be on the   | oretical fou  | ndation of these fur | atical statistics to the ndamentals and their |
| Course Outo                 | comes:     | At the end of the    | course, the studer   | nts will be a | ble to               |                                               |
| CO1                         | Unde       | rstand and demon     | strate the notion of | of randomne   | ess.                 |                                               |
| CO2                         | Analy      | yze a given data u   | sing measures of     | central tend  | ency, dispersion, sk | ewness and kurtosis.                          |
| CO3                         |            |                      |                      |               | esses and decision m | naking                                        |
| CO4                         | Appl       | y the theory of pro  | bability distributi  | ons in real   | world situations.    |                                               |
| CO5                         | Appl       | y the principle of l | least squares to fit | a curve fro   | m a given data       |                                               |
| CO6                         | Analy      | yze given data usi   | ng the concepts of   | correlation   | and regression.      |                                               |
|                             |            | Mapping of c         | ourse outcomes v     | with the pro  | ogram outcomes       |                                               |
|                             |            | PSO 1                | PSO 2                | PSO :         | 3 PSO 4              | PSO 5                                         |
| CO1                         |            | ✓                    | ✓                    |               |                      | ✓                                             |
| CO2                         |            | ✓                    | ✓                    |               |                      | ✓                                             |
| CO3                         | 03         |                      |                      |               |                      |                                               |
| CO4                         | CO4 \(  \) |                      |                      |               |                      | <b>√</b>                                      |
| CO5                         |            |                      |                      |               | <b>√</b>             |                                               |
| CO6                         |            | <b>√</b>             | <b>√</b>             |               |                      | <b>√</b>                                      |

Course Title: Mathematical Statistics Course Code: BSHM-504-22

| L | T | P |
|---|---|---|
| 5 | 1 | 0 |

# **UNIT-I**

Frequency distributions and measures of central tendency: Mean, median, mode, partition values, Measures of dispersion, skewness and kurtosis.

Random experiment, sample space, event, algebra of events, probability axioms, probability definition, addition law of probability, multiplication law of probability, conditional probability and independence, Bayes' Theorem.

# UNIT-II

Random variables, distribution function, properties of distribution function, discrete random variable, probability mass function, discrete distribution function, continuous random variable, probability density function. Continuous distribution function.

#### **UNIT-III**

Mathematical expectation, expectation of a random variable, Discrete probability distributions: binomial, Poisson, negative binomial distribution, uniform. Continuous probability distributions: uniform distribution, normal distribution, normal distribution as a limiting case of binomial distribution, exponential distribution.

# **UNIT-IV**

Curve fitting and principle of least squares: Fitting of a straight-line, second-degree parabola and polynomial of k – th degree, fitting of exponential curve.

Correlation: Bivariate distribution, correlation, scatter diagram, Karl Pearson coefficient of correlation, limits for correlation coefficients.

Regression: lines of regression, regression curves, regression coefficients, properties of regression coefficients, angle between two lines of regression.

# **TEXT BOOKS**

1. S.C. Gupta, V. K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand & Sons, Delhi, 2014.

# **RECOMMENDED BOOKS:**

- **6.** S. Ross, A First Course in Probability, Pearson, 2008.
- 7. Robert V. Hogg, Joseph W. Mckean and Allen T. Craig, Introduction to Mathematical Statistics, 7th Ed., Pearson Education, Asia 2006.
- 8. V. K. Rohatgi, A. K. Md. Ehsanes Saleh, An Introduction to Probability and Statistics, John Wiley & Sons, 2015.

| BSHM-505-2    | 22                                                                                                 | Progra               | mming Lab-IV        |                              | L-0,     | T-0, P-4       | 2 Credits         |  |
|---------------|----------------------------------------------------------------------------------------------------|----------------------|---------------------|------------------------------|----------|----------------|-------------------|--|
| Pre-requisite | : Bas                                                                                              | sic knowledge of     | any mathematic      | al softwar                   | e (e.g.  | MATLAB,        | MATHEMATICA,      |  |
| MAPLE etc.)   | MAPLE etc.)                                                                                        |                      |                     |                              |          |                |                   |  |
| Course Obje   | Course Objectives: This Lab is designed to deal with a given partial differential equation using a |                      |                     |                              |          |                |                   |  |
| mathematical  | softw                                                                                              | are. The major foc   | us of the Lab is to | get solutio                  | ons of a | given PDE      | and to plot them. |  |
| Course Outco  | omes:                                                                                              | At the end of the    | course, the studer  | nts will be a                | ble to   |                |                   |  |
| CO1           | Appl                                                                                               | y a mathematical s   | oftware to solve    | a given line                 | ar PDE   | analytically   | •                 |  |
| CO2           | Anal                                                                                               | yze solutions of a g | given PDE by plo    | tting them.                  |          |                |                   |  |
| CO3           | Unde                                                                                               | erstand and obtain   | characteristics of  | a first order                | r PDE    |                |                   |  |
| CO4           | Appl                                                                                               | y a mathematical s   | oftware for solvii  | ng wave eq                   | uation v | vith different | t conditions.     |  |
| CO5           | Appl                                                                                               | y a mathematical s   | oftware for solvii  | ng other typ                 | es of P  | DEs            |                   |  |
|               |                                                                                                    | Mapping of co        | PSO 2               | vith the property of the PSO |          | outcomes PSO 4 | PSO 5             |  |
| CO1           |                                                                                                    | <b>√</b>             | <u>√</u>            | <b>√</b>                     |          | <b>√</b>       | <b>√</b>          |  |
|               |                                                                                                    | ,                    | •                   | •                            |          |                | •                 |  |
| CO2           | 02                                                                                                 |                      |                     |                              |          |                | ✓                 |  |
| CO3           | CO3                                                                                                |                      |                     |                              |          |                | ✓                 |  |
| CO4           | CO4                                                                                                |                      |                     |                              |          |                | <b>√</b>          |  |
| CO5           | CO5                                                                                                |                      |                     |                              |          |                | ✓                 |  |

**Course Title: Programming Lab-IV** 

Course Code: BSHM-505-22

| L | T | P |
|---|---|---|
| 0 | 0 | 4 |

List of Practical (Using any software)

- (i) Solution of Cauchy problem for first order PDE.
- (ii) Finding the characteristics for the first order PDE.
- (iii) Plot integral surfaces of a given first order PDE with initial data.
- (iv) Solution of wave equation with associated conditions.
- (v) Solving some other types of PDEs, for example quasilinear PDEs.

# **RECOMMENDED BOOKS:**

- 3. Higham, D.J. and Higham, N.J., MATLAB Guide, 2nd Edition. Society for Industrial and Applied Mathematics (SIAM), 2005.
- 4. Gilat, A., MATLAB: An Introduction with Applications, 5th Edition. John Wiley & Sons, 2014.
- 5. Stephen Wolfram, THE MATHEMATICA BOOK, 5<sup>th</sup> Edition, 2003, Wolfram Media.
- 6. M. L. Abell, J. P. Braselton, MATHEMATICA by Example, 4<sup>th</sup> Edition, Elsevier, 2009.

| BSHM-EV       | S-                                             | Environ                                | mental Science                              | L-2,             | T-0, P-0    | 2 Credits                       |  |  |  |
|---------------|------------------------------------------------|----------------------------------------|---------------------------------------------|------------------|-------------|---------------------------------|--|--|--|
| 101 A         |                                                |                                        |                                             |                  |             |                                 |  |  |  |
| Pre-requisite | Pre-requisite: Basic knowledge of environment. |                                        |                                             |                  |             |                                 |  |  |  |
|               |                                                |                                        |                                             |                  |             |                                 |  |  |  |
|               |                                                |                                        | ll equip students w                         | ith the necessar | y knowledge | e and make                      |  |  |  |
|               |                                                | the environmental i                    |                                             |                  |             |                                 |  |  |  |
| Course Outo   | comes                                          | : At the end of the                    | course, the students                        | will be able to  |             |                                 |  |  |  |
| CO1           |                                                | derstand environm<br>general awareness |                                             | t local and r    | ational lev | el through literature           |  |  |  |
| CO2           |                                                |                                        | dge by visiting wil<br>e done practical wor |                  |             | nstitutesand various<br>Issues. |  |  |  |
| CO3           |                                                |                                        | approach to under<br>the possibilities to   | •                |             | issues and critically           |  |  |  |
| CO4           |                                                | •                                      |                                             |                  | s, consumer | s and environmental             |  |  |  |
| COF           |                                                |                                        | nterconnected world                         |                  | . 1 11      |                                 |  |  |  |
| CO5           | Весс                                           |                                        | ocal, regional and g                        |                  |             | 18.                             |  |  |  |
|               |                                                | Mapping of co                          | ourse outcomes wit                          | th the program   | outcomes    |                                 |  |  |  |
|               |                                                | PSO 1                                  | PSO 2                                       | PSO 3            | PSO 4       | PSO 5                           |  |  |  |
| CO1           |                                                |                                        |                                             |                  |             | ✓                               |  |  |  |
| CO2           | 2                                              |                                        |                                             |                  |             |                                 |  |  |  |
| CO3           |                                                |                                        |                                             |                  |             |                                 |  |  |  |
| CO4           |                                                |                                        |                                             |                  |             | <b>√</b>                        |  |  |  |
| CO5           |                                                |                                        |                                             |                  |             | ✓                               |  |  |  |

**Course Title: Environmental Science** 

Course Code: EVS-101 A

| L | T | P |
|---|---|---|
| 2 | 0 | 0 |

# Unit-I

# **Introduction to Environmental Studies**

Multidisciplinary nature of Environmental Studies: Scope &Importance, Need for Public Awareness

# **Ecosystems**

Concept of an Ecosystem: Structure & functions of an ecosystem (Producers, Consumers & Decomposers) Energy Flow in an ecosystem: Food Chain, Food web and Ecological Pyramids, Characteristic features, structure & functions of following Ecosystems: Forest Ecosystem, Aquatic Ecosystem (Ponds, Lakes, River & Ocean)

#### **Unit-II**

#### Natural Resources

Renewable & Non-renewable resources, Forest Resources: Their uses, functions & values (Biodiversity conservation, role in climate change, medicines) & threats (Overexploitation, Deforestation, Timber extraction, Agriculture Pressure), Forest Conservation Act

Water Resources: Their uses (Agriculture, Domestic & Industrial), functions & values, Overexploitation and Pollution of Ground & Surface water resources (Case study of Punjab), Water Conservation, Rainwater Harvesting

Land Resources: Land as a resource; Land degradation, soil erosion and desertification

Energy Resources: Renewable & non-renewable energy resources, useof alternate energy resources (Solar, Wind, Biomass, Thermal), Urban problems related to Energy

#### **Unit-III**

# **Biodiversity & its conservation**

Types of Biodiversity: Species, Genetic & Ecosystem

India as a mega biodiversity nation, Biodiversity hot spots andbiogeographic regions of India, Biodiversity Conservation and its types,

Examples of Endangered & Endemic species of India, Red data book

#### **Unit-IV**

# **Environmental Pollution & Social Issues**

Types, Causes, Effects & Control of Air, Water, Soil & Noise Pollution, Nuclear hazards and accidents & Health risks, Global Climate Change: Global warming, Ozone depletion, Acid rain, Meltingof Glaciers & Ice caps, Rising sea levels.

Environmental disasters: Earthquakes, Floods, Cyclones, Landslides

# Field Work

Visit to a National Park, Biosphere Reserve, Wildlife Sanctuary Documentation & preparation of a Biodiversity (flora & fauna) registerof campus/river/forest

Scheme & Syllabus (B.Sc. Hons. Mathematics) Batch 2022 & Onwards

Page 88 of 104

Visit to a local polluted site: Urban/Rural/Industrial/Agricultural Identification & Photography of resident or migratory birds, insects(butterflies)

Public hearing on environmental issues in a village

# RECOMMENDED BOOKS

- 1. Bharucha, E. Text Book for Environmental Studies. University Grants Commission, New Delhi
- 2. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad— 380 013. India.
- 3. De A.K., Environmental Chemistry, Wiley Eastern Ltd.
- 4. Down to Earth, Centre for Science and Environment (R)
- 5. Gleick, H.P. 1993. Water in crisis, Pacific Institute for Studies in Dev., Environment& Security. Stockholm Env. Institute Oxford Univ. Press. 473p
- 6. Heywood, V.H & Waston, R.T. 1995. Global Biodiversity Assessment. CambridgeUniv. Press 1140p.
- 7. Miller T.G. Jr. Environmental Science, Wadsworth Publishing Co. (TB)
- 8. Odum, E.P. 1971. Fundamentals of Ecology. W.B. Saunders Co. USA, 574p
- 9. Survey of the Environment, The Hindu (M)

| BSHM-506-22    |        | •                   | ebra System & R      | Related       | L-0, T-0, P-2     | Non-Credit              |
|----------------|--------|---------------------|----------------------|---------------|-------------------|-------------------------|
| <b>D</b>       |        |                     | Software             |               |                   |                         |
| Pre-requisite  | e: A b | asic knowledge of   | Computer.            |               |                   |                         |
| •              |        | 3                   |                      |               |                   | stem: Mathematica and   |
|                |        | -                   |                      | •             | cus of the course | will be on use of these |
| software for s | solvin | g mathematical an   | d statistical proble | ems.          |                   |                         |
| Course Outc    | omes   | : At the end of the | course, the studer   | nts will be a | lble to           |                         |
|                |        |                     | ,                    |               |                   |                         |
| CO1            | App    | ly Mathematica fo   | or solving mathem    | natical prob  | lems, for example | e, nonlinear equations, |
|                | calcı  | ulus problems and   | differential equati  | ons etc.      |                   |                         |
| CO2            |        | ly Matlab for solvi |                      |               |                   |                         |
| CO3            | App    | ly R open-source p  | backage for solving  | g statistical | problems.         |                         |
| CO4            | Crea   | te their own Math   | ematica programs.    | •             |                   |                         |
| CO5            | App    | ly Matlab for plott | ing of functions.    |               |                   |                         |
|                |        | Mapping of c        | course outcomes v    | with the pr   | ogram outcomes    |                         |
|                |        | PSO 1               | PSO 2                | PSO           | 3 PSO             | 4 PSO 5                 |
| CO1            |        |                     | ✓                    | ✓             | ✓                 | ✓                       |
| CO2            |        |                     | <b>√</b>             | <b>√</b>      | ✓                 | ✓                       |
| CO3            | CO3    |                     |                      |               |                   |                         |
| CO4            | CO4    |                     |                      |               |                   |                         |
| CO5            |        |                     | <b>√</b>             | ✓             | <b>√</b>          | ✓                       |

Course Title: Computer Algebra System and Related Software

Course Code: BSHM-506-22

| L | T | P |
|---|---|---|
| 0 | 0 | 2 |

# **UNIT-I**

The structure of MATHEMATICA, notebook interfaces, constants, variables, algebraic calculations, four kinds of brackets, lists, tables, expressions, functions, built-in functions, functional operations, graphics, patterns, manipulating lists, transformation rules, evaluation of expressions, modularity, manipulating notebooks, relational and logical operators. Symbolic math commands: D; Integrate; Sum; Product; Solve: Eliminate; Reduce: Series: Limit; Minimize; Programming: conditionals; loops: Do; For and While.

# **UNIT-II**

Use of MATLAB as calculator, in computing function values, in making graphs, for exploring linear algebra and to plot curve and surfaces.

Introduction to R- open-source package, R as a calculator, built-in functions, operators, creating a vector, vector functions, writing functions in R. Applications of R in measures of central tendency.

# RECOMMENDED BOOKS

- 1. Wolfram, S., The MATHEMATICA Book,  $5^{th}$  revised edition. Wolfram Media Inc, 2004
- 2. Abell, M. and Braselton, J., Mathematica by Example, 5<sup>th</sup> Edition. Academic Press, 2017.
- 3. Lent, C.S., Learning to Programming with MATLAB: Building GUI Tools, Wiley, 2013.
- 4. Amos Gilat. MATLAB, An Introduction with Applications, 2004.
- 5. Michael J. Crawley, Statistics: An Introduction using R, 2<sup>nd</sup> Edition, Wiley, 2015.
- 6. W. John Braun, Duncan J. Murdoch, A First Course in Statistical Programming with R, 3<sup>rd</sup> Edition, Cambridge University Press, 2021.

I. K. Gujral Punjab Technical University, Kapurthala

**SEMESTER-VI** 

| BSHM     | -601-22 Complex Analysis |                    | L-5, T-1, P-0        | 6 Credits            |                      |                      |
|----------|--------------------------|--------------------|----------------------|----------------------|----------------------|----------------------|
| Pre-re   | <b>quisite:</b> Co       | omplex numbers s   | system and Calculu   | us of several varia  | bles.                | <u> </u>             |
| Course   | e Objective              | es: The objective  | of this course is to | introduce functio    | n of a complex varia | able and concepts of |
| calculu  | s of comple              | ex variable functi | on. The major of the | he course will be o  | on a systematic math | nematical treatment  |
| of these | e concepts               | and their applicat | ions.                |                      |                      |                      |
| Course   | e Outcome                | s: At the end of t | he course, the stud  | lents will be able t | 00                   |                      |
| CO1      | Understa                 | nd Complex fund    | etions their continu | uity differentiabil  | ity and integration. |                      |
| CO2      | Understa                 | and the concept of |                      |                      | and where a given    | function is analytic |
| CO3      |                          |                    |                      | ation and having     | the ability to compu | ite such integrals.  |
| CO4      | Analyze                  | the concept of sir | ngularity and poles  | S.                   |                      |                      |
| CO5      | Apply res                | sidue theorem to   | compute the sever    | al kinds of real int | tegrals.             |                      |
|          |                          | Mapping            | of course outcom     | nes with the prog    | ram outcomes         |                      |
|          |                          | PSO 1              | PSO 2                | PSO 3                | PSO 4                | PSO 5                |
| C        | 01                       | <b>√</b>           | <b>√</b>             | -                    | -                    | <b>√</b>             |
| C        | CO2                      |                    |                      |                      |                      |                      |
| C        | CO3                      |                    |                      |                      |                      |                      |
| CO4      |                          |                    |                      |                      | -                    | <b>√</b>             |
| C        | CO5                      | <b>√</b>           | -                    | -                    | <b>√</b>             |                      |

**Course Title: Complex Analysis** 

Course Code: BSHM-601-22

| L | T | P |  |
|---|---|---|--|
| 5 | 1 | 0 |  |

# **UNIT-I**

Function of complex variables, limit, continuity and differentiability. Analytic functions, Harmonic functions, Cauchy-Riemann equations (Cartesian and Polar form), sufficient condition for differentiability, Construction of analytic functions.

# **UNIT-II**

Curves, simply closed curves, Complex line integral, Path independence of a line integral, Cauchy's theorem, Cauchy's integral formula and applications. Liouville's theorem and its consequences.

# **UNIT-III**

Taylor's theorem, Laurent's theorem and their examples. Zeros and singularities of an analytic function, Residue at a pole and at infinity, Cauchy's Residue theorem.

# **UNIT-IV**

Evaluation of definite integrals, integration round the unit circle, Evaluation of the

integral of the form  $\int\limits_{-\infty}^{\infty}f(x)dx$  , Jordan's inequality, Jordan's lemma, Integral of the

form 
$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \sin mx dx$$
 etc.

- 1. E. T. Copson, Theory of functions of complex variables. Oxford university press.
- 2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 3. J.B. Conway, Functions of one complex variable (Second Edition), Springer.
- 4. J. W. Brown and R. V. Churchill, Complex variables and applications, 8<sup>th</sup> Edition, McGraw Hill, Higher Education.
- 5. H.S. Kasana, Complex Variable, Theory and Applications, PHI.
- 6. S. Ponnusamy, Foundations of Complex Analysis, Narosa Publishing House.

| BSHM-602-                                                                                            | 22                                                     | Ring Theory a        | nd Linear Algeb    | ra-II         | L-5, T-1, P-0       | 6 Credits                 |  |  |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------|--------------------|---------------|---------------------|---------------------------|--|--|
| Pre-requisite                                                                                        | <b>Pre-requisite:</b> Ring Theory and Linear Algebra-I |                      |                    |               |                     |                           |  |  |
| Course Objectives: The main objective of the course is to introduce the basic concepts from abstract |                                                        |                      |                    |               |                     |                           |  |  |
|                                                                                                      |                                                        |                      |                    |               |                     |                           |  |  |
|                                                                                                      | •                                                      |                      | •                  | •             |                     | vill help the students to |  |  |
| other areas of                                                                                       | _                                                      |                      | ns, spitting neid  | s etc. in ad  | stract algebra as v | well as utilize in many   |  |  |
| other areas of                                                                                       | manie                                                  | matics.              |                    |               |                     |                           |  |  |
| Course Outo                                                                                          | omes:                                                  | At the end of the    | course, the studen | its will be a | ble to              |                           |  |  |
|                                                                                                      |                                                        |                      |                    |               |                     |                           |  |  |
| CO1                                                                                                  |                                                        |                      |                    | ynomial ri    | ngs, Division the   | orem, Factorization of    |  |  |
|                                                                                                      |                                                        | omials, irreducibi   |                    |               |                     |                           |  |  |
| CO2                                                                                                  |                                                        |                      |                    |               |                     | lization, Dual Spaces,    |  |  |
|                                                                                                      |                                                        | nilators, etc. which |                    |               |                     |                           |  |  |
| CO3                                                                                                  |                                                        | rstand the theoren   |                    |               |                     | neorem, etc.              |  |  |
| CO4                                                                                                  |                                                        | e introductory kno   |                    |               | ~                   |                           |  |  |
| CO5                                                                                                  | Create                                                 | e and apply the ne   |                    |               |                     |                           |  |  |
|                                                                                                      |                                                        | Mapping of co        | ourse outcomes v   | vith the pr   | ogram outcomes      |                           |  |  |
|                                                                                                      |                                                        | PSO 1                | PSO 2              | PSO           | 3 PSO               | 4 PSO 5                   |  |  |
| CO1                                                                                                  |                                                        | ✓                    | ✓                  | -             | -                   | ✓                         |  |  |
| CO2                                                                                                  | CO2                                                    |                      |                    |               |                     |                           |  |  |
| CO3                                                                                                  | CO3                                                    |                      |                    |               |                     |                           |  |  |
| CO4                                                                                                  |                                                        | ✓                    | ✓                  | -             | -                   | ✓                         |  |  |
| CO5                                                                                                  |                                                        | ✓                    | ✓                  | -             | -                   | ✓                         |  |  |

Course Title: Ring Theory and Linear Algebra-II

Course Code: BSHM-602-22

| L | T | P |
|---|---|---|
| 5 | 1 | 0 |

# Unit-I

Field of quotients of Integral Domain, Polynomial rings over commutative rings, Division algorithm and consequences: Remainder Theorem, Factor Theorem, Prime element and irreducible element, Principal ideal domains, GCD and LCM of two polynomials.

#### Unit-II

Euclidean Domain, Unique Factorization Domain, relation between ED, PID and UFD, Primitive polynomials, Irreducible polynomials, Gauss Lemma, Gauss theorem on irreducible elements, Eisenstein criterion of irreducibility.

#### **Unit-III**

Polynomial of matrices and linear operators, Eigen Values and Eigen Vectors, Characteristic subspace of a matrix, Cayley-Hamilton theorem, Eigen Space, Annihilating polynomials, Minimal Polynomials, Diagonalization of a linear operator.

#### **Unit-IV**

Linear functional, Dual Spaces, Dual basis, Natural mapping and reflexivity, Annihilator, Transpose or adjoint of a linear transformation.

# **Reference Books:**

- 2. V.K. Khanna and S.K. Bhambri, A course in Abstract Algebra, 5<sup>th</sup> Ed., Vikas Publishing House Pvt. Ltd, Noida.
- 3. KP Gupta, Linear Algebra, Pragati Prakashan, Meerut.

- 8. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002.
- 9. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.
- 10. Joseph A. Gallian, Contemporary Abstract Algebra, 4th Ed., Narosa Publishing House, 1999.
- 11. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Algebra, 4th Ed., Prentice Hall of India Pvt. Ltd., New Delhi, 2004.
- 12. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
- 13. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.
- 14. S. Kumaresan, Linear Algebra- A Geometric Approach, Prentice Hall of India, 1999.
- 15. Kenneth Hoffman, Ray Alden Kunze, Linear Algebra, 2nd Ed., Prentice-Hall of India Pvt. Ltd., 1971
- 16. S.H. Friedberg, A.L. Insel and L.E. Spence, Linear Algebra, Prentice Hall of India Pvt. Ltd., 2004.

| BSHM    | -603-22      |                    | Theory of Equations    |                     |                       | 6 Credits             |  |
|---------|--------------|--------------------|------------------------|---------------------|-----------------------|-----------------------|--|
| Prereq  | uisite: Ba   | sic algebra        |                        |                     | <u> </u>              | 1                     |  |
| Course  | Objective    | es: The objectives | s of this course are   | to discuss propert  | ies of polynomials    | and their graphical   |  |
| represe | entation, in | ntroduce Descart   | e's rule of sign, rela | ation between root  | s and coefficients of | an equation. Further  |  |
| to deal | with the co  | oncept of symmet   | tric function and it   | s applications, and | Strum sequence a      | and its applications. |  |
|         |              |                    |                        |                     |                       |                       |  |
| Course  | Outcome      | s: At the end of t | he course, the stud    | lents will be able  | 0                     |                       |  |
| CO1     | Understa     | nd the different r | properties of polyn    | omials              |                       |                       |  |
| CO2     |              | 1                  | sign to find nature    |                     | equation              |                       |  |
| CO3     | * * *        | e concept of sym   |                        |                     | equation.             |                       |  |
| COS     | 7 ippry tric | concept of sym     | metre ranction.        |                     |                       |                       |  |
| CO4     | Evaluate     | cubic and biquad   | dratic equations.      |                     |                       |                       |  |
| CO5     | Apply St     | rum sequence in    | identifying the dis    | tinct real roots of | a polynomial in an i  | nterval.              |  |
|         | 1            | Mapping            | of course outcom       | nes with the prog   | ram outcomes          |                       |  |
|         |              | PSO 1              | PSO 2                  | PSO 3               | PSO 4                 | PSO 5                 |  |
| C       | 01           | <b>√</b>           | <b>√</b>               | -                   | -                     | <b>√</b>              |  |
| C       | O2           | <b>√</b>           | <b>√</b>               | -                   | -                     | <b>√</b>              |  |
| C       | CO3          |                    |                        |                     |                       |                       |  |
| C       | CO4          |                    |                        |                     |                       | <b>√</b>              |  |
| C       | CO5          |                    |                        |                     |                       |                       |  |

**Course Title: Theory of Equations** 

Course Code: BSHM-603-22

| L | T | P |
|---|---|---|
| 5 | 1 | 0 |

# **UNIT-I**

General properties of polynomials, Graphical representation of a polynomial, maximum and minimum values of a polynomials, General properties of equations, Descarte's rule of signs positive and negative rule, Relation between the roots and the coefficients of equations.

# **UNIT-II**

Symmetric functions, Applications of symmetric function of the roots, Transformation of equations. Solutions of reciprocal and binomial equations. Algebraic solutions of the cubic and biquadratic. Properties of the derived functions.

# **UNIT-III**

Symmetric functions of the roots, Newton's theorem on the sums of powers of roots, homogeneous products, limits of the roots of equations.

# **UNIT-IV**

Separation of the roots of equations, Strums theorem, Applications of Strum's theorem, Conditions for reality of the roots of an equation and biquadratic. Solution of numerical equations.

- 1. W.S. Burnside and A.W. Panton, The Theory of Equations, Dublin University Press, 1954.
- 2. C. C. MacDuffee, Theory of Equations, John Wiley & Sons Inc., 1954.

| BSHM-604-     | Mathematical Modeling                            |                                 |                     |              | L-4, T-0, P-0       | 4 Credits               |  |  |
|---------------|--------------------------------------------------|---------------------------------|---------------------|--------------|---------------------|-------------------------|--|--|
| Pre-requisite | Pre-requisite: Calculus and basic linear algebra |                                 |                     |              |                     |                         |  |  |
| •             |                                                  |                                 | •                   |              |                     | eling in order to write |  |  |
|               |                                                  |                                 |                     |              | •                   | rential equations. The  |  |  |
| major focus o | of the c                                         | ourse will be on a              | systematic mathe    | ematical tre | atment of these con | cepts.                  |  |  |
| Course Outco  | omes: A                                          | At the end of the c             | ourse, the student  | s will be al | ole to              |                         |  |  |
| CO1           |                                                  | rstand system of C              |                     |              |                     |                         |  |  |
| CO2           |                                                  | rstand and deal vamming model.  | with different ma   | athematical  | models such as s    | imulation and linear    |  |  |
| CO3           |                                                  | the concepts of ematical terms. | mathematical m      | nodeling to  | o formulate real wo | orld phenomena into     |  |  |
| CO4           | Apply                                            | Monte Carlo sim                 | ulation to find are | ea under a   | curve and volume or | f a surface.            |  |  |
| CO5           | Apply                                            | Simplex method                  | for solving linear  | programn     | ning problems.      |                         |  |  |
|               |                                                  | Mapping of co                   | ourse outcomes v    | vith the pr  | ogram outcomes      |                         |  |  |
|               |                                                  | PSO 1                           | PSO 2               | PSO          | 3 PSO 4             | PSO 5                   |  |  |
| CO1           |                                                  | ✓                               | <b>√</b>            |              |                     | <b>√</b>                |  |  |
| CO2           |                                                  | ✓                               | ✓                   |              |                     | <b>√</b>                |  |  |
| CO3           | 03                                               |                                 |                     |              |                     |                         |  |  |
| CO4           | CO4                                              |                                 |                     |              |                     |                         |  |  |
| CO5           |                                                  | <b>√</b>                        | <b>√</b>            |              |                     | <b>√</b>                |  |  |

Course Title: Mathematical Modeling Course Code: BSHM-604-22

| L | T | P |
|---|---|---|
| 4 | 0 | 0 |

# UNIT-I

Systems of linear ordinary differential equations: differential operators, an operator method for linear systems with constant coefficients, Basic Theory of linear systems in normal form, homogeneous linear systems with constant coefficients: Two Equations in two unknown functions.

#### **UNIT-II**

Introduction to mathematical modeling, modeling approaches, classifications and some characteristics of mathematical modeling, limitations of mathematical modeling. Interacting population models: Influenza outbreak, predators and prey, competing species, model of a battle (with case studies).

# **UNIT-III**

Simulation: introduction and limitations, Monte Carlo Simulation modeling: (deterministic) Area under a curve, volume under a surface, generating random numbers, middle square method, linear congruence.

# **UNIT-IV**

Linear programming model: assumptions in linear programming models, formulation of simple linear programming models, limitations of linear programming models, graphical method of solution, Simplex method for solving problems containing two variables.

#### RECOMMENDED BOOKS

- 1. S.L. Ross, Differential equations, 3rd Ed., John Wiley and Sons, India, 2004.
- 2. B. Barnes and G. R. Fulford, Mathematical Modelling with Case Studies: Using Maple and Matlab,3<sup>rd</sup> Edition, 2015, CRC Press, Taylor & Francis Group.
- 3. Frank. R. Giordano, William. P. Fox, Steven B. Horton, A First Course in Mathematical Modeling, 5<sup>th</sup> Edition, 2014 Cengage Learning.
- 4. Dennis G. Zill, Advanced Engineering Mathematics, 6<sup>th</sup> Edition, 2018, Jones & Bartlett Learning.
- 5. P. K. Gupta, D. S. Hira, Operations Research, 7<sup>th</sup> Edition, S. Chand & Company, Pvt. Ltd, 2014.

| BSHM-605-2     | 22                                                                                                         | Progra              | mming Lab-V         |               | L-0,     | T-0, P-4      | 2 Credits            |  |  |
|----------------|------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------|----------|---------------|----------------------|--|--|
| Pre-requisite: | : Bas                                                                                                      | ic knowledge of     | any mathematic      | al softwar    | e (e.g.  | MATLAB,       | MATHEMATICA,         |  |  |
| MAPLE etc.)    |                                                                                                            |                     |                     |               |          |               |                      |  |  |
| Course Object  | Course Objectives: This Lab is designed to deal solution of differential equations, Monte Carlo simulation |                     |                     |               |          |               |                      |  |  |
| and Simplex 1  | metho                                                                                                      | d using application | on of any softwar   | e. The maj    | or focus | s of the Lab  | will be on effective |  |  |
| implementatio  | n of n                                                                                                     | nathematical softw  | are to use built-ir | tools/ feat   | ures for | solving the   | above said problems. |  |  |
| Course Outco   | omes:                                                                                                      | At the end of the   | course, the studer  | its will be a | ble to   |               |                      |  |  |
| CO1            | Apply                                                                                                      | y mathematical so   | ftware to solve a s | system of C   | DEs      |               |                      |  |  |
| CO2            | Analy                                                                                                      | ze graphical beha   | vior of solutions   | of different  | mather   | natical mode  | els.                 |  |  |
| CO3            | Creat                                                                                                      | e random numbers    | s and understand t  | heir applic   | ations.  |               |                      |  |  |
| CO4            | Apply                                                                                                      | y software for sim  | ulating area under  | a curve an    | d volun  | ne under a si | urface.              |  |  |
| CO5            | Analy                                                                                                      | ze optimal solution | on of a linear prog | ramming p     | roblem   |               |                      |  |  |
|                |                                                                                                            |                     | ourse outcomes v    |               |          |               |                      |  |  |
|                |                                                                                                            | PSO 1               | PSO 2               | PSO           | 3        | PSO 4         | PSO 5                |  |  |
| CO1            |                                                                                                            |                     | ✓                   | ✓             |          | ✓             | ✓                    |  |  |
| CO2            | CO2                                                                                                        |                     |                     |               |          |               | ✓                    |  |  |
| CO3            | CO3                                                                                                        |                     |                     |               |          |               |                      |  |  |
| CO4            | CO4                                                                                                        |                     |                     |               |          |               |                      |  |  |
| CO5            |                                                                                                            |                     |                     |               |          |               | ✓                    |  |  |

**Course Title: Programming Lab-V** 

Course Code: BSHM-605-22

| L | T | P |
|---|---|---|
| 0 | 0 | 4 |

# List of Practical (Using any software)

- (i) Introduction to built-in features of a mathematical software.
- (ii) Solving a system of linear ordinary differential equations.
- (iii) Phase plane analysis of predator-prey model.
- (iv) Phase plane analysis of model of a battle.
- (v) Random number generation and then use it for one of the following
  (a) Simulate area under a curve (b) Simulate volume under a surface.
- (vi) Solving linear programming problems with two variables.

# **RECOMMENDED BOOKS:**

- 1. Higham, D.J. and Higham, N.J., MATLAB Guide, 2nd Edition. Society for Industrial and Applied Mathematics (SIAM), 2005.
- 2. Gilat, A., MATLAB: An Introduction with Applications, 5th Edition. John Wiley & Sons, 2014.
- 3. Stephen Wolfram, THE MATHEMATICA BOOK, 5<sup>th</sup> Edition, 2003, Wolfram Media.
- 4. M. L. Abell, J. P. Braselton, MATHEMATICA by Example, 4<sup>th</sup> Edition, Elsevier, 2009.

| BSHM-606-     | -22                                                                                                                                                                                                                   | Scientific D           | ocumentation T     | ool              | L-0, T-0, P-2    | Non-Credit          |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|------------------|------------------|---------------------|--|--|
| Pre-requisite | <b>Pre-requisite:</b> A basic knowledge of Computer.                                                                                                                                                                  |                        |                    |                  |                  |                     |  |  |
| Course Obje   | ective                                                                                                                                                                                                                | es: This course is o   | lesigned to introd | uce a Scientif   | ic Documentation | 1 Tool namely Latex |  |  |
| _             | <b>Course Objectives:</b> This course is designed to introduce a Scientific Documentation Tool namely Latex for effectively writing mathematical articles, project reports and general mathematics content. The major |                        |                    |                  |                  |                     |  |  |
|               | focus of the course will be on effective use of Latex features to make an appealing presentation of a scientific                                                                                                      |                        |                    |                  |                  |                     |  |  |
| document.     |                                                                                                                                                                                                                       |                        |                    |                  | 11 21            |                     |  |  |
| Course Outc   | ome                                                                                                                                                                                                                   | s: At the end of the   | course, the studer | nts will be able | e to             |                     |  |  |
|               |                                                                                                                                                                                                                       |                        | ,                  |                  |                  |                     |  |  |
| CO1           | Create tables using Latex features.                                                                                                                                                                                   |                        |                    |                  |                  |                     |  |  |
| CO2           | App                                                                                                                                                                                                                   | oly Latex for creating | g effective scient | ific documents   | S.               |                     |  |  |
| CO3           | Unc                                                                                                                                                                                                                   | lerstand different ty  | pes documents th   | at can be creat  | ed using Latex.  |                     |  |  |
| CO4           | Unc                                                                                                                                                                                                                   | lerstand and use dif   | ferent packages to | various featu    | res of Latex.    |                     |  |  |
| CO5           | Apply Latex to create theorem and equation environments in a scientific document.                                                                                                                                     |                        |                    |                  |                  |                     |  |  |
|               |                                                                                                                                                                                                                       |                        | ourse outcomes v   |                  |                  |                     |  |  |
|               |                                                                                                                                                                                                                       |                        |                    |                  |                  |                     |  |  |
|               |                                                                                                                                                                                                                       | PSO 1                  | PSO 2              | PSO 3            | PSO 4            | PSO 5               |  |  |
| CO1           |                                                                                                                                                                                                                       |                        | ✓                  | ✓                | ✓                | ✓                   |  |  |
| CO2           |                                                                                                                                                                                                                       |                        | ✓                  | <b>√</b>         |                  | <b>√</b>            |  |  |
| CO3           |                                                                                                                                                                                                                       |                        |                    | <b>√</b>         |                  |                     |  |  |
| CO4           | CO4                                                                                                                                                                                                                   |                        |                    |                  | <b>√</b>         |                     |  |  |
| CO5           |                                                                                                                                                                                                                       |                        | <b>√</b>           | <b>√</b>         |                  |                     |  |  |

**Course Title: Scientific Documentation Tool** 

Course Code: BSHM-606-22

| L | T | P |
|---|---|---|
| 0 | 0 | 2 |

Latex: Sample documents, Type style, Resources

Environments: Lists, Centering, Tables, Verbatim, Theorem like environments, Equation

environment

Type Setting: Fonts, Hats, Underlining, Braces, Arrays, Matrices, Math styles, Bold Math,

Symbols for number sets, Binomial Coefficients

Documents: Document Class, Title, Section commands

Packages: Inserting files, inserting pictures, Making a bibliography

# RECOMMENDED BOOKS

- Lamport, L., LATEX: A Document Preparation System, User's Guide a Reference Manual, 2<sup>TM</sup> Edition, Addison-Wesley, 1994.
- Erickson M.J. and Binder, D., A student's Guide to the Study, Practice and Tools of Modern Mathematics, CRC Press, 2011.

# Study Scheme & Syllabus of

Bachelor of Science in Non-Medical (B.Sc. Non-Medical)

# **Batch 2018 onwards**



By

Department of Academics

IK Gujral Punjab Technical University

# IK Gujral Punjab Technical University Jalandhar B.Sc. (Non-Medical) Batch 2018 onwards

# Semester 1st

| Course Code               | Course Title                         | Load Allocation |   | Marks Distribution |          | Total    | Credits |    |
|---------------------------|--------------------------------------|-----------------|---|--------------------|----------|----------|---------|----|
|                           |                                      | L               | T | P                  | Internal | External |         |    |
| BSNM101-18                | Organic Chemistry                    | 3               | 0 | 0                  | 25       | 50       | 75      | 3  |
| BSNM102-18                | Inorganic Chemistry                  | 3               | 0 | 0                  | 25       | 50       | 75      | 3  |
| BSNM103-18                | Mathematical Physics                 | 3               | 0 | 0                  | 25       | 50       | 75      | 3  |
| BSNM104-18                | Mechanics-I                          | 3               | 0 | 0                  | 25       | 50       | 75      | 3  |
| BSNM105-18                | Differential Calculus                | 3               | 0 | 0                  | 25       | 50       | 75      | 3  |
| BSNM106-18                | Solid Geometry                       | 3               | 0 | 0                  | 25       | 50       | 75      | 3  |
| BSNM107-18                | English                              | 3               | 0 | 0                  | 25       | 50       | 75      | 3  |
| BSNM108-18<br>BSNM108A-18 | Punjabi /OR Punjab History & Culture | 3               | 0 | 0                  | 25       | 50       | 75      | 3  |
| BSNM109-18                | Chemistry Lab-I                      | 0               | 0 | 4                  | 30       | 20       | 50      | 2  |
| BSNM110-18                | Physics Lab-I                        | 0               | 0 | 4                  | 30       | 20       | 50      | 2  |
|                           | Total                                | 24              | 0 | 8                  | 260      | 440      | 700     | 28 |

# IK Gujral Punjab Technical University Jalandhar B.Sc. (Non-Medical) Batch 2018 onwards

# **Semester-I**

| Course Name           | B.Sc. (Non-Medical)   |
|-----------------------|-----------------------|
| Subject Code:         |                       |
| Subject Title:        | ORGANIC CHEMISTRY     |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |

# **Details of the Course**

| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I    | Structure and Bonding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | Hybridization, bond lengths, bond angles, bond energy, localized and delocalized chemical bond,                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | van der Waals interactions, inclusion compounds, clatherates, charge transfer complexes                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | resonance, hyperconjugation, aromaticity, inductive and field effects, hydrogen bonding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | Mechanism of Organic Reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | Curved arrow notation, drawing electron movements with arrows, half-headed and double-headed arrows, homolytic and heterolytic bond breaking. Types of reagents- electrophiles and nucleophiles. Types of organic reactions. Energy considerations. Reactive intermediates (carbocations, carbanions, free radicals, carbenes, arynes and nitrenes). Assigning formal charges on intermediates and other ionic species.  Methods of determination of reaction mechanism (product analysis, intermediates, isotope effects, kinetic and stereochemical studies). |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| II   | Stereochemistry of Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | Isomerism and its types, Optical isomerism - elements of symmetry, molecular chirality,                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | enantiomers, stereogenic center, optical activity, properties of enantiomers, chiral and achiral                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | molecules with two stereogeric centers, diastereomers, threo and erythro, diastereomers, meso compounds, resolution of enantiomers, inversion, retention and racemization. Relative and                                                                                                                                                                                                                                                                                                                                                                         |
|      | absolute configuration, sequence rules, D & L and R & S systems of nomenclature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | Geometric isomerism - determination of configuration of geometric isomers. E & Z system of                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | nomenclature, geometric isomerism in oximes and alicyclic compounds. Conformational                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | isomerism - conformational analysis of ethane and n-butane; conformational analysis of                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | cyclohexane, axial and equatorial bonds, conformation of mono substituted cyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | derivative. Newman projection and Sawhorse formulae, Fischer and flying wedge formulae.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | Difference between configuration and conformation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| III  | Alkanes and Cycloalkanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | Introduction, IUPAC nomenclature, Isomerism and classification of carbon atoms of alkanes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Sources, methods of formation (with special reference to Wurtz reaction, Kolbe reaction, Corey-                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | House reaction and decarboxylation of carboxylic acids). Physical properties and chemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | reactions of alkanes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | Mechanism of free radical halogenation of alkanes: orientation, reactivity and selectivity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | Cycloalkanes - nomenclature, methods of formation, chemical reactions, Baeyer's strain theory and its limitations. Ring strain in small rings (cyclopropane and cyclobutane), theory of                                                                                                                                                                                                                                                                                                                                                                         |
|      | strainless rings. The case of cyclopropane ring; banana bonds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IV   | Alkenes, Cycloalkenes, Dienes and Alkynes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| • '  | Alkenes Nomenclature, methods of synthesis (mechanisms of dehydration of alcohols and                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | dehydrohalogenation of alkyl halides, regioselectivity in alcohol dehydration. Saytzeff rule,                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | Hofmann elimination), physical properties and relative stabilities of alkenes. Chemical reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | of alkenes - mechanisms involved in hydrogenation, electrophilic and free radical additions,                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | Markownikiff's rule, hydroboration-oxidation, oxymercuration-reduction. Epoxidation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# IK Gujral Punjab Technical University Jalandhar B.Sc. (Non-Medical) Batch 2018 onwards

ozonolysis, hydration, hydroxylation and oxidation with KMnO<sub>4</sub>, Polymerization of alkenes. Substitution at the allylic and vinylic positions of alkenes. Industrial applications of ethylene and propene.

Cycloalkenes Methods of formation, conformation and Chemical reactions of cycloalkenes. Dienes Nomenclature and classification of dienes: isolated, conjugated and cumulated dienes. Structure of allenes and butadiene, methods of formation, polymerization. Chemical reactions – 1, 2 and 1,4 addition, Diels-Alder reaction.

*Alkynes* Nomenclature, structure and bonding in alkynes. Methods of formation. Chemical reactions of alkynes, acidity of alkynes. Mechanism of electrophilic and nucleophilic addition reactions, hydroboration oxidation, metal-ammonia reductions, oxidation and polymerization.

- 1. Organic Chemsitry, Morrison and Boyd, Prentice-Hall.
- 2. Fundamentals of Organic Chemistry, Solomons, John Wiley.
- 3. Organic Chemistry. F.A. Carey, McGraw Hill, Inc.
- 4. Organic Chemistry, L.G. Wade Jr. Prentice Hall.
- 5. Organic ChemistryVol. I, II & III, S.M. Mukherji, S.P. Singh and R.P.Kapoor, Wiley Eastern Ltd (New Age International).
- 6. Introduction to organic chemistry, Stritwieser, Heathcock and Kosover, Macmilan.

| Course Name           | B.Sc. (Non-Medical)   |  |
|-----------------------|-----------------------|--|
| <b>Subject Code:</b>  |                       |  |
| Subject Title:        | INORGANIC CHEMISTRY   |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |

| Details | of the Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit    | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| I       | Atomic Structure de Broglie equation, Heisenberg's Uncertainty Principle and its significance. Schrödinger's wave equation and its derivation, significance of $\psi$ and $\psi^2$ . Quantum numbers. Normalized and orthogonal wave functions. Sign of wave functions. Radial and angular wave functions and distribution curves. Shapes of s, p, d and f orbitals. Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau principle and its limitations.                                                                                                                                                                                                                                                                                                                                                                                                     |
| П       | Chemical Periodicity  Effective nuclear charge, shielding or screening effect (Slater rules), variation of effective nuclear charge in periodic table.  Atomic and ionic radii, Ionization enthalpy, Electron gain enthalpy and their trend in groups and periods.  Electronegativity and various scales. Variation of electronegativity with bond order, partial charge, hybridization, group electronegativity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ш       | Chemical Bonding I  Ionic bond: General characteristics of ionic compounds, size effects, radius ratio rule and its limitations. Efficiency of packing, Hexagonal close packing, Cubic close packing. Structures of different crystal lattices, Sodium chloride, Cesium chloride, Wurtzite, Zinc blende, Fluorite, Rutile, Cristobalite, Nickel arsenide, Pervoskite, Rhenium oxide, Calcium carbide, The calcite and aragonite structures.  Born-Landé equation with derivation and importance of Kapustinskii expression for lattice energy. Madelung constant, Born-Haber cycle and its application, Solvation energy.                                                                                                                                                                                                                                                        |
| IV      | Chemical Bonding II  Covalent bond: Lewis structure, Valence Bond theory, VSEPR theory (Prediction of structures and variation of bond angles on the basis of VSEPR theory, Shortcomings of VSEPR theory), Hybridization, Molecular orbital theory (LCAO method). Molecular orbital diagrams of diatomic and simple polyatomic molecules (Be2, N2, O2, F2, LiH, NO, CO, HCl, NO2, BeH2, NO2), Formal charge, Covalent character in ionic compounds, polarizing power and polarizability. Fajan's rules and consequences of polarization. Ionic character in covalent compounds (Bond moment, dipole moment, Percentage ionic character)  Metallic Bond: Valence bond and band theories. Semiconductors and insulators, defects in solids.  Weak Interactions: van der Waals forces, ion-dipole forces, dipole-dipole interactions, induced dipole interaction, Hydrogen bonding. |
|         | Recommended Books:  1. D.F.C. Shriver, P.W. Atkins and C.H. Langford, Inorganic Chemistry, ELBS Oxford, 1991.  2. J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry, 4th Ed, Pearson Education, Singapore, 1999.  3. J.D. Lee, Concise Inorganic Chemistry, ELBS, Oxford 1994.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Course Name           | B.Sc. (Non-Medical)  |       |           |
|-----------------------|----------------------|-------|-----------|
| Subject Code:         |                      |       |           |
| <b>Subject Title</b>  | MATHEMATICAL PHYSICS |       |           |
| <b>Contact Hours:</b> | L:3 T:               | 0 P:0 | Credits:3 |

| Detail | s of the Course:                                                                                                                                                                                                                                                                                               |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit   | Content                                                                                                                                                                                                                                                                                                        |
| Ι      | First Order and Second Order Ordinary Differential equations: First Order Differential                                                                                                                                                                                                                         |
|        | Equations and Integrating Factor. Homogeneous Equations with constant coefficients. Wronskian                                                                                                                                                                                                                  |
|        | and general solution. Statement of existence and Uniqueness Theorem for Initial Value Problem.                                                                                                                                                                                                                 |
|        | Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. Constrained Maximization using Lagrange Multipliers.                                                                                                      |
| II     | Vector Calculus: Recapitulation of vectors: Properties of vectors under rotations. Scalar product and its invariance under rotations. Vector product, Scalar triple product and their interpretation in terms of area and volume respectively. Scalar and Vector fields.                                       |
| III    | <b>Vector Differentiation:</b> Directional derivatives and normal derivative. Gradient of a scalar field and its geometrical interpretation. Divergence and curl of a vector field. Del and Laplacian operators. Vector identities.                                                                            |
|        | <b>Vector Integration:</b> Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notion of infinitesimal line, surface and volume elements. Line, surface and volume integrals of Vector fields. Flux of a vector field. Gauss' divergence theorem, Green's and Stokes Theorems and their applications. |
| IV     | <b>Orthogonal Curvilinear Coordinates:</b> Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian, Spherical and Cylindrical Coordinate Systems.                                                                                                              |
|        | <b>Dirac Delta function:</b> Dirac Delta function and its properties: Definition of Dirac delta function. Representation as limit of a Gaussian function and rectangular function. Properties of Dirac delta function.                                                                                         |
|        | Reference Books:                                                                                                                                                                                                                                                                                               |
|        | 1. Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris, 2013, 7 <sup>th</sup> Edn., Elsevier.                                                                                                                                                                                            |
|        | <ol> <li>An introduction to ordinary differential equations, E.A. Coddington, 2009, PHI learning.</li> <li>Differential Equations, George F. Simmons, 2007, McGraw Hill.</li> </ol>                                                                                                                            |
|        | 4. Mathematical Tools for Physics, James Nearing, 2010, Dover Publications.                                                                                                                                                                                                                                    |
|        | <ul><li>5. Mathematical methods for Scientists and Engineers, D.A. McQuarrie, 2003, Viva Book.</li><li>6. Advanced Engineering Mathematics, D.G. Zill and W.S. Wright, 5 Ed., 2012, Jones and Bartlett Learning.</li></ul>                                                                                     |
|        | 7. Mathematical Physics, Goswami, 1 <sup>st</sup> edition, Cengage Learning.                                                                                                                                                                                                                                   |
|        | 8. Engineering Mathematics, S.Pal and S.C. Bhunia, 2015, Oxford University Press.                                                                                                                                                                                                                              |
|        | 9. Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India.                                                                                                                                                                                                                                        |
|        | 10. Essential Mathematical Methods, K.F.Riley & M.P.Hobson, 2011, Cambridge Univ. Press.                                                                                                                                                                                                                       |
|        |                                                                                                                                                                                                                                                                                                                |

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| <b>Subject Code:</b>  |                       |  |  |
| Subject Title:        | Mechanics-I           |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |  |

| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I    | Fundamentals of Dynamics: Reference frames. Inertial frames; Review of Newton's Laws of                                                                                                                                                                                                                                                                                                                                                                         |
|      | Motion. Galilean transformations; Galilean invariance. Momentum of variable- mass system:                                                                                                                                                                                                                                                                                                                                                                       |
|      | motion of rocket. Motion of a projectile in Uniform gravitational field. Conservation of Energy,                                                                                                                                                                                                                                                                                                                                                                |
|      | Conservative forces, Dynamics of a system of particles. Centre of Mass. Principle of conservation                                                                                                                                                                                                                                                                                                                                                               |
|      | of momentum. Impulse. Angular Momentum about the Centre of mass, Rotational invariance,                                                                                                                                                                                                                                                                                                                                                                         |
| ***  | Shape of Galaxy.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| II   | Work and Energy: Work and Kinetic Energy Theorem. Conservative and non-conservative                                                                                                                                                                                                                                                                                                                                                                             |
|      | forces. Potential Energy. Energy diagram. Stable and unstable equilibrium. Elastic potential                                                                                                                                                                                                                                                                                                                                                                    |
|      | energy. Force as gradient of potential energy. Work & Potential energy. Work done by non-                                                                                                                                                                                                                                                                                                                                                                       |
|      | conservative forces. Law of conservation of Energy.                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | Elastic and Inelastic Scattering: Types of scattering and conservation laws, Laboratory and                                                                                                                                                                                                                                                                                                                                                                     |
|      | centre of mass systems, collision of particles which stick together, General elastic collision of                                                                                                                                                                                                                                                                                                                                                               |
| ***  | particles of different mass, Cross-section of elastic scattering, Rutherford scattering.                                                                                                                                                                                                                                                                                                                                                                        |
| III  | <b>Rotational Dynamics</b> : Angular momentum of a particle and system of particles. Torque. Principle                                                                                                                                                                                                                                                                                                                                                          |
|      | of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies. Kinetic energy of rotation.                                                                                                                                                                                                                                                            |
|      | Motion involving both translation and rotation. Cylinder on an accelerated rough plane, Behavior                                                                                                                                                                                                                                                                                                                                                                |
|      | of angular momentum vector, Principal axes and Euler's equations, Elementary Gyroscope,                                                                                                                                                                                                                                                                                                                                                                         |
|      | Symmetrical Top.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| IV   | <b>Elasticity:</b> Hooke's law-Stress-strain diagram-Elastic moduli-Relation between elastic constants-Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants - Work done in stretching and work done in twisting a wire-Twisting couple on a cylinder - Determination of Rigidity modulus by static torsion - Torsional pendulum-Determination of Rigidity modulus and moment of inertia - $q$ , $\eta$ , and $\sigma$ by Searles method |
|      | Reference Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 1. An introduction to mechanics, D. Kleppner, R.J. Kolenkow, 1973, McGraw-Hill.                                                                                                                                                                                                                                                                                                                                                                                 |
|      | 2. Mechanics, Berkeley Physics, vol.1, C.Kittel, W.Knight, et.al. 2007, Tata McGraw-Hill.                                                                                                                                                                                                                                                                                                                                                                       |
|      | 3. Physics, Resnick, Halliday and Walker 8/e. 2008, Wiley.                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 4. Analytical Mechanics, G.R. Fowles and G.L. Cassiday. 2005, Cengage Learning.                                                                                                                                                                                                                                                                                                                                                                                 |
|      | 5. Feynman Lectures, Vol. I, R.P. Feynman, R.B.Leighton, M.Sands, 2008, Pearson                                                                                                                                                                                                                                                                                                                                                                                 |
|      | Education                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | 6. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons.                                                                                                                                                                                                                                                                                                                                                                                   |
|      | 7. University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.                                                                                                                                                                                                                                                                                                                                                                                            |
|      | 8. Mechanics, D.S. Mathur, S. Chand and Company Limited, 2000                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | 9. University Physics. F.W Sears, M.W Zemansky, H. D Young 13/e, 1986, Addison Wesley.                                                                                                                                                                                                                                                                                                                                                                          |
|      | 10. Physics for scientists and Engineers with Modern Phys., J.W. Jewett, R.A. Serwa, 2010,                                                                                                                                                                                                                                                                                                                                                                      |
|      | Cengage Learning.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1    | 11. Theoretical Mechanics, M.R. Spiegel, 2006, Tata McGraw Hill.                                                                                                                                                                                                                                                                                                                                                                                                |

| Course Name           | B.Sc. (Non-Medical)   |  |
|-----------------------|-----------------------|--|
| Subject Code:         |                       |  |
| Subject Title:        | DIFFERENTIAL CALCULUS |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |

| Unit | Content                                                                                                            |  |  |
|------|--------------------------------------------------------------------------------------------------------------------|--|--|
| I    | Definition of a sequence. limit of a sequence, theorems on limits of sequences, bounded,                           |  |  |
|      | monotonic sequences. Least upper bound and greatest lower bound of a sequence. Limit superior,                     |  |  |
|      | limit inferior. Nested Intervals. Cauchy's convergence criterion, infinite series.                                 |  |  |
| II   | Limits of Functions, $\varepsilon - \delta$ definition, right- and left-hand limits. Theorems on limits. Infinity. |  |  |
|      | Special Limits. Continuity, $\varepsilon - \delta$ definition, right- and left-hand Continuity, continuity in an   |  |  |
|      | interval, theorems on continuity, piecewise continuity, uniform Continuity.                                        |  |  |
| III  | The concept and definition of a derivative, right- and left-hand derivatives, differentiability in an              |  |  |
|      | interval, piecewise differentiability, differentials, differentiation of composite functions, implicit             |  |  |
|      | differentiation, mean value theorems, Taylor theorem, applications.                                                |  |  |
| IV   | Functions of two or more variables, neighborhoods, regions, limits, iterated limits, continuity,                   |  |  |
|      | uniform continuity, partial derivatives, higher-order partial derivatives, differentials, theorems on              |  |  |
|      | differentials, differentiation of composite functions, Euler's theorem on homogeneous functions.                   |  |  |
|      | Implicit functions, Jacobians, partial derivatives using Jacobians, theorems on Jacobians,                         |  |  |
|      | applications.                                                                                                      |  |  |
|      | Reference Books:                                                                                                   |  |  |
|      | 1. Robert Wrede and Murray R. Spiegel, Advanced Calculus, 3 <sup>rd</sup> Edition, Schaum's                        |  |  |
|      | Outline Series (McGraw Hill), 2010.                                                                                |  |  |
|      | 2. Maurice D Weir, Frank R. Giordano and Joel Hass, Thomas' Calculus, 11th Edition,                                |  |  |
|      | Pearson, 2008.                                                                                                     |  |  |
|      | 3. James Stewart, Calculus, 5 <sup>th</sup> Edition, Brooks/Cole(Thomson), 2003.                                   |  |  |
|      | 4. Theoretical Mechanics, M.R. Spiegel, 2006, Tata McGraw Hill.                                                    |  |  |
|      |                                                                                                                    |  |  |

| Course Name           | B.Sc. (Non-Medical)   |  |
|-----------------------|-----------------------|--|
| Subject Code:         |                       |  |
| Subject Title:        | SOLID GEORMETRY       |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |

| Unit | Content                                                                                               |
|------|-------------------------------------------------------------------------------------------------------|
| I    | The concept of co-ordinates, co-ordinate of a point in space, distance between two points. Plane:     |
|      | Definition of a plane, Normal form of the equation of a plane, Transformation from general form       |
|      | to normal form, Equation of plane in terms of its intercepts on the axis, Equations of the plane      |
|      | through the given points, Length of the perpendicular from a given point to a given plane,            |
|      | Bisectors of angles between two planes, Combined equation of two planes, Orthogonal projection        |
|      | on a plane.                                                                                           |
| II   | Sphere: Definition and equation of the sphere; Equation of the sphere through four given points;      |
|      | Plane sections of a sphere; Intersection of two spheres; Equation of a circle; Sphere through a       |
|      | given circle; Intersection of a sphere and a line; Power of a point; Tangent plane; Plane of contact; |
|      | Polar plane; Pole of a plane; Conjugate points; Conjugate planes; Angle of intersection of two        |
|      | spheres; Conditions for two spheres to be orthogonal; Radical plane; Coaxial system of spheres.       |
| III  | Cone: Definitions of a cone; vertex; guiding curve; generators; Equation of the cone with a given     |
|      | vertex and guiding curve; Enveloping cone of a sphere; Equations of cones with vertex at origin       |
|      | are homogenous; Condition that the general equation of the second degree should represent a           |
|      | cone; Condition that a cone may have three mutually perpendicular generators; Intersection of a       |
|      | line and a quadric cone; Tangent lines and tangent plane at a point; Condition that a plane may       |
|      | touch a cone; Reciprocal cones; Intersection of two cones with a common vertex; Right circular        |
|      | cone; Equation of the right circular cone with a given vertex; axis and semi-vertical angle.          |
| IV   | Cylinder: Definition of a cylinder, Equation to the cylinder whose generators intersect a given       |
|      | conic and are parallel to a given line; Enveloping cylinder of a sphere; The right circular cylinder; |
|      | Equation of the right circular cylinder with a given axis and radius.                                 |
|      | Reference Books:                                                                                      |
|      | 1. Shanti Narayan and P. K. Mittal, Analytical Solid Geometry, 17th Edition, S. Chand &               |
|      | Company, 2007.                                                                                        |
|      | 2. P. K. Jain, A Textbook of Analytical Geometry of Three Dimensions, New Age                         |
|      | International, 2005.                                                                                  |
|      | international, 2003.                                                                                  |
|      |                                                                                                       |

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| <b>Subject Code:</b>  |                       |  |  |
| Subject Title:        | English               |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |  |

## **Detail of Course**

| Unit | Content                                                                                              |
|------|------------------------------------------------------------------------------------------------------|
| I    | Literature                                                                                           |
|      | <u> </u>                                                                                             |
|      | The Poetic Palette (Orient BlackSwan, Second Edition, 2016)                                          |
|      | The following poems from this anthology are prescribed:                                              |
|      | 1 A successful With Mr. Commission Facility Distriction                                              |
|      | <ol> <li>Apparently With No Surprise: Emily Dickinson</li> <li>Fool and Flea: Jeet Thayil</li> </ol> |
|      | 3. The Soul's Prayer: Sarojini Naidu                                                                 |
|      | 4. I Sit and Look Out: Walt Whitman                                                                  |
|      | 5. Women's Rights: Annie Louise Walker                                                               |
|      | 6. Pippa's Song: Robert Browning                                                                     |
|      | <u>Vocabulary</u>                                                                                    |
|      | Antonyms; Synonyms; One-word substitution; Homophones/Homonyms; Abbreviations                        |
| II   | <u>Literature</u>                                                                                    |
|      | (b) Prose Parables (Orient Black Swan, 2013)                                                         |
|      | The following stories from the above volume are prescribed:                                          |
|      | The following stories from the decree volume and presented.                                          |
|      | a. The Eyes Are Not Here: Ruskin Bond                                                                |
|      | b. Grief: Anton Chekov                                                                               |
|      | c. The Doctor's Word: R.K. Narayan                                                                   |
|      | d. The Doll's House: Katherine Mansfield e. Dusk: H.H. Munroe (Saki)                                 |
|      | f. The Kabuli wallah : Rabindranath Tagore                                                           |
|      | <u>Grammar</u>                                                                                       |
|      | Parts of Speech; Articles, Determiners; Modals; Modifiers; Prepositions; Voice; Transformation       |
|      | of sentences                                                                                         |
| III  | Close Reading; Comprehension; Summarizing; Paraphrasing; Analysis and Interpretation;                |
|      | Translation (from Hindi/Punjabi to English and vice-versa)                                           |
| IV   | Essay Writing -Descriptive/Narrative/Argumentative; Business letters; Précis Writing                 |
|      | Recommended Books:                                                                                   |
|      | 1. Oxford Practice Grammar by John Eastwood (Ed. 2014)                                               |
|      | 2. Business English, Pearson, 2008.                                                                  |
|      | 3. Language, Literature and Creativity, Orient Black swan, 2013.                                     |
|      | 4. Language through Literature (forthcoming) ed. Dr. Gauri Mishra, Dr. Ranjana Kaul, Dr.             |
|      | Brati Biswas                                                                                         |
|      | 5. Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.                   |
|      | D 10164                                                                                              |

ਬੀ.ਐਸ.ਸੀ. ਨਾਨ-ਮੈਡੀਕਲ ਸਮੈਸਟਰ-ਪਹਿਲਾ ਸਲੇਬਸ-ਪੰਜਾਬੀ ਪੰਜਾਬੀ-3L-3 ਕਰੈਡਿਟ

ਪਾਠ-ਕ੍ਰਮ:

ਯੁਨਿਟ-1 (ਸਾਹਿਤ)

#### (ੳ) ਕਵਿਤਾ ਭਾਗ:

- 1. ਰਉਂ ਰੁੱਖ- ਭਾਈ ਵੀਰ ਸਿੰਘ
- 2. ਰਾਧਾ ਸੰਦੇਸ਼-ਧਨੀ ਰਾਮ ਚਾਤ੍ਰਿਕ
- 3. ਪੁਰਾਣੇ ਪੰਜਾਬ ਨੂੰ ਆਵਾਜ਼ਾਂ-ਪ੍ਰੋ. ਪੂਰਨ ਸਿੰਘ
- 4. ਆਉ ਨੱਚੀਏ-ਪ੍ਰੋ.ਮੋਹਨ ਸਿੰਘ
- 5. ਤੇਰੇ ਹਜ਼ੂਰ ਮੇਰੀ ਹਾਜ਼ਰੀ ਦੀ ਦਾਸਤਾਨ-ਹਰਿਭਜਨ ਸਿੰਘ
- 6. ਚੌਂਕ ਸ਼ਹੀਦਾਂ ਵਿਚ ਉਸਦਾ ਆਖਰੀ ਭਾਸ਼ਣ- ਸੂਰਜੀਤ ਪਾਤਰ

#### (ਅ) ਕਹਾਣੀ ਭਾਗ:

- 1. ਭੂਆ-ਨਾਨਕ ਸਿੰਘ
- 2. ਪੇਮੀ ਦੇ ਨਿਆਣੇ-ਸੰਤ ਸਿੰਘ ਸੇਖੋਂ
- 3. ਧਰਤੀ ਹੇਠਲਾ ਬੌਲਦ- ਕੁਲਵੰਤ ਸਿੰਘ ਵਿਰਕ
- 4. ਦੂਜੀ ਵਾਰ ਜੇਬ ਕੱਟੀ ਗਈ-ਨਵਤੇਜ ਸਿੰਘ
- 5. ਬੁੱਤ ਸ਼ਿਕਨ-ਅਜੀਤ ਕੌਰ
- 6. ਬੱਸ ਕੰਡਕਟਰ-ਦਲੀਪ ਕੌਰ ਟਿਵਾਣਾ

### ਯੂਨਿਟ-2 (ਭਾਸ਼ਾ ਤੇ ਲਿਪੀ)

ਭਾਸ਼ਾ ਦਾ ਟਕਸਾਲੀ ਰੂਪ, ਭਾਸ਼ਾ ਤੇ ਉਪ-ਭਾਸ਼ਾ ਵਿਚ ਅੰਤਰ, ਪੰਜਾਬੀ ਦੀਆਂ ਉਪ-ਭਾਸ਼ਾਵਾਂ,ਪੰਜਾਬੀ ਭਾਸ਼ਾ:ਨਿਕਾਸ ਤੇ ਵਿਕਾਸ।

ਭਾਸ਼ਾ ਤੇ ਲਿਪੀ, ਗੁਰਮੁਖੀ ਲਿਪੀ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ, ਗੁਰਮੁਖੀ ਲਿਪੀ: ਨਿਕਾਸ ਤੇ ਵਿਕਾਸ।

ਯੂਨਿਟ-3 (ਵਿਆਕਰਣ)

ਮੂਲ ਵਿਆਕਰਣਕ ਇਕਾਈਆਂ :
ਭਾਵੰਸ਼
ਸ਼ਬਦ
ਵਾਕੰਸ਼
ਉਪ-ਵਾਕ
ਵਾਕ

ਯੂਨਿਟ-4 (ਲੇਖਣੀ–ਕਲਾ)

ਸੰਖੇਪ ਰਚਨਾ (ਪ੍ਰੈਸੀ)
ਪੈਰ੍ਹਾ ਰਚਨਾ
ਸਰਲ ਅੰਗਰੇਜ਼ੀ ਪੈਰ੍ਹੇ ਦਾ ਪੰਜਾਬੀ ਅਨੁਵਾਦ

ਸਹਾਇਕ ਪੁਸਤਕਾਂ:

ਦੇ ਰੰਗ , ਗੁਰੂ ਨਾਨਕ ਦੇਵ ਯੂਨੀਵਰਸਿਟੀ,ਅੰਮ੍ਰਿਤਸਰ (ਸੰਪ. ਹਰਜਿੰਦਰ ਸਿੰਘ ਢਿੱਲੋਂ ਤੇ ਪ੍ਰੀਤਮ ਸਿੰਘ ਸਰਗੋਧੀਆ), ਦੂਜਾ ਐਡੀਸ਼ਨ, 2014.

ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਵਿਗਿਆਨ (ਸੁਖਵਿੰਦਰ ਸਿੰਘ ਸੰਘਾ), ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਅਕਾਦਮੀ, 2006.

| Course Name           | B.Sc. (Non-Medical)      |  |  |
|-----------------------|--------------------------|--|--|
| Subject Code:         |                          |  |  |
| Subject Title:        | Punjab History & Culture |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3    |  |  |

## **Detail of Course**

| Unit | Content                                                                                            |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Ι    | <ol> <li>Physical Features of the Punjab and impact on history.</li> </ol>                         |  |  |  |  |  |  |
|      | 2. Sources of the ancient history of Punjab.                                                       |  |  |  |  |  |  |
| II   | 3. Harappan Civilization: Town planning; Social, economic and religious life of the                |  |  |  |  |  |  |
|      | Indus valley people                                                                                |  |  |  |  |  |  |
|      | 4. The indo-Aryans: original home and settlement in Punjab.                                        |  |  |  |  |  |  |
| III  | 5. Social, Religious and Economic life during later Rig Vedic age.                                 |  |  |  |  |  |  |
|      | 6. Social, Religious and Economic life during later Vedic Age.                                     |  |  |  |  |  |  |
| IV   | 7. Teaching and impact of Buddhism                                                                 |  |  |  |  |  |  |
|      | 8. Jainism in the Punjab.                                                                          |  |  |  |  |  |  |
|      |                                                                                                    |  |  |  |  |  |  |
|      | Recommended Books:                                                                                 |  |  |  |  |  |  |
|      | 1. L. joshi (ed): History and Culture of the Punjab, Art-1, Patiala, 1989(3 <sup>rd</sup> edition) |  |  |  |  |  |  |
|      | 2. L.M joshi and fauja singh (ed); History of Punjab, Vol.I, Patiala 1977.                         |  |  |  |  |  |  |
|      | 3. Budha Parkash: Glimpses of Ancient Punjab, Patiala, 1983.                                       |  |  |  |  |  |  |
|      | <b>4.</b> B.N Sharma: life in Northern India, Delhi. 1966.                                         |  |  |  |  |  |  |

| Course Name           | B.Sc. (Non-Medical)   |  |  |  |  |
|-----------------------|-----------------------|--|--|--|--|
| Subject Code:         |                       |  |  |  |  |
| <b>Subject Title:</b> | CHEMISTRY LAB I       |  |  |  |  |
| <b>Contact Hours:</b> | L:0 T:0 P:4 Credits:2 |  |  |  |  |

**Inorganic Chemistry:** Semi Micro analysis. Cation analysis, Separation and identification of ions from groups I, II, III, IV, V, and VI. Anionic analysis. Four ions with no interference.

### **Organic Chemistry Laboratory Techniques:**

Determination of Melting Point

Naphthalene 80-82°C

Cinnamic acid 132.5-133 °C

Benzoic acid 121.5-122 °C

Salicylic acid 157.5-158 °C

Urea 132.5-133 °C

Acetanilide 113.5-114 °C

Succinic Acid 184.5-185 °C

*m*-dinitro benzene 90 °C

p-dichlorobenzene 52 °C

Aspirin 135 °C

Determination of Boiling Point

Ethanol 78°C

Cyclohexane 81.4 °C

Benzene 80°C

Toluene 110°C

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| <b>Subject Code:</b>  |                       |  |  |
| Subject Title:        | Physics Lab-I         |  |  |
| <b>Contact Hours:</b> | L:0 T:0 P:4 Credits:2 |  |  |

#### At least 06 experiments from the following:

- 1. Measurements of length (or diameter) using vernier caliper, screw gauge, and travelling microscope. Use of Plumb line and Spirit level.
- 2. Analysis of experimental data by:
  a) fitting the given data to a straight line b) to study probable error in observations.
- 3. To determine the height of an inaccessible object using a sextant.
- 4. To determine the horizontal distance of an object using a sextant.
- 5. To determine the vertical distance of an object using a sextant.
- 6. To verify the law of vibrating string by Melde's experiment.
- 7. To setup CRO for Sine and Square wave and to find their frequency and amplitude.
- 8. To study the Motion of Spring and calculate (a) Spring constant, (b) **g** and (c) Modulus of rigidity.
- 9. To establish a relation between angular acceleration  $\alpha$  and torque  $\tau$ , and hence to find out the moment of Inertia of flywheel.
- 10. Study the dependance of the moment of Inertia on distribution of mass (by noting the time periods of oscillations) using objects of various shape but of same mass.
- 11. To determine the Young's Modulus of a Wire by Optical Lever Method.
- 12. To determine the Young's Modulus of a Wire by Searle's method.
- 13. To determine the Modulus of Rigidity of a Wire by Maxwell's needle.

#### **REFERENCE BOOKS:**

- 1. Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- 3. Engineering Practical Physics, S.Panigrahi & B.Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 4. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 5. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 201, Kitab Mahal
- 6. B Sc Practical Physics by C. L. Arora, S. Chand & Co.

| Course Code               | Course Title                                    |    | Load<br>locati |    | Marks Dis | stribution | Total | Credits |
|---------------------------|-------------------------------------------------|----|----------------|----|-----------|------------|-------|---------|
|                           |                                                 | L  | T              | P  | Internal  | External   |       |         |
| BSNM201-18                | Inorganic Chemistry-II                          | 3  | 0              | 0  | 25        | 50         | 75    | 3       |
| BSNM202-18                | Physical Chemistry-I                            | 3  | 0              | 0  | 25        | 50         | 75    | 3       |
| BSNM203-18                | Mechanics-II                                    | 3  | 0              | 0  | 25        | 50         | 75    | 3       |
| BSNM204-18                | Electricity and Magnetism                       | 3  | 0              | 0  | 25        | 50         | 75    | 3       |
| BSNM205-18                | Integral Calculus                               | 3  | 0              | 0  | 25        | 50         | 75    | 3       |
| BSNM206-18                | Theory of equations                             | 3  | 0              | 0  | 25        | 50         | 75    | 3       |
| BSNM207-18                | English-II                                      | 3  | 0              | 0  | 25        | 50         | 75    | 3       |
| BSNM208-18<br>BSNM208A-18 | Punjabi / <b>OR</b><br>Punjab History & Culture | 3  | 0              | 0  | 25        | 50         | 75    | 3       |
| BSNM209-18                | Chemistry Lab-II                                | 0  | 0              | 4  | 30        | 20         | 50    | 2       |
| BSNM210-18                | Physics Lab-II                                  | 0  | 0              | 4  | 30        | 20         | 50    | 2       |
| BSNM211-18                | Computer Algebra system:<br>MATLAB              | 0  | 0              | 2  | 30        | 20         | 50    | 1       |
|                           | Total                                           | 24 | 0              | 10 | 290       | 460        | 750   | 29      |

## **Semester-II**

| Course Name           | B.Sc. (Non-Medical)    |  |  |  |  |
|-----------------------|------------------------|--|--|--|--|
| <b>Subject Code:</b>  | BSNM201-18             |  |  |  |  |
| Subject Title:        | INORGANIC CHEMISTRY-II |  |  |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3  |  |  |  |  |

| Unit | Content                                                                                                                                                                                                                                                                                |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| I    | Chemistry of s Block Elements                                                                                                                                                                                                                                                          |  |  |  |
|      | General characteristics (melting point, flame color, reducing nature, diagonal relationships and                                                                                                                                                                                       |  |  |  |
|      | anomalous behavior of first member of each group).                                                                                                                                                                                                                                     |  |  |  |
|      | Reactions of alkali and alkaline earth metals with oxygen, hydrogen, nitrogen and water.                                                                                                                                                                                               |  |  |  |
|      | Ease of formation, thermal stability and solubility of the following alkali and alkaline                                                                                                                                                                                               |  |  |  |
|      | earth metal compounds: hydrides, oxides, peroxides, superoxides, carbonates, nitrates,                                                                                                                                                                                                 |  |  |  |
|      | sulphates.                                                                                                                                                                                                                                                                             |  |  |  |
|      | Complex formation tendency of s-block elements; crown ethers, cryptands and podands of Group                                                                                                                                                                                           |  |  |  |
|      | I; basic beryllium acetate, beryllium nitrate, EDTA complexes of calcium and magnesium.                                                                                                                                                                                                |  |  |  |
|      | Solutions of alkali metals in liquid ammonia and their properties.                                                                                                                                                                                                                     |  |  |  |
| II   | Chemistry of p Block Elements                                                                                                                                                                                                                                                          |  |  |  |
|      | Electronic configuration, atomic and ionic size, metallic/non-metallic character, melting                                                                                                                                                                                              |  |  |  |
|      | point, ionization enthalpy, electron gain enthalpy, electronegativity, inert pair effect,                                                                                                                                                                                              |  |  |  |
|      | diagonal relationship between B and Si and anomalous behaviour of first member of each                                                                                                                                                                                                 |  |  |  |
|      | group.  Group III (Boron Group): Oxides, halides and hydrides of group III elements, boron                                                                                                                                                                                             |  |  |  |
|      | sesquioxide and borates structure of borates, trihalides and lower halides of boron, preparation of                                                                                                                                                                                    |  |  |  |
|      | boron hydrides reactions and structures of boranes.                                                                                                                                                                                                                                    |  |  |  |
|      | Group IV (Carbon Group): Structure and allotropy of the elements, types and structure                                                                                                                                                                                                  |  |  |  |
|      | of carbides, oxides of carbon and silicon, types and structures of silicates, Organo –                                                                                                                                                                                                 |  |  |  |
|      | silicon compounds and the silicones, halides of IV group elements.                                                                                                                                                                                                                     |  |  |  |
|      | Group V (Nitrogen Group): Hydrides, properties and structure of ammonia, hydrazine,                                                                                                                                                                                                    |  |  |  |
|      | hydroxylamine, trihalides and Pentahalides of V groups elements, oxides of nitrogen, structure of                                                                                                                                                                                      |  |  |  |
|      | N <sub>2</sub> O, NO, N <sub>2</sub> O <sub>3</sub> , N <sub>2</sub> O <sub>4</sub> and N <sub>2</sub> O <sub>5</sub> , oxo acids of nitrogen and phosphorous, phosphazenes and                                                                                                        |  |  |  |
|      | cyclophosphazenes.                                                                                                                                                                                                                                                                     |  |  |  |
|      | Group VI (Oxygen Group): Structure and allotropy of the elements. Oxides of sulfur (structure                                                                                                                                                                                          |  |  |  |
|      | of SO <sub>2</sub> and SO <sub>3</sub> ) oxoacids of sulfur halides of sulfur, selenium and tellurium, compounds of                                                                                                                                                                    |  |  |  |
|      | Sulfur and nitrogen (S <sub>4</sub> N <sub>4</sub> ). <i>Group VII</i> : Oxides of halogens (OF <sub>2</sub> , O <sub>2</sub> F <sub>2</sub> , Cl <sub>2</sub> C, ClO <sub>2</sub> , Cl <sub>2</sub> O <sub>6</sub> , BrO <sub>2</sub> , I <sub>2</sub> O <sub>5</sub> ) (structures), |  |  |  |
|      | Preparation, reaction and structure of interhalogen compounds. (ClF <sub>3</sub> , BrF <sub>3</sub> , I <sub>2</sub> , Cl <sub>5</sub> , IF <sub>5</sub> ,                                                                                                                             |  |  |  |
|      | IF <sub>7</sub> ), Polyhalides, basic properties of halogens.                                                                                                                                                                                                                          |  |  |  |
| III  | Acids-bases                                                                                                                                                                                                                                                                            |  |  |  |
|      | Various definitions of acids and bases, A generalized acid-base concept, Measurement of                                                                                                                                                                                                |  |  |  |
|      | acid-base strength, Lewis interactions in non-polar solvents, Systematics of Lewis acid-                                                                                                                                                                                               |  |  |  |
|      | base interactions, Bond energies, steric effects, solvation effects and acid-base anomalies,                                                                                                                                                                                           |  |  |  |
|      | Classification of acids and bases as hard and soft. Pearson's HSAB concept, acid-base                                                                                                                                                                                                  |  |  |  |
|      | strength and hardness and softness. Symbiosis, theoretical basis of hardness and softness,                                                                                                                                                                                             |  |  |  |
|      | electronegativity and hardness and softness.                                                                                                                                                                                                                                           |  |  |  |
| IV   | Chemistry of Transition Elements                                                                                                                                                                                                                                                       |  |  |  |
|      | Characteristic properties of d-block elements. Properties of the elements of the first transition                                                                                                                                                                                      |  |  |  |

| series, their simple compounds and complexes illustrating relative stability of their           |
|-------------------------------------------------------------------------------------------------|
| oxidation states, coordination number and geometry. General characteristics of elements of      |
| Second and Third Transition Series, comparative treatment with their 3d analogues in respect of |
| ionic radii, oxidation states, magnetic behavior.                                               |

#### **Recommended Books:**

- 1. J.D. Lee, Concise Inorganic Chemistry, 4th Ed.
- 2. J.E. Huheey, Inorganic Chemistry, Harper & Row.
- 3. F.A.Cotton and G. Wilinson, Advanced Inorganic Chemistry, Interscience Publishers.
- 4. N.N. Greenwood and A. Earnshaw, Chemistry of Elements, Pergamon Press.

| Course Name           | B.Sc. (Non-Medical)   |  |  |  |  |
|-----------------------|-----------------------|--|--|--|--|
| Subject Code:         | BSNM202-18            |  |  |  |  |
| <b>Subject Title:</b> | PHYSICAL CHEMISTRY-I  |  |  |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |  |  |  |

| Unit | Content                                                                                                                                                                             |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| I    | Gaseous state                                                                                                                                                                       |  |  |  |  |
|      | Kinetic molecular theory of gases, derivation of kinetic gas equation, deduction of gas laws from                                                                                   |  |  |  |  |
|      | kinetic gas equation, imperfection in real gases, the compressibility of real gases, isotherms                                                                                      |  |  |  |  |
|      | of real gases, equations of state, Causes of deviation from ideal                                                                                                                   |  |  |  |  |
|      | behaviour. van der Waals equation of state, its derivation and application in explaining real gas                                                                                   |  |  |  |  |
|      | behaviour, calculation of Boyle temperature. Isotherms of real gases and their comparison with                                                                                      |  |  |  |  |
|      | van der Waals isotherms, continuity of states, critical state, relation between critical                                                                                            |  |  |  |  |
| TT   | constants and van der Waals constants, law of corresponding states.                                                                                                                 |  |  |  |  |
| II   | Liquids state  Ovalitative treatment of the structure of the liquid state, physical properties of liquids.                                                                          |  |  |  |  |
|      | Qualitative treatment of the structure of the liquid state; physical properties of liquids; vapour pressure, surface tension and coefficient of viscosity, and their determination. |  |  |  |  |
|      | Effect of addition of various solutes on surface tension and viscosity, and their determination.                                                                                    |  |  |  |  |
|      | action of detergents. Temperature variation of viscosity of liquids and comparison with that of                                                                                     |  |  |  |  |
|      | gases.                                                                                                                                                                              |  |  |  |  |
| III  | Colloidal State                                                                                                                                                                     |  |  |  |  |
|      | Definition of colloids, classification of colloids. Solids in liquids (Sol): kinetic, optical and                                                                                   |  |  |  |  |
|      | electrical, properties, stability of colloids, protective action, Hardy Schulze law, gold                                                                                           |  |  |  |  |
|      | number. Liquids in liquids (emulsions): Types of emulsions, preparation. Emulsifiers. General                                                                                       |  |  |  |  |
|      | applications of colloids.                                                                                                                                                           |  |  |  |  |
| IV   | Solutions, Dilute Solutions and Colligative Properties                                                                                                                              |  |  |  |  |
| 1 4  | Ideal and non-ideal solutions, methods of expressing concentrations of solutions, activity                                                                                          |  |  |  |  |
|      | and activity coefficient. Dilute solution, colligative properties, Raoult's law, relative                                                                                           |  |  |  |  |
|      | lowering of vapour pressure, molecular weight determination. Osmosis, Law of osmotic                                                                                                |  |  |  |  |
|      | pressure and its measurement, determination of molecular weight from osmotic pressure.                                                                                              |  |  |  |  |
|      | Elevation of boiling point and depression of freezing point, Thermodynamic derivation of                                                                                            |  |  |  |  |
|      | relation between molecular weight and elevation in boiling point and depression in freezing                                                                                         |  |  |  |  |
|      | point. Experimental methods for determining various colligative properties. Abnormal molar                                                                                          |  |  |  |  |
|      | mass degree of dissociation and association of solutes.                                                                                                                             |  |  |  |  |
|      | Recommended Books:                                                                                                                                                                  |  |  |  |  |
|      | <ol> <li>Principles of physical chemistry, S.H. Maron &amp; C.F. Prutton.</li> <li>Physical Chemistry, K.J. Laidler.</li> </ol>                                                     |  |  |  |  |
|      | 2. Physical Chemistry, K.J. Laider.  3. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry Ed., Oxford University Press 13                                                     |  |  |  |  |
|      | (2006).                                                                                                                                                                             |  |  |  |  |
|      | 4. Ball, D. W. Physical Chemistry Thomson Press, India (2007).                                                                                                                      |  |  |  |  |
|      | 5. Castellan, G. W. Physical Chemistry 4th Ed. Narosa (2004).                                                                                                                       |  |  |  |  |
|      | 6. Mortimer, R. G. Physical Chemistry 3rd Ed. Elsevier: NOIDA, UP (2009).                                                                                                           |  |  |  |  |

| Course Name           | B.Sc. (Non-Medical)   |  |  |  |  |  |
|-----------------------|-----------------------|--|--|--|--|--|
| <b>Subject Code:</b>  | BSNM203-18            |  |  |  |  |  |
| <b>Subject Title:</b> | Mechanics-II          |  |  |  |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |  |  |  |  |

| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Contact<br>Hours |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| I    | <b>Gravitation:</b> Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere. Force between a Point Mass and Spherical shell. Force between a Point Mass and Solid Sphere, Gravitational and Electrostatic self-energy. Gravitational energy of the Galaxy and of uniform sphere.                                                                                                                                                                                                                                                | 8                |
| II   | Central Force Motion: Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Basic idea of global positioning system (GPS).  Non-Inertial Systems: Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications. Components of velocity and acceleration in cylindrical and spherical Coordinate systems. | 10               |
| Ш    | Oscillations: Simple Harmonic Oscillations (SHM). Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and Quality Factor.                                                                                                                                                                                                                                                                                            | 8                |
| IV   | Special Theory of Relativity: Michelson-Morley Experiment. Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation. Relativistic transformation of velocity, frequency and wave number. Relativistic addition of velocities. Variation of mass with velocity. Massless Particles. Mass-energy Equivalence. Relativistic Kinematics. Transformation of Energy and Momentum.                                                                                                                                                             | 8                |
|      | Reference Books:  14. An introduction to mechanics, D. Kleppner, R.J. Kolenkow, 1973, McGraw-H 15. Mechanics, Berkeley Physics, vol.1, C.Kittel, W.Knight, et.al. 2007, Tata McG 16. Physics, Resnick, Halliday and Walker 8/e. 2008, Wiley. 17. Analytical Mechanics, G.R. Fowles and G.L. Cassiday. 2005, Cengage Learning                                                                                                                                                                                                                                                                                             | Graw-Hill.       |

- 18. Feynman Lectures, Vol. I, R.P .Feynman, R.B.Leighton, M.Sands, 2008, Pearson Education
- 19. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons.
- 20. University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- 21. Mechanics, D.S. Mathur, S. Chand and Company Limited, 2000
- 22. University Physics. F.W Sears, M.W Zemansky, H. D Young 13/e, 1986, Addison Wesley.
- 23. Physics for scientists and Engineers with Modern Phys., J.W. Jewett, R.A. Serwa, 2010, Cengage Learning
- 24. Theoretical Mechanics, M.R. Spiegel, 2006, Tata McGraw Hill.

| Course Name           | B.Sc. (Non-Medical)                      |  |
|-----------------------|------------------------------------------|--|
| Subject Code:         | BSNM204-18                               |  |
| Subject Title:        | Subject Title: ELECTRICITY AND MAGNETISM |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3                    |  |

| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Contact |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hours   |
| I    | Electrostatics and Dielectrics: Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric. | 12      |
| II   | Magnetism: Magnetostatics: Biot-Savart's law & its applications- straight conductor, circular coil, solenoid carrying current. Divergence and curl of magnetic field. Magnetic vector potential. Ampere's circuital law. Magnetic properties of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia-,para- and ferromagnetic materials.                                                                                                                                                                                                                                                                                                                                                                                                         | 6       |
| III  | <b>Electromagnetic Induction:</b> Faraday's laws of electromagnetic induction, Lenz's law, self and mutual inductance, L of single coil, M of two coils. Energy stored in magnetic field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6       |
| IV   | Maxwell's equations and Electromagnetic wave propagation: Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8       |
|      | Reference Books:  12. Edward M. Purcell, Electricity and Magnetism, McGraw-Hill Education 1986.  13. J.H. Fewkes & J. Yarwood. Electricity and Magnetism, Oxford Univ. Press Vo 14. D C Tayal, Electricity and Magnetism, Himalaya Publishing House 1988.  15. Ronald Lane Reese, University Physics, Thomson Brooks/Cole 2003.  16. D.J. Griffiths, Introduction to Electrodynamics, Benjamin Cummings 3rd Edn.                                                                                                                                                                                                                                                                                                                                                                                                |         |

| Course Name           | B.Sc. (Non-Medical)   |
|-----------------------|-----------------------|
| <b>Subject Code:</b>  | BSNM205-18            |
| Subject Title:        | INTEGRAL CALCULUS     |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |

| ·    |                                                                                                          |  |
|------|----------------------------------------------------------------------------------------------------------|--|
| Unit | Content                                                                                                  |  |
| I    | Integrals of functions of one variable, geometrical interpretation of integral as area, integration of   |  |
|      | standard functions, integration by substitution and parts, Integration by Partial fractions, integration |  |
|      | of rational and irrational functions. Properties of definite integrals.                                  |  |
|      |                                                                                                          |  |
| II   | Reduction formulae for integrals of rational, trigonometric, exponential and logarithmic functions       |  |
|      | and of their combinations. Areas and lengths of curves in the plane, volumes and surfaces area of        |  |
|      | solids of revolution.                                                                                    |  |
|      |                                                                                                          |  |
| III  | Integrals of functions of two variables, double integrals, Applications to evaluation of area,           |  |
|      | volumes and surfaces of solids of revolution, Change of order of Integration. Change of variables.       |  |
|      |                                                                                                          |  |
| IV   | Integrals of functions of three variables, Triple integral, Evaluation of volume, density etc., Change   |  |
|      | of order of Integration. Change of variables. Implicit and Explicit functions, Integration of            |  |
|      | hyperbolic and inverse hyperbolic functions.                                                             |  |
|      | Jr                                                                                                       |  |
|      | Reference Books:                                                                                         |  |
|      | 3. H. S. Hall and S. R. Knight, Higher Algebra, H. M. Publications, 1994.                                |  |
|      | 4. Chandrika Prasad, Text Book on Algebra and Theory of Equations, Pothishala Pvt. Ltd.,                 |  |
|      | 2017.                                                                                                    |  |
|      | 5. Richard L. Burden and J. Douglas Faires, Numerical Analysis, 9th Edition, Cengage                     |  |
|      | Learning, 2012.                                                                                          |  |
|      | 6. M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods for Scientific and                     |  |
|      | Engineering Computation, 6th Edition, New Age International Publishers, 2012.                            |  |
|      | Zagareering Computation, C Edition, 1160 1160 international 1 doublets, 2012.                            |  |

| Course Name                        | B.Sc. (Non-Medical)   |  |
|------------------------------------|-----------------------|--|
| <b>Subject Code:</b>               | BSNM206-18            |  |
| Subject Title: THEORY OF EQUATIONS |                       |  |
| <b>Contact Hours:</b>              | L:3 T:0 P:0 Credits:3 |  |

| Unit | Content                                                                                               |  |
|------|-------------------------------------------------------------------------------------------------------|--|
| I    | Euclid's algorithm, synthetic division, roots and their multiplicity. Complex roots of real           |  |
|      | polynomials occur in conjugate pairs with same multiplicity. Relation between roots and               |  |
|      | coefficients. Transformation of equations. Descartes' Rule of Signs.                                  |  |
| II   | Solution of cubic and bi-quadratic equations, Cardano's method of solving a cubic, discriminant       |  |
|      | and nature of roots of real cubic, trigonometric solutions of a real cubic with real roots. Ferrari's |  |
|      | method for a bi-quadratic equation.                                                                   |  |
| III  | Computer arithmetic and errors: Floating point representation of numbers, numbers and their           |  |
|      | accuracy, significant digits, source of errors, types of errors, errors in arithmetic operations.     |  |
|      | Numerical instability.                                                                                |  |
|      |                                                                                                       |  |
| IV   | Algorithms, convergence, solution of nonlinear equations: Bisection method, False position            |  |
|      | method, Fixed point iteration method, Newton-Raphson's method, Secant method.                         |  |
|      | Reference Books:                                                                                      |  |
|      | 1. H. S. Hall and S. R. Knight, Higher Algebra, H. M. Publications, 1994.                             |  |
|      | 2. Chandrika Prasad, Text Book on Algebra and Theory of Equations, Pothishala Pvt. Ltd.,              |  |
|      | 2017.                                                                                                 |  |
|      | 3. Richard L. Burden and J. Douglas Faires, Numerical Analysis, 9th Edition, Cengage                  |  |
|      | Learning, 2012.                                                                                       |  |
|      | 4. M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods for Scientific and                  |  |
|      | Engineering Computation, 6 <sup>th</sup> Edition, New Age International Publisher, 2012.              |  |

| Course Name               | B.Sc. (Non-Medical)   |
|---------------------------|-----------------------|
| <b>Subject Code:</b>      | BSNM207-18            |
| Subject Title: ENGLISH-II |                       |
| <b>Contact Hours:</b>     | L:3 T:0 P:0 Credits:3 |

| Unit | Content                                                                                                                                                                                     |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ι    | The following short novel to be read for enhancing vocabulary and learning sentence/speech                                                                                                  |
|      | construction:                                                                                                                                                                               |
|      |                                                                                                                                                                                             |
|      | The Strange Case of Dr. Jekyll and Mr Hyde by Robert Louis Stevenson                                                                                                                        |
| II   | Grammar:                                                                                                                                                                                    |
|      |                                                                                                                                                                                             |
|      | Parts of Speech, Adjectives and its degrees, Simple, compound and complex structures, Active                                                                                                |
| III  | and passive voices, Subject-verb agreement, Punctuation, Spelling rules and formation of words.  Writing Skills: Report writing, Letter writing: Business and official letters, notices and |
| 1111 | memorandums, Precis writing                                                                                                                                                                 |
| IV   | Language Skills: Comprehension, Public speaking/Oral communication, Translation (Punjabi                                                                                                    |
| • •  | into English), Technical words/vocabulary                                                                                                                                                   |
|      | Recommended Books:                                                                                                                                                                          |
|      |                                                                                                                                                                                             |
|      | Robert Louis Stevenson, <i>The Strange Case of Dr Jekyll and Mr Hyde</i> , Madhuban Publications,                                                                                           |
|      | 2005                                                                                                                                                                                        |
|      | Wren and Martin, <i>High School English Grammar and Composition</i> , S Chand (Indian edition),                                                                                             |
|      | 2008.                                                                                                                                                                                       |
|      | A J Thomson and A V Martinet, A Practical English Grammar, Oxford India, 2007                                                                                                               |
|      |                                                                                                                                                                                             |
|      | R V Lesikar, M E Flatley, K Rentz and N Pande, Business Comminication (Making Connections                                                                                                   |
|      | in Digital World), Tata McGraw Hill, 2010                                                                                                                                                   |
|      | M Frank, Writig as Thinking: A Guided Process Approach, Englewood Cliffs, Prentice Hall                                                                                                     |
|      | Regents.                                                                                                                                                                                    |
|      |                                                                                                                                                                                             |
|      |                                                                                                                                                                                             |

ਬੀ.ਐਸ.ਸੀ. ਨਾਨ-ਮੈਡੀਕਲ ਸਮੈਸਟਰ-ਦੂਜਾ ਸਲੇਬਸ-ਪੰਜਾਬੀ ਪੰਜਾਬੀ-3L-3 ਕਰੈਡਿਟ

#### ਪਾਠ-ਕ੍ਰਮ:

## ਯੂਨਿਟ-1 (ਸਾਹਿਤ)

- 1. ਵਤਨ ਦਾ ਪਿਆਰ ਪ੍ਰੋ. ਪੂਰਨ ਸਿੰਘ
- 2. ਸਾਕਾ ਸ੍ਰੀ ਨਨਕਾਣਾ ਸਾਹਿਬ- ਭਾਈ ਮੋਹਨ ਸਿੰਘ ਵੈਦ
- 3. ਘਰ ਦਾ ਪਿਆਰ ਪ੍ਰਿੰ, ਤੇਜਾ ਸਿੰਘ
- 4. ਮੇਰੇ ਦਾਦੀ ਜੀ-ਗੁਰਬਖਸ਼ ਸਿੰਘ (ਪ੍ਰੀਤਲੜੀ)
- 5. ਮਨ ਦੀ ਮੌਜ ਗਿ. ਲਾਲ ਸਿੰਘ ਕਮਲਾ ਅਕਾਲੀ
- 6. ਗੁਰ-ਸੰਗਤ ਬਾਣੀ ਗਿ. ਹੀਰਾ ਸਿੰਘ ਦਰਦ
- 7. ਕਾਠ ਦੀ ਰੋਟੀ ਪ੍ਰੋ. ਸਾਹਿਬ ਸਿੰਘ
- 8. ਗੁਰੂ ਅਰਜਨ ਦੇਵ ਜੀ ਦੀ ਸ਼ਹਾਦਤ ਡਾ. ਗੰਡਾ ਸਿੰਘ
- 9. ਸ਼ਾਂਤੀ ਨਿਕੇਤਨ ਸ.ਸ. ਅਮੋਲ
- 10. ਗਿੱਧਾ ਦੇਵਿੰਦਰ ਸਤਿਆਰਥੀ
- 11. ਅੱਥਰੁ- ਬਲਰਾਜ ਸਾਹਨੀ
- 12.ਪੰਜਾਬ ਦਾ ਸਭਿਆਚਾਰ ਸੂਬਾ ਸਿੰਘ
- 13. ਬੁਲ੍ਹੇ ਸ਼ਾਹ ਦੀ ਕਾਵਿ ਕਲਾ ਪ੍ਰੋ. ਦੀਵਾਨ ਸਿੰਘ
- 14.ਸੜਕ ਪਾਰ ਕਰਦਾ ਬੁਢੇਪਾ -ਕੁਲਬੀਰ ਸਿੰਘ ਕਾਂਗ

## ਯੂਨਿਟ-੨ (ਭਾਸ਼ਾ )

ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਉਪਰ ਪਏ ਪ੍ਰਭਾਵ

## ਯੂਨਿਟ-੩ (ਵਿਆਕਰਣ)

ਪੰਜਾਬੀ ਸ਼ਬਦ ਸ਼੍ਰੇਣੀਆਂ : ਨਾਂਵ, ਪੜਨਾਂਵ, ਵਿਸ਼ੇਸ਼ਣ, ਕਿਰਿਆ, ਸਹਾਇਕ ਕਿਰਿਆ, ਕਿਰਿਆ ਵਿਸ਼ੇਸ਼ਣ, ਸਬੰਧਕ, ਯੋਜਕ, ਵਿਸਮਿਕ।

## ਯੁਨਿਟ-੪ (ਲੇਖਣੀ-ਕਲਾ)

ਰਿਪੋਰਟਿੰਗ, ਸਮਾਚਾਰ ਲਿਖਣ ਦੀ ਵਿਧੀ ਤੇ ਤੱਤ ਪੰਜਾਬੀ ਪੈਰ੍ਹੇ ਦਾ ਸਰਲ ਅੰਗਰੇਜ਼ੀ ਅਨੁਵਾਦ ਦਫਤਰੀ ਚਿੱਠੀ ਪੱਤਰ

## ਸਹਾਇਕ ਪੁਸਤਕਾਂ:

*ਆਧੁਨਿਕ ਪੰਜਾਬੀ ਵਾਰਤਕ* (ਸੰਪ. ਗੁਰਬਚਨ ਸਿੰਘ ਤਾਲਿਬ),ਪੰਜਾਬੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ ਅੰਮ੍ਰਿਤਸਰ।

**ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਦਾ ਵਿਆਕਰਨ** (ਭਾਗ–1) ਜੋਗਿੰਦਰ ਸਿੰਘ ਪੁਆਰ, ਬਲਦੇਵ ਸਿੰਘ ਚੀਮਾ, ਸੁਖਵਿੰਦਰ ਸਿੰਘ ਸੰਘਾ, ਵੇਦ ਅਗਨੀਹੋਤਰੀ), ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਅਕਾਦਮੀ, ਜਲੰਧਰ, ਐਡੀਸ਼ਨ 2009.

| Course Name           | B.Sc. (Non-Medical)      |  |
|-----------------------|--------------------------|--|
| Subject Code:         | BSNM208A-18              |  |
| <b>Subject Title:</b> | Punjab History & Culture |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3    |  |

| Unit | Content                                                                                         |
|------|-------------------------------------------------------------------------------------------------|
| I    | Foundation of Sikh Panth: Guru Nanak Dev and his Teachings: Early life, Conception of God,      |
| 1    |                                                                                                 |
|      | Importance of the Guru, Insistance on right conduct and earnest profession; Institution of      |
|      | community kitchen (Langer) and Congregational worship (sangat), Succession to Guruship.         |
| II   | Development of the Sikh Panth: Guru Angad Dev to Guru Arjan Dev: Increasing number of           |
|      | sangats: Sikh ceremonies; the Manji and Masand system, The founding of the sacred places, The   |
|      | Harimandir. Compilation of the Adi Granth.                                                      |
| III  | Transformation of the Sikh Panth: Guru Hargobind to Guru Tegh Bahadur: Martyrdom of Guru        |
|      | Arjan Dev and Guru Hargobind's response; Armed conflict with the state; Circumstances leading   |
|      | to the accession and martyrdom of Guru Tegh Bahadur.                                            |
| IV   | Creation of Khalsa: Meaning; Circumstances leading to the creation of the Khalsa (1699); New    |
|      | Social order; Conflict with the Hill chiefs and Mughal administrators; Legacy.                  |
|      | Recommended Book                                                                                |
|      | 1. Grewal J.S., From Guru Nanak to Maharaja Ranjit Singh, G.N.D. University, Amritsar, 1982.    |
|      | 2. The New Cambridge History of India: The Sikhs of the Punjab, CUP, New Delhi, 1990.           |
|      | 3. Guru Nanak in History, Panjab University, Chandigarh, 1969.                                  |
|      | 4. Khushwant Singh, A History of the Sikhs, Vol. I (1469-1839), OUP, Delhi, 1977.               |
|      | 5. McLeod, W.H., Guru Nanak and the Sikh Religion, OUP, Delhi, 1968.                            |
|      | 6. Teja Singh and Ganda Singh, A Short History of the Sikhs Vol. (1469-1765), Patiala 1983      |
|      | 7. Banerjee, I.B. Evolution of the Khalsa, 2 Vols., A. Mukherjee & Co., Calcutta, 1979.         |
|      | 8.Grewal, J.S. and S.S.Bal, Guru Gobind Singh, Panjab University, Chandigarh, 1987.             |
|      | 9. Indu Banga, The Khalsa Over 300 Years, Manohar, New Delhi, 1999.                             |
|      | 10. Harbans Singh (ed), The Encyclopedia of Sikhism, 4 Vols., Punjabi University, Patiala 1992. |
|      | 11. McLeod, W.H. Evolution of the Sikh Community, OUP, Delhi, 1970.                             |
|      | 12. Historical Dictionary of Sikhism, OUP, New Delhi, 2002.                                     |

| Course Name                     | B.Sc. (Non-Medical)   |  |
|---------------------------------|-----------------------|--|
| <b>Subject Code:</b>            | BSNM209-18            |  |
| Subject Title: CHEMISTRY LAB II |                       |  |
| <b>Contact Hours:</b>           | L:0 T:0 P:4 Credits:2 |  |

#### **Crystallization:**

Concept of indication of crystallization. Phthalic acid from hot water (using fluted filter paper & stem less funnel)

Acetanilide from boiling water.

Naphthalene from Ethanol

Benzoic acid from water

#### **Physical Chemistry:**

- 1. To determine the specific reaction rate of hydrolysis of ethyl acetate catalysed by Hydrogen ions at room temperature.
- 2. To study the effect of acid strength on hydrolysis of an ester.

#### **Viscosity, Surface Tension (Pure Liquids)**

- 3. To study the viscosity and surface tension of CCI glycerine solution in water.
- 4. To determine the solubility of benzoic acid at different temperatures and to determine  $\Delta H$  of the dissolution process.
- 5. To determine the enthalpy of neutralisation of a weak acid/weak base versus strong base/strong acid and determine the enthalpy of ionisation of the weak acid/weak base.
- 6. To determine the enthalpy of dissolution of solid calcium chloride and calculate the lattice energy of calcium chloride from its enthalpy data using Born Haber cycle.

#### **Recommended Books:**

- 1. Practical Organic Chemistry by F.G. Mann and B.C. Saunders
- 2. Advanced Practical Physical Chemistry by J.B. Jadav.

| Course Name                | B.Sc. (Non-Medical)   |  |
|----------------------------|-----------------------|--|
| Subject Code:              | BSNM210-18            |  |
| Subject Title: Physics Lab |                       |  |
| <b>Contact Hours:</b>      | L:0 T:0 P:4 Credits:2 |  |

#### At least 08 experiments from the following:

- 1. To use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, and (d) checking electrical fuses.
- 2. To compare capacitances using De'Sauty's bridge.
- 3. Measurement of field strength B and its variation in a Solenoid (Determine dB/dx).
- 4. To study the Characteristics of a Series RC Circuit.
- 5. To study the series and parallel LCR circuit and determine its (a) Resonant Frequency, (b) Quality Factor Q.
- 6. To determine a Low Resistance by Carey Foster's Bridge.
- 7. To verify the Thevenin and Norton theorem.
- 8. To verify the Superposition, and Maximum Power Transfer Theorem
- 9. To determine unknown capacitance by flashing and quenching method.
- 10. To study B-H curve for a ferromagnetic material using CRO.
- 11. To find out the frequency of AC mains using electric-vibrator.
- 12. To find out polarizability of a dielectric substance.
- 13. To determine the value of self-inductance by Maxwell Inductance/Capacitance Bridge.
- 14. To determine the mutual inductance of two coils.
- 15. To find out the horizontal component of earth's magnetic field (Bh).
- 16. Ballistic Galvanometer: (i) Measurement of charge and current sensitivity (ii) Measurement of CDR (iii) Determine a high resistance by Leakage Method (iv) To determine Self Inductance of a Coil by Rayleigh's Method.

#### **REFERENCE BOOKS:**

- 11. Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 12. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- 13. Engineering Practical Physics, S.Panigrahi & B.Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 14. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 15. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 201, Kitab Mahal.
- 16. B Sc. Practical Physics, C. L. Arora, S. Chand & Co.
- 17. A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.

| Course Name           | B.Sc. (Non-Medical)             |  |  |  |  |
|-----------------------|---------------------------------|--|--|--|--|
| <b>Subject Code:</b>  | BSNM211-18                      |  |  |  |  |
| Subject Title:        | Computer Algebra system: MATLAB |  |  |  |  |
| <b>Contact Hours:</b> | L:0 T:0 P:2 Credits:1           |  |  |  |  |

**Course Objectives** This course is designed to introduce a Computer Algebra System: MATLAB which is currently used in scientific computations. The main focus will be on introduction to basic concepts of MATLAB using simple examples.

#### **UNIT-I**

The MATLAB environment, scalars, variables, arrays, mathematical operations with arrays, built-in and user defined functions, graphics: two-dimensional and three-dimensional, m-files: script and function files, functions: input; disp and fprintf, relational and logical operators.

#### **UNIT-II**

Symbolic math: symbolic objects and expressions; collect; expand; factor; simplify; solve; diff and int commands, Programming: if-end structure; if-else-end structure; loops: for-end and while-end.

Course Outcomes After completion of the course, the students will be able to

- Visualize functions in 2-D and 3-D.
- Use symbolic tools of MATLAB for solving problems arising in various fields of applications.
- Make their own computer programs for solving problems of their interest.

#### Reference Books.

- 1. D. J. Higham and N. J. Higham, MATLAB Guide, 2<sup>nd</sup> Edition, Society for Industrial and Applied Mathematics (SIAM), 2005.
- 2. Amos Gilat, MATLAB: An Introduction with Applications, 5<sup>th</sup> Edition, John Wiley & Sons, 2014.+

## **Third Semester**

| Course Code                        | Course Title                                | Load Allocation   Marks Distribution |   | Total | Credits  |          |     |    |
|------------------------------------|---------------------------------------------|--------------------------------------|---|-------|----------|----------|-----|----|
|                                    |                                             | L                                    | Т | P     | Internal | External |     |    |
| BSNM-301-18                        | Organic Chemistry-II                        | 3                                    | 0 | 0     | 25       | 50       | 75  | 3  |
| BSNM-302-18                        | Physical Chemistry-II                       | 3                                    | 0 | 0     | 25       | 50       | 75  | 3  |
| BSNM-303-18                        | Optics                                      | 3                                    | 0 | 0     | 25       | 50       | 75  | 3  |
| BSNM-304-18                        | Thermal Physics                             | 3                                    | 0 | 0     | 25       | 50       | 75  | 3  |
| BSNM-305-18                        | Analysis-I                                  | 3                                    | 0 | 0     | 25       | 50       | 75  | 3  |
| BSNM-306-18                        | Differential Equations                      | 3                                    | 0 | 0     | 25       | 50       | 75  | 3  |
| BSNM-307-18                        | English-III                                 | 3                                    | 0 | 0     | 25       | 50       | 75  | 3  |
| BSNM-308-18(A) /<br>BSNM-308-18(B) | Punjabi-III/Punjab History<br>& Culture-III | 3                                    | 0 | 0     | 25       | 50       | 75  | 3  |
| BSNM-309-18                        | Environment Science                         | 2                                    | 0 | 0     | 25       | 50       | 75  | 1  |
| BSNM-310-18                        | Chemistry Lab-III                           | 0                                    | 0 | 4     | 30       | 20       | 50  | 2  |
| BSNM-311 -18                       | Physics Lab-III                             | 0                                    | 0 | 4     | 30       | 20       | 50  | 2  |
| Total                              |                                             | 26                                   | 0 | 8     | 285      | 490      | 775 | 29 |

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| <b>Subject Code:</b>  | BSNM301-18            |  |  |
| Subject Title:        | ORGANIC CHEMISTRY-II  |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |  |

| Unit | Content                                                                                                                                                                                       |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| I    | Alkyl and Aryl Halides                                                                                                                                                                        |  |  |  |
|      | Nomenclature and classes of alkyl halides, Chemical reactions. Mechanisms of nucleophilic                                                                                                     |  |  |  |
|      | substitution reaction of alkyl halides, SN2 and SN1 reactions with energy profile                                                                                                             |  |  |  |
|      | diagrams. Nuclear and side chain reactions. The addition-elimination and the elimination-                                                                                                     |  |  |  |
|      | addition mechanisms of nucleophilic aromatic substitution reactions. Relative reactivities of alkyl                                                                                           |  |  |  |
|      | halides vs allyl, vinyl and aryl halides.                                                                                                                                                     |  |  |  |
| II   | Arenes and Aromaticity                                                                                                                                                                        |  |  |  |
|      | Nomenclature of benzene derivatives. The aryl group. Aromatic nucleus and side chain. Structure                                                                                               |  |  |  |
|      | of benzene: Molecular formula and Kekule structure. Stability and carbon carbon bond lengths of                                                                                               |  |  |  |
|      | benzene, resonance structure, MO picture. Aromaticity : the Huckel's rule, aromatic ions.                                                                                                     |  |  |  |
|      | Aromatic electrophilic substitution–general pattern of the mechanism, role of $\sigma$ and $\pi$ complexes.                                                                                   |  |  |  |
|      | Mechanism of nitration, halogenation, sulphonation, mercuration and Friedel Crafts                                                                                                            |  |  |  |
|      | reaction. Energy profile diagrams. Activating and deactivating substituents, orientation and                                                                                                  |  |  |  |
|      | ortho/para ratio. Side chain reactions of benzene derivatives. Methods of formation and chemical                                                                                              |  |  |  |
|      | reactions of alkylbenzenes.                                                                                                                                                                   |  |  |  |
| III  | Alcohols Classification and nomenclature. Monohydric alcohols-nomenclature. Acidic nature. Reactions                                                                                          |  |  |  |
|      |                                                                                                                                                                                               |  |  |  |
|      | of alcohols. Dihydric alcohols-nomenclature, methods of formation, chemical reactions of                                                                                                      |  |  |  |
|      | vicinal glycols, oxidative cleavage [Pb(OAC) <sub>4</sub> ] and [HIO <sub>4</sub> ] and pinacol-pinacolone                                                                                    |  |  |  |
|      | rearrangement.                                                                                                                                                                                |  |  |  |
|      | Phenols                                                                                                                                                                                       |  |  |  |
|      | Nomenclature, structure and bonding, Preparation of phenols, physical properties and                                                                                                          |  |  |  |
|      | acidic character, Comparative acidic strengths of alcohols and phenols, resonance                                                                                                             |  |  |  |
|      | stabilization of phenoxide ion. Reactions of phenols-electrophilic aromatic substitution,                                                                                                     |  |  |  |
|      | acylation and carboxylation. Mechanisms of Fries rearrangement, Claisen rearrangement,                                                                                                        |  |  |  |
| TX 7 | Gatterman synthesis, Reimer Tiemann reaction.                                                                                                                                                 |  |  |  |
| IV   | Aldehydes and Ketones                                                                                                                                                                         |  |  |  |
|      | Nomenclature and structure of the carbonyl group. Synthesis of aldehydes and ketones with                                                                                                     |  |  |  |
|      | particular reference to the synthesis of aldehydes from acid chlorides, synthesis of aldehydes and ketones using 1,3-dithianes, synthesis of ketones from nitriles and from carboxylic acids. |  |  |  |
|      | Physical properties. Mechanism of nucleophilic additions to carbonyl group with particular                                                                                                    |  |  |  |
|      | emphasis on benzoin, aldol, Perkin and Knoevenagel condensations. Condensation with                                                                                                           |  |  |  |
|      | ammonia and its derivatives. Witting reaction. Mannich reaction. Use of acetals as protecting                                                                                                 |  |  |  |
|      | group. Oxidation of aldehydes, Baeyer-Villiger oxidation of Ketones, Cannizzaro reaction.                                                                                                     |  |  |  |
|      | MPV, Clemmensen, Wolff-Kishner, LIAIH <sub>4</sub> and NaBH <sub>4</sub> reductions. Halogenation of enolizable                                                                               |  |  |  |
|      | ketones. Halogenation of enoliable ketones.                                                                                                                                                   |  |  |  |
|      | Recommended Books:                                                                                                                                                                            |  |  |  |
|      | 1. Organic Chemsitry, Morrison and Boyd, Prentice- Hall.                                                                                                                                      |  |  |  |
|      | 2. Fundamentals of Organic Chemistry, Solomons, John Wiley.                                                                                                                                   |  |  |  |
| L    | 2. I distance and of Organic Chemistry, Solomons, John Whey.                                                                                                                                  |  |  |  |

- 3. Organic Chemistry. F.A. Carey, McGraw Hill, Inc.
- 4. Organic Chemistry, L.G. Wade Jr. Prentice Hall.
- 5. Organic Chemistry Vol. I, II & III, S.M. Mukherji, S.P. Singh and R.P. Kapoor, Wiley Eastern Ltd (New Age International).
- 6. Introduction to organic chemistry, Stritwieser, Heathcock and Kosover, Macmilan.

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| Subject Code:         | BSNM302-18            |  |  |
| <b>Subject Title:</b> | PHYSICAL CHEMISTRY-II |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |  |

| Unit | Content                                                                                                                                                                               |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| I    | Thermodynamics-I                                                                                                                                                                      |  |  |  |  |  |
|      | Definition of thermodynamic terms: System, surroundings etc. Types of systems, intensive and                                                                                          |  |  |  |  |  |
|      | extensive properties. State and path functions and their differentials. Thermodynamic process.                                                                                        |  |  |  |  |  |
|      | Concept of heat and work.                                                                                                                                                             |  |  |  |  |  |
|      | First Law of Thermodynamics: Statement, definition of internal energy and enthalpy. Heat                                                                                              |  |  |  |  |  |
|      | capacity, heat capacities at constant volume and pressure and their relationship. Joule's                                                                                             |  |  |  |  |  |
|      | law-Joule-Thomson coefficient and inversion temperature, Calculation of w, q, dU & dH                                                                                                 |  |  |  |  |  |
|      | for the expansion of ideal gases under isothermal and adiabatic conditions for reversible process.                                                                                    |  |  |  |  |  |
| II   | Thermodynamics-I                                                                                                                                                                      |  |  |  |  |  |
|      | Thermochemistry: Standard state, standard enthalpy of formation-Hess's Law of heat summation                                                                                          |  |  |  |  |  |
|      | and its applications. Heat of reaction at constant pressure and at constant volume. Enthalpy of                                                                                       |  |  |  |  |  |
|      | neutralization. Bond dissociation energy and its calculation from thermo-chemical data,                                                                                               |  |  |  |  |  |
|      | temperature dependence of enthalpy. Kirchhoff's equation.                                                                                                                             |  |  |  |  |  |
|      | Thermodynamics-II                                                                                                                                                                     |  |  |  |  |  |
|      | Second Law of Thermodynamics: Need for the law, different statements of the law, Carnot cycle                                                                                         |  |  |  |  |  |
|      | and its efficiency, Carnot theorem. Thermodynamic scale of temperature.                                                                                                               |  |  |  |  |  |
|      | Concept of Entropy: Entropy as a state function, entropy as a function of V & T, entropy as a                                                                                         |  |  |  |  |  |
|      | function of P & T, entropy change in physical change, Clausius inequality, entropy as a criteria                                                                                      |  |  |  |  |  |
| ***  | of spontaneity and equilibrium. Entropy change in ideal gases and mixing of gases.                                                                                                    |  |  |  |  |  |
| III  | Thermodynamics-III                                                                                                                                                                    |  |  |  |  |  |
|      | Third Law of Thermodynamics: Nernst heat theorem, statement and concept of residual entropy,                                                                                          |  |  |  |  |  |
|      | evaluation of absolute entropy from heat capacity data. Gibbs and Helmholtz functions; Gibbs function (G) and Helmholtz function (A) as thermodynamic quantities. A & G as criteria   |  |  |  |  |  |
|      | function (G) and Helmholtz function (A) as thermodynamic quantities, A & G as criteria for thermodynamic equilibrium and spontaneity, their advantage over entrop y change, Variation |  |  |  |  |  |
|      | of G and A with P, V and T.                                                                                                                                                           |  |  |  |  |  |
|      | Equilibrium                                                                                                                                                                           |  |  |  |  |  |
|      | Chemical Equilibrium                                                                                                                                                                  |  |  |  |  |  |
|      | Equilibrium constant and free energy. Thermodynamic derivation of law of mass action.                                                                                                 |  |  |  |  |  |
|      | Determination of $K_p$ , $K_c$ , $K_a$ and their relationship, Clausius-Clapeyron equation, applications.                                                                             |  |  |  |  |  |
| IV   | Introduction to Phase Equilibrium                                                                                                                                                     |  |  |  |  |  |
|      | Statement and meaning of the terms-phase, component and degree of freedom, derivation of                                                                                              |  |  |  |  |  |
|      | Gibbs phase rule, phase equilibria of one component system-water, CO <sub>2</sub> and S systems. Phase                                                                                |  |  |  |  |  |
|      | equilibria of two component systems-solid-liquid equilibria, simple eutectic-Bi-Cd, Pb-Ag                                                                                             |  |  |  |  |  |
|      | systems, desilverisation of lead. Solid solutions-compound formation with congruent                                                                                                   |  |  |  |  |  |
|      | melting point (Mg-Zn) and incongruent melting point, (NaCl-H <sub>2</sub> O), FaCl <sub>3</sub> -H <sub>2</sub> O) and                                                                |  |  |  |  |  |
|      | CuSO <sub>4</sub> -H <sub>2</sub> O) system. Freezing mixtures, acetone-dry ice. Non-ideal system-azeotropes-HCl-H <sub>2</sub> O                                                     |  |  |  |  |  |
|      | and ethanol water system. Partially miscible liquids Phenol-water, trines-thylamin-water,                                                                                             |  |  |  |  |  |
|      | Nicotine-water System. Lower and upper consulate temperature, Effect of impurity on                                                                                                   |  |  |  |  |  |
|      | consolute temperature, immiscible liquids, steam distillation. Nernst distribution law-                                                                                               |  |  |  |  |  |

| thermodynamic derivation and applications.                      |
|-----------------------------------------------------------------|
| Recommended Books:                                              |
| 1. Thermodynamics for Chemists, S. Glasstone.                   |
| 2 Chemical thermodynamics, P.A. Rock.                           |
| 3. Principles of Physical Chemistry, S.H. Maron & C.F. Prutton. |
| 4. Physical Chemistry, P.W. Atkins.                             |
| 5. Physical Chemistry, Vol.2, K.L. Kapoor.                      |
| 6. Physical Chemistry, K.J. Laidler.                            |
|                                                                 |

| Course Name           | B.Sc. (Non-Medical)   |
|-----------------------|-----------------------|
| Subject Code:         | BSNM303-18            |
| Subject Title:        | OPTICS                |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |

| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| I    | Interference: Definition and properties of wave front, Temporal and Spatial Coherence, Young's double slit experiment, Lloyd's single mirror and Fresnel's Biprism. Phase change on reflection, Interference in Thin Films: parallel and wedge-shaped films, Newton's Rings: Measurement of wavelength and refractive index, Interferometer: Michelson Interferometer.  (10 Lectures)                                                                  |  |  |  |
| II   | <b>Diffraction:</b> Huygens Principle, Fraunhofer diffraction: Single slit. Circular aperture, Rayleigh criterion of resolution, Resolving Power of a telescope, Double slit, Multiple slits, Diffraction grating, Resolving power of grating, Fresnel diffraction pattern of a straight edge and circular aperture.  (10 Lectures)                                                                                                                    |  |  |  |
| III  | <b>Polarization:</b> Plane polarized light, Representation of Unpolarized and Polarized light, Polarization by Reflection, Brewster's law, Malus Law, Polarization by Selective absorption by Crystals, Polarization by Scattering, Polarization by Double Refraction, Nicol Prism.  (10 Lectures)                                                                                                                                                     |  |  |  |
| IV   | Laser and Application: Lasers, Spontaneous emission, Stimulated absorption, Stimulated emission, Einstein coefficients, Einstein relations, Conditions for Laser actions, Population inversion, Different types of Laser Pumping mechanism: Optical Pumping, Electric Discharge and Electrical pumping, Resonators, Two, Three and Four level laser systems, Ruby laser, He-Ne gas Laser, CO2 laser, applications of laser: Holography.  (10 Lectures) |  |  |  |
|      | <ol> <li>Optics: A.K. Ghatak (Tata-McGraw Hill), 1992.</li> <li>Fundamentals of Optics: F.A. Jenkins and H.E. White (McGraw Hill), 1981.</li> <li>Introduction to Modern Optics (2nd ed.), G.R. Fowles, Dover, ISBN 0-486-65957-7, 2012.</li> <li>Fundamentals of Optics, F.A. Jenkins &amp; H.E. White, McGraw-Hill, 2011.</li> <li>Schaum's Outline of Theory and Problems of Optics, E. Hecht, McGraw-Hill,ISBN 0-07-027730-3,1998.</li> </ol>      |  |  |  |

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| <b>Subject Code:</b>  | BSNM304-18            |  |  |
| Subject Title:        | THERMAL PHYSICS       |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |  |

| Unit                                                                                                                                                                                            | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| I                                                                                                                                                                                               | <b>Thermodynamics:</b> Laws of Thermodynamics: The zeroth law; indicator diagrams, work done, first law, internal energy, Carnot cycle, Carnot's theorem, the second law. Entropy as a thermodynamic variable; reversible and irreversible processes. Principle of increase of entropy. Thermodynamic scale of temperature; its identity with perfect gas scale, impossibility of attaining absolute zero. (10 Lectures)                                                                                                  |  |  |  |  |
| П                                                                                                                                                                                               | Maxwell's equations, application to Clausius-Clapeyron equation and Joule-Thomson effect. Thermodynamic potentials, relation to thermodynamic variables; equilibrium in thermo dynamic systems, simple applications, Thomson and adiabatic cooling, Joule-Thomson expansion; Constancy of U+PV, cooling, liquefaction of gases. Low temperatures: Production and measurement of very low temperatures, adiabatic demagnetization.  (10 Lectures)                                                                          |  |  |  |  |
| III                                                                                                                                                                                             | <b>Statistical Physics:</b> The statistical basis of thermodynamics: Probability and thermodynamic probability; principle of equal a priori probabilities, probability distribution, its narrowing with increasing n, average properties, fluctuations, micro and macrostates, accessible and inaccessible states. Phase space, division of phase space into cells.                                                                                                                                                       |  |  |  |  |
| IV                                                                                                                                                                                              | Thermal equilibrium between two systems, beta parameter and its identification with (kT probability and entropy, Boltzmann's entropy relation, statistical interpretation of second law thermodynamics. Maxwell-Boltzmann statistics, application of M-B statistics to monoatomic principle of equipartition of energy, Bose-Einstein statistics, deduction of Planck's radiation l derivation of Wiens's displacement law and Stefan's law. Fermi-Dirac statistics, comparison three types of statistics.  (10 Lectures) |  |  |  |  |
| Recommended Books:  1. Statistical Physics and Thermodynamics-V.S. Bhatia, Punjab University, Char 1977  2. Thermodynamics and Statistical Physics-Khandelwal and Loknathan, Shivlal Agna, 1979 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                                                                                                                 | 3. Heat and Thermodynamics-Zemansky and Dittman, Mc Graw HillScience/Engineering/Math-7 <sup>th</sup> edition (Nov,1, 1996)                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |

#### BSNM305-18 ANALYSIS-I

| L | T | P |
|---|---|---|
| 3 | 0 | 0 |

#### **UNIT-I**

Series of non-negative terms, P-test, comparison tests, Cauchy's integral test, Cauchy's root test, D'Alembert ratio test, Raabe's test, De Morgan and Bertrand's test, Gauss' test, logarithmic test, Alternating series, absolute and conditional convergence, rearrangement of absolutely convergent series.

#### **UNIT-II**

Riemann integral, integrability of continuous and monotonic functions, properties of integrable functions, the fundamental theorem of integral calculus, mean value theorems of integral calculus.

#### **UNIT-III**

Improper integral and their convergence, comparison tests, absolute and conditional convergence, Abel's and Dirichlet's test.

#### **UNIT-IV**

Beta and Gamma functions, properties of Gamma function, transformation of Gamma function, symmetrical property of Beta function, transformation of Beta function, relation between Beta and Gamma functions.

#### Reference Books.

- Shanti Narayan and M. D. Raisinghania, Elements of Real Analysis, S. Chand, 2018
- 7. Robert Wrede and Murray R. Spiegel, Advanced Calculus, 3<sup>rd</sup> Edition, Schaum's Outline Series (McGraw Hill), 2010.
- 8. S. Lang, Undergraduate Analysis, Springer-Verlag, New York, 1983.
- 9. S C Malik and Savita Arora, Mathematical Analysis, New Age International Publishers, 2017

#### BSNM306-18 DIFFERENTIAL EQUATIONS

| L | T | P |
|---|---|---|
| 3 | 0 | 0 |

#### **UNIT-I**

Exact differential equations, first order and higher degree equations solvable for x, y and p=dy/dx. Clairaut's form, singular solution as an envelope of general solutions. Geometric meaning of a differential equation. Orthogonal trajectories. Linear differential equations with constant coefficients.

#### **UNIT-II**

Linear differential equations with variable coefficients: Cauchy and Legendre equations. Linear differential equations of second order- transformation of the equation by changing the dependent variable/ the independent variable, methods of variation of parameters and reduction of order, Simultaneously differential equations.

#### **UNIT-III**

Partial differential equation: Formation of first and second order equations, linear equation of first order, integral surfaces passing through a given curve, surfaces orthogonal to a given system of surfaces.

#### **UNIT-IV**

Nonlinear first order partial differential equations: Charpit's method, Higher order linear partial differential equations with constant coefficients: complementary function, particular integral.

#### Reference Books.

- 1. W E Boyce and R C DiPrima, Elementary Differential Equations and Boundary Value Problems, 9<sup>th</sup> Edition, Wiley, 2009.
- 2. R K Jain and S R K Iyengar, Advanced Engineering Mathematics, 4<sup>th</sup> Edition, Narosa Publishing House Pvt LtD, New Delhi, 2012
- 3. I N Sneddon, Elements of Partial Differential Equations, McGraw-Hill, 1957
- 4. S L Ross, Differential Equations, John Wiley & Sons, 2004
- 5. M D Raisinghania, Advanced Differential Equations, 19th Edition, S. Chand, 2018

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| Subject Code:         | BSNM307-18            |  |  |
| <b>Subject Title:</b> | ENGLISH-III           |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |  |

| Unit | Contents                                                                                        |
|------|-------------------------------------------------------------------------------------------------|
| I    | Textbook entitled 'Prism: Spoken and Written Communication, Prose & Poetry'                     |
|      | published by Orient Longman                                                                     |
|      |                                                                                                 |
|      | For enhancing vocabulary and learning sentence/speech construction:                             |
|      | Prose:                                                                                          |
|      | Trosc.                                                                                          |
|      | 1) The Bet – Anton Chekov                                                                       |
|      | 2) An Astrologer's Day – R. K. Narayan                                                          |
|      | 3) The Gift of the Magi – O' Henry                                                              |
|      | Poetry:                                                                                         |
|      | 1) The Felling of the Banyan Tree – Dilip Chitre                                                |
|      | 2) Stay Calm – Grenville Kleiser                                                                |
|      |                                                                                                 |
|      |                                                                                                 |
|      |                                                                                                 |
| II   | Grammar and Vocabulary                                                                          |
|      | Modal auxiliaries, Gerunds Infinitives; Participles; Usage of Conjunctions; Scientific &        |
| ***  | Technical Vocabulary;                                                                           |
| III  | Reading & Writing Skills: Note Making and Note Taking; Writing abstracts & summaries            |
| IV   | Spoken Skills  1) Marting Papella Fushancing Creatings and Taking Lagran                        |
|      | 1) Meeting People, Exchanging Greetings and Taking Leave                                        |
|      | 2) Introducing Yourself 3) Introducing People to Others                                         |
|      | 4) Answering the Telephone and Asking for Someone                                               |
|      | 5) Dealing with a Wrong Number                                                                  |
|      | 6) Taking and Leaving Messages                                                                  |
|      | 7) Making Inquiries on the Phone                                                                |
|      | 8) Calling for Help in an Emergency                                                             |
|      | -,                                                                                              |
|      | Recommended Books:                                                                              |
|      | William Zinsser. On Writing Well. Harper Resource Book. 2001                                    |
|      |                                                                                                 |
|      | Robert Louis Stevenson, The Strange Case of Dr Jekyll and Mr Hyde, Madhuban Publications,       |
|      | 2005                                                                                            |
|      |                                                                                                 |
|      | Wren and Martin, <i>High School English Grammar and Composition</i> , S Chand (Indian edition), |
|      | 2008.                                                                                           |
|      | A I Thomson and A V Montinet A Durastical Facility Community Outside Ladia 2007                 |
|      | A J Thomson and A V Martinet, A Practical English Grammar, Oxford India, 2007                   |
|      |                                                                                                 |

R V Lesikar, M E Flatley, K Rentz and N Pande, *Business Comminication (Making Connections in Digital World)*, Tata McGraw Hill, 2010

M Frank, Writing as Thinking: A Guided Process Approach, Englewood Cliffs, Prentice Hall Regents.

| Course Name           | B.Sc.          | B.Sc. (Non-Medical) |  |  |  |
|-----------------------|----------------|---------------------|--|--|--|
| Subject Code:         | BSNM308-18 (A) |                     |  |  |  |
| <b>Subject Title:</b> | PUNJABI-III    |                     |  |  |  |
| <b>Contact Hours:</b> | L:             | L: T: P: Credits:   |  |  |  |

| Unit | Contents                                      | Contact<br>Hours |
|------|-----------------------------------------------|------------------|
| I    | ਕਵਿਤਾ ਭਾਗ:                                    | 12               |
|      | ਭਾਈ ਵੀਰ ਸਿੰਘ:                                 |                  |
|      | ਸਮਾਂ, ਚਸ਼ਮਾ                                   |                  |
|      | ਪ੍ਰੋ. ਪੂਰਨ ਸਿੰਘ :                             |                  |
|      | ਪੰਜਾਬ ਨੂੰ ਕੂਕਾਂ ਮੈਂ, ਹੱਲ ਵਾਹੁਣ ਵਾਲੇ           |                  |
|      | ਪ੍ਰੋ.ਮੋਹਨ ਸਿੰਘ :                              |                  |
|      | ਮਾਂ, ਕੋਈ ਆਇਆ ਸਾਡੇ ਵਿਹੜੇ, ਪਿਆਰ ਪੰਧ             |                  |
|      | ਅੰਮ੍ਰਿਤਾ ਪ੍ਰੀਤਮ:                              |                  |
|      | ਆਖਾਂ ਵਾਰਿਸ ਸ਼ਾਹ ਨੂੰ, ਅੰਨਦਾਤਾ                  |                  |
|      |                                               |                  |
| II   | ਕਹਾਣੀ ਭਾਗ:                                    | 11               |
|      | ਸੰਤ ਸਿੰਘ ਸੇਖੋਂ :                              |                  |
|      | ਪੇਮੀ ਦੇ ਨਿਆਣੇ                                 |                  |
|      | ਸੁਜਾਨ ਸਿੰਘ :                                  |                  |
|      | ਕੁਲਫੀ                                         |                  |
|      | ਕੁਲਵੰਤ ਸਿੰਘ ਵਿਰਕ :                            |                  |
|      | ਤੂੜੀ ਦੀ ਪੰਡ                                   |                  |
|      | ਗੁਰਦਿਆਲ ਸਿੰਘ :                                |                  |
|      | ਸਾਂਝ                                          |                  |
| III  | ਸਵਰ ਤੇ ਵਿਅੰਜਨ ਧੁਨੀਆਂ ਦਾ ਨਿਖੇੜਾ ਤੇ ਵਰਗੀਕਰਨ     | 12               |
|      | ਦੁੱਤ ਵਿਅੰਜਨ ਤੇ ਸੰਯੁਕਤ ਵਿਅੰਜਨ<br>ਅਗੇਤਰ, ਪਿਛੇਤਰ |                  |
|      | 1000, 14000                                   |                  |

| IV | ਪੰਜਾਬੀ ਦੀਆਂ ਧੁਨੀਆਂ ਦੇ ਪਰਿਵਰਤਨ ਦੀਆਂ ਦਿਸ਼ਾਵਾਂ : ਲੋਪ, ਆਗਮ, ਵਿਕਾਰ, | 10 |
|----|----------------------------------------------------------------|----|
|    | ਵਿਸ਼ਮੀਕਰਨ, ਵਿਪਰਜ।                                              |    |
|    | ਪੰਜਾਬੀ ਵਾਕ ਬਣਤਰ ਦਾ ਵਿਸਤਾਰ ਪੂਰਵਕ ਅਧਿਐਨ                          |    |

| S.No. | Author(s)              | Title of the Book   | Publisher/Year             |
|-------|------------------------|---------------------|----------------------------|
| 1     | ਡਾ. ਮਹਿਲ ਸਿੰਘ (ਸੰਪ.)   | ਸਾਹਿਤ ਦੇ ਰੰਗ        | ਰਵੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ,        |
|       |                        |                     | ਅੰਮ੍ਰਿਤਸਰ।                 |
| 2     | ਡਾ. ਸੁਖਵਿੰਦਰ ਸਿੰਘ ਸੰਘਾ | ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਵਿਗਿਆਨ | ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਅਕਾਦਮੀ, ਜਲੰਧਰ |

| Course Name           | B.Sc. (Non-Medical)          |  |  |  |
|-----------------------|------------------------------|--|--|--|
| <b>Subject Code:</b>  | BSNM301-18 (B)               |  |  |  |
| Subject Title:        | Punjab History & Culture-III |  |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3        |  |  |  |

| Unit | Content                                                                                    |
|------|--------------------------------------------------------------------------------------------|
| Ι    | The Indo-Aryans: Original home and settlement in Punjab, Social, Religious and Economic    |
|      | life during the Rig Vedic Age, Social, Religious and Economic life during later Vedic Age  |
| II   | Alexandra's invasion and its impact.                                                       |
|      | Punjab under Chandragupta Maurya and Ashoka.                                               |
| III  | The Kushans and their contribution to the Punjab.                                          |
|      | The Panjab under the Gupta Emperor.                                                        |
|      | The Punjab under the Vardhana Emperors.                                                    |
| IV   | The Punjab from 7th Century to 1000 A.D. (A Survey of Political and Socio-cultural History |
|      | of Punjab.                                                                                 |
|      | Development of Art and Architecture of Punjab.                                             |
|      | Recommended Books:                                                                         |
|      | 1. L.M. Joshi (ed): History and Culture of the Punjab, Art-I, Patiala, 1989 (3rd edition)  |
|      | 2. L.M. Joshi and Fauja Singh (ed); History of Punjab, Vol. I, Patiala, 1977.              |
|      | 3. Budha Prakash: Glimpses of Ancient Punjab, Patiala, 1983.                               |
|      | 4. B.N. Sharma: Life in Northern India, Delhi, 1966.                                       |

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| <b>Subject Code:</b>  | BSNM309-18            |  |  |
| Subject Title:        | ENVIRONMENT SCIENCE   |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |  |

| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ι    | Introduction: Definition and scope and importance of multidisciplinary nature of environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | Need for public awareness. Ecosystems: Concept of Ecosystem, Structure, interrelationship,                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | producers, consumers and decomposers, ecological pyramids-biodiversity and importance. Hot                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | spots of biodiversity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | Natural Resources: Natural Resources and associated problems, use and over exploitation, case                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | studies of forest resources and water resources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| II   | Environmental Pollution: Definition, Causes, effects and control measures of air pollution, Water                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear hazards.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | Solid waste Management: Causes, effects and control measure of urban and industrial wastes.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | Role of an individual in prevention of pollution. Pollution case studies. Disaster Management:                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | Floods, earthquake, cyclone and landslides.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| III  | Social Issues and the Environment From Unsustainable to Sustainable development, Urban                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | problems related to energy, Water conservation, rain water harvesting, watershed management.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | Resettlement and rehabilitation of people; its problems and concerns. Case studies.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | Environmental ethics: Issues and possible solutions. Climate change, global warming, acid rain,                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | ozone layer depletion, nuclear accidents and holocaust. Case studies. Wasteland reclamation.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | Consumerism and waste products. Environment Protection Act. Air (Prevention                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | and Control of Pollution) Act. Water (Prevention and control of pollution) Act. Wildlife                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | legislation Public awareness (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| IV   | Human Population and the Environment, Population growth, variation among nations. Population                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | explosion – Family Welfare Programme. Environment and human health, Human Rights, Value                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | Education, HIV/AIDS. Women and child Welfare. Role of Information Technology in                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | Environment and human health. Case studies (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | Field Work: Visit to a local area to document environmental assets                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | river/forest/grassland/hill/mountain, Visit to a local polluted site-                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | Urban/Rural/Industrial/Agricultural, Study of common plants, insects, birds, Study of simple                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | ecosystems-pond, river, hill slopes, etc. (Field work Equal to 5 lectures)  Recommended Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 1. Agarwal, K.C. 2001 Environmental Biology, Nidi Publ. Ltd. Bikaner.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 2. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad – 380                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | 013, India, Email:mapin@icenet.net (R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | <ol> <li>Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc. 480p</li> <li>Clark R.S., Marine Pollution, Clanderson Press Oxford (TB)</li> <li>Cunningham, W.P. Cooper, T.H. Gorhani, E &amp; Hepworth, M.T. 2001, Environmental Encyclopedia, Jaico Publ. House, Mumabai, 1196p</li> <li>De A.K., Environmental Chemistry, Wiley Eastern Ltd.</li> <li>Down to Earth, Centre for Science and Environment (R)</li> <li>Gleick, H.P. 1993. Water in crisis, Pacific Institute for Studies in Dev., Environment &amp;</li> </ol> |

Security. Stockholm Env. Institute Oxford Univ. Press. 473p

- 9. Hawkins R.E., Encyclopedia of Indian Natural History, Bombay Natural History Society, Bombay (R)
- 10. Heywood, V.H & Waston, R.T. 1995. Global Biodiversity Assessment. Cambridge Univ. Press 1140p.
- 11. Jadhav, H & Bhosale, V.M. 1995. Environmental Protection and Laws. Himalaya Pub. House, Delhi 284 p.
- 12. Mckinney, M.L. & School, R.M. 1996. Environmental Science systems & Solutions, Web enhanced edition. 639p.
- 13. Mhaskar A.K., Matter Hazardous, Techno-Science Publication (TB)
- 14. Miller T.G. Jr. Environmental Science, Wadsworth Publishing Co. (TB)
- 15. Odum, E.P. 1971. Fundamentals of Ecology. W.B. Saunders Co. USA, 574p
- 16. Rao M N. & Datta, A.K. 1987. Waste Water treatment. Oxford & IBH Publ. Co. Pvt. Ltd. 345p.
- 17. Sharma B.K., 2001. Environmental Chemistry. Geol Publ. House, Meerut
- 18. Survey of the Environment, The Hindu (M)
- 19. Townsend C., Harper J, and Michael Begon, Essentials of Ecology, Blackwell Science (TB)
- 20. Trivedi R.K., Handbook of Environmental Laws, Rules Guidelines, Compliances and Stadards, Vol I and II, Enviro Media (R)
- 21. Trivedi R. K. and P.K. Goel, Introduction to air pollution, Techno-Science Publication (TB)
- 22. Wanger K.D., 1998 Environmental Management. W.B. Saunders Co. Philadelphia, USA 499p
- 23.Rao M. N. & Datta A.K. 1987. Waste Water Treatment. Oxford & IBH Publ. Co. Pvt. Ltd. 345 p.
- 24. Principle of Environment Science by Cunninghan, W.P. (TB)
- 25. Essentials of Environment Science by Joseph. (TB)
- 26. Environment Pollution Control Engineering by Rao, C.S. (TB)
- (M) Magazine (R) Reference (TB) Textbook

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| <b>Subject Code:</b>  | BSNM310-18            |  |  |
| Subject Title:        | CHEMISTRY LAB III     |  |  |
| <b>Contact Hours:</b> | L:0 T:0 P:4 Credits:2 |  |  |

#### **Quantitative Analysis**

#### **Volumetric Analysis**

- 1. Determination of acetic acid in commercial vinegar using NaOH.
- 2. Determination of alkali content-antacid tablet using HCI.
- 3. Estimation of calcium content in chalk as calcium oxalate by permanganometry.
- **4.** Estimation of hardness of water by EDTA.
- **5.** Estimation of ferrous and ferric by dichromate method.
- **6.** Estimation of copper using sodiumthiosulphate.

#### **Gravimetric Analysis**

Analysis of Cu as CuSCN and Ni as Ni (dimethylgloxime)

#### **Organic Chemistry Laboratory Techniques**

#### Thin Layer Chromatography

Determination of R<sub>f</sub> values and identification of organic compounds.

- 1. Separation of green leaf pigments (spinach leaves may be used).
- **2.** Preparation and separation of 2, 4. dinitrophenylhydrazones of acetone, 2-butone, 2-Butanone, hexan-2 and 3-one using toluene and light petroleum (40 : 60).
- 3. Separation of a mixture of dyes using cyclohexane and ethyl acetate (8.5:1.5).

#### **Recommended Books:**

- 3. Practical Organic Chemistry by F.G. Mann and B.C. Saunders
- 4. Practical Inorganic Chemistry by J.R. Barrante G. Marr and B.W. Rockett
- 5. Vogel's Inorganic Quantitative Analysis

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| Subject Code:         | BSNM311-18            |  |  |
| <b>Subject Title:</b> | PHYSICS LAB-III       |  |  |
| <b>Contact Hours:</b> | L:0 T:0 P:4 Credits:2 |  |  |

#### At least 08 experiments from the following:

- 1. To study the laser beam characteristics like; wave length using diffraction grating aperture & divergence.
- 2. Study of diffraction using laser beam and thus to determine the grating element.
- 3. To study laser interference using Michelson's Interferometer.
- 4. To study wavelength of sodium light using Newton Rings.
- 5. To determine the numerical aperture of a given optic fibre and hence to find its acceptance angle.
- 6. To find the refractive index of a material/glass using spectrometer.
- 7. To find the refractive index of a liquid using spectrometer
- 8. To find the velocity of ultrasound in liquid.
- 9. To determine the specific rotation of sugar using Laurent's half-shade polarimeter.
- 10. To determine the coefficient of thermal conductivity of a bad conductor using Lee's disc apparatus.
- 11. To compare heat transfer between different material surface and the black body surface by radiation.
- 12. To find the emissivity of different material surface.

#### **REFERENCE BOOKS:**

- 18. Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 19. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- 20. Engineering Practical Physics, S.Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 21. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 22. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 201, Kitab Mahal.
- 23. B Sc. Practical Physics, C. L. Arora, S. Chand & Co.
- 24. A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.

## **Fourth Semester**

| Course Code Course Title           |                                           | Loa | d Alloc | cation | Marks Di | stribution | Total | Credits |
|------------------------------------|-------------------------------------------|-----|---------|--------|----------|------------|-------|---------|
|                                    |                                           | L   | Т       | P      | Internal | External   |       |         |
| BSNM401-18                         | Inorganic Chemistry-III                   | 3   | 0       | 0      | 25       | 50         | 75    | 3       |
| BSNM402-18                         | Organic Chemistry-III                     | 3   | 0       | 0      | 25       | 50         | 75    | 3       |
| BSNM403-18                         | Wave Vibrations                           | 3   | 0       | 0      | 25       | 50         | 75    | 3       |
| BSNM404-18                         | Electronics                               | 3   | 0       | 0      | 25       | 50         | 75    | 3       |
| BSNM405-18                         | Analysis-II                               | 3   | 0       | 0      | 25       | 50         | 75    | 3       |
| BSNM406-18                         | Linear Algebra                            | 3   | 0       | 0      | 25       | 50         | 75    | 3       |
| BSNM407-18                         | English-IV                                | 3   | 0       | 0      | 25       | 50         | 75    | 3       |
| BSNM408-18 (A) /<br>BSNM408-18 (B) | Punjabi-IV/Punjab History &<br>Culture-IV | 3   | 0       | 0      | 25       | 50         | 75    | 3       |
| BSNM409-18                         | Chemistry Lab-IV                          | 0   | 0       | 4      | 30       | 20         | 50    | 2       |
| BSNM410-18                         | Physics Lab-IV                            | 0   | 0       | 4      | 30       | 20         | 50    | 2       |
| BSNM411-18                         | MATHEMATICA Software                      | 0   | 0       | 2      | 30       | 20         | 50    | 1       |
|                                    | Total                                     | 24  | 0       | 10     | 290      | 460        | 750   | 29      |

| Course Name           | B.Sc. (Non-Medical)     |  |  |
|-----------------------|-------------------------|--|--|
| <b>Subject Code:</b>  | BSNM401-18              |  |  |
| <b>Subject Title:</b> | INORGANIC CHEMISTRY-III |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3   |  |  |

| Unit | Content                                                                                             |
|------|-----------------------------------------------------------------------------------------------------|
| Ι    | Coordination Compounds                                                                              |
|      | Werner's coordination theory and its experimental verification, effective atomic number concept,    |
|      | chelates, nomenclature of coordination compounds, isomerism in coordination compounds,              |
|      | valence bond theory of transition metal complexes.                                                  |
| II   | Non-aqueous Solvents                                                                                |
|      | Physical properties of a solvent, types of solvents and their general characteristics, reactions in |
|      | non-aqueous solvents with reference to liquid NH <sub>3</sub> and liquid SO <sub>2</sub> .          |
|      | Oxidation and Reduction                                                                             |
|      | Use of redox potential data-analysis of redox cycle, redox stability in water-Frost, Latimer and    |
|      | Pourbaix diagrams.                                                                                  |
| III  | Chemistry of Lanthanide Elements                                                                    |
|      | Electronic structure, oxidation states and ionic radii and lanthanide contraction. Electronic       |
|      | absorption and magnetic properties of lanthanides.                                                  |
|      | Chemistry of Actinides                                                                              |
|      | General features and chemistry of actinides, similarities between the later actinides and the later |
|      | lanthanides. Electronic and magnetic properties of actinides and their general comparison with      |
|      | the lanthanide elements.                                                                            |
| IV   | Bioinorganic Chemistry                                                                              |
|      | Essential and trace elements in biological processes, metalloporphyrins and special reference to    |
|      | haemoglobin and myoglobin. Biological role of alkali and alkaline earth metal ions with special     |
|      | reference to Ca2+                                                                                   |
|      | Recommended Books:                                                                                  |
|      | 1. J.D. Lee, Concise Inorganic Chemistry, 4th Ed.                                                   |
|      | 2. J.E. Huheey, Inorganic Chemistry, Harper & Row.                                                  |
|      | 3. F.A.Cotton and G. Wilinson, Advanced Inorganic Chemistry, Interscience Publishers.               |
|      | 4. N.N. Greenwood and A. Earnshaw, Chemistry of Elements, Pergamon Press.                           |
|      | 5. D.F.C. Shriver, P.W. Atkins and C.H. Langford, Inorganic Chemistry, ELBS Oxford,                 |
|      | 1991s                                                                                               |

| Course Name           | B.Sc. (Non-Medical)   |  |
|-----------------------|-----------------------|--|
| <b>Subject Code:</b>  | BSNM402-18            |  |
| Subject Title:        | ORGANIC CHEMISTRY-III |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |

| Unit | Content                                                                                                                                                                    |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I    | Carboxylic Acids                                                                                                                                                           |
|      | Nomenclature, structure and bonding, physical properties, acidity of carboxylic acids, effects of                                                                          |
|      | substituents on acid strength. Reactions of carboxylic acids. Hell-Volhard-Zelinsky reaction.                                                                              |
|      | Synthesis of acid chlorides, esters and amides. Reduction of carboxylic acids. Mechanism of                                                                                |
|      | decarboxylation.                                                                                                                                                           |
|      | Carboxylic Acids Derivatives                                                                                                                                               |
|      | Structure and nomenclature of acid chlorides, esters, amides and acid anhydrides, Relative                                                                                 |
|      | stability & reactivity of acyl derivatives. Physical properties, interconversion of acid derivatives                                                                       |
|      | by nucleophilic acyl substitution. Preparation of carboxylic acid derivatives, chemical reactions.                                                                         |
|      | Mechanisms of esterification and hydrolysis (acidic and basic).                                                                                                            |
| II   | Ethers and Epoxides                                                                                                                                                        |
|      | Nomenclature of ethers and methods of their formation, physical properties. Chemical reaction                                                                              |
|      | cleavage and autoxidation, Ziesel's method. Synthesis of epoxides. Acid and base-                                                                                          |
|      | catalyzed ring opening of epoxides, orientation of epoxide ring opening, reactions of                                                                                      |
|      | Grignard and organolithium reagents with epoxides.                                                                                                                         |
|      | Organometallic Compounds                                                                                                                                                   |
|      | Organomagnesium Compounds: The Grignard reagents-formation, structure and chemical                                                                                         |
|      | reactions. Organolithium Compounds: Formation and chemical reactions.                                                                                                      |
|      | Organozinc and Organo copper Compounds: Nomenclature, structural features, Methods of                                                                                      |
|      | formation and chemical reactions.                                                                                                                                          |
| III  | Organic Compounds of Nitrogen                                                                                                                                              |
|      | Preparation of nitroalkanes and nitroarenes. Chemical reactions of nitroalkanes, Mechanisms of                                                                             |
|      | nucleophile substitution in nitroarenes and their reduction in acidic, neutral and alkaline media.                                                                         |
|      | Reactivity, Structure and nomenclature of amines, Methods of preparation of amines by Reductive amination of aldehydic and ketonic compounds, Gabriel-phthalimide reaction |
|      | and Hofmann bromamide reaction. Physical properties. Stereochemistry of amines. separation                                                                                 |
|      | of a mixture of primary, secondary and tertiary amines. Structural features effecting                                                                                      |
|      | basicity of amines. Amine salts as phase-transfer catalysts.                                                                                                               |
| IV   | Heterocyclic Compounds                                                                                                                                                     |
| 1    | Introduction: Molecular orbital picture and aromatic characteristics of pyrrole, furan, thiophene                                                                          |
|      | and pyridine. Methods of synthesis and chemical reactions with particular emphasis on                                                                                      |
|      | the mechanism of electrophilic substitution. Mechanism of nucleophilic substitution                                                                                        |
|      | reactions in pyridine derivatives. Comparison of basicity of pyridine, piperidine and pyrrole.                                                                             |
|      | Recommended Books:                                                                                                                                                         |
|      | 1. Organic Chemistry. F.A. Carey, McGraw Hill, Inc. 8th edition.                                                                                                           |
|      | 2. Organic Chemistry, Morrison and Boyd, Prentice Hall                                                                                                                     |
|      | 3. Heterocyclic Chemistry, J.A. Joule, K. Mills and G.F. Smith, 3 <sup>rd</sup> edition, Indian reprint, 2004.                                                             |
|      | Chennai Microprint Pvt. Ltd.                                                                                                                                               |
|      | 4. Heterocyclic Chemistry, T.L. Gilchrist, Longman Scientific Technical                                                                                                    |
|      | 5. Organic ChemistryVol. I, II & III, S.M. Mukherji, S.P. Singh and R.P.Kapoor, Wiley                                                                                      |
|      | Eastern Ltd (New Age International).                                                                                                                                       |
|      | 6. Introduction to organic chemistry, Stritwieser, Heathcock and Kosover, Macmilan.                                                                                        |

| Course Name           | B.Sc. (Non-Medical)   |  |
|-----------------------|-----------------------|--|
| <b>Subject Code:</b>  | BSNM403-18            |  |
| <b>Subject Title:</b> | Waves Vibrations      |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |

| Unit | Content                                                                                            |
|------|----------------------------------------------------------------------------------------------------|
| I    | Simple and Damped Harmonic Motion: Simple harmonic motion, energy of a SHO,                        |
|      | Compound pendulum, Torsional pendulum, Electrical Oscillations, Lattice Vibrations,                |
|      | Transverse Vibrations of a mass on a string, Anharmonic Oscillations. Damped simple harmonic       |
|      | motion, Decay of free Vibrations due to damping, types of damping, Determination of damping        |
|      | coefficients – Logarithmic decrement, relaxation time and Q-factor. Electromagnetic damping.       |
|      | (10 Lectures)                                                                                      |
| II   | Forced Vibrations and Resonance: Forced mechanical and electrical oscillator, Transient and        |
| 111  |                                                                                                    |
|      | Steady State Oscillations, Displacement and velocity variation with driving force frequency,       |
|      | Variation of phase with frequency resonance, Power supplied to forced oscillator by the driving    |
|      | force. Q-factor and band width of a forced oscillator, Electrical and nuclear magnetic resonances. |
|      | (8 Lectures)                                                                                       |
| III  | Coupled Oscillations: Stiffness coupled oscillators, Normal coordinates and modes of               |
|      | vibrations. Inductance coupling of electrical oscillators, Normal frequencies, Forced vibrations   |
|      | and resonance for coupled oscillators, Masses on string-coupled oscillators.                       |
|      | (8 Lectures)                                                                                       |
|      |                                                                                                    |
| IV   | Waves in Physical Media: Types of waves, wave equation (transverse) and its solution               |
|      | characteristics impedance of a string, Impedance matching, Reflection and Transmission of          |
|      | waves at boundary, Energy of vibrating string, wave and group velocity.                            |
|      | (10 Lectures)                                                                                      |
|      | Recommended Books:                                                                                 |
|      | 1. Text Book of Vibrations and Waves: S.P. Puri (Macmillan India), 2004.                           |
|      | 2. The Physics of Vibrations and Waves: H.J. Pain (Wiley and ELBS), 1976.                          |
|      |                                                                                                    |

| Course Name           | B.Sc. (Non-Medical)   |
|-----------------------|-----------------------|
| <b>Subject Code:</b>  | BSNM404-18            |
| <b>Subject Title:</b> | ELECTRONICS           |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |

| Unit | Content                                                                                                                                                                                                                                                                                                    |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I    | <b>P.N. Junction:</b> Intrinsic/Extrinsic semiconductor, Fermi level, Charge carries in semiconductors, PN junctions, depletion region, current components in pn junction, Characteristic of pn junction diode, pn junction as rectifier, characteristics and applications of Zener diode, Photodiode, LED |
|      | and photocells. (10 Lectures)                                                                                                                                                                                                                                                                              |
| П    | <b>Electronic Devices</b> : Bipolar junction transistor, current components in transistors, CB, CE, CC configuration, h-parameters, transistor biasing, transistor as an amplifier, Emitter follower, characteristics and applications of FET, MOSFET. (10 Lectures)                                       |
| III  | <b>Transistor Circuits:</b> Feedback amplifiers; classification of amplifiers, feed-back concept, Sinusoidal oscillations; phase shift oscillators, Wien Bridge Oscillator, Crystal oscillator, Basic idea about AM modulation and demodulations, Oscilloscope. (10 Lectures)                              |
| IV   | <b>Digital Principles:</b> Number system, Decimal, binary, Octal, hexadecimal, logic gates, AND, OR, NOT, NAND, NOR, XOR, XNOR, Karnaugh map techniques. (10 Lectures)                                                                                                                                     |
|      | Recommended Books:                                                                                                                                                                                                                                                                                         |
|      | <ol> <li>Integrated Electronics: J.Millman and C.C.Halkias (Tata McGraw Hill,2001).</li> <li>Electronic Devices &amp; Circuits–J.Millman and C.C.Halkias (Tata McGraw Hill, 2009).</li> </ol>                                                                                                              |
|      | 3. Digital Principles & Applications–P.Malvine & Leach (Tata McGraw Hill, 1993                                                                                                                                                                                                                             |

| Course Name           | B.Sc. (Non-Medical)   |
|-----------------------|-----------------------|
| <b>Subject Code:</b>  | BSNM407-18            |
| Subject Title:        | ENGLISH-IV            |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |

| Unit | Contents                                                                                                                  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|
| I    | Textbook entitled 'Prism: Spoken and Written Communication, Prose & Poetry'                                               |  |  |  |
|      | published by Orient Longman                                                                                               |  |  |  |
|      | For enhancing vocabulary and learning sentence/speech construction:                                                       |  |  |  |
|      | I. Prose:                                                                                                                 |  |  |  |
|      | 1) Connected and the Calculation E. I. Duranna                                                                            |  |  |  |
|      | <ol> <li>Socrates and the Schoolmaster – F. L. Brayne</li> <li>With the Photographer – Stephen Leacock</li> </ol>         |  |  |  |
|      | II. Poetry:                                                                                                               |  |  |  |
|      |                                                                                                                           |  |  |  |
|      | <ul><li>1) On Television – Roald Dahl</li><li>2) Say Not the Struggle Naught Availeth – Arthur Hugh Clough</li></ul>      |  |  |  |
|      | 3) Abou Ben Adhem – James Leigh Hunt                                                                                      |  |  |  |
|      | ,                                                                                                                         |  |  |  |
| II   |                                                                                                                           |  |  |  |
|      | Grammar and Vocabulary: Transformation of sentences; Tenses; Active/Passive Voice; Narration                              |  |  |  |
|      | Transformation of sentences, Tenses, Tetrograssive Voice, Ivaliation                                                      |  |  |  |
|      |                                                                                                                           |  |  |  |
| III  | <b>Reading &amp; Writing Skills:</b> Analytical reports; Drafting of career documents: Job Applications/                  |  |  |  |
|      | Resume/CV                                                                                                                 |  |  |  |
|      |                                                                                                                           |  |  |  |
| IV   | Spoken Skills                                                                                                             |  |  |  |
|      | 1. Getting People's Attention and Interrupting 2. Giving Instructions and Scaling Clarifications                          |  |  |  |
|      | <ul><li>2. Giving Instructions and Seeking Clarifications</li><li>3. Making Requests and Responding to Requests</li></ul> |  |  |  |
|      | 4. Asking for Directions and Giving Directions                                                                            |  |  |  |
|      | 5. Thanking Someone and Responding to Thanks                                                                              |  |  |  |
|      | 6. Inviting and Accepting and Refusing an Invitation                                                                      |  |  |  |
|      | <ul><li>7. Apologizing and Responding to an Apology</li><li>8. Asking for, Giving and Refusing Permission</li></ul>       |  |  |  |
|      | 8. Asking for, Giving and Refusing Fermission                                                                             |  |  |  |
|      | Recommended Books:                                                                                                        |  |  |  |
|      | William Zinsser. On Writing Well. Harper Resource Book. 2001                                                              |  |  |  |
|      | Dobart Louis Stayonson The Strange Case of Dr. Lebyll and Mr. Hyde, Modbyban Dyblications                                 |  |  |  |
|      | Robert Louis Stevenson, <i>The Strange Case of Dr Jekyll and Mr Hyde</i> , Madhuban Publications, 2005                    |  |  |  |
|      |                                                                                                                           |  |  |  |
|      | Wren and Martin, High School English Grammar and Composition, S Chand (Indian edition),                                   |  |  |  |

2008.

A J Thomson and A V Martinet, A Practical English Grammar, Oxford India, 2007

R V Lesikar, M E Flatley, K Rentz and N Pande, *Business Comminication (Making Connections in Digital World)*, Tata McGraw Hill, 2010

M Frank, Writig as Thinking: A Guided Process Approach, Englewood Cliffs, Prentice Hall Regents.

| Course Name           | B.Sc. (Non-Medical) |  |  |
|-----------------------|---------------------|--|--|
| <b>Subject Code:</b>  | BSNM408-18 (A)      |  |  |
| <b>Subject Title:</b> | Punjabi-IV          |  |  |
| <b>Contact Hours:</b> | L: T: P: Credits:   |  |  |

| Unit | Contents                                                       | Contact<br>Hours |
|------|----------------------------------------------------------------|------------------|
| I    | ਡਾ.ਹਰਿਭਜਨ ਸਿੰਘ:                                                | 12               |
|      | ਅਪ੍ਰਮਾਣਿਕ, ਤੇਰੇ ਹਜ਼ੂਰ ਮੇਰੀ ਹਾਜ਼ਰੀ ਦੀ ਦਾਸਤਾਨ                    |                  |
|      | ਸ਼ਿਵ ਕੁਮਾਰ ਬਟਾਲਵੀ:                                             |                  |
|      | ਕੰਡਿਆਲੀ ਥੋਰ੍ਹ, ਧਰਮੀ ਬਾਬਲ ਪਾਪ ਕਮਾਇਆ, ਰੁੱਖ                       |                  |
|      | ਪਾਸ਼:                                                          |                  |
|      | ਇਨਕਾਰ,ਸਭ ਤੋਂ ਖਤਰਨਾਕ,ਦਹਿਕਦੇ ਅੰਗਿਆਰਾਂ 'ਤੇ                        |                  |
|      | ਸੁਰਜੀਤ ਪਾਤਰ:                                                   |                  |
|      | ਹੁਣ ਘਰਾਂ ਨੂੰ ਪਰਤਣਾ, ਕੁਝ ਕਿਹਾ ਤਾਂ, ਪੁਲ                          |                  |
| II   | ਕਹਾਣੀ ਭਾਗ:                                                     | 11               |
|      | ਸੰਤੋਖ ਸਿੰਘ ਧੀਰ:                                                |                  |
|      | ਕੋਈ ਇਕ ਸਵਾਰ                                                    |                  |
|      | ਪ੍ਰੇਮ ਪ੍ਰਕਾਸ਼:                                                 |                  |
|      | ਲੱਛਮੀ                                                          |                  |
|      | ਮੋਹਨ ਭੰਡਾਰੀ :                                                  |                  |
|      | ਘੋਟਣਾ                                                          |                  |
|      | ਵਰਿਆਮ ਸਿੰਘ ਸੰਧੂ :                                              |                  |
|      | ਆਪਣਾ ਆਪਣਾ ਹਿੱਸਾ                                                |                  |
| III  | ਕੰਪਿਊਟਰ ਦੀ ਪਰਿਭਾਸ਼ਾ, ਡਾਟਾ ਸਟੋਰੇਜ਼ ਡਿਵਾਈਸਜ਼, ਟਾਈਪਿੰਗ ਦੀ ਮਹੱਤਤਾ, | 12               |
|      | ਫਾਈਂਡ ਐਂਡ ਰੀਪਲੇਸ : ਫਾਈਂਡ ਐਂਡ ਚੇਜ਼ ਦ ਟੈਕਸਟ, ਸਪੈਲ ਚੈੱਕਰ          |                  |

|    | ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਤੇ ਇੰਟਰਨੈੱਟ : ਈ.ਨਿਊਜਪੇਪਰ, ਵਿਕੀਪੀਡੀਆ |    |
|----|--------------------------------------------------|----|
| IV | ਸਾਹਿਤ ਦੇ ਰੂਪ : ਕਵਿਤਾ, ਵਾਰਤਕ, ਕਹਾਣੀ, ਨਾਵਲ         | 10 |

| S.No. | Author(s)              | Title of the Book   | Publisher/Year                 |  |  |
|-------|------------------------|---------------------|--------------------------------|--|--|
| 1     | ਡਾ. ਮਹਿਲ ਸਿੰਘ (ਸੰਪ.)   | ਸਾਹਿਤ ਦੇ ਰੰਗ        | ਰਵੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ। |  |  |
| 2     | ਡਾ. ਸੁਖਵਿੰਦਰ ਸਿੰਘ ਸੰਘਾ | ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਵਿਗਿਆਨ | ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਅਕਾਦਮੀ, ਜਲੰਧਰ     |  |  |
| 3     | ਰਤਨ ਸਿੰਘ ਜੱਗੀ          | ਸਾਹਿਤ ਦੇ ਰੂਪ        | ਪੰਜਾਬੀ ਯੂਨੀਵਰਸਿਟੀ, ਪਟਿਆਲਾ      |  |  |

## **Semester-IV**

| Course Name           | B.Sc. (Non-Medical)         |
|-----------------------|-----------------------------|
| <b>Subject Code:</b>  | BSNM408-18 (B)              |
| <b>Subject Title:</b> | Punjab History & Culture IV |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3       |

| Unit | Content                                                                                      |  |
|------|----------------------------------------------------------------------------------------------|--|
| Ι    | Guru Gobind Singh and the Khalsa                                                             |  |
|      | Banda Singh Bahadur: Conquests and Execution                                                 |  |
| II   | Sikh Struggle for Sovereignty                                                                |  |
|      | Sikh Misls                                                                                   |  |
|      | Ranjit Singh: Conquests, Administration and the Anglo-Sikh Relations                         |  |
|      | Anglo-Sikh Wars and the Annexation                                                           |  |
| III  | The Punjab under the British: New Administration, Education and Social Change                |  |
| IV   | Socio-Religious Reform Movements                                                             |  |
|      | Role of Punjab in the Freedom Struggle                                                       |  |
|      | Recommended Books:                                                                           |  |
|      | Kirpal Singh (ed.): History and Culture of the Punjab, Part-II, Punjabi University, Patiala, |  |
|      | 1990.                                                                                        |  |
|      | 2. Fauja Singh (ed.): History of Punjab, Vol. III, Punjabi University, Patiala, 1987.        |  |
|      | 3. J.S. Grewal: The Sikhs of the Punjab, CUP, Cambridge, 1991.                               |  |
|      | 4. Sukhwant Singh. Agricultural Growth under Colonial Constraints: The Punjab 1849-          |  |
|      | 1947, Manpreet Publication, Delhi, 2000.                                                     |  |
|      | 5. Khushwant Singh, A History of the Sikhs, Vol. I, OUP, New Delhi, 1990.                    |  |
|      | 6. Khushwant Singh, A History of the Sikhs, Vol. I, OUP, New Delhi, 1990.                    |  |
|      |                                                                                              |  |
|      |                                                                                              |  |

| Course Name           | B.Sc. (Non-Medical)   |  |
|-----------------------|-----------------------|--|
| <b>Subject Code:</b>  | BSNM409-18            |  |
| <b>Subject Title:</b> | CHEMISTRY LAB IV      |  |
| <b>Contact Hours:</b> | L:0 T:0 P:4 Credits:2 |  |

### **Qualitative Analysis**

Detection of elements

- 1. Nitrogen,
- 2. Sulphur
- 3. Halogens

Detection of functional groups

- 1. Phenolic
- 2. carboxylic,
- 3. carbonyl,
- 4. esters,
- 5. carbohydrates,
- 6. amines, amides, nitro and anilide in simple organic compounds and preparing their derivatives

#### **Recommended Books:**

6. Practical Organic Chemistry by F.G. Mann and B.C. Saunders

| Course Name           | B.Sc. (Non-Medical)   |
|-----------------------|-----------------------|
| <b>Subject Code:</b>  | BSNM410-18            |
| <b>Subject Title:</b> | Physics Lab-IV        |
| <b>Contact Hours:</b> | L:0 T:0 P:4 Credits:2 |

#### At least 08 experiments from the following:

- 1. To determine the value of horizontal component of Earth's magnetic field Bh.
- 2. To determine unknown capacitance by flashing and quenching method.
- 3. To study the magnetic field of a circular coil carrying current.
- 4. To find out polarizability of a dielectric substance.
- 5. To determine the frequency of an electrically maintained tuning fork by i) Transverse mode of vibration ii) Longitudinal mode of vibration
- 6. To find out the frequency of AC mains using electric-vibrator/sonometer.
- 7. Experiment to study Doppler effect
- 8. To study V-I characteristic of a Ge-Si junction.
- 9. Analyze the suitability of a given Zener diode as a power regulator.
- 10. To study the band gap of a Ge semiconductor.
- 11. To study the the band gap of a Si semiconductor.

#### **REFERENCE BOOKS:**

- 25. Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 26. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- 27. Engineering Practical Physics, S.Panigrahi & B.Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 28. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 29. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 201, Kitab Mahal.
- 30. B Sc. Practical Physics, C. L. Arora, S. Chand & Co.
- 31. A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.

**Course Title: ANALYSIS-II** 

Course Code: BSNM405-18

#### **UNIT-I**

Sequence of functions: pointwise and uniform convergence, Cauchy's criterion for uniform convergence, Test ( $M_n$ -test) for uniform convergence, uniform convergence and continuity, uniform convergence and integration, uniform convergence and differentiation.

#### **UNIT-II**

Series of functions: pointwise and uniform convergence, Cauchy's criterion for uniform convergence, Weierstrass's M-test test, Abel's test, Dirichlet's test, uniform convergence and continuity, uniform convergence and integration, uniform convergence and differentiation. Weierstrass approximation theorem (Statement only).

#### **UNIT-III**

Vector differentiation, Gradient, Divergence and Curl with their properties and applications. Vector Integration: Line, Surface and Volume integration. Gauss divergence theorem, Stokes' theorem, Green's theorem.

#### **UNIT-IV**

Fourier series: Fourier expansion of piecewise monotonic functions, Fourier series for odd and even functions, half range series. Fourier series in the interval  $[0, 2\pi]$ , [-1,1] and [a, b].

- 1. Tom Apostol, Mathematical Analysis, Narosa Publishing House, New Delhi, 1985.
- 2. Shanti Narayan, M. D. Raisinghania, Elements of Real Analysis, S. Chand & Company, 2018.
- 3. S. C. Malik, Savita Arora, Mathematical Analysis, New Age International Publishers, 2017.
- 4. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons Inc, New York, 1999.

**Course Title: LINEAR ALGEBRA** 

Course Code: BSNM406-18

#### **UNIT-I**

Linear independence of row and column vectors, row rank, column rank and rank of a matrix and their equivalence. Applications of matrices to a system of linear equations (both homogeneous and non-homogeneous). Theorems on consistency of a system of linear equations (both homogeneous and non-homogeneous).

#### **UNIT-II**

Eigenvalues, eigenvectors and characteristic equation of a matrix, Cayley-Hamilton theorem and its use in finding inverse of a matrix. Diagonalization.

#### **UNIT-III**

Vector Space: Definition and Examples of Vector Spaces, Subspaces, Algebra of subspaces, Linear span, Linear dependence and independence of vectors, Basis and dimension of a vector space, Basis and dimension of subspace, Direct sums and complements.

#### **UNIT-IV**

Linear transformations, Rank and Nullity of a linear transformation, Vector space of linear transformations. Linear transformations and matrices, Change of basis.

- 1. P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul, First Course in Linear Algebra, New Age International Publishers, 2015.
- 2. Bernard Kolman, David R. Hill, Elementary Linear Algebra with Applications, Pearson, 2007.
- 3. Vivek Sahai, Vikas Bist, Linear Algebra, Narosa, 2017.

**Course Title: MATHEMATICA Software** 

Course Code: BSNM411-18

#### **UNIT-I**

The structure of MATHEMATICA, notebook interfaces, constants, variables, algebraic calculations, four kinds of brackets, lists, tables, expressions, functions, built-in functions, functional operations, graphics, patterns, manipulating lists, transformation rules, evaluation of expressions, modularity, manipulating notebooks, relational and logical operators.

#### **UNIT-II**

Symbolic math commands: D; Integrate; Sum; Product; Solve; Eliminate; Reduce; Series; Limit; Minimize; Programming: conditionals; loops: Do; For and While.

- 1. Wolfram, S., The MATHEMATICA Book, 5<sup>th</sup> revised edition. Wolfram Media Inc, 2004
- 2. Abell, M. and Braselton, J., Mathematica by Example, 5<sup>th</sup> Edition. Academic Press, 2017.

## **Bachelors of Science in Non-Medical (B.Sc. Non-Medical):**

### **Courses & Examination Scheme:**

## **Fifth Semester**

| Course Code        | Course Title                            | Load<br>Allocation |   |   |          |          |    | Credits |
|--------------------|-----------------------------------------|--------------------|---|---|----------|----------|----|---------|
|                    |                                         | L                  | T | P | Internal | External |    |         |
| BSNM501-18         | Inorganic Chemistry-<br>IV              | 3                  | 0 | 0 | 25       | 50       | 75 | 3       |
| BSNM502-18         | Physical Chemistry-<br>III              | 3                  | 0 | 0 | 25       | 50       | 75 | 3       |
| BSNM503-18         | Elements of Modern<br>Physics           | 3                  | 0 | 0 | 25       | 50       | 75 | 3       |
| BSNM504-18         | Quantum Mechanics                       | 3                  | 0 | 0 | 25       | 50       | 75 | 3       |
| BSNM505-18         | Theory of probability                   | 3                  | 0 | 0 | 25       | 50       | 75 | 3       |
| BSNM506-18         | Numerical Analysis                      | 3                  | 0 | 0 | 25       | 50       | 75 | 3       |
| BSNM507-18         | English-V                               | 3                  | 0 | 0 | 25       | 50       | 75 | 3       |
| BSNM508-<br>18(A)/ | Punjabi-V/Punjab<br>History & Culture-V | 3                  | 0 | 0 | 25       | 50       | 75 | 3       |
| BSNM508-18<br>(B)  |                                         |                    |   |   |          |          |    |         |
| BSNM509-18         | Drug Abuse-I                            | 2                  | 0 | 0 | 25       | 50       | 75 | _       |
|                    | (Problem, and Management)               |                    |   |   |          |          |    |         |
| BSNM510-18         | Chemistry Lab-V                         | 0                  | 0 | 4 | 30       | 20       | 50 | 2       |
| BSNM511-18         | Physics Lab-V                           | 0                  | 0 | 4 | 30       | 20       | 50 | 2       |
|                    | Total                                   |                    |   |   |          |          |    | 28      |

| Course Name           | B.Sc. (Non-Medical)    |
|-----------------------|------------------------|
| <b>Subject Code:</b>  |                        |
| <b>Subject Title:</b> | INORGANIC CHEMISTRY-IV |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3  |

#### **Details of the Course**

| Unit | Content                                                                                                                   | Contact |
|------|---------------------------------------------------------------------------------------------------------------------------|---------|
|      |                                                                                                                           | Hours   |
| I    | Metal-ligand Bonding in Transition Metal Complexes                                                                        | 10      |
|      | valence bond theory, Limitations of valence bond theory, an elementary idea                                               |         |
|      | of crystal-field theory, crystal field splitting in octahedral, tetrahedral and                                           |         |
|      | square planar complexes, factors affecting the crystal-field parameters.                                                  |         |
| II   | Magnetic Properties of Transition Metal Complexes                                                                         | 11      |
|      | Types of magnetic behaviour, methods of determining magnetic                                                              |         |
|      | susceptibility, spin-only formula. L-S coupling, correlation of $\mu_s$ and $\mu_{eff}$                                   |         |
|      | values, orbital contribution to magnetic moments, application of magnetic                                                 |         |
|      | moment data for characterization of 3d-metal complexes.                                                                   |         |
| III  | Thermodynamic and Kinetic Aspects of Metal Complexes                                                                      | 12      |
|      | A brief outline of thermodynamic stability of metal complexes and factors                                                 |         |
|      | affecting the stability, substitution reactions of square planar complexes.                                               |         |
|      | Electronic Spectra of Transition Metal Complexes                                                                          |         |
|      | Term Symbols for p <sup>2</sup> & d <sup>2</sup> systems, spectroscopic ground states for d <sup>1</sup> -d <sup>10</sup> |         |
|      | electronic configurations. Types of electronic transitions, selection rules for                                           |         |
|      | d-d transitions, spectroscopic ground states, Orgel diagram for d <sup>1</sup> -d <sup>5</sup> .                          |         |
| IV   | Organometallic Compounds                                                                                                  | 12      |
|      | Definition, nomenclature and classification of organometallic compounds.                                                  |         |
|      | EAN rule, Preparation, properties, and applications of alkyls aryls of lithium                                            |         |
|      | and aluminium, Bonding in metal-ethylenic complexes, Mechanism of                                                         |         |
|      | homogeneous hydrogenation reactions.                                                                                      |         |

- 1. B.N. Figgis, Introduction to Ligand Field, Wiley Eastern.
- 2. A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier.
- 3. A. Earnshaw, Introduction to Magnetochemistry, Academic Press.
- 4. J.E. Huheey, Inorganic Chemistry Principles of Structure and Reactivity, Harper Inter-Science.
- 5. R.S. Drago, Physical Method in Chemistry, W.B. Saunders Company.
- 6. F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley Inter-science.

| Course Name           | B.Sc. (Non-Medical)    |
|-----------------------|------------------------|
| <b>Subject Code:</b>  |                        |
| <b>Subject Title:</b> | PHYSICAL CHEMISTRY-III |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3  |

| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contact |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| T    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hours   |
| Ι    | Electrical transport-conduction in metals and in electrolyte solutions, specific conductance and equivalent conductance, measurement of equivalent conductance, variation of equivalent and specific conductance with dilution. Migration of ions and Kohlrausch law, Arrhenius theory of electrolyte dissociation and its limitations, weak and strong electrolytes, Ostwald's dilution law, its uses and limitations. Debye-Huckel-Onsager's equation for strong electrolytes (elementary treatment only). Transport number, definition and determination by Hittorf method and moving boundary method. Applications of conductivity measurements: determination of degree of dissociation, determination of Ka of acids, determination of solubility product of a sparingly soluble salt, conductometric titrations.                                                                                                                                                                                                                                                                                                                                                              | 11      |
| II   | Electrochemistry – II  Types of reversible electrodes-gas metal ion, metal ion, metal insolblue salt-anion and redox electrodes. Electrode reactions. Nernst equation, derivation of cell E.M.F. and Single electrode potential, standard hydrogen electrode, reference electrodes, standard electrode potential, sign conventions, electrochemical series and its significance. Electrolytic and Galvanic cells-reversible and irreversible cells, conventional representation of electrochemi cells.  EMF of a cell and its measurements. Computation of cell. EMF, Calculation of thermodynamic quantities of cell reactions (ΔG ΔH and K), polarization, over potential and hydrogen overvoltage.  Concentration cells with and without transport, liquid junction potential, application of concentration cells, valency of ions, solubility product and activity coefficient, potentiometric titrations.  Definition of pH and pKa, determination of pH using hydrogen, quinhydrone and glass electrodes, by potentiometric methods. Buffers-mechanism of buffer action, Henderson-Hazel equation, Hydrolysis of salts. Corrosion-types, theories and methods of combating it. | 12      |
| III  | Nuclear Chemistry Introduction: Radioactivity, Nuclear Structure, Size of Nucleus, Mass Defects and Binding Energy, Nuclear Stability, Nuclear Forces, Nuclear Spin and Moments of Nuclei, Nuclear Models, Nuclear Decay Processes, The Laws of Radioactive Decay, Soddy-Fajans Group Displacement Law, Rate of Nuclear Decay and Half Life Time (Kinetics of Radioactive Decay), Induced Nuclear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10      |

|    | Reactions, Types of Nuclear Processes, High Energy Nuclear Reactions,            |    |
|----|----------------------------------------------------------------------------------|----|
|    | Nuclear Reaction Cross-Section, Artificial radioactivity, Detection and          |    |
|    | Measurement of Radioactivity, Nuclear Fission, Nuclear Fusion,                   |    |
|    | Applications of Radioactivity.                                                   |    |
| IV | Spectroscopy                                                                     | 12 |
|    | Introduction: Electromagnetic radiation, regions of the spectrum, basic          |    |
|    | features of different spectrometers, statement of the Born-Oppenheimer           |    |
|    | approximation, degrees of freedom.                                               |    |
|    | Rotational Spectrum                                                              |    |
|    | Diatomic molecules. Energy levels of a rigid rotor (semiclassical principles),   |    |
|    | selection rules, spectral intensity, distribution using population distribution  |    |
|    | (Maxwell-Boltzmann distribution) determination of bond length, qualitative       |    |
|    | description of non-rigid rotor, isotope effect.                                  |    |
|    | Vibrational Spectrum                                                             |    |
|    | Infrared spectrum: Energy levels of simple harmonic oscillator, selection        |    |
|    | rules, pure vibrational                                                          |    |
|    | spectrum, intensity, determination of force constant and qualitative relation of |    |
|    | force constant and                                                               |    |
|    | bond energies, effect of anharmonic motion and isotope on the spectrum,          |    |
|    | idea of vibrational frequencies of different functional groups.                  |    |
|    | Raman Spectrum: Concept of polarizability, pure rotational and pure              |    |
|    | vibrational Raman spectra of diatomic molecules, selection rules.                |    |
|    | Electronic Spectrum                                                              |    |
|    | Concept of potential energy curves for bonding and antibonding molecular         |    |
|    | orbitals, qualitative description of selection rules and Franck-Condon           |    |
|    | principle. Qualitative description of s, p, and n M.O., their energy levels and  |    |
|    | the respective transitions.                                                      |    |

- 1. Thermodynamics for Chemists, S. Glasstone.
- 2. R.S.Drago, "Physical Methods in Chemistry".
- 3. Principles of Physical Chemistry, S.H. Maron & C.F. Prutton.
- 4. Physical Chemistry, P.W. Atkins.
- 5. G.M. Barrow "Introduction to Molecular Spectroscopy".
- 6. C.N. Banwell "Fundamentals of Molecular Spectroscopy
- 7. Concise Inorganic Chemistry by J.D. Lee, Oxford; Fifth edition

| Course Name           | B.Sc. (Non-Medical)  |                |  |
|-----------------------|----------------------|----------------|--|
| <b>Subject Code:</b>  |                      |                |  |
| <b>Subject Title:</b> | <b>Elements of N</b> | Modern Physics |  |
| <b>Contact Hours:</b> | L:3 T:0 P:           | 0 Credits:3    |  |

#### **Details of the Course**

| Unit | Content                                                                                   |
|------|-------------------------------------------------------------------------------------------|
| I    | Dual Nature of Waves and Particles: Black body ration, Planck's quantum, Planck's         |
|      | constant and light as a collection of photons; Photo Electric effect and Compton          |
|      | scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment,           |
|      | Problems with Rutherford model- instability of atoms and observation of discrete atomic   |
|      | spectra; Bohr's quantization rule and atomic stability; Wave-particle duality, Heisenberg |
|      | uncertainty principle- impossibility of a particle following a trajectory; Estimating     |
|      | minimum energy of a confined particle using uncertainty principle; Energy-time            |
|      | uncertainty principle. Lecture (10)                                                       |
| II   | Quantum Mechanics: Two slit interference experiment with photons, atoms &                 |
|      | particles; linear superposition principle as a consequence; Matter waves and wave         |
|      | amplitude; Schrodinger equation for non-relativistic particles; Momentum and Energy       |
|      | operators; stationary states; physical interpretation of wavefunction, probabilities and  |
|      | normalization; Probability and probability current densities in one dimension. One        |
|      | dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization;   |
|      | Quantum dot as an example Lecture (10)                                                    |
| III  | Atomic structure: The nuclear atom, Electron orbits, Atomic spectra, The Bohr Model,      |
|      | Energy level and spectra, Correspondence principle, Nuclear motion, Atomic excitation,    |
|      | Many electron atoms, Exclusion Principle, electron spin, spin orbit coupling, X-ray       |
|      | spectra. Zeeman effect, Stern-Garlach experiment.  Lecture (10)                           |
| IV   | Special Theory of Relativity: Michelson-Morley Experiment and its outcome.                |
|      | Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and     |
|      | order of events. Lorentz contraction. Time dilation. Relativistic transformation of       |
|      | velocity, frequency and wave number. Relativistic addition of velocities. Variation of    |
|      | mass with velocity. Massless Particles. Mass-energy Equivalence. Relativistic Doppler     |
|      | effect. Relativistic Kinematics. Transformation of Energy and Momentum. Energy-           |
|      | Momentum Four Vector. Lecture (10)                                                        |

#### **Recommended Books:**

- 1. Concepts of Modern Physics, Arthur Beiser, 2009, McGraw-Hill
- 2. Modern Physics, J.R. Taylor, C.D. Zafiratos, M.A. Dubson, 2009, PHI Learning
- 3. Six Ideas that Shaped Physics: Particle Behave like Waves, Thomas A. Moore, 2003, McGraw Hill
- 4. Quantum Physics, Berkeley Physics, Vol.4. E.H. Wichman, 2008, Tata McGraw-Hill Co.
- 5. Modern Physics, R.A. Serway, C.J. Moses, and C.A.Moyer, 2005, Cengage Learning

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| <b>Subject Code:</b>  |                       |  |  |
| <b>Subject Title:</b> | Quantum Mechanics     |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |  |

#### **Details of the Course**

| Unit | Content                                                                                 |  |  |
|------|-----------------------------------------------------------------------------------------|--|--|
| I    | Time dependent and independent Schrodinger equation: Time dependent                     |  |  |
|      | Schrodinger equation, dynamical evolution of a quantum state; Interpretation of Wave    |  |  |
|      | Function, Probability and probability current densities in three dimensions; Conditions |  |  |
|      | for Physical Acceptability of Wave Functions. Position, momentum & Energy               |  |  |
|      | operators; Expectation value, Commutator of position and momentum operators; Wave       |  |  |
|      | Function of a Free Particle. Time independent Schrodinger equation, Hamiltonian,        |  |  |
|      | stationary states and energy eigenvalues; General solution of the time dependent        |  |  |
|      | Schrodinger equation, wave packets, Fourier transforms and momentum space wave          |  |  |
|      | function; Position-momentum uncertainty principle. (12 Lectures)                        |  |  |
| II   | Applications of Schrodinger Equation: General discussion of bound states in an          |  |  |
|      | arbitrary potential- continuity of wave function, boundary condition and emergence of   |  |  |
|      | discrete energy levels; application to one-dimensional problem- square well potential;  |  |  |
|      | Quantum mechanics of simple harmonic oscillator-energy levels and energy                |  |  |
|      | eigenfunctions using Frobenius method. (12 Lectures)                                    |  |  |
| III  | Quantum theory of hydrogen-like atoms: time independent Schrodinger equation in         |  |  |
|      | spherical polar coordinates; separation of variables for the second order partial       |  |  |
|      | differential equation; angular momentum operator and quantu m numbers; Radial           |  |  |
|      | wavefunctions from Frobenius method; Orbital angular momentum quantum numbers l         |  |  |
|      | and m; s, p, d, shells (idea only) (12 Lectures)                                        |  |  |
| IV   | Atoms in Electric and Magnetic Fields:- Electron Angular Momentum. Space                |  |  |
|      | Quantization. Electron Spin and Spin Angular Momentum. Larmor's Theorem. Spin           |  |  |
|      | Magnetic Moment. Stern-Gerlach Experiment. Zeeman Effect: Electron Magnetic             |  |  |
|      | Moment & Magnetic Energy, Gyromagnetic Ratio & Bohr Magneton. Atoms in                  |  |  |
|      | External Magnetic Fields: Normal and Anomalous Zeeman Effect. (10 Lectures)             |  |  |

#### **Recommended Books:**

- 1. A Text book of Quantum Mechanics, P.M.Mathews & K.Venkatesan, 2nd Ed., 2010, McGraw Hill
- 2. Quantum Mechanics, Robert Eisberg and Robert Resnick, 2nd Edn., 2002, Wiley.
- 3. Quantum Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tata McGraw Hill.
- 4. Quantum Mechanics, G. Aruldhas, 2nd Edn. 2002, PHI Learning of India.
- 5. Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.
- 6. Quantum Mechanics for Scientists and Engineers, D.A.B. Miller, 2008, Cambridge University Press
- 7. Quantum Mechanics, Eugen Merzbacher, 2004, John Wiley and Sons, Inc.
- 8. Introduction to Quantum Mechanics, David J. Griffith, 2nd Ed. 2005, Pearson Education
- 9. Quantum Mechanics, Walter Greiner, 2<sup>nd</sup> Edn., 2001, Springer

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| <b>Subject Code:</b>  |                       |  |  |
| <b>Subject Title:</b> | THEORY OF PROBABILITY |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |  |

**Course Objectives** This course is designed to introduce theory of probability. The main focus of the course will be on the notions and uses of probability, random variables and probability distributions.

#### **UNIT-I**

Random experiment, sample space, event, algebra of events, Probability definition, addition law of probability, multiplication law of probability, conditional probability and independence, Bayes' Theorem

#### **UNIT-II**

Random variables, distribution function, properties of distribution function, discrete random variable, probability mass function, discrete distribution function, continuous random variable, probability density function. Continuous distribution function.

#### **UNIT-III**

Mathematical expectation, expectation of a random variable, Discrete probability distributions: binomial, Poisson, negative binomial distribution.

#### **UNIT-IV**

Continuous probability distributions: uniform distribution, normal distribution, normal distribution as a limiting case of binomial distribution, Gamma distribution, Beta distribution.

Course Outcomes After completion of the course, the students will be able to

- Understand and demonstrate the notion of randomness.
- Apply the concepts of probability in modeling processes and decision making.

- S. Ross, A First Course in Probability, Pearson, 2008.
- S.C. Gupta, V. K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand & Sons, Delhi, 2014.

| Course Name           | B.Sc. (Non-Medical)   |
|-----------------------|-----------------------|
| <b>Subject Code:</b>  |                       |
| <b>Subject Title:</b> | NUMERICAL ANALYSIS    |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |

**Course Objectives** This course is designed to introduce basic concepts of numerical analysis. The main objective of the course is to introduce the methods for solving problems numerically which are difficult to deal with analytically.

#### **UNIT-I**

Linear System of Equations: Gauss elimination method, Gauss Jordan method, LU decomposition method. Iterative Methods: Jacobi, Gauss-Seidel, Relaxation Methods; Eigenvalue Problem: Power Method.

#### **UNIT-II**

Interpolation: Interpolation with Unevenly Spaced Points: Lagrange Interpolation, Newton's Divided Difference Interpolation; Interpolation with Evenly Spaced Points: Newton's Forward Difference Interpolation Formula, Newton's Backward Difference Interpolation Formula, Spline interpolation.

#### **UNIT-III**

Numerical Differentiation and Integration: Numerical differentiation: Newton's Forward Difference Formula, Newton's Backward Difference Formula, Newton's Divided Difference Formula; Numerical Integration: Trapezoidal rule, Simpson's 1/3-rule and Simpson's 3/8 rule.

#### **UNIT-IV**

Numerical solution of ordinary differential equations (ODEs): Initial Value Problems of ODEs: Taylor series method, Euler's methods, Runge-Kutta methods and linear multi-step methods (Adams-Bashforth & Adams-Moulton).

Course Outcomes After completion of the course, the students will be able to

- Analyze and solve different types of problems numerically arising in various fields of applications.
- Use different numerical methods for solving problems with the understating of their limitations.

- 1. Richard L. Burden and J. Douglas Faires, Numerical Analysis, 9<sup>th</sup> Edition, Cengage Learning, 2012.
- 2. M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, 6<sup>th</sup> Edition, New Age International Publisher, 2012.

| Course Name           | B.Sc. (Non-Medical) |      |      |            |
|-----------------------|---------------------|------|------|------------|
| <b>Subject Code:</b>  |                     |      |      |            |
| <b>Subject Title:</b> | ENGLISH-V           |      |      |            |
| <b>Contact Hours</b>  | L: 3                | T: 0 | P: 0 | Credits: 3 |

| Unit |                 | Content                                                                                                                                                                                                                                                                    |  |  |
|------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| I    | (A)             | Literature                                                                                                                                                                                                                                                                 |  |  |
|      |                 | The Poetic Palette (Orient Black Swan, Second Edition, 2016)                                                                                                                                                                                                               |  |  |
|      |                 | The following poems from this anthology are prescribed:                                                                                                                                                                                                                    |  |  |
|      |                 | <ul><li>a. The Charge of the Light Brigade: Alfred Tennyson</li><li>b. He Wishes for the Cloths of Heaven: W. B. Yeats</li><li>c. True ease in writing comes from art, not chance: Alexander Pope</li><li>d. Goodbye party for Miss Pushpa T. S.: Nissim Ezekiel</li></ul> |  |  |
|      | <b>(B)</b>      | Vocabulary:                                                                                                                                                                                                                                                                |  |  |
|      |                 | Various processes of Word formation; Standard Abbreviations & Acronyms; Internet Texting Abbreviations & Acronyms                                                                                                                                                          |  |  |
| II   | (A)             | Literature                                                                                                                                                                                                                                                                 |  |  |
|      |                 | Prose Parables (Orient Black Swan, 2013)                                                                                                                                                                                                                                   |  |  |
|      |                 | The following stories from the above volume are prescribed:                                                                                                                                                                                                                |  |  |
|      |                 | <ul><li>a. The Voice of God: Prem Chand</li><li>b. The Face on the Wall: E.V. Lucas</li><li>c. The Gold Frame: R. K. Laxman</li><li>d. My Brother, My Brother: Norah Burke</li></ul>                                                                                       |  |  |
|      | <b>(B)</b>      | Grammar:                                                                                                                                                                                                                                                                   |  |  |
|      |                 | Use of Idioms/Phrases in sentences; Understanding Sentences Structures & practice on Transformation of sentences                                                                                                                                                           |  |  |
| III  | Read            | ing & Writing Skills:                                                                                                                                                                                                                                                      |  |  |
|      | Close<br>vice-v | Reading; Comprehension; Translation (from Hindi/Punjabi to English and versa)                                                                                                                                                                                              |  |  |
|      |                 | ess Correspondence- Business letters; Letter to the Editor; Business Emails; ing Notices & Memos                                                                                                                                                                           |  |  |
| IV   | Inter           | active practice sessions on Oral Communication                                                                                                                                                                                                                             |  |  |
|      | • G             | Self-Introduction, Group Discussion and Role Play Common Everyday Situations: Conversations and Dialogues                                                                                                                                                                  |  |  |

#### **Recommended Books:**

- 1. Oxford Practice Grammar by John Eastwood (Ed. 2014)
- 2. Business English, Pearson, 2008.
- 3. Language, Literature and Creativity, Orient Black swan, 2013.
- 4. Remedial English Grammar. F.T. Wood. Macmillan. 2007.
- 5. On Writing Well. William Zinsser. Harper Resource Book. 2001
- 6. Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- 7. Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press.

| Course Name           | B.Sc. (Non-Medical)   |
|-----------------------|-----------------------|
| <b>Subject Code:</b>  |                       |
| <b>Subject Title:</b> | Punjabi-V             |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |

ਪਾਠ-ਕੁਮ:

#### ਯੂਨਿਟ-1 (ਸਾਹਿਤ)

- 1. ਡਾ. ਗੰਡਾ ਸਿੰਘ ਪ੍ਰੋ. ਪ੍ਰੀਤਮ ਸਿੰਘ
- 2. ਨਾਨਕ ਸਿੰਘ ਬਲਵੰਤ ਗਾਰਗੀ
- 3. ਬਾਬਾ, ਬੋਹੜ ਨਹੀਂ ਭਗਵੰਤ ਸਿੰਘ
- 4. ਨਿੱਕੀ ਕਹਾਣੀ ਦਾ ਬਾਦਸ਼ਾਹ-ਅਜੀਤ ਕੌਰ
- 5. ਬਾਤਾਂ ਮੋਹਨ ਸਿੰਘ ਕੀਆਂ- ਕੁਲਬੀਰ ਸਿੰਘ ਕਾਂਗ
- 6. ਗੁਲਾਬੀ ਕਾਗਜ਼ ਉੱਤੇ ਲਿਖੀ ਕਵਿਤਾ:ਸੰਤੋਖ ਧੀਰ-ਗੁਰਬਚਨ ਸਿੰਘ ਭੁੱਲਰ
- 7. ਸੁਤਿੰਦਰ ਸਿੰਘ ਨੂਰ: ਸਾਹਿਤ ਦਾ ਜਥੇਦਾਰ-ਗੁਰਬਚਨ
- 8. ਮਿਲਖਾ ਸਿੰਘ-ਸਰਵਣ ਸਿੰਘ

### ਯੂਨਿਟ-2 (ਭਾਸ਼ਾ )

ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਵਿਚ ਆਏ ਪਰਵਿਰਤਨ ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਦੀ ਵਿਗਿਆਨ ਦੀ ਸਿਖਿਆ ਵਿਚ ਭੂਮਿਕਾ

#### ਯੂਨਿਟ-3 (ਵਿਆਕਰਣ)

ਪੰਜਾਬੀ ਵਿਆਕਰਣਕ ਇਕਾਈਆਂ: ਸਵਾਧੀਨ ਉਪਵਾਕ ਤੇ ਪਰਾਧੀਨ ਉਪਵਾਕ।

#### ਯੂਨਿਟ-4 (ਲੇਖਣੀ-ਕਲਾ)

ਸਨੇਹੀਆਂ ਨੂੰ ਚਿੱਠੀ-ਪੱਤਰ ਪੋਸਟ ਕਾਰਡ ਲਿਖਣ ਦੀ ਵਿਧੀ ਤੇ ਨਮੂਨਾ

#### ਸਹਾਇਕ ਪੁਸਤਕਾਂ:

ਸਾਹਿਤ ਦੇ ਰੰਗ (ਸੰਪ. ਡਾ.ਮਹਿਲ ਸਿੰਘ),ਰਵੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ ਅੰਮ੍ਰਿਤਸਰ।

ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਦਾ ਵਿਆਕਰਨ ਜੋਗਿੰਦਰ ਸਿੰਘ ਪੁਆਰ, ਬਲਦੇਵ ਸਿੰਘ ਚੀਮਾ, ਸੁਖਵਿੰਦਰ ਸਿੰਘ ਸੰਘਾ, ਵੇਦ ਅਗਨੀਹੋਤਰੀ), ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਅਕਾਦਮੀ, ਜਲੰਧਰ, ਐਂਡੀਸ਼ਨ 2009.

| Course Name           | B.Sc. (Non-Medical)        |
|-----------------------|----------------------------|
| <b>Subject Code:</b>  |                            |
| <b>Subject Title:</b> | Punjab History & Culture-V |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3      |

#### **SECTION-A**

Economy: Dev elopement of Resources: Transport and Communication,

Agriculture: Industry, Trade and Commerce, Education

#### **SECTION-B**

Society and Culture: Aristocracy, Middle classes, Artisans, Agricultural

Labourers: Social Religious Reformers.

#### **SECTION-C**

National Movement: Early Nationalist Activities, Agrarian Agitation Of 1907, Ghadar Movement; Gandhian Movements

#### **SECTION-D**

Naujwan Bharat Sabha ;Hundustan Socialist Republican Association. The Akali Movement (1920-25)

#### **Suggested Readings:-**

- **1.** Badan-Powell,B.H., The Land System of British India, II, Oriental Publishers, 1974(reprint).
- 2. Bal, S.S., A Brief History of the Modern Punjab, Lyall Book Depot, Ludhiana, 1974.
- **3.** Banga Indu, Five Punjabi Centuries: Essays for Dr J.S. Grewal, Manohar, New Delhi 1997.
- **4.** Banerjee, Himadri, Agrarian Society of the Punjab, 1849-1901, Manohar Book Service, New Delhi 1982.
- 5. Barrier, N.G, The Sikhs and their Literature, Manohar Books Service, Delhi 1970.

| Course Name           | B.Sc. (Non-Medical)                   |  |  |
|-----------------------|---------------------------------------|--|--|
| <b>Subject Code:</b>  |                                       |  |  |
| <b>Subject Title:</b> | Drug Abuse-I (Problem and Management) |  |  |
| <b>Contact Hours:</b> | L:2 T:0 P:0                           |  |  |

# **Details of the Course**

| Unit | Content                                                                                |
|------|----------------------------------------------------------------------------------------|
| I    | Meaning of Drug Abuse: Concept and Overview, Historical Perspective of Drug            |
|      | Abuse, Drug Dependence, Drug Addiction, Physical and Psychological Dependence:         |
|      | Drug Tolerance and withdrawal symptoms.                                                |
| II   | Types of Abused Drugs and their Effects.                                               |
|      | 1) Stimulants: Amphetamines – Benzedrine, Dexedrine, Cocaine.                          |
|      | 2) Depressants: Alcohol Barbiturates: Nembutal, Seconal, Phenobarbital and Rohypnol.   |
|      | 3) Narcotics: Heroin, Morphine, Oxycodone.                                             |
|      | 4) Hallucinogens: Cannabis, Marijuana, Hashish, Hash Oil, MDMA, LSD.                   |
|      | 5) Steroids.                                                                           |
| III  | Nature and Extent of the Problem: Magnitude or prevalence of the menace of Drug        |
|      | Abuse in India and Punjab, Vulnerable groups by age, gender and economic status, Signs |
|      | and Symptoms of Drug Abuse: Physical, Academic, Behavioural and Psychological          |
|      | Indicators.                                                                            |
| IV   | Management of Drug Abuse:                                                              |
|      | Medical Management: Medication for treatment and to reduce withdrawal effects.         |
|      | Psychiatric Management: Counselling, Behavioural and Cognitive therapy.                |
|      | Social Management: Family, Group therapy and Environmental Intervention.               |

## **References:**

- 8. Ahuja, Ram (2003), Social Problems in India, Rawat Publication, Jaipur.
- 9. Extent, Pattern and Trend of Drug Use in India, Ministry of Social Justice and Empowerment, Government of India, 2004.
- 10. Inciardi, J.A. 1981. The Drug Crime Connection. Beverly Hills: Sage Publications.
- 11. Kapoor. T. (1985) Drug epidemic among Indian Youth, New Delhi: Mittal Pub. 15
- 12. Modi, Ishwar and Modi, Shalini (1997) Drugs: Addiction and Prevention, Jaipur: Rawat Publication.
- 13. National Household Survey of Alcohol and Drug abuse. (2003) New Delhi, Clinical Epidemiological Unit, All India Institute of Medical Sciences, 2004.
- 14. Sain, Bhim 1991, Drug Addiction Alcoholism, Smoking obscenity New Delhi: Mittal Publications.
- 15. Singh, Chandra Paul 2000. Alcohol and Dependence among Industrial Workers: Delhi: Shipra.
- 16. Sussman, S and Ames, S.L. (2008). Drug Abuse: Concepts, Prevention and Cessation, Cambridge University Press.

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| <b>Subject Code:</b>  |                       |  |  |
| <b>Subject Title:</b> | CHEMISTRY LAB V       |  |  |
| <b>Contact Hours:</b> | L:0 T:0 P:4 Credits:2 |  |  |

# (I) Synthesis and Analysis

- (a) Preparation of Sodium trioxalatoferrate(III)
- (b) Preparation of Ni-DMG Complex
- (c) Preparation of Copper tetrammine complex
- (d) Preparation of cis-bisoxalatodiaquachromate(III)ion

# (II) Physical Chemistry

# (a) Conductometric Titrations

(i) Determine the end point of the following titrations by the conductometric methods.

Strong acid-Strong base

Strong acid-Weak base

Weak acid-Strong base

Weak acid-Weak base

- (ii) Determine the composition of a mixture of acetic acid and the hydrochloric acid by conductometric titration.
- **(b)** (i) Molecular Weight Determination of acetanilide, napthalane, using camphor as solvent (Rast's methods).
- (ii) To determine the molecular weight of a polymer by viscosity measurements.
- (c) Adsorption: To study the adsorption of acetic acid oxalic/acid from aqueous solutions by charcoal.
- (d) Phase Equilibria: To determine the distribution coefficient of iodine between CCI<sub>4</sub> and water.
- **(e) Refractometry:** (i) Determination of refractive index of a liquid by Abbe refractometer, and hence the specific and molar refraction.
- (ii) To determine the composition of unknown mixture of two liquids by refractive index measurements.

## Reference books

- 1. Practical Inorganic Chemistry by J.R. Barrante G. Marr and B.W. Rockett
- 2. Vogel's Inorganic Quantitative Analysis
- 3. Advanced Practical Physical Chemistry by J.B. Jadav

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| <b>Subject Code:</b>  |                       |  |  |
| <b>Subject Title:</b> | Physics Lab- V        |  |  |
| <b>Contact Hours:</b> | L:0 T:0 P:4 Credits:2 |  |  |

# **List of Experiments:**

- 1. Measurement of Planck's constant using black body radiation and photo-detector.
- 2. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light.
- 3. To determine work function of material of filament of directly heated vacuum diode.
- 4. To determine the Planck's constant using LEDs of at least 4 different colours.
- 5. To determine the wavelength of H-alpha emission line of Hydrogen atom.
- 6. To determine the ionization potential of mercury.
- 7. To determine the absorption lines in the rotational spectrum of Iodine vapour.
- 8. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- 9. To setup the Millikan oil drop apparatus and determine the charge of an electron.
- 10. To show the tunneling effect in tunnel diode using I-V characteristics.
- 11. To determine the wavelength of laser source using diffraction of single slit.
- 12. To determine the wavelength of laser source using diffraction of double slits.
- 13. To determine (1) wavelength and (2) angular spread of He-Ne laser using plane diffraction grating.
- 14. Study of Electron spin resonance- determine magnetic field as a function of the resonance frequency.
- 15. Study of Zeeman effect: with external magnetic field; Hyperfine splitting.
- 16. To study the quantum tunnelling effect with solid state device, e.g. tunnelling current in backward diode or tunnel diode.

## **Reference Books:**

- 1. Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- 3. Engineering Practical Physics, S.Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 4. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.
- 5. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 201, Kitab Mahal.
- 6. B Sc. Practical Physics, C. L. Arora, S. Chand & Co.
- 7. A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.

# **Sixth Semester**

| Course Code                             | Course Title                                  | Load Allocation |   | Marks<br>Distribution |              | Total        | Credit<br>s |    |
|-----------------------------------------|-----------------------------------------------|-----------------|---|-----------------------|--------------|--------------|-------------|----|
|                                         |                                               | L               | Т | P                     | Interna<br>l | Extern<br>al |             |    |
| BSNM601-18                              | Organic Chemistry-IV                          | 3               | 0 | 0                     | 25           | 50           | 75          | 3  |
| BSNM602-18                              | Physical Chemistry-IV                         | 3               | 0 | 0                     | 25           | 50           | 75          | 3  |
| BSNM603-18                              | Solid State Physics                           | 3               | 0 | 0                     | 25           | 50           | 75          | 3  |
| BSNM604-18                              | Nuclear and Particle<br>Physics               | 3               | 0 | 0                     | 25           | 50           | 75          | 3  |
| BSNM605-18                              | Modern algebra                                | 3               | 0 | 0                     | 25           | 50           | 75          | 3  |
| BSNM606-18                              | Statics and dynamics                          | 3               | 0 | 0                     | 25           | 50           | 75          | 3  |
| BSNM607-18                              | English-VI                                    | 3               | 0 | 0                     | 25           | 50           | 75          | 3  |
| BSNM608-<br>18(A)/<br>BSNM608-<br>18(B) | Punjabi- VI / Punjab<br>History & Culture- VI | 3               | 0 | 0                     | 25           | 50           | 75          | 3  |
| BSNM609-18                              | Drug Abuse-II (Management and Prevention)     | 2               | 0 | 0                     | 25           | 50           | 75          | -  |
| BSNM610-18                              | Chemistry Lab- VI                             | 0               | 0 | 4                     | 30           | 20           | 50          | 2  |
| BSNM611-18                              | Physics Lab- VI                               | 0               | 0 | 4                     | 30           | 20           | 50          | 2  |
|                                         | Total                                         |                 |   |                       |              |              |             | 28 |

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| <b>Subject Code:</b>  |                       |  |  |
| <b>Subject Title:</b> | ORGANIC CHEMISTRY-IV  |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |  |

# **Details of the Course**

| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Ι    | Spectroscopy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|      | Nuclear Magnetic Resonance (NMR) spectroscopy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|      | Proton Magnetic Resonance (1H NMR) spectroscopy, nuclear shielding and deshielding, chemical shift and molecular structure, spin-spin splitting and coupling constants, areas of signals, interpretation of PMR spectra of simple organic molecules such as ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromoethane, ethyl acetate, toluene and acetophenone.                                                                                                                                                                                                               |    |
|      | Electromagnetic Spectrum: Absorption Spectroscopy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|      | Ultraviolet (U.V.) absorption spectroscopy introduction- (Beer-Lambert law), molar absorptivity, analysis of UVspectra, types of electronic transitions effect of conjugation. Concept of chromophores and auxochrome, Bathochrome, hypsochrome, hyperchrome, hypochromic shifts-UV spectra of conjugated compounds, Infrared (IR) Absorption spectroscopy-introduction, Hooke's law, Selection rules, intensity and IR bands, measurement of IR spectrum time characteristic absorption of various fundamental band interpretation of IR spectra of simple organic compounds. |    |
| II   | Problems based on spectroscopy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 |
|      | Problems pertaining to the structure elucidation of simple organic compounds using UV, IR and PMR spectroscopic techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|      | Synthetic Polymers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|      | Addition or chain-growth polymerization. Free radical vinyl polymerization, ionic vinyl polymerization, Ziegler-Natta polymerization and vinyl polymers. Condensation or step growth polymerization. Polyesters, polyamides, phenol formaldehyde resins, urea formaldehyde resins, epoxy resins and polyurethanes. Natural and synthetic rubbers                                                                                                                                                                                                                               |    |
| III  | Organosulphur Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 |
|      | Nomenclature, structural features, Methods of formation and chemical reactions of thiols, thioethers, sulphonic acids, sulphonamides and sulphaguanidine.                                                                                                                                                                                                                                                                                                                                                                                                                      |    |

# **Organic Synthesis via Enolates**

Acidity of  $\alpha$ -hydrogens, alkylation of diethyl malonate and ethyl acetoacetate. Synthesis of ethyl acetoacetate: the Claisen condensation. Keto-enol tautomerism of ethyl acetoacetate. Alkylation of 1,3-dithianes. Alkylation and acylation of enamines.

# IV Carbohydrates

12

Classification and nomenclature. Monosaccharides, mechanism of osazone formation, interconversion of glucose and fructose, chain lengthening and chain shortening of aldoses. Configuration of monosaccharides. Erythro and threo diastereomers. Conversion of glucose into mannose. Formation of glycosides, ethers and esters. Determination of ring size of monosaccharides.

Cyclic structure of D(+)-glucose. Mechanism of mutarotation.

# Structures of ribose and deoxyribose

An introduction to disaccharides (maltose, sucrose and lactose) and polysaccharides (starch and cellulose) without involving structure determination.

# Amino Acids, Peptides, Proteins and Nucleic Acids

Classification, structure and stereochemistry of amino acids. Acid-base behaviour, isoelectric point and electrophoresis. Preparation and reactions of  $\alpha$ -amino acids.

Structure and nomenclature of peptides and proteins. Classification of proteins. Peptide structure determination, end group analysis, selective hydrolysis of peptides. Classical peptide synthesis, solid-phase peptide synthesis. Structures of peptides and proteins. Levels of protein structure. Protein denaturation/renaturation.

Nucleic acids: Introduction. Constituents of nucleic acids. Ribonucleosides and ribonucleotides. The double helical structure of DNA.

- 1. Organic Chemistry. F.A. Carey, McGraw Hill, Inc. 8th edition.
- 2. Organic Chemistry, Morrison and Boyd, Prentice Hall
- 3. R.M. Silverstein, G.C. Bassler, T.C. Morrill, "Spectrometic Identification of Organic Compounds.
- 4. W. Kemp, "Organic Spectroscopy".
- 5. D.H. Williams, I. Fleming, "Spectroscopic Methods in Organic Chemistry".
- 6. J.R.Dyer, "Application of Absorption Spectroscopy of Organic Compounds".
- 7. D. H. Williams, I. Fleming, "Spectroscopic Problems in Organic Chemistry" 1967.
- 8. R.C. Banks, E.R. Matjeka, G. Mercer, "Introductory Problems in Spectroscopy" 1980.

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| <b>Subject Code:</b>  |                       |  |  |
| <b>Subject Title:</b> | PHYSICAL CHEMISTRY-IV |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |  |

# **Details of the Course**

| Unit |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| I    | Quantum Mechanics-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hours<br>12 |
| 1    | Black-body radiation, Planck's radiation law, Photoelectric effect, heat capacity of solids, Bohr's model of hydrogen atom (no derivation) and its defects, Compton effect. de Broglie hypothesis, Heisenberg's uncertainty principle, Sinusoidal wave equation, Hamiltonian operator, Schrodinger wave equation and its importance, physical interpretation of the wave function, postulates of quantum mechanics, particle in a one dimensional box, quantization of energy levels, extension to two and three dimensional boxes, degeneracy. | 12          |
| II   | Quantum Mechanics-II Simple harmonic oscillator model of vibrational motion, setting up Schrodinger equation and discussion of solution and wave functions. Rigid rotator model of rotation of diatomic molecules transformation to spherical polar coordinates spherical harmonics and their discussion. Qualitative investigation H-atom, setting up Schrodinger equation, radial and angular part, radial distribution functions of 1s, 2s, 2p, 3s, 3p and 3d.                                                                               | 12          |
| III  | Solid State Definition of space lattice and unit cell, Law of crystallography- (i) Law of constancy of interfacial angles, (ii) Law of rationality of indices, (iii) Symmetry elements in crystals. X-ray diffraction by crystals. Derivation of Bragg's Law in Reciprocal space. Determination of crystal structure of NaCl, KCl by use of Powder method; Laue's method.                                                                                                                                                                       | 10          |
| IV   | Photochemistry Interaction of radiation with matter, difference between thermal and photochemical processes. Laws of photochemistry: Grothus–Drapper law, Stark–Einstein law, Jablonski diagram depicting various processes occurring in the excited state, qualitative description of flourescence, phosphorescence, non–radiative processes (internal conversion, intersystem crossing), quantum yield, photosensitized reactions–energy transfer processes (simple examples).                                                                | 11          |

- 1. Physical Chemistry, A Molecular Approach by D.A. Mcguarrie and J.D. Simon.
- 2. Quantum Chemistry, Ira N. Levine.
- 3. Quantum Chemistry, H. Eyring J. Walter and G.E. Kimball.
- 4. Molecular Quantum Mechanics, P.W. Atkins.
- 5. R.S.Drago, "Physical Methods in Chemistry".

| Course Name           | B.Sc. (Non-Medical)         |  |  |
|-----------------------|-----------------------------|--|--|
| <b>Subject Code:</b>  |                             |  |  |
| <b>Subject Title:</b> | Solid State Physics         |  |  |
| <b>Contact Hours:</b> | L:3   T:0   P:0   Credits:3 |  |  |

# **Details of the Course**

| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I    | Crystal Structure: Lattice translation, vectors and lattices, symmetry operations, basis and crystal structure, Miller indices, unit cell, two dimensional lattice, three dimensional lattices, hexagonal close packed structure. FCC and BCC structure, simple crystal structure, diffraction of x-rays according to law of Bragg and diffraction conditions. Reciprocal lattice, Brillouin zone, Reciprocal lattice to SC, BCC and FCC lattice, Atomic form factor, geometrical structure factor, experiment methods of x-rays diffraction. (10 Lectures) |
| П    | Crystal Binding and lattice Vibrations: Various types of binding, crystals of inert gases, Vander-Waals-London interactions. Lenard-Jones potential, Ionic crystals, Madelung constant, Bulk Modulus, calculation of repulsive exponent. Born-Haber cycle, quantization of Lattice vibrations, phonon momentum, inelastic scattering by phonons. Wave motion on a lattice, one dimensional line of atoms, linear diatomic lattice, optical and acoustical branch. (10 Lectures)                                                                             |
| III  | <b>Free Electron Theory</b> : Drude-Lorentz theory, Sommerfeld model, the Fermi-Dirac distribution, Effect of temperature on f-d distribution, electronic specific heat, the electrical conductivity and Ohm's Law, the thermal conductivity of metals. Wiedemann -Frenz law, Hall effect. (12 Lectures)                                                                                                                                                                                                                                                    |
| IV   | <b>Band Theory:</b> Nearly free electron model, origin and magnitude of energy gap, Density of states, K space, Bloch theorem, Kronig-Penney model of an infinite one dimensional crystal, classification of insulators, semiconductors and metals. The tight-binding approximation in evaluating the energy levels for an electron in a solid. The Weigner-Seitg approximation and the cohesive energy of metals. (12 Lectures)                                                                                                                            |

- 1. Introduction to Solid State Physics, Charles Kittel, 8th Ed., 2004, Wiley India Pvt. Ltd.
- 2. Elements of Solid State Physics, J.P. Srivastava, 2<sup>nd</sup> Ed., 2006, Prentice-Hall of India
- 3. Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill
- 4. Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning
- 5. Solid-state Physics, H. Ibach and H. Luth, 2009, Springer
- 6. Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India
- 7. Solid State Physics, M.A. Wahab, 2011, Narosa Publications

| Course Name           | B.Sc. (Non-Medical)          |  |  |
|-----------------------|------------------------------|--|--|
| <b>Subject Code:</b>  |                              |  |  |
| <b>Subject Title:</b> | Nuclear and Particle Physics |  |  |
| <b>Contact Hours:</b> | L:3   T:0   P:0   Credits:3  |  |  |

# **Details of the Course**

| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I    | Structure and Properties of the Nucleus: Structure of the nucleus: Discovery of the nucleus, composition, basic properties; charge, mass, size, spin, magnetic moment, electric quadrupole moment, binding energy, binding energy per nucleon and its observed variation with mass number of the nucleus, coulomb energy, volume energy, surface energy, other corrections, explanation of the binding energy curve, liquid drop model of the nucleus, evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model, concept of mean field, residual interaction, nuclear force.  (10 Lectures)                                                                                                                       |
| П    | Radioactive decays: Alpha decay: basics of a-decay processes, theory of alpha emission, Gamow factor, Geiger Nuttall law, a-decay spectroscopy. (b) β-decay: energy kinematics for β-decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission & kinematics, internal conversion. Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Nuclear Q-value, reaction rate, reaction cross section, Concept of compound and direct reaction, resonance reaction, Coulomb scattering (Rutherford scattering). (10 Lectures)                                                                                                                                                               |
| Ш    | Interaction of Radiation with Matter: Energy loss of particles in passage through matter, stopping power of matter for charged particles, energy range relationship and straggling. Interaction of gamma radiation with matter: photoelectric effect, Compton effect and pair production. Thomson scattering and Rayleigh scattering. Detectors and Accelerators: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector, Need for accelerators. (10 Lectures) |
| IV   | Cosmic Rays and Elementary Particles: Discovery of cosmic rays: hard and soft components, discovery of elementary particle, muon, pion, heavy mesons and hyperons, mass and life time determination for muon and pion. Primary Cosmic Rays: Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm, concept of quark model, color quantum number and gluons.                                                                                                                                                                                                                       |

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| <b>Subject Code:</b>  |                       |  |  |
| <b>Subject Title:</b> | Modern algebra        |  |  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |  |  |

**Course Objectives** This course is designed to introduce the basic concepts of modern algebra. The main focus of the course will be on the notions of algebraic structures, groups and rings.

# **UNIT-I**

Groups, properties of group elements, subgroups, cyclic groups, cosets of a subgroup, Lagrange's theorem, normal subgroups and Quotient groups.

## **UNIT-II**

Homomorphism, Isomorphism theorems, conjugate elements, class equation, permutation groups, alternating groups, simplicity of  $A_n$ ,  $n \ge 5$  (without proof).

# **UNIT-III**

Rings, subring, characterization of a subring, integral domains, ideals, characteristic of a ring, Quotient rings.

# **UNIT-IV**

Prime and maximal Ideals, homomorphism, Isomorphism theorems, Polynomial rings.

Course MODERN ALGEBRA Outcomes After completion of the course, the students will be able to

- Deal with algebraic structures and their use in proving theorems/results
- Demonstrate the abstract concepts of groups and rings.

# **Reference Books**

- L. Gilbert, J. Gilbert, Elements of Modern Algebra, Cengage, 2015.
- M. Artin, Algebra, Pearson, 2010.

| Course Name           | B.Sc. (Non-Medical)   |
|-----------------------|-----------------------|
| <b>Subject Code:</b>  |                       |
| <b>Subject Title:</b> | STATICS AND DYNAMICS  |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |

## **UNIT-I**

Basic notions. Composition and resolution of concurrent forces-parallelogram law of forces, Components of a force in given directions, resolved parts of a force, resultant of any number of coplanar concurrent forces.

## **UNIT-II**

Equilibrium conditions for coplanar concurrent forces, equilibrium of a body resting on a smooth inclined plane, equilibrium of three forces acting at a point, triangle law of forces,  $\lambda - \mu$  theorem, Lami's theorem, parallel forces.

# **UNIT-III**

Motion of a particle with constant acceleration, acceleration of falling bodies, motion under gravity, motion of a body projected vertically upwards: Newton's Laws of Motion, Motion of two particles connected by a string, motion along a smooth inclined plane, constrained motion along a smooth inclined plane. Variable acceleration: Simple harmonic motion, elastic string.

## **UNIT-IV**

Curvilinear motion of a particle in a plane: Definition of velocity and acceleration, projectiles, motion in a circle. Work, power, conservative fields and the potential energy, work done against gravity, potential energy of a gravitational field.

## **Reference Books**

- S. L. Loney, Statics, Macmillian and Company London.
- R. S. Verma, A Textbook on Statics, Pothishala Pvt. Ltd. Allahabad.
- S. L. Loney, An Elementary Treatise on the Dynamics of a Particle and of Rigid bodies, Cambridge University Press, 1956.
- M. Ray, A Textbook on Dynamics, S. Chand & Company, 1989.

| Course Name          | B.Sc. (Non-Medical) |      |      |            |
|----------------------|---------------------|------|------|------------|
| <b>Subject Code:</b> |                     |      |      |            |
| Subject Title: ENGLI |                     | I-VI |      |            |
| <b>Contact Hours</b> | L: 3                | T: 0 | P: 0 | Credits: 3 |

# **Details of the Course:**

| Unit | Content                                                                                                                                                                                                                                                |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I    | Literature:  The study of the whole text of the play, <i>All My Sons</i> by Arthur Miller for vocabulary enrichment, learning sentence/speech construction and understanding dialogues/conversations.                                                  |
| II   | Grammar and Vocabulary: Scientific/Technical Vocabulary; One word Substitution; Tenses; Active/Passive Voice; Narration; Common Errors                                                                                                                 |
| III  | Reading & Writing Skills:  Summary & Paraphrasing, Analysis and Interpretation; Formal Report writing; Formal Presentations-Practice on preparing Formal Presentations; Power Point Presentations                                                      |
| IV   | <ul> <li>Interactive practice sessions on Oral Communication</li> <li>Communication at Workplace</li> <li>Preparation for Interviews; Mock interviews</li> <li>Delivering Formal Presentations/Power Point Presentations/Oral Presentations</li> </ul> |

- 1. Oxford Practice Grammar by John Eastwood (Ed. 2014)
- 2. Business English, Pearson, 2008.
- 3. Language, Literature and Creativity, Orient Black swan, 2013.
- 4. Remedial English Grammar. F.T. Wood. Macmillan. 2007.
- 5. On Writing Well. William Zinsser. Harper Resource Book. 2001
- 6. Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006
- 7. Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press.

| Course Name           | B.Sc. (Non-Medical)   |
|-----------------------|-----------------------|
| <b>Subject Code:</b>  |                       |
| <b>Subject Title:</b> | Punjabi-VI            |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3 |

ਪਾਠ-ਕੁਮ:

# ਯੂਨਿਟ-1 (ਸਾਹਿਤ)

- ।. ਕਿਰਤ ਪ੍ਰੋ. ਪੂਰਨ ਸਿੰਘ
- 2. ਗੰਗਾ ਦੀਨ- ਪ੍ਰਿੰ.ਤੇਜਾ ਸਿੰਘ
- 3. ਮਾਂ-ਗੁਰਬਖਸ਼ ਸਿੰਘ ਪ੍ਰੀਤਲੜੀ
- 4. ਲਾਲ ਬਾਦਸ਼ਾਹ- ਹਰਿੰਦਰ ਸਿੰਘ ਰੂਪ
- 5. ਜਿਹੜੇ ਬੁਰੀਆਂ ਮੁੱਝੀਆਂ ਚੁੰਘਦੇ ਸੀ- ਸੂਬਾ ਸਿੰਘ
- 6. ਹਾਰ ਸ਼ਿੰਗਾਰ- ਗੁਲਜ਼ਾਰ ਸਿੰਘ ਸੰਧੁ
- 7. ਡੂੰਘੀਆਂ ਸਿਖਰਾਂ-ਨਰਿੰਦਰ ਸਿੰਘ ਕਪੂਰ
- 8. ਭਾਈ ਮਰਦਾਨਾ ਜੀ- ਹਰਪਾਲ ਸਿੰਘ ਪੰਨੂ

ਯੂਨਿਟ-2 (ਭਾਸ਼ਾ )

ਬਾਜ਼ਾਰ ਵਿਚ ਵਰਤੀ ਜਾਣ ਵਾਲੀ ਸ਼ਬਦਾਵਲੀ ਵਪਾਰ ਵਿਚ ਵਰਤੀ ਜਾਣ ਵਾਲੀ ਸ਼ਬਦਾਵਲੀ

ਯੁਨਿਟ-3 (ਵਿਆਕਰਣ)

ਪੰਜਾਬੀ ਵਿਆਕਰਣਕ ਇਕਾਈਆਂ: ਨਾਂਵ ਵਾਕੰਸ਼ ਤੇ ਕਿਰਿਆ ਵਾਕੰਸ਼।

ਯੁਨਿਟ-4 (ਲੇਖਣੀ-ਕਲਾ)

ਅਖਬਾਰੀ ਲੇਖ ਈ-ਮੇਲ ਲਿਖਣ ਦੀ ਵਿਧੀ

ਸਹਾਇਕ ਪੁਸਤਕਾਂ:

ਸਾਹਿਤ ਦੇ ਰੰਗ (ਸੰਪ. ਡਾ.ਮਹਿਲ ਸਿੰਘ),ਰਵੀ ਸਾਹਿਤ ਪ੍ਰਕਾਸ਼ਨ ਅੰਮ੍ਰਿਤਸਰ।

ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਦਾ ਵਿਆਕਰਨ ਜੋਗਿੰਦਰ ਸਿੰਘ ਪੁਆਰ, ਬਲਦੇਵ ਸਿੰਘ ਚੀਮਾ, ਸੁਖਵਿੰਦਰ ਸਿੰਘ ਸੰਘਾ, ਵੇਦ ਅਗਨੀਹੋਤਰੀ), ਪੰਜਾਬੀ ਭਾਸ਼ਾ ਅਕਾਦਮੀ, ਜਲੰਧਰ, ਐਡੀਸ਼ਨ 2009.

| Course Name           | B.Sc. (Non-Medical)         |
|-----------------------|-----------------------------|
| <b>Subject Code:</b>  |                             |
| <b>Subject Title:</b> | Punjab History & Culture-VI |
| <b>Contact Hours:</b> | L:3 T:0 P:0 Credits:3       |

# **SECTION-A**

- 1. Partition and Rehabilitation
- 2. Punjabi Suba and Territorial Reorganization
- 3. Green Revolution

# **SECTION-B**

- 1. Agrarian Crisis
- 2. Punjab Politics
- 3. Demographic Changes and Urbanization

## **SECTION-C**

- 1. Centre State Relations and the Punjab Crisis
- 2. Militancy/Terrorism: Emergence and Impact

## **SECTION-D**

- 1. Punjabi Diaspora
- 2. Future Perspectives of Punjab: Economy, Politics, Culture and society

# **Suggested Readings: -**

- 1. Grewal, J.S., The Sikhs of the Punjab, CUP, Cambridge, 1990.
- 2. Grewal, J.S., and Indu Banga (eds.), Punjab in Prosperity and Violence: Administration, Politics and Social Change (1947-97), K.K. Publishers, Chandigarh 1998.
- 3. Banga, Indu (ed.), Five Punjabi Centuries: Polity, Economy, Society and Culture c. 1500-1990: Essays for J.S.Grewal, Manohar, New Delhi,1997.
- 4. Puri, Harish K. Paramjit Singh Judge and Jagroop Singh Sekhon, "Terrorism in Punjab: Understanding Reality at the Grassroots Level", Guru Nanak Journal of Sociology, Vol. XVIII No.I, G.N. D. University, Amritsar, 1997, pp. 37-99.
- 5. Khushwant Singh, A History of the Sikhs (1839-1988), Vol. II, OUP, Delhi, 1991.
- 6. Kirpal Singh, Partition of Punjab, Punjabi University, Patiala, 1972.
- 7. Pritam Singh & Shinder Singh Thandi (eds.), Punjabi Identity in Global Context, OUP, Oxford, 1999.
- 8. Pritam Singh, Punjab Economy: The Emerging Pattern, Enkay Publishers, New Delhi, 1995.

| Course Name           | B.Sc. (Non-Medical)                       |
|-----------------------|-------------------------------------------|
| <b>Subject Code:</b>  |                                           |
| Subject Title:        | Drug Abuse-II (Management and Prevention) |
| <b>Contact Hours:</b> | L:2 T:0 P:0                               |

# **Details of the Course**

| Unit | Content                                                                                 |
|------|-----------------------------------------------------------------------------------------|
| I    | Prevention of Drug abuse I:                                                             |
|      | Role of family: Parent child relationship, Family support, Supervision, Shaping values, |
|      | Active Scrutiny.                                                                        |
| II   | Prevention of Drug abuse II:                                                            |
|      | School: Counselling, Teacher as role-model. Parent-teacher-Health Professional          |
|      | Coordination Random testing on students.                                                |
| III  | Controlling Drug Abuse:                                                                 |
|      | Media: Restraint on advertisements of drugs, advertisements on bad effects of drugs,    |
|      | Publicity and media, Campaigns against drug abuse, Educational and awareness            |
|      | program                                                                                 |
| IV   | Legislation: NDPs act, Statutory warnings, Policing of Borders, Checking                |
|      | Supply/Smuggling of Drugs, Strict enforcement of laws, Time bound trials.               |

# **References:**

- 9. Ahuja, Ram (2003), Social Problems in India, Rawat Publication, Jaipur.
- 10. Extent, Pattern and Trend of Drug Use in India, Ministry of Social Justice and Empowerment, Government of India, 2004.
- 11. Inciardi, J.A. 1981. The Drug Crime Connection. Beverly Hills: Sage Publications.
- 12. Kapoor. T. (1985) Drug epidemic among Indian Youth, New Delhi: Mittal Pub. 15
- 13. Modi, Ishwar and Modi, Shalini (1997) Drugs: Addiction and Prevention, Jaipur: Rawat Publication.
- 14. National Household Survey of Alcohol and Drug abuse. (2003) New Delhi, Clinical Epidemiological Unit, All India Institute of Medical Sciences, 2004.
- 15. Sain, Bhim 1991, Drug Addiction Alcoholism, Smoking obscenity New Delhi: Mittal Publications.
- 16. Singh, Chandra Paul 2000. Alcohol and Dependence among Industrial Workers: Delhi: Shipra.
- 17. Sussman, S and Ames, S.L. (2008). Drug Abuse: Concepts, Prevention and Cessation, Cambridge University Press.
- 18. Verma, P.S. 2017, "Punjab's Drug Problem: Contours and Characteristics", Economic and Political Weekly, Vol. LII, No. 3, P.P. 40-43.
- 19. World Drug Report 2016, United Nations office of Drug and Crime.
- 20. World Drug Report 2017, United Nations office of Drug and Crime.

| Course Name           | B.Sc. (Non-Medical)   |  |  |
|-----------------------|-----------------------|--|--|
| <b>Subject Code:</b>  |                       |  |  |
| <b>Subject Title:</b> | CHEMISTRY LAB VI      |  |  |
| <b>Contact Hours:</b> | L:0 T:0 P:4 Credits:2 |  |  |

# (I) Organic Chemistry Laboratory Techniques

# (a) Column Chromatography

Separation of *o* & *p*-nitrophenol Separation of Leaf pigments from Spinnach leaves Separation of *o* & *p*-nitro aniline Separation of dyes

# (b) Synthesis of Organic Compounds

Preparation of *p*-nitroacetanilide

Preparation of *p*-bromoacetanilide

Green Chemistry Experiment: Preparation of benzilic acid from Benzyl-using green approach.

Preparation of Methyl Orange, Methyl Red

Preparation of benzilic acid from benzyl-using green approach

## Reference books

- 1. Experimental Organic Chemistry, Vol. I & II, P.R. Singh, D.S. Gupta and K.S. Bajpai, Tata McGraw Hill.
- 2. Laboratory Manual in Organic Chemistry, R.K. Bansal, Wiley Eastern.
- 3. Vogel's Textbook of Practical Organic Chemistry, B.S. Furniss, A.J. Hannaford, V. Rogers, P.W.G. Smith and A.R. Tatchell, ELBS.
- 4. Practical Organic Chemistry by F.G. Mann and B.C. Saunders

| Course Name           | B.Sc. (Non-Medical)          |  |  |
|-----------------------|------------------------------|--|--|
| <b>Subject Code:</b>  | Physics Lab VI               |  |  |
| <b>Subject Title:</b> |                              |  |  |
| <b>Contact Hours:</b> | Hours: L:0 T:0 P:4 Credits:2 |  |  |

# **Details of the Course**

# **List of Experiments:**

- 1. Characteristics of pn junction diode
- 2. Characteristics of Zener diode.
- 3. To determine the resistivity of semiconductors.
- 4. Measurement of susceptibility of paramagnetic solution (Quinck's Tube Method)
- 5. To measure the Magnetic susceptibility of Solids.
- 6. To determine the Coupling Coefficient of a Piezoelectric crystal.
- 7. To measure the Dielectric Constant of a dielectric Materials with frequency.
- 8. To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR).
- 9. To determine the refractive index of a dielectric layer using SPR.
- 10. To study the PE Hysteresis loop of a Ferroelectric Crystal.
- 11. To study the BH curve of iron using a Solenoid and determine the energy loss.
- 12. To measure the resistivity of a semiconductor (Ge) crystal with temperature by four-probe method (room temperature to 150\*C and to determine its band gap.
- 13. To determine the Hall coefficient of a semiconductor sample.

# **REFERENCE BOOKS:**

- 1. Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- 3. Engineering Practical Physics, S.Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 4. Practical Physics, G.L. Squires, 2015, 4<sup>th</sup> Edition, Cambridge University Press.
- 5. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 201, Kitab Mahal.
- 6. B Sc. Practical Physics, C. L. Arora, S. Chand & Co.
- 7. A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.

# M.Sc. Mathematics Course Structure and Syllabus (Based on Choice Based Credit System) 2022 onwards

## **DEPARTMENT OF MATHEMATICS**

#### VISION

To be a knowledge nerve centre in Mathematics, Pure and Applied Research and industry requirements for creating sustainable infrastructure and enhancing quality of life.

#### MISSION

- To offer globally relevant, industry-linked, research-focused, technology-enabled seamless
  education at the graduate, postgraduate and research levels in various areas of Mathematical sciences
  keeping in mind that the manpower so spawned is excellent in quality, is relevant to the global
  scientific and technological needs, is motivated to give its best and is committed to the growth of the
  Nation.
- 2. To develop and conduct continuing education programs for science graduates with a view to update their fundamental knowledge base and problem-solving capabilities in the various areas of core specialization of the University.
- 3. To develop comprehensive linkages with premier academic and research institutions within the country and abroad for mutual benefit.

# M.Sc. (Mathematics) Program

The main objective of this program is to cultivate a mathematical aptitude and nurture the interests of the students towards problem solving aptitude. Further, it aims at motivating the young minds for research in mathematical sciences and to train computational scientists who can work on real life challenging problems.

**Duration:** M.Sc. Mathematics is a postgraduate level program offered by the Department of Mathematical Sciences. This is a 2-years program, consisting of four semesters with two semesters per year.

**Program Code:** MSM (Master of Science in Mathematics)

**Eligibility:** B.A./B.Sc. or equivalent from a recognized university with Mathematics as one of the major subjects with at least 50% marks in aggregate.

# **PROGRAM OBJECTIVES:** The Program Objectives are the knowledge skills and attributes which the students have at the time of post-graduation. At the end of the program, the student will be able to:

| 1 | To provide comprehensive curriculum to groom the students into qualitative scientific                                                                      |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | manpower                                                                                                                                                   |
| 2 | Enable students to enhance mathematical skills and understand the fundamental concepts of pure and applied mathematics.                                    |
| 3 | To provide qualitative education through effective teaching learning processes by introducing projects, participative learning, and latest software tools. |
| 4 | To inculcate innovative skills, teamwork, ethical practices among students so as to meet societal expectations.                                            |
| 5 | To encourage collaborative learning and application of mathematics to real life situations.                                                                |
| 6 | To inculcate the curiosity for mathematics in students and to prepare them for future research.                                                            |

# **PROGRAM SPECIFIC OUTCOMES:** At the end of the program, the student will be able to:

| PSO1  | Apply the knowledge of mathematical concepts in interdisciplinary fields.                                                                                        |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO2  | Understand the nature of abstract mathematics and explore the concepts in further details.                                                                       |
| PSO3  | Model the real-world problems into mathematical equations and draw the inferences by finding appropriate solutions.                                              |
| PSO4  | Identify challenging problems in mathematics and find appropriate solutions.                                                                                     |
| PSO5  | Pursue research in challenging areas of pure/applied mathematics.                                                                                                |
| PSO6  | Employ confidently the knowledge of mathematical software and tools for treating the complex mathematical problems and scientific investigations.                |
| PSO7  | Continue to acquire mathematical knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in mathematics. |
| PSO8  | Comprehend and write effective reports and design documentation related to mathematical research and literature, make effective presentations.                   |
| PSO9  | Qualify national level tests like NET/GATE etc.                                                                                                                  |
| PSO10 | Effectively communicate and explore ideas of mathematics for propagation of knowledge and popularization of mathematics in society.                              |

**Scheme of the Program: First Semester** 

| Conta | act Ho | ours: | 29 | Hrs. |
|-------|--------|-------|----|------|
|       |        |       |    |      |

Contact Hours: 29 Hrs.

| Course Code | Course Type | Course Title    | Load<br>Allocation |    | Mark | Credits  |          |       |    |
|-------------|-------------|-----------------|--------------------|----|------|----------|----------|-------|----|
|             |             |                 | L                  | T  | P    | Internal | External | Total |    |
| MSM-101-22  |             | Algebra-I       | 4                  | 1  | 0    | 40       | 60       | 100   | 4  |
| MSM-102-22  |             | Real Analysis-I | 4                  | 1  | 0    | 40       | 60       | 100   | 4  |
| MSM-103-22  |             | Complex         | 4                  | 1  | 0    | 40       | 60       | 100   | 4  |
|             |             | Analysis        |                    |    |      |          |          |       |    |
| MSM-104-22  |             | Ordinary        | 4                  | 1  | 0    | 40       | 60       | 100   | 4  |
|             |             | Differential    |                    |    |      |          |          |       |    |
|             | Compulsory  | Equations and   |                    |    |      |          |          |       |    |
|             |             | Special         |                    |    |      |          |          |       |    |
|             |             | Functions       |                    |    |      |          |          |       |    |
| MSM-105-22  |             | Mathematical    | 4                  | 1  | 0    | 40       | 60       | 100   | 4  |
|             |             | Methods         |                    |    |      |          |          |       |    |
| MSM-106-22  |             | Introduction to | 0                  | 0  | 4    | 30       | 20       | 50    | 2  |
|             |             | MATLAB (Lab)    |                    |    |      |          |          |       |    |
|             | Total       |                 | 20                 | 05 | 04   | 230      | 320      | 550   | 22 |

**Scheme of the Program: Second Semester** 

| Course         | Course     | <b>Course Title</b>            | ]   | Load    |    | Mark     | s Distribut | tion  | Credits |
|----------------|------------|--------------------------------|-----|---------|----|----------|-------------|-------|---------|
| Code           | Type       |                                | All | locatio | on |          |             |       |         |
|                |            |                                | L   | Т       | P  | Internal | External    | Total |         |
| MSM-201-<br>22 |            | Algebra-II                     | 4   | 1       | 0  | 40       | 60          | 100   | 4       |
| MSM-202-<br>22 |            | Real Analysis-II               | 4   | 1       | 0  | 40       | 60          | 100   | 4       |
| MSM-203-<br>22 |            | Mechanics-I                    | 4   | 1       | 0  | 40       | 60          | 100   | 4       |
| MSM-204-<br>22 | Compulsory | Partial Differential Equations | 4   | 1       | 0  | 40       | 60          | 100   | 4       |
| MSM-205-<br>22 | 1          | Numerical<br>Analysis          | 4   | 1       | 0  | 40       | 60          | 100   | 4       |
| MSM-206-       |            | Numerical                      | 0   | 0       | 4  | 30       | 20          | 50    | 2       |

20

05

04

230

320

22

**550** 

**Total** 

Analysis (Lab)

22

Contact Hours: 25 Hrs.

Contact Hours: 25 Hrs.

# Scheme of the Program: Third Semester

| Course<br>Code | Course Type | Course Title                      | 1  | Load<br>Allocation |    | Marl     | Credits  |       |    |
|----------------|-------------|-----------------------------------|----|--------------------|----|----------|----------|-------|----|
|                |             |                                   | L  | T                  | P  | Internal | External | Total |    |
| MSM-301-<br>22 |             | Topology                          | 4  | 1                  | 0  | 40       | 60       | 100   | 4  |
| MSM-302-<br>22 |             | Number Theory and<br>Cryptography | 4  | 1                  | 0  | 40       | 60       | 100   | 4  |
| MSM-303-<br>22 | Compulsory  | Mathematical Statistics           | 4  | 1                  | 0  | 40       | 60       | 100   | 4  |
| MSM-304-<br>22 |             | Functional Analysis               | 4  | 1                  | 0  | 40       | 60       | 100   | 4  |
| MSM-305-<br>22 |             | Tensor Calculus and Applications  | 4  | 1                  | 0  | 40       | 60       | 100   | 4  |
|                | Total       | •                                 | 20 | 05                 | 00 | 200      | 300      | 500   | 20 |

# **Scheme of the Program: Fourth Semester**

| Course   | Course Type | <b>Course Title</b> | Load | Allocat | ion | Mark     | s Distribu | tion  | Credits |
|----------|-------------|---------------------|------|---------|-----|----------|------------|-------|---------|
| Code     | Course Type | Course Title        | Load |         |     | IVICE IS | Cicuits    |       |         |
|          |             |                     | L    | Т       | P   | Internal | External   | Total |         |
| MSM-401- | Compulsory  | Operations          | 4    | 1       | 0   | 40       | 60         | 100   | 4       |
| 22       |             | Research            |      |         |     |          |            |       |         |
| MSM-     |             | Elective-I*         | 4    | 1       | 0   | 40       | 60         | 100   | 4       |
| WWW-22   |             |                     |      |         |     |          |            |       |         |
| MSM-     |             | Elective-II*        | 4    | 1       | 0   | 40       | 60         | 100   | 4       |
| XXX-22   |             |                     |      |         |     |          |            |       |         |
| MSM-     |             | Elective-III*       | 4    | 1       | 0   | 40       | 60         | 100   | 4       |
| YYY-22   | Elective    |                     |      |         |     |          |            |       |         |
| MSM-ZZZ- |             | Elective-IV*        | 4    | 1       | 0   | 40       | 60         | 100   | 4       |
| 22       |             |                     |      |         |     |          |            |       |         |
| MSM-601- |             | Dissertation        | 12   | 0       | 0   | 200      | 100        | 300   | 12      |
| 22       |             |                     |      |         |     |          |            |       |         |
|          | 1           | Total               | 1    | 1       | 1   | <u>l</u> | 1          | 500   | 20      |

# **Note:**

- 1. Subject Operations Research (MSM-401-22) is compulsory.
- 2. Students may opt for Dissertation with 01 Elective course or without dissertation with 04 Elective courses from the list below.

# LIST OF DEPARTMENTAL/INTERDISCIPLINARY ELECTIVES

# \*Electives- MSM-WWW-22, MSM-XXX-22, MSM-YYY-22, MSM-ZZZ-22

MSM-501-22 Discrete Mathematics

MSM-502-22 Coding Theory

MSM-503-22 Differential Geometry

MSM-504-22 Advanced Number Theory

MSM-505-22 Advanced Complex Analysis

MSM-506-22 Advanced Operations Research

MSM-507-22 Advanced Fluid Mechanics

MSM-508-22 Advanced Solid Mechanics

MSM-509-22 Theory of Linear Operators

MSM-510-22 Advanced Numerical Methods

MSM-511-22 Topological Vector Spaces

MSM-512-22 Fractional Calculus

# **Examination and Evaluation**

| Theory   |                                                                                   |                    |                                                                        |
|----------|-----------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------|
| S. No.   | Evaluation criteria                                                               | Weightage in Marks | Remarks                                                                |
| 1        | Mid term/sessional Tests                                                          | 24                 | Internal evaluation (40 Marks) MSTs, Quizzes, assignments, attendance, |
| 2        | Attendance                                                                        | 6                  | etc., constitute internal evaluation.                                  |
| 3        | Assignments                                                                       | 10                 | Average of two mid semester test will be considered for evaluation.    |
| 4        | End semester examination                                                          | 60                 | External evaluation                                                    |
| 5        | Total                                                                             | 100                | Marks may be rounded off to nearest integer.                           |
| Practica | al                                                                                |                    |                                                                        |
| 1        | Evaluation of practical record/ Viva<br>Voice/Attendance/Seminar/<br>Presentation | 30                 | Internal evaluation                                                    |
| 2        | Final Practical Performance + Viva-<br>Voce                                       | 20                 | External evaluation                                                    |
| 3        | Total                                                                             | 50                 | Marks may be rounded off to nearest integer.                           |
| Semina   | r                                                                                 | •                  |                                                                        |
| 1        | Content                                                                           | 15                 |                                                                        |
| 2        | Queries                                                                           | 15                 | Internal evaluation                                                    |
| 3        | Communication skills                                                              | 10                 |                                                                        |
| 4        | Visual effects                                                                    | 10                 |                                                                        |
| 5        | Total                                                                             | 50                 | Marks may be rounded off to nearest integer.                           |

|                              | Dissertation Internal Assessment |                               |               |                                |                  |                                                               |  |  |  |  |  |
|------------------------------|----------------------------------|-------------------------------|---------------|--------------------------------|------------------|---------------------------------------------------------------|--|--|--|--|--|
|                              |                                  |                               |               |                                |                  |                                                               |  |  |  |  |  |
|                              | Communica<br>presenta            |                               | Ro            | esponse to queries             | Maximum<br>Marks | Evaluated by                                                  |  |  |  |  |  |
| Departmental<br>Presentation | 20                               |                               |               | 30                             | 50               | Committee Member: 1.Head 2.Supervisor 3.One of Faculty Member |  |  |  |  |  |
|                              | Plagiarism                       | Subject                       | Usage of      | Publication/Presentation       |                  |                                                               |  |  |  |  |  |
| Dissertation                 |                                  | Matter Language in Conference |               | 150                            |                  |                                                               |  |  |  |  |  |
|                              | 25                               | 70                            | 25            | 30                             |                  |                                                               |  |  |  |  |  |
|                              |                                  | E                             | xternal Asses | sment                          |                  |                                                               |  |  |  |  |  |
|                              |                                  |                               |               | Committee<br>Member:<br>1.Head |                  |                                                               |  |  |  |  |  |
| External<br>Examiner         |                                  |                               | 50            |                                | 50               | 2.External Expert 3.Supervisor 4. Director (MC) nominee       |  |  |  |  |  |
| Viva Voce                    | Communica<br>Presenta<br>20      |                               | Re            | esponse to queries 30          | 50               |                                                               |  |  |  |  |  |
|                              | •                                | To                            | otal          |                                | 300              |                                                               |  |  |  |  |  |

# **Evaluation Process:**

- 1. The subject matter evaluation can further be defined on the basis of Title, Review of literature/Motivation, Objectives, Methodology, Results and discussions, and Conclusion.
- 2. The usage of language and the subject matter shall be evaluated by the supervisor. Out of 300 marks, 95 marks are to be evaluated by the concerned supervisor.
- 3. Total 15% Plagiarism is admissible for submission of the dissertation. For (0-5)% of plagiarism, candidate should be awarded 25 marks. For >5%-10% candidate should be awarded 15 marks and for the range of > 10% to < 15%, candidate should be awarded 5 marks.
- 4. For publicationcandidate should be awarded full 30 marks and for presenting the work related to dissertation, candidate should be awarded 25 marks.

# **Instructions for Paper-Setter in M. Sc Mathematics**

# A. Scope

- 1. The question papers should be prepared strictly in accordance with the prescribed syllabus and pattern of question paper of the University.
- 2. The question paper should cover the entire syllabus with uniform distribution among each unit and Weightage of marks for each question.
- 3. The language of questions should be simple, direct, and documented clearly and unequivocally so that the candidates may have no difficulty in appreciating the scope and purpose of the questions. The length of the expected answer should be specified as far as possible in the question itself.
- 4. The distribution of marks to each question/answer should be indicated in the question paper properly.

# B. Type and difficulty level of question papers

1. Questions should be framed in such a way as to test the students intelligent grasp of broad principles and understanding of the applied aspects of the subject. The Weightage of the marks as per the difficulty level of the question paper shall be as follows:

i) Easy question 30%

ii) Average questions 50%

iii) Difficult questions 20%

2. The numerical content of the question paper should be up to 40%.

# C. Format of question paper

- 1. Paper code and Paper-ID should be mentioned properly.
- 2. The question paper will consist of three sections: Sections-A, B and C.
- 3. Section-A is COMPULSORY consisting of TEN SHORT questions carrying two marks each (total 20 marks) covering the entire syllabus.
- 4. The Section-B consists of FOUR questions of eight marks each covering Unit I & II of syllabus (Taking two questions from each unit I & II).
- 5. The Section-C consists of FOUR questions of eight marks each covering Unit III & IV of syllabus (Taking two questions from each unit III & IV).
- 6. Sub-parts of the questions in Section B and C should be preferred for numerical/conceptual questions.
- 7. Attempt any five questions from Section-B and Section-C, selecting at least two questions from each of the two sections.

# **Question paper pattern for MST:**

| Roll No:                                       | No of pages:            |
|------------------------------------------------|-------------------------|
| IK Gujral Punjab Technical Univ                | versity- Jalandhar      |
| Department of Mathematic                       | cal Sciences            |
| Academic Session                               | n:                      |
| Mid-Semester Test: I/II/III (Regular/reappear) | Date:                   |
| Programme: M.Sc. Mathematics                   | Semester:               |
| Course Code:                                   | Course:                 |
| Maximum Marks: 24                              | Time: 1 hour 30 minutes |

❖ Note: Section A is compulsory; Attempt any two questions from Section B and one question from Section C.

| Sec | tion: A | Marks | Cos |
|-----|---------|-------|-----|
| 1   |         | 2     |     |
| 2   |         | 2     |     |
| 3   |         | 2     |     |
| 4   |         | 2     |     |
| Sec | tion: B |       |     |
| 5   |         | 4     |     |
| 6   |         | 4     |     |
| 7   |         | 4     |     |
| Sec | tion: C |       |     |
| 8   |         | 8     |     |
| 9   |         | 8     | ·   |

# **Details of Course Objectives**

| CO1 |  |
|-----|--|
| CO2 |  |
| CO3 |  |
| CO4 |  |
| CO5 |  |

# **SEMESTER-I**

| MSM-1      | 01-22       |                          | Alş         | gebra-I       |              |             | L-4, T-1,     | P-0          | 4 Cree     | dits       |
|------------|-------------|--------------------------|-------------|---------------|--------------|-------------|---------------|--------------|------------|------------|
| Pre-requis | site: Discr | ete Structu              | ires        |               |              |             |               | •            |            |            |
| Course O   | hiaatiyaa   | This source              | a ia dasia  | and to aire   | atudanta     | o foundati  | on for all    | futuma mad   | thamatica  | 0011111000 |
|            |             | This cours of algebra    | •           | •             |              |             |               |              |            |            |
|            |             | s, Groups                | _           | -             | -            |             |               | _            |            |            |
| -          |             | tudents aw               | -           |               |              | _           |               |              |            |            |
|            |             |                          |             | <b>прричи</b> |              |             |               |              | o proorer  |            |
| Course O   | utcomes:    | At the end               | of the cou  | irse, the st  | udents wi    | ll be able  | to            |              |            |            |
| CO1        | Appl        | y the know               | ledge of a  | Algebra to    | attain a g   | ood mathe   | ematical n    | naturity an  | ıd enables | to build   |
| 001        |             | ematical th              | _           | -             | attarr a g   |             | Jiiiuiioui ii | ideality an  | ia chaore  | to ound    |
| CO2        |             | ze the class             |             |               | w theorem    | s to solve  | different     | related pro  | oblems.    |            |
| CO3        | Ident       | ify and an               | alyze diffe | erent types   | s of algebra | raic struct | ures such     | as Solvab    | le groups  | , Simple   |
|            | group       | os, Alterna              | te groups   | to underst    | and and u    | se the fun  | damental      | results in . | Algebra.   |            |
| CO4        |             | gn, analyze              | _           |               | _            |             | _             |              | _          |            |
|            | -           | os and ring              |             | -             | nt types of  | problems    | , for exam    | ple, Isomo   | orphism th | neorems,   |
| ~~-        | •           | ent groups               |             | Ť             |              |             |               | <u> </u>     |            |            |
| CO5        |             | e, select, a             |             |               | _            |             | res such a    | s finitely   | generated  | l abelian  |
| CO6        |             | os, Ideals, lify the cha |             | _             |              |             | cs and fine   | their ann    | ropriates  | olutions   |
| <u> </u>   | Ident       |                          |             |               | mes with     |             |               |              | ropriate s | orunons.   |
|            |             | 1.1mpj                   | ong or co   |               | ALLOS WILLI  | une progre  |               | 105          |            |            |
|            | PSO1        | PSO2                     | PSO3        | PSO4          | PSO5         | PSO6        | PSO7          | PSO8         | PSO9       | PSO        |
|            |             |                          |             |               |              |             |               |              |            | 10         |
| CO1        |             | $\sqrt{}$                | -           |               |              | -           |               | -            |            |            |
| CO2        | √           | √                        | -           | V             | -            | -           | V             | -            | √          | V          |
|            |             |                          |             |               |              |             |               |              |            |            |
| CO3        |             |                          | -           |               |              | -           | $\sqrt{}$     | -            |            |            |
| ~~.        |             |                          |             |               | ,            |             | ,             |              | ,          | ,          |
| CO4        | <b>√</b>    | $\sqrt{}$                | -           | V             | $\sqrt{}$    | -           | $\sqrt{}$     | -            | V          | V          |
| CO5        | <b>√</b>    | <b>√</b>                 | _           | √             | -            | -           | <b>√</b>      | -            | 1          | √          |
|            |             |                          |             |               |              |             |               |              |            |            |
| CO6        | <b>√</b>    | <b>√</b>                 | -           | <b>√</b>      | -            | -           | <b>√</b>      | -            | <b>√</b>   | √          |
|            |             |                          |             |               |              |             |               |              |            |            |

Course Title: Algebra-I Course Code: MSM-101-22

## **UNIT-I**

**Groups, Subgroups & Homomorphisms:** Groups, homomorphisms, Subgroups and Cosets, Cyclic groups, Permutation groups, Normal subgroups and quotient groups, Isomorphism theorems, Automorphisms, Symmetric groups, Conjugacy. [Ref 2: Unit 1]

# **UNIT-II**

**Solvability & Simplicity:** Normal series, Derived Series, Composition Series, Solvable Groups, Simple groups and their examples, Alternating group  $A_n$ , Simplicity of  $A_n$ . [Ref 2: Unit 1]

## **UNIT-III**

**Finite Abelian Groups:** Direct products, Finite Abelian Groups, Fundamental Theorem on Finitely generated Abelian Groups, Invariants of a finite abelian groups, Sylow's Theorems and their applications, Groups of order  $p^2$ , pq. [Ref 2: Unit 1]

## **UNIT-IV**

**Rings & Ideals:** Ring, Subring, Ideals, Homomorphism and Algebra of Ideals, Maximal and prime ideals, Ideals in quotient rings, Nilpotent and nil ideals. [Ref 2: Unit 2]

- 1. Bhattacharya, P. B., Jain, S.K. and Nagpaul, S.R., *Basic Abstract Algebra*, 2<sup>nd</sup> *Edition*. U.K.: Cambridge University Press, 2004.
- 2. Dummit, David. S., and Foote, Richard M., Abstract Algebra, 3<sup>rd</sup> Edition. New Delhi: Wiley, 2011.
- 3. Herstein, I.N., *Topics in Algebra*, 2<sup>nd</sup> *Edition*. New Delhi: Wiley, 2006.
- 4. Singh, Surjeet, and Zameeruddin, Q., *Modern Algebra*, 7<sup>th</sup> Edition. New Delhi: Vikas Publishing House, 1993.
- 5. Artin, M., *Algebra*, 2<sup>nd</sup> Edition. Pearson Publications, 2010.

| MSM-102-22                                                                            |            | Real Analysis-I                                                                             |             |             |              |              | L-4, T-1,                             | P-0                       | 4 Cree     | dits       |  |  |  |
|---------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------|-------------|-------------|--------------|--------------|---------------------------------------|---------------------------|------------|------------|--|--|--|
| Pre-requi                                                                             | isite: Bas | ic Calculu                                                                                  | s           |             |              |              |                                       |                           |            |            |  |  |  |
| Course O                                                                              | bjectives  | : This cour                                                                                 | se is desig | gned to pro | ovide a de   | eper and r   | igorous ur                            | derstandi                 | ng of fund | lamental   |  |  |  |
| concepts v                                                                            | iz. metric | spaces, co                                                                                  | ontinuous   | functions,  | sequence     | s, series: p | ower serie                            | es and the                | Riemann    | -Stieltjes |  |  |  |
| integral et                                                                           | c. The foc | cus of this                                                                                 | course wil  | l be on the | eoretical f  | oundation    | of the abo                            | ove said c                | oncepts a  | nd it will |  |  |  |
| cultivate t                                                                           | he rigorou | is mathem                                                                                   | atical logi | cs and ski  | lls in the s | students.    |                                       |                           |            |            |  |  |  |
| Course O                                                                              | utcomes:   | At the end                                                                                  | d of the co | ourse, the  | students w   | vill be able | e to                                  |                           |            |            |  |  |  |
| CO1 Apply the knowledge of concepts of real analysis to study theoretical development |            |                                                                                             |             |             |              |              |                                       |                           |            | ment of    |  |  |  |
|                                                                                       | differ     | different mathematical techniques and their applications.                                   |             |             |              |              |                                       |                           |            |            |  |  |  |
| CO2                                                                                   | Unde       | Understand the nature of abstract mathematics and explore the concepts in further details.  |             |             |              |              |                                       |                           |            |            |  |  |  |
| CO3                                                                                   | Ident      | Identify challenging problems in real variable theory and find their appropriate solutions. |             |             |              |              |                                       |                           |            |            |  |  |  |
| CO4 Deal with axiomatic structure of metric spaces and generalize the concepts of     |            |                                                                                             |             |             |              |              |                                       | of seque                  | nces and   |            |  |  |  |
|                                                                                       | I          | continuous functions in metric spaces.                                                      |             |             |              |              |                                       |                           |            |            |  |  |  |
| CO5 Use theory of Riemann-Stieltjes integral which is a modific                       |            |                                                                                             |             |             |              |              | modifica                              | tion of Riemann theory of |            |            |  |  |  |
|                                                                                       |            | integration.                                                                                |             |             |              |              |                                       |                           |            |            |  |  |  |
| Extend their knowledge of real variable theory for further exploration of the subject |            |                                                                                             |             |             |              |              |                                       | at more                   |            |            |  |  |  |
|                                                                                       | advai      | nced level.                                                                                 |             |             |              |              |                                       |                           |            |            |  |  |  |
|                                                                                       |            | Mappi                                                                                       | ing of cou  | rse outco   | mes with     | the prog     | ram outco                             | omes                      |            |            |  |  |  |
|                                                                                       | PSO1       | PSO2                                                                                        | PSO3        | PSO4        | PSO5         | PSO6         | PSO7                                  | PSO8                      | PSO9       | PSO        |  |  |  |
| CO1                                                                                   | 2/         |                                                                                             |             |             |              |              | 2/                                    |                           | 1          | 10<br>√    |  |  |  |
| CO2                                                                                   | √          | -<br>\<br>\                                                                                 | -           | -           | -            | -            | √<br>√                                | -                         | √<br>√     | 2/         |  |  |  |
| CO2                                                                                   | _          | V                                                                                           | _           | _           | _            | -            | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | _                         | \ \ \      | V          |  |  |  |
| CO3                                                                                   | -          | -                                                                                           | -           | √           | -            | -            | √                                     | -                         | <b>√</b>   | <b>√</b>   |  |  |  |
|                                                                                       |            |                                                                                             |             |             |              |              |                                       |                           |            |            |  |  |  |
| CO4                                                                                   | -          | V                                                                                           | -           | -           | -            | -            | V                                     | -                         | √          |            |  |  |  |
| CO5                                                                                   | √          | -                                                                                           | -           | -           | -            | -            | <b>√</b>                              | -                         | √          | √          |  |  |  |
|                                                                                       |            |                                                                                             |             |             |              |              |                                       |                           |            |            |  |  |  |
| CO6                                                                                   | -          | -                                                                                           | -           | -           |              | -            |                                       | -                         |            | √          |  |  |  |
|                                                                                       |            |                                                                                             |             |             |              |              |                                       |                           |            |            |  |  |  |

Course Title: Real Analysis-I Course Code: MSM-102-22

## **UNIT-I**

Finite, Countable and Uncountable sets, Metric spaces, Open sets, closed sets, Compact sets, Perfect sets, Connected sets.

## **UNIT-II**

Sequences, Convergent sequences, Subsequences, Cauchy sequences, Complete metric spaces. Cantor's intersection theorem, power series, absolute convergence.

## **UNIT-III**

Continuity: Limits of functions, Continuous functions, Continuity and Compactness, Continuity and Connectedness, Discontinuities, Monotonic functions, Uniform continuity.

#### **UNIT-IV**

The Riemann-Stieltjes integral: Definition and existence of the Riemann-Stieltjes integral, Condition of integrability, The Riemann-Stieltjes integral as a limit of sum, Properties of the integral, Relation between Riemann integral and Riemann-Stieltjes integral, First and second mean value theorems of Riemann-Stieltjes integral.

- 1. Rudin, W., Principles of Mathematical Analysis, 3<sup>rd</sup> Edition. New Delhi: McGraw-Hill Inc., 2013.
- 2. Royden, H.L. and Fitzpatrick, P.M., *Real Analysis*, 4<sup>th</sup> Edition. New Delhi: Pearson, 2010.
- 3. Carothers, N. L., Real Analysis, Cambridge University Press, 2000.
- 4. Apostol, T.M., *Mathematical Analysis –A modern approach to Advanced Calculus*. New Delhi: Narosa Publishing House, 1957.
- 5. Abbott, S., *Understanding Analysis*, 2<sup>nd</sup> Edition. Springer, 2016.
- 6. Malik S. C., Arora Savita, *Mathematical Analysis*, 5<sup>th</sup> Edition, New Age International Publishers, 2017.

| MSM-10                                                        | 3-22 Complex Analysis |                                                                                        |             |              |             | L-4, T-1,   | P-0                                       | 4 Cree      | dits       |           |  |  |  |
|---------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------|-------------|--------------|-------------|-------------|-------------------------------------------|-------------|------------|-----------|--|--|--|
| Pre-requis                                                    | site: Calc            | ulus of sev                                                                            | veral varia | bles and c   | complex n   | umber sys   | stem.                                     |             |            |           |  |  |  |
| ~ ~                                                           |                       |                                                                                        |             |              |             |             |                                           |             |            |           |  |  |  |
| Course O                                                      | •                     | ·                                                                                      |             |              |             |             | •                                         |             |            | •         |  |  |  |
| fundament                                                     | •                     |                                                                                        | •           | •            |             |             |                                           | •           |            |           |  |  |  |
| harmonic f                                                    |                       |                                                                                        |             |              |             |             | _                                         |             |            | -         |  |  |  |
| complex v                                                     |                       | -                                                                                      |             |              | students to | acquire s   | skill of cor                              | ntour integ | gration to | evaluate  |  |  |  |
| complicate                                                    |                       |                                                                                        |             |              |             |             |                                           |             |            |           |  |  |  |
| Course O                                                      | utcomes:              | At the end                                                                             | of the co   | ourse, the s | students w  | ill be able | e to                                      |             |            |           |  |  |  |
| CO1                                                           | Know                  | Know the fundamental concepts of complex analysis.                                     |             |              |             |             |                                           |             |            |           |  |  |  |
| CO2                                                           | Evalu                 | Evaluate complex integrals and apply Cauchy integral theorem and formula.              |             |              |             |             |                                           |             |            |           |  |  |  |
| CO3                                                           | Evalu                 | Evaluate limits and checking the continuity of complex function & apply the concept of |             |              |             |             |                                           |             |            |           |  |  |  |
|                                                               | analy                 | analyticity and the Cauchy-Riemann equations.                                          |             |              |             |             |                                           |             |            |           |  |  |  |
| CO4 Solve the problems using complex analysis tech            |                       |                                                                                        |             |              |             |             | niques applied to different situations in |             |            |           |  |  |  |
|                                                               | engin                 | engineering and other mathematical contexts.                                           |             |              |             |             |                                           |             |            |           |  |  |  |
| CO5 Establish the capacity for mathematical reasoning through |                       |                                                                                        |             |              |             |             | ugh analys                                | ing, provi  | ng and ex  | plaining  |  |  |  |
|                                                               | conce                 | pts from c                                                                             | omplex a    | nalysis      |             |             |                                           |             |            |           |  |  |  |
| CO6                                                           | Exten                 | Extend their knowledge to pursue research in this field.                               |             |              |             |             |                                           |             |            |           |  |  |  |
|                                                               |                       | Mappi                                                                                  | ng of cou   | rse outco    | mes with    | the prog    | ram outco                                 | omes        |            |           |  |  |  |
|                                                               | PSO1                  | PSO2                                                                                   | PSO3        | PSO4         | PSO5        | PSO6        | PSO7                                      | PSO8        | PSO9       | PSO       |  |  |  |
|                                                               |                       |                                                                                        |             |              |             |             |                                           |             |            | 10        |  |  |  |
| CO1                                                           | V                     | V                                                                                      | -           | -            | V           | -           | $\sqrt{}$                                 | -           | √          | $\sqrt{}$ |  |  |  |
| CO2                                                           | V                     |                                                                                        | -           | $\sqrt{}$    |             | -           |                                           | -           |            | $\sqrt{}$ |  |  |  |
| CO3                                                           | V                     | V                                                                                      | -           | V            | V           | -           | V                                         | -           | V          | V         |  |  |  |
|                                                               |                       |                                                                                        |             |              |             |             |                                           |             |            |           |  |  |  |
| CO4                                                           |                       | $\sqrt{}$                                                                              | $\sqrt{}$   | $\sqrt{}$    |             | -           | $\sqrt{}$                                 | -           |            | $\sqrt{}$ |  |  |  |
| CO5                                                           | V                     | V                                                                                      | V           | V            | V           | -           | <b>V</b>                                  | -           | V          | V         |  |  |  |
| CO6                                                           | √                     | √ V                                                                                    | √           | V            | √ V         | -           | <b>√</b>                                  | -           | √          | $\sqrt{}$ |  |  |  |

**Course Title: Complex Analysis** 

Course Code: MSM-103-22

#### UNIT-I

Function of complex variable, continuity and differentiability, Analytic functions, Cauchy Riemann equation (Cartesian and polar form). Harmonic functions, Harmonic conjugate, Construction of analytic functions. Stereographic projection and the spherical representation of the extended complex plane.

## **Unit-II**

Complex line integral, Cauchy-Goursat theorem, independence of path; Cauchy's integral formulas and their consequences, Cauchy inequality, Liouville's theorem, Fundamental theorem of algebra, Morera's theorem.

## **Unit-III**

**Power series:** Zeros and singularities of complex functions, classification of singularities: removable singularity, poles, essential singularities, Residue at a pole and at infinity, Circle of convergence, radius of convergence. Taylor's series and Taylor's theorem, Laurent'z series and Laurent theorem, Cauchy's Residue theorem and its applications in evaluation of real integrals: integration around unit circle, integration over semi-circular contours (with and without real poles), integration around rectangular contours.

# Unit-IV

Conformal transformations, Bilinear transformations, Critical points, Fixed points, Problems on cross-ratio and bilinear transformation.

- 1. Ahlfors, L.V., *Complex Analysis*, 2<sup>nd</sup> *Edition*. McGraw-Hill International Student Edition, 1990.
- 2. Kumar, R.R., Complex Analysis, Pearson Education, 2015.
- 3. Churchill, R. and Brown, J.W., *Complex Variables and Applications*, 6<sup>th</sup> *Edition*. New-York: McGraw-Hill, 1996.

| 4-22                                                                             | Ordina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nd i                                                                                                                                                                                                                               | L-4, T-1,                                                                                                                                                                                                                                                                                                                   | P-0 4 Credits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                  | Special Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| ite: Diff                                                                        | erential Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lculus, In                                                                                                                                                                                                                         | tegral Cal                                                                                                                                                                                                                                                                                                                  | culus and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | some intr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oduction t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o linear al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lgebra.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| bjective                                                                         | s: The Ob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | jective of                                                                                                                                                                                                                         | f this cou                                                                                                                                                                                                                                                                                                                  | rse is to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | introduce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ordinary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ial equati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ons and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| al theore                                                                        | ms for exis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tence and                                                                                                                                                                                                                          | uniquene                                                                                                                                                                                                                                                                                                                    | ss. This co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ourse furtl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | her explain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns the ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lytic techn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iques in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| the solu                                                                         | tions of var                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ious ordir                                                                                                                                                                                                                         | ary differ                                                                                                                                                                                                                                                                                                                  | ential equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ations app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | earing in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | various fie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | elds of scie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ence and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 400-00                                                                           | A 4 41a a a 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 . 6 4 1                                                                                                                                                                                                                          | 41                                                                                                                                                                                                                                                                                                                          | ~4d~4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .:11 h a ah l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| itcomes                                                                          | At the end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or the co                                                                                                                                                                                                                          | ourse, the s                                                                                                                                                                                                                                                                                                                | students w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in de adie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| CO1 Understand ordinary differential equations of various types, their solutions |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s, and fund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | amental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| concepts about their existence.                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                  | Understand the concept and applications of eigen value problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Unde                                                                             | Understand differential equations of Strum Liouville type.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Appl                                                                             | Apply various power series methods to obtain series solutions of differential equations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Solve                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                    | <u> </u>                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                  | Mappi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ng of cou                                                                                                                                                                                                                          | rse outco                                                                                                                                                                                                                                                                                                                   | mes with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the prog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ram outco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | omes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| PSO1                                                                             | PSO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PSO3                                                                                                                                                                                                                               | PSO4                                                                                                                                                                                                                                                                                                                        | PSO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PSO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PSO7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PSO8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PSO9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | √                                                                                                                                                                                                                                  | V                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sqrt{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | √                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | √                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| $\sqrt{}$                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sqrt{}$                                                                                                                                                                                                                          | √                                                                                                                                                                                                                                                                                                                           | √                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | √                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sqrt{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| V                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sqrt{}$                                                                                                                                                                                                                          | V                                                                                                                                                                                                                                                                                                                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | √                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| ٦/                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                                                                                                                                                                                                                                  | V                                                                                                                                                                                                                                                                                                                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | √                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>√</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| ٧                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| <b>√</b> √                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                                                                                                                                                                                                                                  | <b>√</b>                                                                                                                                                                                                                                                                                                                    | √                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | √                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>√</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                                                                  | Under Concert Un | ite: Differential Cabiectives: The Obal theorems for exist the solutions of variations: At the end of concepts about the Understand the Understand differential Apply various problems    Discuss various   Solve problems   Mappi | ite: Differential Calculus, In bjectives: The Objective of all theorems for existence and the solutions of various ordin.  Itcomes: At the end of the concepts about their exist Understand differential ed Apply various power seri Discuss various kinds of Solve problems of ordina  Mapping of course of PSO1 PSO2 PSO3 | Special Function ite: Differential Calculus, Integral Cal bjectives: The Objective of this countain theorems for existence and uniquenes the solutions of various ordinary differential equations:  Understand ordinary differential equations of the concepts about their existence.  Understand the concept and applicate Understand differential equations of Discuss various kinds of special fur Solve problems of ordinary differential equations of the course outco  PSO1 PSO2 PSO3 PSO4 | Special Functions ite: Differential Calculus, Integral Calculus and bjectives: The Objective of this course is to al theorems for existence and uniqueness. This counters the solutions of various ordinary differential equations of various ordinary differential equations of concepts about their existence.  Understand ordinary differential equations of equations of the course, the students were concepts about their existence.  Understand the concept and applications of equations of the course of the course of the course of the students were concepts about their existence.  Understand differential equations of Strum Laborated Discuss various kinds of special functions in Solve problems of ordinary differential equations of the course outcomes with the course outcom | ite: Differential Calculus, Integral Calculus and some introduced theorems for existence and uniqueness. This course furth the solutions of various ordinary differential equations apply.  It comes: At the end of the course, the students will be abled to the concepts about their existence.  Understand differential equations of eigen valued to the concept and applications of eigen valued to the concept and applications of the course of the concepts about their existence.  Understand differential equations of Strum Liouville to the concept and applications of the course obtain series of the concept and the concept and applications in detail, the solve problems of ordinary differential equations arising the course outcomes with the program of the course outcomes with the course outcom | Special Functions  ite: Differential Calculus, Integral Calculus and some introduction to bjectives: The Objective of this course is to introduce ordinary all theorems for existence and uniqueness. This course further explain the solutions of various ordinary differential equations appearing in various.  Items: At the end of the course, the students will be able to  Understand ordinary differential equations of various types, their concepts about their existence.  Understand the concept and applications of eigen value problems.  Understand differential equations of Strum Liouville type.  Apply various power series methods to obtain series solutions of Discuss various kinds of special functions in detail, their propertical Solve problems of ordinary differential equations arising in various mapping of course outcomes with the program outcomes.  PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 PSO7 | ite: Differential Calculus, Integral Calculus and some introduction to linear all bjectives: The Objective of this course is to introduce ordinary differential theorems for existence and uniqueness. This course further explains the anathe solutions of various ordinary differential equations appearing in various fields.  Introduce ordinary differential equations appearing in various fields.  Introduces: At the end of the course, the students will be able to  Understand ordinary differential equations of various types, their solutions concepts about their existence.  Understand the concept and applications of eigen value problems.  Understand differential equations of Strum Liouville type.  Apply various power series methods to obtain series solutions of differential Discuss various kinds of special functions in detail, their properties, and response or ordinary differential equations arising in various fields.  Mapping of course outcomes with the program outcomes  PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 PSO7 PSO8 | ite: Differential Calculus, Integral Calculus and some introduction to linear algebra.  bjectives: The Objective of this course is to introduce ordinary differential equational theorems for existence and uniqueness. This course further explains the analytic technical theorems for various ordinary differential equations appearing in various fields of sciential equations of various training in various fields of sciential equations of various types, their solutions, and fund concepts about their existence.  Understand differential equations of eigen value problems.  Understand differential equations of Strum Liouville type.  Apply various power series methods to obtain series solutions of differential equations.  Discuss various kinds of special functions in detail, their properties, and relations.  Solve problems of ordinary differential equations arising in various fields.  Mapping of course outcomes with the program outcomes  PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 PSO7 PSO8 PSO9 |  |  |

# **Course Title: Ordinary Differential Equations and Special Functions**

Course Code: MSM-104-22

#### UNIT-I

Review of linear differential equations with constant & variable coefficients, Fundamental existence and uniqueness theorem for system and higher order equations (Picard's and Piano theorems), System of linear differential equations, an operator method for linear system with constant coefficients, Phase plane method.

#### **UNIT-II**

Homogeneous linear system with constant coefficients, Eigenvalues and eigen functions, orthogonality of eigen functions, Complex eigenvalues, repeated eigenvalues, Ordinary differential equations of the Sturm-Liouville problems, Expansion theorem, Extrema properties of the eigen values of linear differential operators, Formulation of the eigen value problem of a differential operator as a problem of integral equation, Linear homogeneous boundary value problems

#### **UNIT-III**

Power series solution of differential equations: about an ordinary point, solution about regular singular points, the method of Frobenius, Bessel equation and Bessel functions, Recurrence relations and orthogonal properties., Series expansion of Bessel Coefficients, Integral expression, Integral involving Bessel functions, Modified Bessel function, Ber and Bei functions, Asymptotic expansion of Bessel Functions, Legendre's differential equations, Legendre Polynomials, Rodrigue's formula, Recurrence relations and orthogonal properties.

# **UNIT-IV**

The Hermite polynomials, Chebyshev's polynomial, Laugrre's polynomial: Recurrence relations, generating functions and orthogonal properties.

- 1. Ross, S.L., *Differential Equations*, 3<sup>rd</sup> Edition. John Wiley & Sons, 2004.
- 2. Boyce, W.E. and Diprima, R.C., *Elementary Differential Equations and Boundary Value problems*, 4<sup>th</sup> Edition. John Wiley and Sons, 1986.
- 3. Sneddon, I.N., *Special Functions of Mathematical Physics and Chemistry*. Edinburg: Oliver & Boyd, 1956.
- 4. Bell, W.W., Special Functions for Scientists and Engineers. Dover, 1986.

| MSM-105      | 5-22       | I                                                                                        | Mathema    | tical Met    | hods       |             | L-4, T-1, | P-0      | 4 Cred     | lits      |  |
|--------------|------------|------------------------------------------------------------------------------------------|------------|--------------|------------|-------------|-----------|----------|------------|-----------|--|
| Pre-requisi  | ite: Basio | c Calculus                                                                               | and Line   | ar Algebra   | ı          |             |           | •        |            |           |  |
| Course Ob    | •          |                                                                                          |            |              |            | •           |           |          |            | _         |  |
| the objectiv |            |                                                                                          |            |              |            |             | -         |          |            |           |  |
| developmen   |            |                                                                                          |            |              | citis with |             |           | ackgroun | a requiree | i for the |  |
| Course Ou    | tcomes:    | At the end                                                                               | of the co  | ourse, the s | students w | ill be able | to        |          |            |           |  |
| CO1          | Under      | nderstand the theory and applications of integral transforms.                            |            |              |            |             |           |          |            |           |  |
| CO2          | Expla      | aplain how integral transforms can be used to solve a variety of differential equations. |            |              |            |             |           |          |            |           |  |
| CO3          | Solve      | olve integro-differential equations of Fredholm and Volterra type.                       |            |              |            |             |           |          |            |           |  |
| CO4          | Under      | Understand the properties of various kinds of integral equations.                        |            |              |            |             |           |          |            |           |  |
| CO5          | Devel      | lop their at                                                                             | titude tow | vards prob   | lem solvii | ng.         |           |          |            |           |  |
|              | •          | Mappi                                                                                    | ng of cou  | rse outco    | mes with   | the progr   | am outco  | omes     |            |           |  |
|              | PSO1       | PSO2                                                                                     | PSO3       | PSO4         | PSO5       | PSO6        | PSO7      | PSO8     | PSO9       | PSO<br>10 |  |
| CO1          | V          | -                                                                                        | V          | V            | V          | -           | -         | -        | 1          | V         |  |
| CO2          | V          | -                                                                                        | -          |              |            |             |           |          |            |           |  |
| CO3          | V          | -                                                                                        | V          | V            | V          | -           | -         | -        | √          | V         |  |
| CO4          | V          | V                                                                                        | -          | V            | V          | -           | -         | -        | V          | V         |  |
| CO5          | V          | -                                                                                        | V          | V            | V          | -           | -         | -        |            | $\sqrt{}$ |  |

Course Title: Mathematical Methods Course Code: MSM-105-22

## UNIT I

**Laplace Transforms:** Laplace Transform, Properties of Laplace Transform, Inverse Laplace Transform, Convolution theorem, Laplace transform of periodic functions, unit step function and impulsive function, Application of Laplace Transform in solving ordinary and partial differential equations and Simultaneous linear equations.

## **UNIT II**

**Fourier Transforms:** Fourier transform, properties of Fourier transform, inversion formula, convolution, Parseval's equality, Fourier transform of generalized functions, application of Fourier transforms in solving heat, wave and Laplace equation. Fast Fourier transform.

## **UNIT III**

**Integral Equations:** Relations between differential and integral equations, Integral equations of Fredholm and Volterra type, solution by successive substitution and successive approximation, integral equations with degenerate kernels.

## **UNIT IV**

Integral equations of convolution type and their solutions by Laplace transform, Fredholm's theorems, integral equations with symmetric kernel, Solutions with separable kernels, Characteristic numbers, Resolvent kernel, Eigen values and Eigen functions of integral equations and their simple properties.

## **Text and Reference Books:**

- 1. Sneddon, I.N., The Use of Integral Transforms. McGraw Hill, 1985.
- 2. Goldberg, R.R., Fourier Transforms. Cambridge University Press, 1970.
- 3. Smith, M.G., Laplace Transform Theory. Van Nostrand Inc., 2000.
- 4. Elsegolc, L., Calculus of Variation. Dover Publications, 2010.
- 5. Kenwal, R.P., Linear Integral Equation; Theory and Techniques. Academic Press, 1971.
- 6. Hildebrand, F.B., Methods of Applied Mathematics (Latest Reprint). Dover Publications.
- 7. Pal, S. and Bhunia, S.C., Engineering Mathematics. Oxford University Press, 2015.

| MSM-10     | 06-22                                      | Introducti                                                                                                                                                | on to MA    | TLAB (I      | Lab)        |             | L-0, T-0,  | P-4        | 2 Cree      | dits                                  |  |  |  |
|------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-------------|-------------|------------|------------|-------------|---------------------------------------|--|--|--|
| Pre-requis | Pre-requisite: Basic knowledge of computer |                                                                                                                                                           |             |              |             |             |            |            |             |                                       |  |  |  |
| Course O   | bjective                                   | s: This cou                                                                                                                                               | irse is de  | signed to    | introduce   | a powerf    | ful langua | ge MATI    | AB for t    | echnical                              |  |  |  |
|            |                                            | e main focus of the course will be on introduction to basic concepts of MATLAB and their                                                                  |             |              |             |             |            |            |             |                                       |  |  |  |
|            |                                            | ing simple examples. This course will also develop programming skills for solving real world efficiently and accurately                                   |             |              |             |             |            |            |             |                                       |  |  |  |
| problems i | nore effi                                  | ciently and                                                                                                                                               | accuratel   | У            |             |             |            |            |             |                                       |  |  |  |
| Course O   | utcomes                                    | : At the end                                                                                                                                              | of the co   | ourse, the s | students w  | ill be able | e to       |            |             |                                       |  |  |  |
|            | T                                          |                                                                                                                                                           |             |              |             |             |            |            |             |                                       |  |  |  |
| CO1        |                                            | y the know<br>iently.                                                                                                                                     | ledge of 1  | mathemati    | ical softwa | are viz. M  | ATLAB t    | o solve re | al world p  | roblems                               |  |  |  |
| CO2        |                                            | •                                                                                                                                                         | bolic tool  | s of MA      | ΓLAB for    | handling    | different  | mathemat   | tical probl | lems for                              |  |  |  |
|            |                                            | tilize the symbolic tools of MATLAB for handling different mathematical problems for tample, solution of equations, differentiation, and integration etc. |             |              |             |             |            |            |             |                                       |  |  |  |
| CO3        | Desi                                       | gn and ana                                                                                                                                                | lyze their  | own comp     | outer code  | s of mathe  | ematical n | nethods.   |             |                                       |  |  |  |
| CO4        | Unde                                       | erstand and                                                                                                                                               | modify e    | xisting co   | des in sci  | entific co  | mputing b  | ased on th | ne use of o | different                             |  |  |  |
|            | loops                                      | s and condi                                                                                                                                               | tional stru | ictures.     |             |             |            |            |             |                                       |  |  |  |
| CO5        | Use                                        | MATLAB                                                                                                                                                    |             |              |             |             |            |            |             |                                       |  |  |  |
|            |                                            | Mappi                                                                                                                                                     | ng of cou   | rse outco    | mes with    | the progi   | ram outco  | omes       |             |                                       |  |  |  |
|            | PSO1                                       | PSO2                                                                                                                                                      | PSO3        | PSO4         | PSO5        | PSO6        | PSO7       | PSO8       | PSO9        | PSO                                   |  |  |  |
|            |                                            |                                                                                                                                                           |             |              |             |             |            |            |             | 10                                    |  |  |  |
| CO1        | $\sqrt{}$                                  | -                                                                                                                                                         | -           | -            | -           | V           | -          | -          |             | <b>√</b>                              |  |  |  |
| CO2        |                                            | -                                                                                                                                                         | -           | -            | -           |             | -          | -          |             |                                       |  |  |  |
| CO3        | V                                          |                                                                                                                                                           |             |              |             | V           |            |            |             | \<br>\                                |  |  |  |
| 003        | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \      |                                                                                                                                                           | _           | _            | _           | V           | _          | _          |             | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |  |  |  |
| CO4        | -                                          | -                                                                                                                                                         | -           | -            | -           | <b>V</b>    | -          | -          |             | √                                     |  |  |  |
| CO5        | √                                          | -                                                                                                                                                         | -           | -            | _           | <b>√</b>    | -          | -          |             | <b>√</b>                              |  |  |  |
|            |                                            |                                                                                                                                                           |             |              |             |             |            |            |             |                                       |  |  |  |

# Course Title: Introduction to MATLAB (Lab) Course Code: MSM-106-22

## **UNIT-I**

The MATLAB environment, scalars, variables, arrays, mathematical operations with arrays, built-in and user defined functions, script file, input to a script file, output commands: disp and fprintf, function files, comparison between script file and function file.

Plotting: Two-dimensional plots and three-dimensional plots.

## **UNIT-II**

Programming: Relational and logical operators, Conditional statements: if-end structure; if-else-end structure; if-elseif-else-end structure, loops: for-end loop and while-end loop, Nested loops and nested conditional statements, the break and continue command.

Symbolic math: symbolic objects and symbolic expressions; commands: collect, expand, factor, simplify, simple, solve, diff and int.

## Text and Reference Books:

- 1. Higham, D.J. and Higham, N.J., MATLAB Guide, 2nd Edition. Society for Industrial and Applied Mathematics (SIAM), 2005.
- 2. Gilat, A., MATLAB: An Introduction with Applications, 5th Edition. John Wiley & Sons, 2014.

# **SEMESTER-II**

| MSM-20      | 01-22      | 1-22 Algebra-II L-4, T-1, P-0 4 Credits                                                                              |             |              |             |             |             |            |             |           |  |
|-------------|------------|----------------------------------------------------------------------------------------------------------------------|-------------|--------------|-------------|-------------|-------------|------------|-------------|-----------|--|
| Pre-requi   | site: Calo | culus of se                                                                                                          | veral vari  | ables and    | Real Anal   | ysis-I      |             |            |             |           |  |
| Course O    | •          |                                                                                                                      | -           | •            |             |             |             |            |             | •         |  |
| rings, Fiel |            |                                                                                                                      |             |              |             |             |             |            |             |           |  |
| Eisenstein  |            |                                                                                                                      |             |              |             |             |             |            |             |           |  |
| makes the   | students t | to understa                                                                                                          | and about   | the applic   | ations of ( | Galois the  | ory in othe | er branche | es of math  | ematics.  |  |
| Course O    | utcomes:   | At the end                                                                                                           | d of the co | ourse, the s | students w  | ill be able | e to        |            |             |           |  |
| CO1         | Apply      | y the know                                                                                                           | ledge of o  | concepts o   | f Polynon   | nial rings, | Euclidean   | Domain,    | UFD etc.    |           |  |
| CO2         | Unde       | rstand the                                                                                                           | nature of   | abstract m   | nathematic  | s and exp   | lore the co | ncepts in  | further de  | etails    |  |
| CO3         | Utiliz     | the co                                                                                                               | ncepts of   | Einstein     | irreduci    | oility crit | teria to c  | heck the   | factoriza   | ation of  |  |
|             | polyn      | polynomials, extension of fields etc.                                                                                |             |              |             |             |             |            |             |           |  |
| CO4         | Recog      | Recognize the need of concept of fundamental theorem of algebra from a practical viewpoint.                          |             |              |             |             |             |            |             |           |  |
| CO5         |            | Understand Galios extensions from theoretical point of view and apply its tools in different fields of applications. |             |              |             |             |             |            |             |           |  |
| CO6         | Exten      | nd their kn                                                                                                          | owledge     | of Homor     | norphisms   | s, automo   | rphisms ar  | nd fixed f | fields by s | selecting |  |
|             | and a      | pplying its                                                                                                          | tools for   | further res  | search in t | his and ot  | her related | l areas.   |             |           |  |
|             |            | Mappi                                                                                                                | ing of cou  | rse outco    | mes with    | the prog    | ram outco   | mes        |             |           |  |
|             | PSO1       | PSO2                                                                                                                 | PSO3        | PSO4         | PSO5        | PSO6        | PSO7        | PSO8       | PSO9        | PSO<br>10 |  |
| CO1         | $\sqrt{}$  | -                                                                                                                    | -           | V            | V           | -           | -           | -          | V           | $\sqrt{}$ |  |
| CO2         | -          | V                                                                                                                    | -           | V            | V           | -           | -           | -          | V           | V         |  |
| CO3         | V          |                                                                                                                      |             |              |             |             |             |            |             |           |  |
| CO4         | -          | <b>V</b>                                                                                                             | -           | √            | √           | -           | -           | -          | √           | V         |  |
| CO5         | -          | √                                                                                                                    | -           | √            | √           | -           | -           | -          | V           | √         |  |
| CO6         | -          | -                                                                                                                    | -           | V            | V           | -           | -           | -          | V           | V         |  |

**Course Title: Algebra-II** 

Course Code: MSM-201-22

## **UNIT-I**

Polynomial rings, factorization Domain and divisibility, Principal Ideal Domain (PID), Euclidean Domain (ED), factorization of polynomials in one variable over a field. Unique factorization domains, unique factorization in R[x], where R is a Unique Factorization Domain. Euclidean and Principal ideal domain. [Ref 2: Unit 2]

## **UNIT-II**

Gauss Lemma, irreducible polynomials and Eisenstein's Irreducibility Criterion, Fields, Adjunction of roots, Algebraic extensions of field. [Ref 2: Unit 2,4]

## **UNIT-III**

Algebraically closed fields, Splitting fields, normal extensions, finite fields, separable extensions. [Ref 2: Unit 4]

## **UNIT-IV**

Automorphism of groups and fixed fields, Galois extensions. The fundamental theorem of Galois Theory, Fundamental theorem of algebra. [Ref 2: Unit 4]

- 1. Bhattacharya, P.B., Jain, S.K. and Nagpaul, S.R., *Basic Abstract Algebra*, 2<sup>nd</sup> *Edition*. U. K.: Cambridge University Press, 2004.
- 2. Dummit, David. S., and Foote, Richard M., Abstract Algebra, 3<sup>rd</sup> Edition. New Delhi: Wiley, 2011.
- 3. Herstein, I.N., *Topics in Algebra*, 2<sup>nd</sup> *Edition*. New Delhi: Wiley, 2006.
- 4. Singh, Surjeet, and Q. Zameeruddin. *Modern Algebra*, 7<sup>th</sup> *Edition*. New Delhi: Vikas Publishing House, 1993.
- 5. Ash, R., Abstract Algebra: The Basic Graduate Year, Dover Publications Inc, 2006.

| MSM-20                                               | )2-22                  |                                                                                                                                   | Real A                    | Analysis-I           | I                        |             | L-4, T-1,            | P-0        | 4 Cred     | lits      |  |
|------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|--------------------------|-------------|----------------------|------------|------------|-----------|--|
| Pre-requi                                            | site: Calo             | culus of se                                                                                                                       | veral vari                | ables and            | Real Anal                | ysis-I      |                      |            |            |           |  |
| Course O<br>analysis, v<br>application<br>rigorous u | viz. sequents in diffe | nce and se<br>erent branc                                                                                                         | eries of fu<br>ches of pu | nctions, nre and app | neasure th<br>plied math | eory and    | integratio           | n that hav | e many ir  | nportant  |  |
| Course O                                             | utcomes:               | At the end                                                                                                                        | d of the co               | ourse, the s         | students w               | ill be able | e to                 |            |            |           |  |
| CO1                                                  |                        | y the kno<br>ent mather                                                                                                           |                           |                      |                          |             |                      | theoretica | l develop  | ment of   |  |
| CO2                                                  | Unde                   | rstand the                                                                                                                        | nature of                 | abstract m           | nathematic               | s and exp   | lore the co          | oncepts in | further de | etails.   |  |
| CO3                                                  | Apply                  | Apply the concepts of real analysis in solving and analyzing real world problems.                                                 |                           |                      |                          |             |                      |            |            |           |  |
| CO4                                                  | Recog                  | Recognize and elaborate the need of concept of measure from a practical viewpoint.                                                |                           |                      |                          |             |                      |            |            |           |  |
| CO5                                                  |                        | Understand measure theory and integration from theoretical point of view and apply its tools in different fields of applications. |                           |                      |                          |             |                      |            |            |           |  |
| CO6                                                  |                        | nd their kno<br>erther resea<br><b>Mappi</b>                                                                                      | arch in this              | s and othe           | r related a              | reas        | ion by seloram outco |            | applying   | its tools |  |
|                                                      | PSO1                   | PSO2                                                                                                                              | PSO3                      | PSO4                 | PSO5                     | PSO6        | PSO7                 | PSO8       | PSO9       | PSO<br>10 |  |
| CO1                                                  | $\sqrt{}$              | -                                                                                                                                 | -                         | √                    | V                        | -           | -                    | -          | V          | <b>√</b>  |  |
| CO2                                                  | -                      | V                                                                                                                                 | -                         | V                    | √                        | -           | -                    | -          | V          | V         |  |
| CO3                                                  | V                      |                                                                                                                                   |                           |                      |                          |             |                      |            |            |           |  |
| CO4                                                  | -                      | V                                                                                                                                 | -                         | <b>√</b>             | √                        | -           | -                    | -          | V          | V         |  |
| CO5                                                  | -                      | V                                                                                                                                 | -                         | <b>V</b>             | √                        | -           | -                    | -          | V          | <b>V</b>  |  |
| CO6                                                  | -                      | -                                                                                                                                 | -                         | <b>√</b>             | √                        | -           | -                    | -          | <b>√</b>   | 1         |  |

Course Title: Real Analysis-II

Course Code: MSM-202-22

## **UNIT-I**

Sequences and series of functions, Uniform convergence, Uniform convergence and continuity, Uniform convergence and integration, Uniform convergence and differentiation, Equicontinuous families of functions, Weierstrass approximation theorem.

## **UNIT-II**

Lebesgue Measure: Introduction, Lebesgue outer measure, Measurable sets and Lebesgue measure, non-measurable set, Measurable functions, Borel and Lebesgue measurability, Littlewood's three principles.

#### **UNIT-III**

Lebesgue Integral: The Lebesgue integral of a bounded function over a set of finite measure, the Comparison of Riemann and Lebesgue integral, the integral of a nonnegative function, The general Lebesgue integral, Convergence in measure.

## **UNIT-IV**

Differentiation and Integration: The Four derivatives, Differentiation of monotone functions, differentiation of an integral. Absolute continuity.

- 1. Royden, H.L. and Fitzpatrick, P.M., *Real Analysis*, 4<sup>th</sup> Edition. New Delhi: Pearson, 2010.
- 2. Barra, G. de., Measure Theory and Integration, New Delhi: Woodhead Publishing, 2011.
- 3. Rudin, W., *Principles of Mathematical Analysis*, 3<sup>rd</sup> Edition. New Delhi: McGraw-Hill Inc., 2013.
- 4. Carothers, N. L., Real Analysis, Cambridge University Press, 2000.
- 5. Apostol, T.M., *Mathematical Analysis –A modern approach to Advanced Calculus*. New Delhi: Narosa Publishing House, 1957.
- 6. Malik S. C., Arora Savita, *Mathematical Analysis*, 5<sup>th</sup> Edition, New Age International Publishers, 2017.

| MSM-20                                                                      | 3-22                              |                                                                                                                 | Med                                                | chanics-I                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | L-4, T-1,                            | P-0                     | 4 Cred                    | lits               |
|-----------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|-------------------------|---------------------------|--------------------|
| Pre-requis                                                                  | site: Bas                         | ic Mechani                                                                                                      | cs and Ca                                          | lculus of s                                         | several va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | riables                               |                                      |                         |                           |                    |
| Course Ol<br>knowledge<br>fundament<br>of mechan<br>Lagrangian<br>Course Ou | in solvinal concernics. To and Ha | ng some fur<br>pts in the d<br>represent<br>miltonian f                                                         | ndamental<br>ynamics of<br>the equal<br>ormulation | l problems<br>of system<br>tions of<br>on of classi | s. To demosof particles motion for ical mechanical mech | onstrate the sand Lagor compliantics. | e knowled<br>grangian a<br>cated med | lge and un<br>nd Hamilt | derstandir<br>conian forr | ng of the nulation |
|                                                                             |                                   |                                                                                                                 |                                                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                      |                         |                           |                    |
| CO1                                                                         | the d                             | erstand the<br>lifferential                                                                                     | equation f                                         | or station                                          | ary paths.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                         |                           |                    |
| CO2                                                                         |                                   | se Euler-Lagrange equation to find stationary paths and its applications in some classical indamental problems. |                                                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                      |                         |                           |                    |
| CO3                                                                         |                                   | Define and understand basic mechanical concepts related to discrete and continuous mechanical systems.          |                                                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                      |                         |                           |                    |
| CO4                                                                         |                                   | ribe and u<br>alism.                                                                                            | nderstand                                          | the mot                                             | ion of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mechanic                              | al system                            | using L                 | agrange-H                 | lamilton           |
| CO5                                                                         | Con                               | nect concep<br><b>Mappi</b>                                                                                     |                                                    | thematica                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                      |                         |                           |                    |
|                                                                             |                                   |                                                                                                                 | _                                                  | 1                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                      | T                       | _                         |                    |
|                                                                             | PSO1                              | PSO2                                                                                                            | PSO3                                               | PSO4                                                | PSO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PSO6                                  | PSO7                                 | PSO8                    | PSO9                      | PSO<br>10          |
| CO1                                                                         | -                                 | √                                                                                                               | -                                                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     | -                                    | -                       |                           | V                  |
| CO2                                                                         | V                                 | -                                                                                                               | <i>√</i>                                           | √ V                                                 | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                     | -                                    | -                       | V                         | V                  |
| CO3                                                                         | V                                 | -                                                                                                               | V                                                  |                                                     | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                     | -                                    | -                       | V                         | 1                  |
| CO4                                                                         | V                                 | V                                                                                                               | -                                                  | √                                                   | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                     | -                                    | -                       | V                         | V                  |
| CO5                                                                         | V                                 | -                                                                                                               | V                                                  | V                                                   | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                     | -                                    | -                       | V                         | V                  |

**Course Title: Mechanics-I** 

Course Code: MSM-203-22

#### UNIT-I

Functional and its properties, Variation of a functional, Motivating problems: Brachistochrone, isoperimetric, Geodesics. Fundamental lemma of calculus of variation, Euler's equation for one dependent function of one and several variables. Generalization to n dependent functions and dependence on several derivatives. Invariance of Euler's equation, Moving end points problem, extremum under constraints.

## **UNIT-II**

Constraints, Generalized coordinates, Generalized velocity, Generalized force, Generalized potential, D'Alembert principle, Lagrange's equation of first kind and second kind, uniqueness of solution, Energy equation for conservative field. Examples based on solving Lagrange's equation.

## **UNIT-III**

Legendre transformation, Hamilton canonical equation, cyclic coordinates, Routhian procedure, Poisson bracket, Poisson's identity, Jacobi-Poisson theorem, Hamilton's principle, Principle of Least action.

## **UNIT-IV**

Canonical transformations, Hamilton-Jacobi equation. Method of Separation of variables, Lagrange's bracket, Hamilton's equations in Poisson bracket, Canonical character of transformation through Poisson bracket. Invariance of Lagrange's bracket and Poisson's bracket.

- 1. Elsegolc, L.D., Calculus of Variation, Dover Publication, 2007.
- 2. Gantmacher, F., Lectures in Analytic Mechanics, Moscow: Mir Publisher, 1975.
- 3. Goldstien, H., Poole, C. and Safco, J.L., *Classical Mechanics*, 3<sup>rd</sup> Edition. Addison Wesely, 2002.
- 4. Landau, L.D. and Lipshitz, E.M., Mechanics, Oxford: Pergamon Press, 1976.
- 5. Marsden, J.E., Lectures on Mechanics, Cambridge University Press, 1992.
- 6. Biswas, S. N., Classical Mechanics, Books and Applied (P) Ltd., 1999.

| MSM-204      | I-22                                                                                                                                                                                                                 | Par                                                                                               | tial Differ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rential Eq | uations   |            | L-4, T-1,    | P-0       | 4 Cred     | lits    |  |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|------------|--------------|-----------|------------|---------|--|--|--|--|
| Pre-requisi  | ite: Calc                                                                                                                                                                                                            | ulus of sev                                                                                       | eral varia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bles and ( | ODE       | <u>.</u>   |              |           |            |         |  |  |  |  |
|              |                                                                                                                                                                                                                      | <b>F</b>                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           | 1 0        |              |           |            |         |  |  |  |  |
|              | <b>ourse Objectives:</b> The Objective of this course is to introduce first and higher order partial differential puations and their classification. This course explains various analytic methods for computing the |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |              |           |            |         |  |  |  |  |
| _            |                                                                                                                                                                                                                      |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | •         |            | •            |           | •          | •       |  |  |  |  |
|              |                                                                                                                                                                                                                      | bus partial differential equations. It also explains various applications of partial differential |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |              |           |            |         |  |  |  |  |
| equations to | _                                                                                                                                                                                                                    | al physical phenomenon like wave equation of string, diffusion equations and heat flow            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |              |           |            |         |  |  |  |  |
|              |                                                                                                                                                                                                                      |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |              |           |            |         |  |  |  |  |
| Course Ou    | tcomes:                                                                                                                                                                                                              | <b>nes:</b> At the end of the course, the students will be able to                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |              |           |            |         |  |  |  |  |
| CO1          | Unde                                                                                                                                                                                                                 | rstand par                                                                                        | tial differ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ential equ | ations of | first orde | er (linear a | and nonli | near), sec | ond and |  |  |  |  |
|              |                                                                                                                                                                                                                      | r order.                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •          |           |            | `            |           | , ,        |         |  |  |  |  |
| CO2          | Apply                                                                                                                                                                                                                | oply various analytic methods for computing solutions of various PDEs.                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |              |           |            |         |  |  |  |  |
| CO3          | Deter                                                                                                                                                                                                                | etermine integral surfaces passing through a curve, characteristic curves of second order         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |              |           |            |         |  |  |  |  |
|              | PDE a                                                                                                                                                                                                                | DE and compatible systems.                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |              |           |            |         |  |  |  |  |
| CO4          |                                                                                                                                                                                                                      | Understand the formation and solution of some significant PDEs like wave equation, heat           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |              |           |            |         |  |  |  |  |
|              | •                                                                                                                                                                                                                    | ion and di                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |              |           |            |         |  |  |  |  |
| CO5          | Apply                                                                                                                                                                                                                |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            | nderstand 1  |           | henomena   | ı.      |  |  |  |  |
|              |                                                                                                                                                                                                                      | Mappi                                                                                             | ng of cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rse outco  | mes with  | the prog   | ram outco    | omes      |            |         |  |  |  |  |
|              | PSO1                                                                                                                                                                                                                 | PSO2                                                                                              | PSO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PSO4       | PSO5      | PSO6       | PSO7         | PSO8      | PSO9       | PSO     |  |  |  |  |
|              |                                                                                                                                                                                                                      |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |              |           |            | 10      |  |  |  |  |
| CO1          |                                                                                                                                                                                                                      | -                                                                                                 | $\sqrt{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V          | √         | -          | -            | -         | V          | V       |  |  |  |  |
| CO2          | $\sqrt{}$                                                                                                                                                                                                            | -                                                                                                 | -   \lambda   \l |            |           |            |              |           |            |         |  |  |  |  |
|              |                                                                                                                                                                                                                      |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |              |           |            |         |  |  |  |  |
| CO3          | $\sqrt{}$                                                                                                                                                                                                            | -                                                                                                 | $\sqrt{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\sqrt{}$  | $\sqrt{}$ | -          | -            | -         |            |         |  |  |  |  |
|              | ,                                                                                                                                                                                                                    |                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,          |           |            |              |           |            | ,       |  |  |  |  |
| CO4          | $\sqrt{}$                                                                                                                                                                                                            | -                                                                                                 | $\sqrt{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\sqrt{}$  | √         | -          | -            | -         | V          | V       |  |  |  |  |
| CO.5         | <b>√</b>                                                                                                                                                                                                             |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>√</b>   | <b>√</b>  |            |              |           |            | √       |  |  |  |  |
| CO5          | V                                                                                                                                                                                                                    | _                                                                                                 | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l v        | \ \ \     | -          | _            | -         | V          | \ \ \   |  |  |  |  |

# **Course Title: Partial Differential Equations**

Course Code: MSM-204-22

#### **UNIT-I**

**First Order PDE:** Partial differential equations; its order and degree; origin of first order PDE; determination of integral surfaces of linear first order partial differential equations passing through a given curve; surfaces orthogonal to given system of surfaces; non-linear PDE of first order, Cauchy's method of characteristic; compatible system of first order PDE; Charpit's method of solution, solutions satisfying given conditions, Jacobi's method of solution.

#### **UNIT-II**

**Second Order PDE:** Origin of second order PDE; linear second order PDE with constant and variable coefficients; characteristic curves of the second order PDE; Monge's method of solution of non-linear PDE of second order.

## **UNIT-III**

**Separation of Variable Method and Derivation of Heat, wave and Laplace equations:** Derivation of one-dimensional wave equation, Derivation of two-dimensional wave equation, Laplace's equation, Laplace's equation in plane polar coordinates, Laplace's equation in cylindrical coordinates, Laplace's equation in spherical coordinates, Derivation of one-dimensional heat equation.

## **UNIT-IV**

**Boundary value problems using separation of Variable Method:** Boundary value problems in cartesian coordinates on Heat (or Diffusion) equation, wave equation and Laplace equation (1-D, 2-D and 3-D), Boundary value problems in polar co-ordinates, Boundary value problems in cylindrical co-ordinates, Boundary value problems in spherical co-ordinates.

- 1. Sneddon, I.N., *Elements of Partial Differential Equation*, 3<sup>rd</sup> Edition. McGraw Hill Book Company, 1998.
- 2. Copson, E.T., *Partial Differential Equations*, 2<sup>nd</sup> Edition. Cambridge University Press, 1995.
- 3. Strauss, W.A., *Partial Differential Equations: An Introduction*, 2<sup>nd</sup> Edition. 2007.
- 4. Sharma, J.N. and Singh, K., *Partial differential equations for engineers and scientists*, 2<sup>nd</sup> Edition. New Delhi: Narosa Publication House, 2009.

| MSM-20     | )5-18                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      | Numer                                  | ical Analy                             | ysis                                  |                             | L-4, T-1                   | , P-0                       | 4 Cr       | edits                                    |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|-----------------------------|----------------------------|-----------------------------|------------|------------------------------------------|--|--|--|
| Pre-requis | site: Non                                                                                                                                                                                                                                                                                                                           | e                                                                                                                                                                    |                                        |                                        |                                       |                             |                            |                             |            |                                          |  |  |  |
| techniques | Course Objectives: The objective of the course on Algebra-I is to equip the M.Sc. students with the algebraic echniques that he/she needs for understanding theoretical treatment in different courses taught in this class and for developing a strong background if he/she chooses to pursue research in Mathematics as a career. |                                                                                                                                                                      |                                        |                                        |                                       |                             |                            |                             |            |                                          |  |  |  |
| Course O   | Course Outcomes: At the end of the course, the student will be able to                                                                                                                                                                                                                                                              |                                                                                                                                                                      |                                        |                                        |                                       |                             |                            |                             |            |                                          |  |  |  |
| CO1        |                                                                                                                                                                                                                                                                                                                                     | The study the basic numerical methods and their convergence properties for solving nonlinear, linear system of equations, initial value and boundary value problems. |                                        |                                        |                                       |                             |                            |                             |            |                                          |  |  |  |
| CO2        |                                                                                                                                                                                                                                                                                                                                     | he study of numerical methods for differentiation, integration, including Romberg regration.                                                                         |                                        |                                        |                                       |                             |                            |                             |            |                                          |  |  |  |
| CO3        | The t                                                                                                                                                                                                                                                                                                                               | The understanding of the elements of error analysis for numerical methods                                                                                            |                                        |                                        |                                       |                             |                            |                             |            |                                          |  |  |  |
| CO4        | equati                                                                                                                                                                                                                                                                                                                              | Apply the numerical methods (such as Bisection, False position, Newton-Raphson, Secant, to solve equations.                                                          |                                        |                                        |                                       |                             |                            |                             |            |                                          |  |  |  |
| CO5        | Factor<br>(such                                                                                                                                                                                                                                                                                                                     | rization, Jac<br>as Newto<br>lla) for diffe                                                                                                                          | cobi and C<br>n forward<br>erentiation | Sauss Seide<br>and back<br>and integra | el) for linea<br>ward diffe<br>ation. | ar system or<br>rence inter | of equation<br>rpolation f | s./ apply the<br>formula- L | ne numeric | , Cholesky<br>al methods<br>nterpolation |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                     | Mappir                                                                                                                                                               | g of cou                               | rse outco                              | omes wit                              | h the pro                   | gram ou                    | tcomes                      |            |                                          |  |  |  |
|            | PSO1                                                                                                                                                                                                                                                                                                                                | PSO2                                                                                                                                                                 | PSO3                                   | PSO4                                   | PSO5                                  | PSO6                        | PSO7                       | PSO8                        | PSO9       | <b>PSO 10</b>                            |  |  |  |
| CO1        | √                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                    | -                                      | -                                      | -                                     | -                           | -                          | -                           | V          | V                                        |  |  |  |
| CO2        | -                                                                                                                                                                                                                                                                                                                                   | √<br>                                                                                                                                                                | -                                      | -                                      | -                                     | -                           | -                          | -                           | V          | V                                        |  |  |  |
| CO3        | $\sqrt{}$                                                                                                                                                                                                                                                                                                                           | V                                                                                                                                                                    | √ √ √                                  |                                        |                                       |                             |                            |                             |            |                                          |  |  |  |
| CO4        | $\sqrt{}$                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                    | -                                      | -                                      | -                                     | -                           | -                          | -                           | $\sqrt{}$  | $\sqrt{}$                                |  |  |  |
| CO5        | $\sqrt{}$                                                                                                                                                                                                                                                                                                                           | V                                                                                                                                                                    | -                                      | -                                      | -                                     | -                           | -                          | -                           | V          | V                                        |  |  |  |
| CO6        | -                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                    | -                                      | V                                      | -                                     | -                           | -                          | -                           | V          | V                                        |  |  |  |

Course Title: Numerical Analysis Course Code: MSM-205-22

## **UNIT-I**

Numerical computation and Error analysis: Numbers and their accuracy, Floating point arithmetic, Errors in numbers, Error estimation, General error formulae, Error propagation in computation. Inverse problem of error analysis and Numerical instability. Algebraic and transcendental equations: Bisection method, Iteration method, Regula-Falsi method, Secant method, Newton-Raphson's method. Convergence of these methods. Solution of system of nonlinear equations: Newton-Raphson's method.

## **UNIT-II**

System of linear algebraic equations: Gauss elimination method without pivoting and with pivoting, Gauss-Jordon method, LU-factorization method, Jacobi and Gauss-Seidal methods, Convergence of iteration methods, Round-off errors and refinement, ill-conditioning, Inverse of matrices: Partition method. Eigen values and eigen vectors: Rayleigh Power method, Given's method.

## **UNIT-III**

Interpolation: Finite differences, Newton's interpolation formulae, Gauss, Stirling's and Bessel's formulae, Lagrange's, Hermite's and Newton's divided difference formulae. Numerical differentiation and integration: differentiation at tabulated and non-tabulated points, Maximum and minimum values of tabulated function, Newton-Cotes Formulae-Trapezoidal, Simpson's, Boole's and Weddle' rules of integration with errors, Romberg integration. Double integration: Trapezoidal method and Simpson's method.

## **UNIT-IV**

Ordinary differential equations: Taylor series and Picard's methods, Euler's and modified Euler methods, Runge-Kutta methods, Predictor-Corrector methods: Adams-Bashforth's and Milne's methods. Error analysis and accuracy of these methods. Solution of simultaneous and higher order equations, Boundary value problems of Ordinary differential equations: Finite difference methods.

- 1. Sharma, J.N., *Numerical Methods for Engineers and Scientists*, 2<sup>nd</sup> Edition. Narosa Publ. House New Delhi/Alpha Science International Ltd., Oxford UK, 2007, Reprint 2010.
- 2. Jain, M.K., Iyengar, S.R.K. and Jain, R.K., *Numerical Methods for Scientific and Engineering Computation*, 5<sup>th</sup> Edition. New Age International Publ. New Delhi, 2010
- 3. Bradie, B., A Friendly Introduction to Numerical Analysis. Pearson Prentice Hall, 2006.
- 4. Atkinson, K.E., *Introduction to Numerical Analysis*, 2<sup>nd</sup> Edition. John Wiley, 1989.
- 5. Scarborough, J.B., Numerical Mathematical Analysis. Oxford & IBH Publishing Co., 2001.

| MSM-206                                                                                           | 5-22                                                                                 | N                                                                                                           | umerical                                                                                        | Analysis                                                                                                            | (Lab)                                                                                                              |                                                                                                      | L-0, T-0,                                                          | P-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 Cred                                                                              | lits                                                               |  |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| Pre-requisi                                                                                       | i <b>te:</b> Basi                                                                    | c knowled                                                                                                   | lge of Cor                                                                                      | nputer and                                                                                                          | d MATLA                                                                                                            | AB Progra                                                                                            | mming                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                                    |  |
| Course Ob<br>methods for<br>and extrapo<br>of ordinary<br>in order to<br>engineering<br>Course Ou | jectives: r solving lation, no different write and and eco tcomes: Apply comp nonlin | This cour<br>different<br>umerical d<br>tial equation<br>d implem<br>nomics.                                | se is design problems lifferentiations etc. Frent their dof the coowledge of numerions, systems | gned to provize nonling viz. nonling tion and ir urther, this own compourse, the soft computational methern of line | ovide under inear equal integration, s course very puter programments was ter programments ods for so ear equation | erstanding ations, sys numerica will develor grams for will be able amming to living diffons, interp | of implentem of lintal arop program solving peto developerent type | ear equation downdarming skiroblems a and impose of compand extraporation and extraporation and extraporation down and extraporation and e | ions, inter<br>ry value p<br>ills in the<br>arising in<br>lement the<br>blex proble | polation<br>roblems<br>students<br>science,<br>eir own<br>ems viz. |  |
|                                                                                                   |                                                                                      | ential equa                                                                                                 | _                                                                                               |                                                                                                                     | nericar in                                                                                                         | itiai ana t                                                                                          | oundary                                                            | varue pro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     | oraniar y                                                          |  |
| CO2                                                                                               |                                                                                      | rstand diff<br>em efficie                                                                                   | _                                                                                               | lementatio                                                                                                          | on modes                                                                                                           | of a nume                                                                                            | rical meth                                                         | od in orde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | er to solve                                                                         | a given                                                            |  |
| CO3                                                                                               | Analy                                                                                | Analyze and modify computer codes available in the scientific literature.                                   |                                                                                                 |                                                                                                                     |                                                                                                                    |                                                                                                      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                                    |  |
| CO4                                                                                               |                                                                                      | Utilize the symbolic tools of MATLAB independently and in their computer codes for solving a given problem. |                                                                                                 |                                                                                                                     |                                                                                                                    |                                                                                                      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                                    |  |
| CO5                                                                                               |                                                                                      | lop, select<br>imitations                                                                                   |                                                                                                 |                                                                                                                     |                                                                                                                    |                                                                                                      | -                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     | nding of                                                           |  |
| CO6                                                                                               |                                                                                      |                                                                                                             | d find the                                                                                      | ir approp                                                                                                           |                                                                                                                    | ions accu                                                                                            | rately and                                                         | efficientl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |                                                                    |  |
|                                                                                                   | PSO1                                                                                 | PSO2                                                                                                        | PSO3                                                                                            | PSO4                                                                                                                | PSO5                                                                                                               | PSO6                                                                                                 | PSO7                                                               | PSO8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PSO9                                                                                | PSO                                                                |  |
|                                                                                                   | 1501                                                                                 | 1502                                                                                                        | 1500                                                                                            |                                                                                                                     |                                                                                                                    | 1500                                                                                                 | 1507                                                               | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1505                                                                                | 10                                                                 |  |
| CO1                                                                                               | V                                                                                    |                                                                                                             |                                                                                                 |                                                                                                                     |                                                                                                                    |                                                                                                      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                                                   | V                                                                  |  |
| CO2                                                                                               | -                                                                                    |                                                                                                             |                                                                                                 |                                                                                                                     |                                                                                                                    |                                                                                                      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                                    |  |
| CO3                                                                                               | V                                                                                    | √ √ √                                                                                                       |                                                                                                 |                                                                                                                     |                                                                                                                    |                                                                                                      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                                    |  |
| CO4                                                                                               | V                                                                                    | -                                                                                                           | -                                                                                               | -                                                                                                                   | -                                                                                                                  | -                                                                                                    | -                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>√</b>                                                                            | <b>V</b>                                                           |  |
| CO5                                                                                               | V                                                                                    | √                                                                                                           | -                                                                                               | -                                                                                                                   | -                                                                                                                  | -                                                                                                    | -                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | √                                                                                   | V                                                                  |  |
| CO6                                                                                               | -                                                                                    |                                                                                                             |                                                                                                 |                                                                                                                     |                                                                                                                    |                                                                                                      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                                    |  |

# **Course Title: Numerical Analysis (LAB)**

Course Code: MSM-206-22

The following programs of following methods are to be practiced:

- 1. To find a real root of an algebraic/ transcendental equation by using Bisection method.
- 2. To find a real root of an algebraic/ transcendental equation by using Regula-Falsi method.
- 3. To find a real root of an algebraic/ transcendental equation by using Newton-Raphson method.
- 4. To find a real root of an algebraic/ transcendental equation by using Iteration method.
- 5. Implementation of Gauss- Elimination method to solve a system of linear algebraic equations.
- 6. Implementation of Jacobi's method to solve a system of linear algebraic equations.
- 7. Implementation of Gauss-Seidel method to solve a system of linear algebraic equations.
- 8. To find differential coefficients of 1st and 2nd orders using interpolation formulae.
- 9. To evaluate definite integrals by using Newton Cotes integral formulae.
- 10. To evaluate double integrals by using Trapezoidal and Simpson method.
- 11. To compute the solution of ordinary differential equations with Taylor's series method.
- 12. To compute the solution of ordinary differential equations by using Euler's method.
- 13. To compute the solution of ordinary differential equations by using Runge -Kutta methods.
- 14. To compute the solution of ordinary differential equations by using Milne-Simpson method.
- 15. To compute the solution of Boundary value problems of Ordinary Differential Equations by using Finite Difference method.

- 1. Fausett, L.V., *Applied Numerical Analysis using MATLAB*, 2<sup>nd</sup> Edition. Pearson Prentice Hall, 2007.
- 2. Mathews, J.H. and Fink, K.D., *Numerical Methods using MATLAB*, 4<sup>th</sup> Edition. Pearson Prentice Hall, 2004.
- 3. Conte, S.D. and Boor, C.D., Numerical Analysis. New York: McGraw Hill, 1990.

# **Semester III**

| MSM-30       | 01-22       |                                                                                                                                                                           | To           | pology      |                    | I            | L-4, T-1,   | P-0          | 4 Cred      | lits      |  |
|--------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|--------------------|--------------|-------------|--------------|-------------|-----------|--|
| Pre-requ     | isite: Rea  | al Analys                                                                                                                                                                 |              |             |                    |              |             |              |             |           |  |
| Course Ob    | jectives: T | he objectiv                                                                                                                                                               | ve of the co | ourse on To | <b>pology</b> is t | o provide t  | he knowle   | dge of Top   | ological Sp | aces and  |  |
| their impor  | tance. To   | acquaint s                                                                                                                                                                | tudents wi   | th the con  | cept of Ho         | omeomorpl    | nism and t  | he topolog   | cical prope | rties and |  |
| important r  | nathematic  | al concept                                                                                                                                                                | s which ca   | ın be gene  | ralized in         | opological   | spaces, so  | that stud    | ents may 1  | earn and  |  |
| appreciate t | he nature o | of abstract l                                                                                                                                                             | Mathematic   | es.         |                    |              |             |              |             |           |  |
| Course C     | Outcomes    | s: At the                                                                                                                                                                 | end of the   | e course.   | the stude          | nts will b   | e able to   |              |             |           |  |
|              |             |                                                                                                                                                                           |              | ,           |                    |              |             |              |             |           |  |
| CO1          | Unde        | rstand the                                                                                                                                                                | e concept    | ts of topo  | logical sp         | oaces and    | the basic   | c definition | ons of op   | en sets,  |  |
|              | neigh       | Understand the concepts of topological spaces and the basic definitions of open sets, eighbourhood, interior, exterior, closure and their axioms for defining topological |              |             |                    |              |             |              |             |           |  |
|              |             | space.                                                                                                                                                                    |              |             |                    |              |             |              |             |           |  |
| CO2          |             | Understand the concept of Bases and Subbases, create new topological spaces by using subspace.                                                                            |              |             |                    |              |             |              |             |           |  |
| CO3          | Under       | Understand continuity, compactness, connectedness, homeomorphism and topological properties.                                                                              |              |             |                    |              |             |              |             |           |  |
| CO4          | Under       | stand how                                                                                                                                                                 | points of sp | pace are se | parated by         | open sets, l | Housdroff s | spaces and   | their impor | rtance.   |  |
| CO5          | Under       | stand regul                                                                                                                                                               | ar and nor   | nal spaces  | and some i         | mportant tl  | heorems in  | these spac   | es.         |           |  |
|              |             | Mapping                                                                                                                                                                   | g of cour    | se outco    | mes with           | the prog     | gram out    | comes        |             |           |  |
|              | PSO1        | PSO2                                                                                                                                                                      | PSO3         | PSO4        | PSO5               | PSO6         | PSO7        | PSO8         | PSO9        | PSO<br>10 |  |
| CO1          | <b>V</b>    | √                                                                                                                                                                         | -            | √           | √                  | -            | -           | -            | √           | V         |  |
| CO2          | V           | √                                                                                                                                                                         | V            | V           | V                  | -            | -           | -            | V           | V         |  |
| CO3          | V           | <b>V</b>                                                                                                                                                                  | -            | <b>V</b>    | <b>V</b>           | -            | -           | -            | <b>V</b>    | V         |  |
| CO4          | √           | √ V                                                                                                                                                                       | -            | √           | √                  | -            | -           | -            | √           | <b>V</b>  |  |
| CO5          | <b>√</b>    | √                                                                                                                                                                         | -            | <b>√</b>    | <b>√</b>           | -            | -           | -            | √           | √         |  |

**Course Title: Topology** 

Course Code: MSM-301-22

| L | T | P |
|---|---|---|
| 4 | 1 | 0 |

## **UNIT-I**

Introduction to topological spaces, open and closed sets, Neighbourhoods, interior, exterior, boundary, Accumulation points, and limit points. Derived sets, Interior and Closure of a set, Dense sets. Bases and subbases, Subspaces and relative Topology, Alternative methods of defining a Topology in terms of Kuratowski closure operator and neighbourhood systems.

## **UNIT-II**

Open and closed mappings, Continuous mapping and homomorphism. Topological properties, Compactness, local Compactness. One-point compactification.

## **UNIT-III**

Connected and arc-wise connected spaces and connected sets [Basic theorems of connected and disconnected sets; connectedness in terms of open and closed sets, connectedness uder continuous map; closure of connected set and connectedness in usual topological space.], Components and Locally connected spaces. Separation Axioms: T0, T1, T2 (or Hausdorff) spaces and sequences. Axioms of Countability and Seperability, Second Axiom and Lindeloff spaces.

## **UNIT-IV**

Regular and completely regular, Normal and completely normal spaces. Metric spaces as T2, completely normal and first axiom spaces, Urysohn's Lemma, Tietze Extension Theorem.

## **BOOKS RECOMMENDED**

- 1. Munkres, J. R., *Topology, a first course*, Prentice-Hall of India Ltd., New Delhi, 2000.
- 2. Joshi, K. D., *An introduction to general topology*, 2<sup>nd</sup> edition, Wiley Eastern Ltd., New Delhi, 2002.
- 3. Simmons, G.F., *Introduction to topology and Modern Analysis*, McGraw Hill Publications, 2017.
- 4. Kelley, J. L., General Topology, Springer Verlag, New York, 1990.
- 5. Armstrong, M.A., *Basic Topology*, Springer International Ed., 2005.

| MSM-30                                  | )2-22                     | Numbe                                                                                                                                                                                                                                                                                                                                     | r Theory                                  | and Cry                                      | hy l                              | L-4, T-1,                  | P-0                       | 4 Cree                    | dits                     |                      |  |  |  |
|-----------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------|-----------------------------------|----------------------------|---------------------------|---------------------------|--------------------------|----------------------|--|--|--|
| Pre-requ                                | isite: Co                 | ngruence                                                                                                                                                                                                                                                                                                                                  | s, Numbe                                  | er System                                    | l                                 |                            |                           |                           |                          |                      |  |  |  |
| Course Ob<br>them to stu<br>cryptograph | dy higher                 |                                                                                                                                                                                                                                                                                                                                           |                                           |                                              |                                   |                            |                           |                           |                          |                      |  |  |  |
| Course C                                | Outcome                   | s: At the                                                                                                                                                                                                                                                                                                                                 | end of the                                | e course,                                    | the stude                         | nts will b                 | e able to                 |                           |                          |                      |  |  |  |
| CO1                                     |                           | Apply the knowledge of Number theory and Cryptography to attain a good mathematical maturity and enables to build mathematical thinking and skill.  Utilize the GCD, LCM, Fundamental Theorem of Arithmetic, Product of r consecutive integers,                                                                                           |                                           |                                              |                                   |                            |                           |                           |                          |                      |  |  |  |
| CO2                                     |                           | e the GCD<br>uences, Chi                                                                                                                                                                                                                                                                                                                  |                                           |                                              |                                   |                            |                           |                           | onsecutive               | integers,            |  |  |  |
| CO3                                     | invers                    | different ty<br>ion formula                                                                                                                                                                                                                                                                                                               | a to formul                               | ate and solv                                 | ve various                        | related pro                | blems.                    |                           |                          |                      |  |  |  |
| CO4                                     | differ<br>of a(           | Design, analyze and implement the concepts of Diophantine equations for solving different types of problems. Understand and apply the concept of Power residue, order of $a(mod\ m)$ , Primitive root, Reduced residue system, Euler's solvability criterion, Lagrange's theorem for the number of incongruent solutions of a polynomial. |                                           |                                              |                                   |                            |                           |                           |                          |                      |  |  |  |
| CO5                                     | Create<br>prime<br>recipr | e, select and<br>s, greatest in<br>ocity law to                                                                                                                                                                                                                                                                                           | d apply ap<br>nteger func<br>o use in rea | propriate n<br>tions, indic<br>l life proble | number the<br>es, residue<br>ems. | oretic tech<br>classes, Le | niques sucl<br>gendre syn | n as Merse<br>nbols, Gaus | ene primes,<br>ss Lemma, | Fermats<br>quadratic |  |  |  |
| CO6                                     |                           | fy the chal                                                                                                                                                                                                                                                                                                                               | ions.                                     |                                              |                                   |                            |                           |                           | phy and f                | ind their            |  |  |  |
|                                         |                           |                                                                                                                                                                                                                                                                                                                                           |                                           |                                              |                                   |                            | gram out                  |                           | 1                        | 1                    |  |  |  |
|                                         | PSO1                      | PSO2                                                                                                                                                                                                                                                                                                                                      | PSO3                                      | PSO4                                         | PSO5                              | PSO6                       | PSO7                      | PSO8                      | PSO9                     | PSO<br>10            |  |  |  |
| CO1                                     | $\sqrt{}$                 | $\sqrt{}$                                                                                                                                                                                                                                                                                                                                 | -                                         | $\sqrt{}$                                    | $\sqrt{}$                         | -                          | -                         | -                         | $\sqrt{}$                | √                    |  |  |  |
| CO2                                     | V                         | V V - V V V V                                                                                                                                                                                                                                                                                                                             |                                           |                                              |                                   |                            |                           |                           |                          |                      |  |  |  |
| CO3                                     | V                         |                                                                                                                                                                                                                                                                                                                                           |                                           |                                              |                                   |                            |                           |                           |                          |                      |  |  |  |
| CO4                                     | V                         | V                                                                                                                                                                                                                                                                                                                                         | -                                         | V                                            | √                                 | -                          | -                         | -                         | √                        | V                    |  |  |  |
| CO5                                     | V                         | V                                                                                                                                                                                                                                                                                                                                         | -                                         | V                                            | √                                 | -                          | -                         | -                         | √                        | V                    |  |  |  |
| CO6                                     | V                         | -                                                                                                                                                                                                                                                                                                                                         | <b>V</b>                                  | V                                            | -                                 | -                          | -                         | -                         | √                        | V                    |  |  |  |

# Course Title: Number Theory and Cryptography Course Code: MSM-302-22

| L | T | P |
|---|---|---|
| 4 | 1 | 0 |

## **UNIT-I**

Divisibility, Greatest common divisor, Euclidean Algorithm, Least Common Multiplier, divisibility of product of r consecutive integers, The Fundamental Theorem of arithmetic, congruences and its properties, Special divisibility tests, Solvability of linear diophantine equations (ax + by = c) and congruence equations  $(an \equiv b \pmod{c})$ , Chinese remainder theorem.

## **UNIT-II**

Arithmetic functions  $\phi(n)$ , d(n),  $\sigma(n)$ ,  $\mu(n)$ , Multiplicative functions, Mobius inversion Formula, Complete residue system, Fermat's little theorem, Wilson's theorem, Euler's theorem, Power residue, order of  $a(mod\ m)$ , Primitive root, Reduced residue system, Euler's solvability criterion, Lagrange's theorem for the number of incongruent solutions of a polynomial.

## **UNIT-III**

Indices and its properties, The greatest integer function, Legendre's formula, Quadratic residues, Legendre symbol, Gauss's Lemma, Quadratic reciprocity law, perfect numbers, Mersenne primes and Fermat prime numbers. [Ref. 2]

## **UNIT-IV**

Cryptography: some simple cryptosystems, need of the cryptosystems, the idea of public key cryptography, RSA cryptosystem. [Ref. 4]

- 1. Burton, D.M., Elementary Number Theory, 7<sup>th</sup> Edition. McGraw-Hill Education, 2010.
- 2. Hardy, G.H. and Wright, E.M., *An introduction to the Theory of Numbers, 4<sup>th</sup> Edition*. Oxford University Press, 1975.
- 3. Niven, I., Zuckerman, H.S. and Montgomery, H.L., *Introduction to Theory of Numbers*, 5<sup>th</sup> *Edition*. John Wiley & Sons, 1991.
- 4. Koblitz N., A Course in Number Theory and Cryptography, Graduate Texts in Mathematics, No.114. New-York: Springer-Verlag, 1987.
- 5. Stallings, W., Cryptography and Network Security, 5<sup>th</sup> Edition. Pearson, 2010.

| MSM-30                                  | )3-22                                                                                              | N                         | lathemat     | tical Stat   | istics      | ]           | L-4, T-1,   | P-0   | 4 Cred | lits      |
|-----------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------|--------------|--------------|-------------|-------------|-------------|-------|--------|-----------|
| Pre-requ                                | Pre-requisite: Basic Statistics and Calculus of several variables                                  |                           |              |              |             |             |             |       |        |           |
| Course Ob<br>distribution<br>techniques | s and testi<br>and their u                                                                         | ng of hypo<br>tilization. | thesis prob  | olems. It ai | ms to equ   | ip the stud | ents with s |       |        |           |
| Course C                                | Outcomes                                                                                           | s: At the                 | end of the   | e course,    | the stude   | nts will b  | e able to   |       |        |           |
| CO1                                     | Under                                                                                              | stand and u               | tilize the c | oncept of p  | robability. |             |             |       |        |           |
| CO2                                     | Expla                                                                                              | ain the co                | ncept of     | random v     | ariable a   | nd its ap   | plications  | •     |        |           |
| CO3                                     | Explore the different types of discrete and continuous distributions and their utilization.        |                           |              |              |             |             |             |       |        |           |
| CO4                                     | Deal with formulation of hypotheses as per situations and their testing.                           |                           |              |              |             |             |             |       |        |           |
| CO5                                     | Apply the knowledge of statistical techniques in various experimental and industrial requirements. |                           |              |              |             |             |             |       |        |           |
|                                         |                                                                                                    | Mapping                   | g of cour    | se outcoi    | mes with    | the pro     | gram out    | comes |        |           |
|                                         | PSO1                                                                                               | PSO2                      | PSO3         | PSO4         | PSO5        | PSO6        | PSO7        | PSO8  | PSO9   | PSO<br>10 |
| CO1                                     | V                                                                                                  | -                         | V            | V            | V           | -           | -           | -     | V      | V         |
| CO2                                     | <b>V</b>                                                                                           | -                         | V            | V            | <b>V</b>    | -           | -           | -     | V      | 1         |
| CO3                                     | <b>V</b>                                                                                           | -                         | V            | V            | <b>V</b>    | -           | -           | -     | V      | √         |
| CO4                                     | √                                                                                                  | -                         | V            | V            | <b>V</b>    | -           | -           | -     | V      | 1         |
| CO5                                     | √                                                                                                  | -                         | V            | V            | <b>V</b>    | -           | -           | -     | V      | 1         |

## **Course Title: Mathematical Statistics**

Course Code: MSM-303-22

| L | T | P |
|---|---|---|
| 4 | 1 | 0 |

## Unit I

Classical and axiomatic approaches to the theory of probability, Additive and multiplicative law of probability, Conditional probability, Independent events, Bayes theorem. Random variable, Distribution function and its properties, Discrete random variable, Probability mass function, Discrete distribution function, Continuous random variable, Probability density function, Continuous distribution function.

#### Unit II

Two dimensional random variables, joint, marginal and conditional distributions, Independence of random variables, Expectation of a random variable and its properties, Moments, Conditional expectation, Moment generating function and its properties, Cumulants, Characteristic function and its elementary properties.

#### Unit III

Study of various discrete and continuous distributions: Binomial, Poisson, Geometric, Hypergeometric, Normal distributions, Rectangular (uniform), Exponential. Central limit theorem (Only particular cases: De-Moivre's Laplace theorem and Lindeberg-Levy theorem subsection 9.13.1 and 9.13.2 of [2]).

## **Unit IV**

Concept of sampling distribution and its standard error, Testing of hypotheses and its fundamental notions, Tests based on Normal distribution (subsections 14.7.1, 14.7.2,14.8.3 and 14.8.4 of [2]),  $\chi^2$  -distribution ( $\chi^2$ -test for hypothetical value of population variance as in subsection 15.6 (i) and to test the 'goodness of fit' as in subsection 15.6 (ii) of [2]), t-distribution (t-test for single mean and difference of means as in subsections 16.3.1 & 16.3.2 of [2]) and F-distribution (F-test for equality of two population variances as in subsection 16.6.1 of [2]).

## **BOOKS RECOMMENDED:**

- 1. Hogg R. V., McKean J. W. and Craig A. T., *Introduction to Mathematical Statistics*, Pearson, 2005, Sixth Edition.
- 2. Gupta S. C. and Kapoor V. K., *Fundamentals of Mathematical Statistics*, 11<sup>th</sup> Edition. Sultan Chand & Sons, 2014.
- 3. Fisz M., *Probability Theory and Mathematical Statistics*, 3<sup>rd</sup> Edition. John Wiley & Sons, 1967.
- 4. Gun A.M., Gupta, M.K. and Dasgupta B., Fundamentals of Statistics (Vol-I), World Press, 2013.
- 5. Feller W., *An Introduction to Probability Theory and Its Applications (Vol-I)*, 3<sup>rd</sup> Edition. John Wiley & Sons, 2003.

| MSM-30   | )4-22                                                                                          |                                                                                                                                            | Function    | nal Analy    | ysis         |            | L-4, T-1,    | P-0        | 4 Cred     | lits      |
|----------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|--------------|------------|--------------|------------|------------|-----------|
| Pre-requ | isite: Rea                                                                                     | al analysi                                                                                                                                 | s and Lin   | ear Alge     | bra          |            |              |            |            |           |
| 0 0      | Course Objectives: This course will develop a deeper and rigorous understanding of fundamental |                                                                                                                                            |             |              |              |            |              |            |            |           |
| concepts |                                                                                                |                                                                                                                                            |             |              |              |            |              | erstanding | g of funda | amental   |
| concepts | or runcue                                                                                      | onai anaiy                                                                                                                                 | ysis, men   | propertie    | es and rei   | iated the  | eorems.      |            |            |           |
| Course C | Jutoomo                                                                                        | At the                                                                                                                                     | and of the  | 2 COURGO     | the stude    | nto will   | ha abla t    |            |            |           |
| Course   | Jutcomes                                                                                       | . At the t                                                                                                                                 | end of the  | course,      | me stude     | nts win    | be able t    | U          |            |           |
| CO1      | Explai                                                                                         | in the funda                                                                                                                               | amental con | ncepts of fu | ınctional aı | nalysis an | d their role | in moderr  | n mathemat | ics.      |
| CO2      | Utiliz                                                                                         | ze the co                                                                                                                                  | ncepts of   | function     | al analys    | sis, for   | example      | continuo   | us and b   | ounded    |
|          |                                                                                                |                                                                                                                                            |             |              |              |            |              |            | vior of d  | ifferent  |
|          |                                                                                                | ematical o                                                                                                                                 |             |              |              |            |              |            |            |           |
| CO3      |                                                                                                |                                                                                                                                            | 110         |              |              |            |              | •          | med and    |           |
|          | _                                                                                              | spaces including the Hahn-Banach theorem, the open mapping theorem, the closed                                                             |             |              |              |            |              |            |            |           |
| CO4      |                                                                                                | graph theorem and uniform boundedness theorem.  Understand the nature of abstract mathematics and explore the concepts in further details. |             |              |              |            |              |            |            |           |
|          |                                                                                                |                                                                                                                                            |             |              |              | 1          | 1            |            |            |           |
| CO5      | Explain the concept of projection on Hilbert and Banach spaces.                                |                                                                                                                                            |             |              |              |            |              |            |            |           |
|          | ]                                                                                              | Mapping                                                                                                                                    | of cours    | e outcon     | nes with     | the pro    | gram ou      | tcomes     |            |           |
|          | PSO1                                                                                           | PSO2                                                                                                                                       | PSO3        | PSO4         | PSO5         | PSO        | PSO7         | PSO8       | PSO9       | PSO       |
|          | 1501                                                                                           | 1302                                                                                                                                       | 1303        | 1304         | 1303         | 6          | 1307         | 1500       | 1307       | 10        |
| CO1      | V                                                                                              | V                                                                                                                                          | -           | $\sqrt{}$    | V            | -          | -            | -          | √          | $\sqrt{}$ |
| CO2      |                                                                                                |                                                                                                                                            | $\sqrt{}$   | $\sqrt{}$    |              | -          | -            | -          |            | $\sqrt{}$ |
|          | ,                                                                                              | ,                                                                                                                                          | ,           | ,            | ,            |            |              |            | ,          | 1         |
| CO3      | √                                                                                              | √                                                                                                                                          |             | $\sqrt{}$    | √            | -          | -            | -          | √          | V         |
| CO4      | <b>√</b>                                                                                       | <b>√</b>                                                                                                                                   |             | √            | <b>√</b>     |            |              |            | √<br>      | V         |
| CO4      | , v                                                                                            | , v                                                                                                                                        | _           | , v          | , v          |            | _            | -          | , v        | ٧         |
| CO5      | <b>√</b>                                                                                       | √                                                                                                                                          |             | √            | √            | -          | -            | -          | √          | <b>√</b>  |
|          |                                                                                                |                                                                                                                                            |             |              |              |            |              |            |            |           |

# **Course Title: Functional Analysis**

Course Code: MSM-304-22

| L | T | P |
|---|---|---|
| 4 | 1 | 0 |

## **UNIT-I**

Normed linear spaces, Banach spaces, properties of normed spaces, finite dimensional normed spaces and subspaces, linear operators, bounded and continuous linear operators, linear functionals, normed spaces of operators

## **UNIT-II**

Equivalent norms, conjugate spaces, Reflexivity. Hahn-Banach theorems for real/complex vector spaces and normed spaces, Applications to bounded linear functionals on C [a,b].

## **UNIT-III**

Uniform boundedness theorem, open mapping theorem, closed graph theorem, Projections on Banach spaces.

## **UNIT-IV**

Inner product spaces, Hilbert spaces, properties of inner product spaces, orthogonal complements, orthonormal sets, Hilbert – adjoint operator, self-ad joint, unitary and normal operators, projections on Hilbert spaces.

- 1. Simmons, G.F., Introduction to Topology and Modern Analysis, 2008.
- 2. Rudin, W., Functional Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill inc.,1991.
- 3. Kreyszig, E., *Introductory Functional Analysis with Applications*, John Wiley and Sons (Asia) Pvt. Ltd., 2006.
- 4. Bachman, G. and Narici, L., Functional Analysis, Dover, 2000.
- 5. Conway, J.B., A Course in Functional Analysis, 2<sup>nd</sup> Edition. Springer-Verlag, 2006.

| MSM-3           | 05-22                                                               | Tensor                                                                                                   | Calculu      | s and Aj     | pplication   | ns l          | L-4, T-1,    | P-0                 | 4 Cred        | lits       |
|-----------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|---------------|--------------|---------------------|---------------|------------|
| Pre-requ        | Pre-requisites: Linear Algebra, Vector Calculus and Basic Mechanics |                                                                                                          |              |              |              |               |              |                     |               |            |
|                 |                                                                     |                                                                                                          |              |              |              |               |              |                     |               |            |
| Course Ob       | jectives: T                                                         | he objective                                                                                             | e of the cou | irse on Med  | chanics-II i | s to equip th | ne students  | with the kr         | owledge o     | f Tensors  |
| and their ap    | pplications.                                                        | To make s                                                                                                | tudents un   | derstand th  | ne notion of | continuur     | n and the b  | asic conce          | pts of strain | n, stretch |
| and rotation    | n and the ap                                                        | pplications                                                                                              | of tensors   | in understa  | nding these  | concepts.     | One of the   | objectives          | is to make    | students   |
| understand      | the applica                                                         | ations of Ma                                                                                             | thematica    | l concepts:  | in real wor  | ld problem    | s related to | Mechanics           | S.            |            |
| Course (        | Outcomes                                                            | s: At the e                                                                                              | end of the   | e course,    | the stude    | nts will b    | e able to    |                     |               |            |
|                 |                                                                     |                                                                                                          |              |              |              |               |              |                     |               |            |
| CO1             |                                                                     | erstand the                                                                                              |              |              |              |               |              |                     |               |            |
| CO <sub>2</sub> |                                                                     | Understand the effect of co-ordinate transformations and visualize the tensor as a                       |              |              |              |               |              |                     |               |            |
| 002             |                                                                     | r transforr                                                                                              |              | . 1:1ra auma | matian aan   | vantion on    | d samma      | natations           | Alaa atuda    | nto choll  |
| CO3             |                                                                     | the concepts                                                                                             |              |              | mation con   | vention an    | u comma      | notations. <i>i</i> | Aiso, stude   | ints snan  |
| CO4             |                                                                     | Understand continuum hypothesis, spatial and material co-ordinates and their applications.               |              |              |              |               |              |                     |               |            |
| CO5             |                                                                     | Understand the concepts of strain, stretch, rotation and shall be able to apply the knowledge in solving |              |              |              |               |              |                     |               |            |
|                 |                                                                     | orld probler<br><b>Mapping</b>                                                                           |              |              |              |               | rrom out     | comos               |               |            |
|                 |                                                                     | wiapping                                                                                                 | g of Cour    | se outco     | ines with    | the prog      | grain ou     | Comes               |               |            |
|                 | PSO1                                                                | PSO2                                                                                                     | PSO3         | PSO4         | PSO5         | PSO6          | PSO7         | PSO8                | PSO9          | PSO        |
|                 | ,                                                                   |                                                                                                          | ,            |              | ,            |               |              |                     |               | 10         |
| CO1             | √<br>                                                               | -                                                                                                        | V            | V            | V            | -             | -            | -                   | V             | V          |
| CO2             |                                                                     | -                                                                                                        | √            |              |              | -             | -            | -                   | $\sqrt{}$     | √          |
| CO3             | √                                                                   | -                                                                                                        | 1            | √            | V            | -             | -            | -                   | √             | √          |
|                 |                                                                     |                                                                                                          |              |              |              |               |              |                     |               |            |
| CO4             | V                                                                   | -                                                                                                        | V            | V            | V            | -             | -            | -                   | √             | V          |
| CO5             | <b>√</b>                                                            | -                                                                                                        | √            | √            | <b>√</b>     | -             | -            | -                   | √             | √          |
|                 |                                                                     |                                                                                                          |              |              |              |               |              |                     |               |            |

# **Course Title: Tensor Calculus and Applications**

Course Code: MSM-305-22

| L | T | P |
|---|---|---|
| 4 | 1 | 0 |

#### Unit I

Tensors: Introduction, Range and Summation Conventions, Free and dummy suffixes, results in vector algebra and matrix, the symbol  $\delta_{ij}\&\varepsilon_{ijk}$ , Coordinate transformations, cartesian tensors, Properties of tensors, Isotropic tensors, Isotropic tensor of order four, Tensors as linear operators, Transpose of a tensor.

## Unit II

Symmetric and skew tensors, Dual vector of a skew tensor, Invariants of a tensor, Deviatoric tensors, Eigenvalues and eigenvectors, Polar decomposition, Scalar, vector and tensor functions, Comma notation,

## Unit III

Gradient of a scalar, divergence and curl of a vector, Gradient of a vector, divergence and curl of a tensor, Integral theorems for vectors and tensors.

## **Unit IV**

Applications of Tensors in Continuum Mechanics: Notation of a continuum, Configuration of a continuum, Mass and density, Descriptions of motion, Deformation: Material and special coordinates, Deformation gradient tensor, Stretch and rotation, Strain tensors, Strain-displacement relations, Infinitesimal strain tensor, Infinitesimal stretch and rotation, Compatibility conditions., Principal strains, Strain-deviator.

## **BOOKS RECOMMENDED:**

- 1. Jog, C.S., Foundations and Applications of Mechanics: Volume-I Continuum Mechanics. Narosa Publishing House, New delhi.
- 2. Chandrasekharaiah, D.S. and Lokenath, D., *Continuum Mechanics*, Academic Press, London (Prism Books Pvt. Ltd., Bangalore-India).

# **Semester IV**

**Course Title: Operations Research** 

Course Code: MSM-401-22

| L | T | P |
|---|---|---|
| 4 | 1 | 0 |

#### UNIT-I

Formulation of linear programming problem (LPP) -graphical method, Basic Feasible Solution, Extreme Points, Convex set, Convex linear combination, optimal solution of LPP using Simplex method, Big-M method and two-phase method, Exceptional cases in LPP i.e., Infeasible, unbounded, alternate and degenerate solutions

#### **UNIT-II**

General Primal-Dual pair, Formulating a dual problem, Weak duality theorem, Fundamental theorem of Duality, Existence theorem, Complementary slackness theorem, Duality and Simplex method, Economic interpretation of Duality, Dual Simplex method.

#### **UNIT-III**

Initial basic Feasible solution of transportation problem, Balanced and unbalanced transportation problems, Optimal solutions of transportation problem using U-V /MODI methods, Assignment problems; Mathematical formulation of assignment problem, the traveling salesman problem, Test for optimality, degeneracy.

## **UNIT-IV**

Concept of convexity and concavity, Maxima and minima of convex functions, Single and multivariate unconstrained problems, constrained programming problems, Kuhn-Tucker conditions for constrained programming problems, Quadratic programming, Wolfe's method.

## **BOOKS RECOMMENDED**

- 1. Taha, H.A., Operations Research-An Introduction, PHI, 2007.
- 2. Kanti Swarup, Gupta, P.K. and Man Mohan, *Operations Research*, Sultan Chand & Sons, Ninth Edition, 2002.
- 3. Gupta P.K., Hira, D.S., *Operations Research*, 7<sup>th</sup> Edition, S. Chand & Company Pvt. Ltd., New Delhi, 2016.
- 4. Hillier, F.S. and Lieberman, G.J., Operations Research, Second Edition, Holden-Day Inc, USA, 1974.
- 5. Bazaraa, M.S., Sherali, H.D., Shetty, C.M., *Nonlinear Programming: Theory and Algorithms*, John Wiley and Sons, 1993.
- 6. Chandra, S., Jayadeva, and Mehra, A., *Numerical Optimization with Applications*, Narosa Publishing House, 2009.

# **Elective Subjects**

Course Title: Discrete Mathematics Course Code: MSM-501-22

| $\mathbf{L}$ | T | P |
|--------------|---|---|
| 4            | 1 | 0 |

#### Unit-I

**Mathematical Logic:** Basic logical operations, conditional and bi-conditional statements, tautologies, contradiction, predicate calculus and its inference theory.

**Recursion and Recurrence Relations**: Polynomial expressions, telescopic form, recursion theorem, closed form expression, generating function, solution of recurrence relation using generating function, recursion.

#### Unit-II

Lattices and Boolean Algebra: Introduction to Binary relations, equivalence relations and partitions, Partial order relations, Hasse diagram. Lattices as partially ordered sets, properties, lattices as algebraic systems, sub lattices, direct products, Homomorphism, some special lattices. Boolean algebra as lattices, Boolean identities, sub-algebra, Boolean forms and their equivalence, sum of product, product of some canonical forms. Applications of Boolean algebra to circuit theory.

#### **Unit-III**

**Graph Theory:** Directed graphs, undirected graphs, paths, circuits, cycles, sub-graphs, induced Sub graphs, degree of vertex, connectivity, planner graph, complete, bi-partite complete graph, matrix representation of graph, adjacency and incidence matrix for graph, Eulerian paths and circuits, Trees and Coloring of the graph, Rooted tree, search tree, tree traversals, spanning trees, minimal spanning trees, Kruskal's algorithm. Chromatic number and polynomial, four-color problem (statement only).

## **Unit-IV**

**Algebraic Structures:** Review of groups, codes and group codes, cyclic codes and coding methods based on entropy, Application of algebraic structure to error corrections and detection codes, discrete codes and first coding theorem.

## **BOOKS RECOMMENDED:**

- 1. Tremblay, J.P. and Manohar, R.P., *Discrete Mathematics with Applications to Computer Science*, Tata McGraw Hill, 2008.
- 2. Ram, Babu, *Discrete Mathematics*, Pearson Education, 2007.
- 3. Harary, F., Graph Theory, Narosa, 1995
- 4. Doerr, Alan and Levsseur, K., *Applied Discrete Structures for Computer Science*, Galgotia Publication, 2005.
- 5. Liu, C.L, Elements of Discrete Mathematics, 3rd Edition, Tata McGraw Hill, 2008.
- 6. Grimaldi, R.P and Ramana, B.V., *Discrete and Combinatorial Mathematics-An Applied Introduction*, Pearson education, 5<sup>th</sup> Edition, 2004.
- 7. Lipschultz, S., Theory and Practice of Data Structures, McGraw-Hill, 1988.

Page 50 of 61

Course Title: Coding Theory Course Code: MSM-502-22

| L | T | P |
|---|---|---|
| 4 | 1 | 0 |

## Unit-I

**Introduction to Coding Theory:** Code words, distance and weight function, Nearest-neighbour decoding principle, Error detection and correction, Matrix encoding techniques, Matrix codes, Group codes, decoding by coset leaders, Generator and parity check matrices, Syndrome decoding procedure, Dual codes.

#### Unit-II

**Linear Codes:** Linear codes, Matrix description of linear codes, Equivalence of linear codes, Minimum distance of linear codes, Dual code of a linear code, Weight distribution of the dual code of a binary linear code, Hamming codes.

## **Unit-III**

**BCH Codes:** Polynomial codes, Finite fields, Minimal and primitive polynomials, Bose-Chaudhuri-Hocquenghem codes.

## **Unit-IV**

**Cyclic Codes:** Cyclic codes, Algebraic description of cyclic codes, Check polynomial, BCH and Hamming codes as cyclic codes. Maximum distance separable codes, Necessary and sufficient conditions for MDS codes, Weight distribution of MDS codes, An existence problem, Reed-Solomon codes.

## **BOOKS RECOMMENDED**

- 1. Vermani L R, Elements of Algebraic Coding Theory, Chapman and Hall, 1996.
- 2. Vera P., Introduction to the Theory of Error Correcting Codes, John Wiley and Sons, 1998.
- 3. Roman Steven, Coding and Information Theory, Springer Verlag, 1992.
- 4. Garrett Paul, *The Mathematics of Coding Theory*, Pearson Education, 2004.

# Course Title: Differential Geometry Course Code: MSM-503-22

| L | T | P |
|---|---|---|
| 4 | 1 | 0 |

## Unit I

Theory of Space Curves: Tangent, principal normal, bi-normal, curvature and torsion. Serretfrenet formulae, Contact between curves and surfaces. Locus of centre of curvature, spherical curvature, Helices.

## **Unit II**

Spherical indicatrix, Bertrand curves, surfaces, envelopes, edge of regression, developable surfaces, two fundamental forms.

## Unit III

Curves on a surface, Conjugate Direction, Principle Directions, Lines of Curvature, Principal Curvatures, Asymptotic Lines. Theorem of Beltrami and Enneper, Mainardi-Codazzi equations.

## **Unit IV**

Geodesics, Differential Equation of Geodesic, torsion of Geodesic, Geodesic Curvature, Clairaut's theorem, Gauss-Bonnet theorem, Joachimsthal's theorem, Geodesic Mapping, Tissot's theorem.

## **Text and Reference Books:**

- 1. Weatherburn, C.E., Differential Geometry of Three Dimensions, Cambridge University Press, 2016.
- 2. Willmore, T.J., Introduction to Differential Geometry, Dover Publications Inc., United States, 2012.
- 3. Bansi Lal, Differential Geometry, 4th Edition. Atma Ram & Sons, India, 1976.

# Course Title: Advanced Number Theory Course Code: MSM-504-22

| L | T | P |
|---|---|---|
| 4 | 1 | 0 |

#### **UNIT-I**

Partitions, Compositions, Ferrers graphs, Jacobi's triple product identity, Congruence properties of p(n), Rogers-Ramanujan identities, Basic hypergeometric series, q-binomial theorem, Sylvester's theorem, Heine's transformation.

## **UNIT-II**

Restricted partitions, q-Gauss theorem, Gaussian polynomials, Bailey's lemma (weak version), Rogers lemma, q-Saalschutz's theorem, Finite version of q-Saalschutz's theorem.

## **UNIT-III**

Schur's theorem, Gollnitz-Gordon identities, Generalization and various analogues of Rogers-Ramanujan identities, Bailey's lemma (strong version), Watson's q-analogue of Whipple's theorem and its applications in deriving Rogers-Ramanujan identities and Gollnitz-Gordon identities.

#### **UNIT-IV**

Rank & Crank of a partition, n-colour partitions, Conjugate and self-conjugate n-colour partitions, Restricted n-colour partitions, Rogers-Ramanujan type identities for n-colour partitions.

- 1. Agarwal, A.K., Padmavathamma and Subbarao, M.V., *Partition Theory*, Atma Ram & Sons, Chandigarh, 2005.
- 2. Andrews, G.E., *The Theory of Partitions, Encyclopedia of Mathematics and its Applications* (Addison-Wesley), 1976, Re-issued: Cambridge University Press, Cambridge, 1988.
- 3. Gasper, G. and Rahman, M., *Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications*, Vol. 35, Cambridge University Press, Cambridge, 1990.
- 4. Agarwal, R.P., Resonance of Ramanujan Mathematics, Vol. 1 (New Age International), 1996.
- 5. Gupta, H., Selected Topics in Number Theory, ABACUS Press, 1980.
- 6. N.J. Fine, *Basic Hypergeometric Series and Applications*, Mathematical Surveys and Monographs, No. 27, American Mathematical Society, 1988.

**Course Title: Advanced Complex Analysis** 

Course Code: MSM-505-22

| L | T | P |
|---|---|---|
| 4 | 1 | 0 |

#### Unit-I

Analytic continuation, Analytic continuation by power series method, Natural boundary, Schwarz reflection principle, Analytic continuation along a path, Monodromy theorem, Runge's theorem, simple connectedness, Mittag-Leffler's theorem.

#### Unit-II

Maximum principle, Schwarz's Lemma, Hadamard's three circle theorem, Phragmen-Lindelof theorem, Weierstrass factorization theorem, Factorization of sine function, Gamma function. Entire functions, Jensen's formula, the genus and order of an entire function, Hadamard factorization theorem.

## **Unit-III**

Harmonic functions, Basic properties, Harmonic functions on a disc, Subharmonic and Superharmonic functions, The Dirichlet problem, Green's function.

## **Unit-IV**

Normal families of analytic functions, Montel's theorem, Hurwitz's theorem, Riemann mapping theorem, Univalent function, Distortion and Growth theorem for the class of normalized univalent functions, Covering theorem, starlike functions, convex functions, Subordination principle.

# **BOOKS RECOMMENDED**

- 1. Nihari, Z., Conformal Mapping, Conformal Mapping, McGraw-Hill, 1952.
- 2. Conway, J.B., Functions of One Complex Variable, Springer-Verlag, 1973
- 3. Gamelin, T.W., Complex Analysis, Springer, 2004.
- 4. Tutschke, W. and Vasudeva, H.L., An Introduction to Complex Analysis- Classical and Modern Approaches, Chapman & Hall/CRC, 2005
- 5. Copson, E.T., An Introduction to Theory of Functions of a Complex Variable.

# Course Title: Advanced Operations Research Course Code: MSM-506-22

| L | T | P |
|---|---|---|
| 4 | 1 | 0 |

## Unit I

**Advanced Linear Programming:** Revised simplex method, Sensitivity analysis, Parametric programming, Integer programming branch and bond algorithm, Goal programming, Standard form of LGPP, Partitioning algorithm.

#### Unit II

**Game Theory**: Two-person zero sum games pure strategies (minmax and maximum principles), Game with saddle point, Mixed strategies: Game without saddle point, Rule of Dominance, Solution methods for games without saddle point: Graphical method, Linear programming method.

## **Unit III**

**Dynamic Programming:** Characteristics of dynamic programming, Recursive relations, continuous and discrete cases, forward recursion, linear programming versus dynamic programming, Dynamic programming approach for Priority Management employment smoothening, capital budgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems.

#### Unit IV

**Inventory Models:** Deterministic models: Classic EOQ (Economic order quantity) models, EOQ with price brakes, Multi item EOQ with storage limitation, Dynamic EOQ models(b) Probabilistic models: Probabilistic EOQ models, Single period models and multiperiod models.

## **Books Recommended**

- 1. Taha, H.A., Operations Research- An introduction, 8th Edition, PHI, 2007.
- 2. Sharma, J.K, Operation research: Theory & Applications, 3rd Edition, Macmillan India, 2007.
- 3. Kasana, H.S and Kumar K.D, *Introductory Operations Research: Theory & Applications*, Springer, 2005.
- 4. Pant, J.C, Introduction to Optimization and Operations Research, Jain Brothers, 2004.

# Course Title: Advanced Fluid Mechanics Course Code: MSM-507-22

| L | T | P |
|---|---|---|
| 4 | 1 | 0 |

#### **UNIT-I**

**Basic Concepts**: Continuum Hypothesis, Viscosity, Most general motion of a fluid element, Rate of strain quadric, stress at a point, Tensor character of stress matrix, Symmetry of stress matrix, stress quadric, Stress in a fluid at rest, stress in a fluid in motion, Relation between stress and rate of strain components (Stoke's law of friction), Thermal conductivity, Generalized law of heat conduction, Fundamental equations of the flow of viscous fluids: Equation of state, equation of continuity -Conservation of mass, Equation of motion- Navier-Stoke's equations, Equation of energy- Conservation of energy, Symmetry of fundamental equations, Vorticity and circulation in a viscous incompressible fluid motion, (a) velocity transport equation, Circulation

# **UNIT-II**

Dynamical similarity and Dynamical Analysis: Dynamical similarity, Reynold's law, Inspection analysis, Dimensional analysis, Buckingham  $\pi$ -theorem. Method of finding out the pi-products, Application of pi-theorem to viscous and compressible fluid. Physical importance of non-dimensional parameters. Reynolds number, Eckert Number, Froude Number, Mach Number, Pecklet Number, Grashoff Number, Prandtl Number, Brinkman Number, Nussel Number. Exact Solution of Navier-Stoke's equations of motion- Flow between parallel plates (Velocity and temperature distributions), (i) Plane Couette flows (ii) Plane Poiseulle Flow and (iii) Generalized Couette flow.

# **UNIT-III**

Flow in a circular pipe (Hagen Poiseuille flow) -Velocity and temperature distribution, Flow through tubes of uniform cross section in the form of circle, annulus, ellipse and equilateral triangle under constant pressure gradient. Flow between two concentric rotating cylinders (Couette flow), Flow in convergent and divergent channels,

# **UNIT-IV**

Steady incompressible flow with variable viscosity: Variable viscosity plane Couette flow and plane poiseulle flow. Unsteady incompressible flow with constant fluid properties: Flow due to a plane wall suddenly set in motion, flow due to an oscillating plane wall, starting flow in plane Couette motion, Starting flow in pipes, Plane coquette flow with transpiration cooling.

# **Books Recommended**

- 1. Bansal, J L, Viscous Fluid Dynamics, OXFORD & IBH Publishing Company Pvt. Ltd., New Delhi, 1992.
- 2. Chorlton, F., Textbook of Fluid Dynamics, C.B.S. Publishers, Delhi, 1985.
- 3. Schlichting, H., Boundary Layer Theory, McGraw Hill Book Company, New York, 1979.
- 4. Young, A. D., Boundary Layers, AIAA Education Series, Washington DC, 1989.
- 5. Yuan, S.W., Foundations of Fluid Mechanics, Prentice Hall of India Private Limited, New Delhi, 1976.

# Course Title: Advanced Solid Mechanics Course Code: MSM-508-22

| L | T | P |
|---|---|---|
| 4 | 1 | 0 |

#### Unit-I

**Basics and Extension of Beams:** Hooke's law, generalized Hooke's law, Elastic moduli and their relationship, strain-energy density function and its connection with Hooke's law, Saint-Venant's principle. Extension of beams: extension of beams by longitudinal forces, beam stretched by its own weight and bending of beams by terminal couples.

# **Unit-II**

**Torsion and flexure of beams:** Torsion of a circular shaft, cylindrical bars, and elliptic cylinder. Stress function, conformal mapping, solution of torsion problem by conformal mapping. Flexure of beams by terminal loads, bending of rectangular beams.

#### **Unit-III**

**Two-and Three-dimensional Problems:** Plane deformation, plane stress, plane elastostatic problems, Airy's stress function, solution of the bi-harmonic equation, stress and displacement formulae basic problems of circular region: uniform pressure, uniform radial displacement and concentrated loads. Spherical shell under external and internal pressures.

#### **Unit-IV**

**Thermoelastic problems and Variational Methods:** Thermal stresses in spherical bodies, two-dimensional thermoelastic problems. Variational methods: Theorems of potential energy, minimum complementary energy, work and reciprocity, Ritz method for one- and two-dimensional problems and Galerkin's method. Kantorovich and Trefftz methods. Application of Treffz method.

# **Books Recommended**

- 1. Sokolnikoff, I.S., Mathematical Theory of Elasticity, TMH, New Delhi 1978.
- 2. Timoshenko.S. and Young D.H., *Elements of strength of materials Vol. I & Vol. II*, T. Van Nostrand Co-Inc Princeton, N.J., 1990.
- 3. Love, A.E.H, *A Treatise on the Mathematical theory of Elasticity*, Cambridge University Press, 1963.

Course Title: Theory of Linear Operators Course Code: MSM-509-22

| L | T | P |
|---|---|---|
| 4 | 1 | 0 |

#### Unit I

Spectral theory in normed linear spaces, resolvent set and spectrum, spectral properties of bounded linear operators. Properties of resolvent and spectrum. Spectral mapping theorem for polynomials.

# Unit II

Elementary theory banach algebra, Spectral radius of a bounded linear operator on a complex banach space.

# Unit III

General properties of compact linear operators. Spectral properties of compact linear operators on normed spaces. Behaviors of compact linear operators with respect to solvability of operator equations. Fredholm type theorems. Fredholm alternative theorem. Fredholm alternative for integral equations.

#### Unit IV

Spectral properties of bounded self-adjoint linear operators on a complex Hilbert space. Positive operators. Monotone Sequences theorem for bounded self-adjoint operators on a complex Hilbert space, Square roots of a positive operator.

# **Books Recommended**

- 1. Kreyszig E., *Introductory functional analysis with applications*, Johan-Wiley & Sons, New York, 1978.
- 2. Halmos P.R., *Introduction to Hilbert space and the theory of spectral multiplicity*, 2<sup>nd</sup> Edition. Chelsea Pub., Co., N.Y. 1957.
- 3. Dunford N. and Schwartz, J.T., *Linear operators-3 parts*, Inter-science Wiley, New York, 1958-71.

Bachman G. and Narici, L., Functional analysis, Academic Press, New York, 1998.

# Course Title: Advanced Numerical Methods Course Code: MSM-510-22

| L | T | P |
|---|---|---|
| 4 | 1 | 0 |

#### Unit-I

**Iterative Methods for Linear Systems & Eigenvalue problem:** The classical iterative methods: Jacobi, Gauss-Seidel and Successive Over Relaxation (SOR) methods. Conjugate gradient method. Eigenvalues & eigenvectors: Rayleigh power method & Givens method.

# **Unit-II**

**Finite Difference Methods:** Explicit and implicit schemes, consistency, stability and convergence, Lax equivalence theorem, numerical solutions to elliptic, parabolic and hyperbolic partial differential equations.

#### **Unit-III**

**Approximate Methods of Solution:** Rayleigh-Ritz method, Galerkin method, Petrov-Galerkin method, Least square method, Collocation method and Extremal-Point collocation method for solving differential equations.

#### **Unit-IV**

**Finite Element Method (FEM):** FEM for second order differential equations (one and two-dimensional problems), variational methods, Finite elements: Line segment element, triangular element, rectangular element, curved-boundary element, Numerical integration over finite element: Ritz finite element method and Galerkin finite element method. (Scope: Section 8.1,8.2,8.3,8.3.1,8.4.1,8.4.2,8.4.3,8.4.7,8.5,8.6,8.7 of Ref [2])

# RECOMMENDED BOOKS

- 1. Jain, M. K, Iyengar, S.R.K. and Jain, R.K., *Numerical Methods for Scientific and Engineering Computation*, 7<sup>th</sup> Edition, New Age International Publishers, 2019.
- 2. Jain M. K., *Numerical Solution of Differential Equations: Finite Difference and Finite Element Methods*, 3<sup>rd</sup> Edition, New Age International Limited Publishers, 2014.
- 3. Reddy J. N., An Introduction to the Finite Element, 3rd Edition, McGraw Hill Education, 2017.
- 4. Gupta Radhey S., *Elements of Numerical Analysis*, 2<sup>nd</sup> Edition, Cambridge University Press, 2015.
- 5. Seshu P., Textbook of Finite Element Analysis, 1st Edition, Prentice Hall India, 2003.

# Course Title: Topological Vector Spaces Course Code: MSM-511-22

| L | T | P |
|---|---|---|
| 4 | 1 | 0 |

# **Unit-I**

Review of basic concepts of topological spaces and vector spaces. Prodect topological spaces, projection maps, compactness of prodect topological spaces-Tichonov's theorem.

Topological vector spaces (TVSs), examples of TVSs, Normed vector spaces as TVSs, Translation and multiplication maps, Neighborhood of 0, separated TVS, linear maps between TVSs, Bounded subsets of a topological vector space.

# **Unit-II**

Locally convex topological spaces, normable and metrizable topological vector spaces, complete topological vector spaces

# **Unit-III**

Frechet spaces, Uniform boundedness principle, open mapping and closed graph theorems for Frechet spaces.

# Unit-IV

Banach-Alaoglu theorem, Variational inequalities, Lion-Stampacchia theory, Physical phenomenon represented by variational inequalities, points and external sets-Krein Miliman theorem.

# **BOOKS RECOMMENDED:**

- 1. Munkres J. R., *Topology A First Course*, Prentice-Hall of India, 1978.
- 2. Kelley, J.L., Linear topological spaces, Van Nostrand East West Press, New Delhi.
- 3. Wilansky A., Modern Methods in Topological Vector Spaces, McGraw Hill, 1978.
- 4. Simmons G. F., Introduction to Topology and Modern Analysis, McGraw-Hill, 1963.
- 5. Rudin W., Functional Analysis, 2<sup>nd</sup> Edition, McGraw Hill, 1973.

Course Title: Fractional Calculus Course Code: MSM-512-22

| L | T | P |
|---|---|---|
| 4 | 1 | 0 |

#### Unit-I

Special Functions of the Fractional Calculus. Gamma Function. Mittag-Leffler function, Fractional Derivatives and Integrals. Grunwald-Letnikov Fractional Derivatives. Riemann Liouville Fractional Derivatives. Some Other Approaches.

#### Unit-II

Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation. Sequential Fractional Derivatives. Left and Right Fractional Derivatives. Properties of Fractional Derivatives. Laplace Transforms of Fractional Derivatives. Fourier Transforms of Fractional Derivatives. Mellin Transforms of Fractional Derivatives.

#### **Unit-III**

Linear Fractional Differential Equations. Fractional Differential Equation of a General Form. Existence and Uniqueness Theorem as a Method of Solution. Dependence of a Solution on Initial Conditions. The Laplace Transform Method. Standard Fractional Differential Equations. Sequential Fractional Differential Equations. Fractional Green's Function. Definition and Some Properties. One-Term Equation. Two Term Equation. Three-Term Equation. Four-Term Equation. General Case: n-term Equation.

# **Unit-IV**

Other Methods for the Solution of Fractional-order Equations. The Mellin Transform Method. Power Series Method. Babenko's Symbolic Calculus Method. Method of Orthogonal Polynomials. Numerical Evaluation of Fractional Derivatives. Approximation of Fractional Derivatives. Order of Approximation. Computation of Coefficients. Higher-order Approximations.

#### **Books Recommended**

- 1. Podlubny, I., *Matrix approach to discrete fractional calculus vol. 3*, Fractional Calculus and Applied Analysis, 2000.
- 2. Carpinteri A, Mainardi F, editors. *Fractals and fractional calculus in continuum mechanics*, New York, Springer-Verlag Wien, 1997.
- 3. Mandelbrot B.B., *The fractal geometry of nature*, New York, W. H. Freeman, 2000.
- 4. Miller K.S., Ross B., An introduction to the fractional calculus. New York, John Wiley, 1993.
- 5. Oldham KB, Spanier J., The fractional calculus, New York, Academic Press; 1974.

# **Pre Ph.D.** Course Work in Mathematics

(As per Ph.D. regulations-2022)

# **Structure of the Course Work**

| Sr. No. | Nature of         | Name of     | Credits | L  | T  | P |
|---------|-------------------|-------------|---------|----|----|---|
|         | Course            | Course      |         |    |    |   |
| 1.      | Mandatory         | Research    | 4       | 3  | 1  | - |
|         |                   | Methodology |         |    |    |   |
| 2.      | Mandatory         | Research    | 2       | 2  | -  | - |
|         |                   | Publication |         |    |    |   |
|         |                   | Ethics      |         |    |    |   |
| 3.      | Core (discipline  | Subject     | 4       | 3  | 1  | - |
|         | specified)        | Related     |         |    |    |   |
|         |                   | Theory      |         |    |    |   |
|         |                   | Paper       |         |    |    |   |
| 4.      | Interdisciplinary | Seminar*    | 4       | -  | -  | - |
|         |                   |             |         |    |    |   |
| Total   |                   |             | 14      | 08 | 02 | - |

<sup>\*</sup> The evaluation of seminar will be based on the submission of project report on the topic of research or relevant area followed by the evaluation through presentation.

# **IKG Punjab Technical University**

# **Department of Research**

Total Marks 100 L3:T1:P0

Syllabi common to All branches/disciplines

# PAPER I – RESEARCH METHODOLOGY

Unit-I 15

Part A: OBJECTIVES AND TYPES OF RESEARCH: Meaning, Objectives, Motivation, Utility. Concept of theory, empiricism, deductive and inductive theory. Characteristics of scientific method – Understanding the language of research – Concept, Construct, Definition, Variable. Research Process, Research methods vs Methodology. Types of research – Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, Conceptual vs. Empirical.

**Part -B - RESEARCH FORMULATION** – Defining and formulating the research problem - Selecting the problem - Necessity of defining the problem - Importance of literature review in defining a problem, Literature review, Primary and secondary sources, reviews, treatise, monographs-patents, various tool for search, Critical literature review–Identifying gap areas from literature review - Development of working hypothesis.

Unit-II 10

**RESEARCH DESIGN AND METHODS** – Research design- Basic Principles- Need of research design-Features of good design – Important concepts relating to research design – Observation and Facts, Laws and Theories, Prediction and explanation, Induction, Deduction, Development of Models. Developing a research plan-Exploration, Description, Diagnosis, Experimentation. Determining experimental and sample designs.

# Unit-III STATISTICAL TECHNIQUES AND TOOLS

Introduction of statistics – Functions, Limitations, Measures of central tendency, Arithmetic mean, Median, Mode, Standard deviation, Co-efficient of variation, (Discrete serious and continuous serious), Correlation, Regression, Multiple Regression, Sampling distribution, Standard error, Concept of point and interval estimation, Level of significance, Degree of freedom, Analysis of variance, One way and two-way classified data- 'F'-test.

10

Unit-IV 10

**Part A: - REPORTING AND THESIS WRITING** — Structure and components of scientific reports - Types of report — Technical reports and thesis — Significance — Different steps in the preparation — Layout, structure, and Language of typical reports — Illustrations and tables-Bibliography, referencing and footnotes - Oral presentation — Planning — Preparation — Practice — Making presentation — Use of visual aids - Importance of effective communication.

**Part -B: - APPLICATION OF RESULTS AND ETHICS -** Environmental impacts - Ethical issues -ethical committees - Commercialisation - Copy right - royalty - Intellectual property rights and patent law - Trade Related aspects of Intellectual Property Rights-Reproduction of

published material – Plagiarism - Citation and acknowledgement - Reproducibility and accountability.

# Reference

- 1. Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. *An introduction to Research Methodology*, RBSA Publishers.
- 2. Kothari, C.R., 1990. *Research Methodology: Methods and Techniques*. New Age International. 418p.
- 3. Sinha, S.C. and Dhiman, A.K., 2002. *Research Methodology*, Ess Ess Publications. 2 volumes.
- 4. Trochim, W.M.K., 2005. *Research Methods: the concise knowledge base*, Atomic Dog Publishing. 270p.
- 5. Wadehra, B.L. 2000. Law relating to patents, trademarks, copyright designs and geographical indications. Universal Law Publishing.

# Additional reading

- 1. Anthony, M., Graziano, A.M. and Raulin, M.L., 2009. *Research Methods: AProcess of Inquiry*, Allyn and Bacon.
- 2. Carlos, C.M., 2000. *Intellectual property rights, the WTO and developing countries: the TRIPS agreement and policy options*. Zed Books, New York.
- 3. Coley, S.M. and Scheinberg, C. A., 1990, "Proposal Writing", Sage Publications.
- 4. Day, R.A., 1992. How to Write and Publish a Scientific Paper, Cambridge University Press.
- 5. Fink, A., 2009. Conducting Research Literature Reviews: From the Internet to Paper. Sage Publications
- 6. Leedy, P.D. and Ormrod, J.E., 2004 *Practical Research: Planning and Design, Prentice* Hall.
- 7. Satarkar, S.V., 2000. *Intellectual property rights and Copyright*. Ess Ess Publications.

# Research and Publication Ethics (RPE) (2 Credits)

# Course structure

• The course comprises of six modules listed in table below. Each module has 4-5 Units.

| Modules  | Unit title             | Teaching hours |
|----------|------------------------|----------------|
| Theory   |                        |                |
| RPE 01   | Philosophy and Ethics  | 4              |
| RPE 02   | Scientific Conduct     | 4              |
| RPE 03   | Publication Ethics     | 7              |
| Practice |                        |                |
| RPE 04   | Open Access Publishing | 4              |
| RPE 05   | Publication Misconduct | 4              |
| RPE 06   | Database and Research  | 7              |
|          | Metrics                |                |
|          | Total                  | 30             |

# **Syllabus in Details**

# **THEORY**

- RPE 01: PHILOSOPHY AND ETHICS (3hrs.)
  - 1. Introduction to Philosophy: definition, nature and scope, concept, branches
  - 2. Ethics: definition, moral Philosophy, nature of moral judgements and reactions
- RPE 02: SCIENTIFIC CONDUCT (5 hrs.)
  - 1. Ethics with respect to science and research
  - 2. Intellectual honesty and research integrity
  - 3. Scientific misconducts: Falsification, Fabrication and Plagiarism (FFP)
  - 4. Redundant publications: duplicate and overlapping publications, salami slicing.
  - 5. Selective reporting and misrepresentation of data

# • RPE 03: PUBLICATION ETHICS (7hrs.)

- 1. Publication Ethics: definition, introduction, and importance
- 2. Best practices/standards setting initiatives and guidelines: COPE, WAME, etc.
- 3. Conflicts of interest
- 4. Publication misconduct: definition, concept, problems that lead to unethical behaviour and vice versa, types.
- 5. Violation of publication ethics, authorship, and contributorship
- 6. Identification of publication misconduct, complaints and appeals
- 7. Predatory publishers and journals

# **PRACTICE**

# RPE 04: OPEN ACCESS PUBLISHING (4 hrs.)

- 1. Open access publications and initiatives
- 2. SHERPA/RoMEO online resource to check publisher copyright & self-archiving Policies.
- 3. Software tool to identify predatory publications developed by SPPU.
- 4. Journal finder/journal suggestion tool viz. JANE, Elsevier Journal Finder, Springer Journal Suggester, etc.

# RPE 05: PUBLICATION MISCONDUCT (4 hrs.)

# A. Group Discussion (2hrs.)

- 1. Subject specific ethical issues, FFP, authorship
- 2. Conflicts of interest
- 3. Complaints and appeals: examples and fraud from India and abroad

# B. Software tools (2hrs.)

Use of plagiarism software like Turnitin, Urkund, and other open-source software tools.

# • RPE 06: DATABASES AND RESEARCH METRICS (7hrs.)

# A. Databases (4hrs.)

- 1. Indexing databases
- 2. Citation databases: Web of Science, Scopus, etc.

# B. Research Metrics (3hrs.)

- 1. Impact Factor of journal as per Citation Report, SNIP, SJR, IPP, Cite Score
- 2. Metrics: h-index, g-index, i10 index, altmetrics

# **Core (Discipline Specified) Subjects**

(Candidate can opt any one)

**Subject Title: Methods in Applied Mathematics** 

**Subject Code: PHDM-101** 

| L | T | P | Credits |
|---|---|---|---------|
| 3 | 1 | 0 | 4       |

# **UNIT-I**

Integral equations: Their origin and classification, Relation between differential and integral equations. IVP and BVP reducible to Integral equations, Integral equations with separable kernels, Method of successive approximations, Classical Fredholm theory.

# **UNIT-II**

Fourier series and its Convergence, Gibbs phenomenon, Integration and Differentiation of Fourier series, the phase angle form of Fourier series, Complex Fourier series and frequency spectrum, Fourier integrals, Fourier Cosine and sine Integrals, Complex Fourier Integrals.

# **UNIT-III**

Fourier Transforms, Properties of Fourier Transforms and its Applications, Convolution, Fourier Cosine and Sine Transforms, Discrete Fourier Transforms, Fast Fourier Transforms, Solution of equations, Hankel and Mellin transforms and their applications.

#### **UNIT-IV**

Wavelets, History of wavelets, The Haar wavelets, the Stromberg Wavelet, Wavelet expansion, Multiresolution analysis with Haar wavelets, Periodic wavelets, General Construction of wavelets, Wavelet transform versus Fourier transform. Simple applications of Wavelet theory.

- 1. Ram P. Kanwal: Linear Integral Equations, Academic Press, 1971.
- 2. Abdul J. Jeeri: Introduction to Integral Equations with Applications. Monographs and Text

Books in Pure and Applied Mathematics. Marcel Dekker. INC,1985.

- 3. F.B. Hilderbrand: Methods of Applied Mathematics. Dover Publication, 1965.
- 4. Lokenath Debnath and Dambaru Bhatta: Integral Transforms and Their Applications, 2<sup>nd</sup> Edition, Chapman and Hall/ CRC,2006.
- Brian Davies: Integral Transforms and Their Applications, Text Books in Applied Mathematics, Vol 41, 3<sup>rd</sup> Edition, Springer, 2002.
- 6. P. Wojtaszczyk: A Mathematical Introduction to wavelets, Cambridge University Press.
- 7. Veronique Delouille: An Introduction to Wavelet Analysis, Connexions, 2009.
- 8. Willard Miller, Introduction to the Mathematics of Wavelets, University of Minnesota, 2006.
- 9. Peter O' Neil: Advanced Engineering Mathematics, Cengage Learning, 2006.

**Subject Title: Advanced Number Theory** 

**Subject Code: PHDM-102** 

| L | T | P | Credits |
|---|---|---|---------|
| 3 | 1 | 0 | 4       |

# Unit-I

Partitions, Compositions, Ferrers graphs, Jacobi's triple product identity, Congruence properties of p(n), Rogers-Ramanujan identities, Basic hypergeometric series, q-binomial theorem, Sylvester's theorem (Statement only), Heine's transformation (Statement only).

# Unit-II

Restricted partitions, q-Gauss theorem, Gaussian polynomials, Bailey's lemma (weak version) (Statement only), Rogers lemma, q-Saalschutz's theorem (Statement only), Finite version of q-Saalschutz's theorem.

# **Unit-III**

Schur's theorem, Gollnitz-Gordon identities, Generalization and various analogues of Rogers-Ramanujan identities, Bailey's lemma (strong version) (Statement only), Watson's q-analogue of Whipple's theorem (Statement only) and its applications in deriving Rogers-Ramanujan identities and Gollnitz-Gordon identities.

# **Unit-IV**

Rank & Crank of a partition, n-colour partitions, Conjugate and self-conjugate n-colour partitions, Restricted n-colour partitions, Rogers-Ramanujan type identities for n-colour partitions.

Simple applications of number theory in ATM cash dispenser, conjugacy classes of symmetric groups.

- 1. Agarwal, A.K., Padmavathamma and Subbarao, M.V., Partition Theory, Atma Ram & Sons, Chandigarh, 2005.
- 2. Andrews, G.E., The Theory of Partitions, Encyclopedia of Mathematics and its Applications (Addison-Wesley), 1976, Re-issued: Cambridge University Press, Cambridge, 1988.
- 3. Gasper, G. and Rahman, M., Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge, 1990.
- 4. Agarwal, R.P., Resonance of Ramanujan Mathematics, Vol. 1 (New Age International), 1996.
- 5. Gupta, H., Selected Topics in Number Theory, ABACUS Press, 1980.
- 6. N.J. Fine, Basic Hypergeometric Series and Applications, Mathematical Surveys and Monographs, No. 27, American Mathematical Society, 1988.

**Subject Title: Advanced Numerical Methods** 

**Subject Code: PHDM-103** 

| Ī | L | T | P | Credits |
|---|---|---|---|---------|
|   | 3 | 1 | 0 | 4       |

#### Unit-I

**Iterative Methods for Linear Systems & Eigenvalue problem:** The classical iterative methods: Jacobi, Gauss-Seidel and Successive Over Relaxation (SOR) methods. Conjugate gradient method. Eigenvalues & eigenvectors: Rayleigh power method & Givens method.

# **Unit-II**

**Finite Difference Methods:** Explicit and implicit schemes, consistency, stability and convergence, Lax equivalence theorem, numerical solutions to elliptic, parabolic and hyperbolic partial differential equations.

# **Unit-III**

**Approximate Methods of Solution:** Rayleigh-Ritz, collocation and Galerkin methods, properties of Galerkin approximations, Petrov-Galerkin method, Generalized Galerkin method.

# **Unit-IV**

**Finite Element Method (FEM):** FEM for second order problems, One and two dimensional problems, The finite elements (elements with a triangular mesh and a rectangular mesh and three dimensional finite elements), Fourth-order problems, Hermite families of elements, iso-parametric elements, numerical integration. Simple applications of FEM to address heat transfer problems.

- 1. Jain, M.K, Iyengar, S.R.K. and Jain, R.K., Numerical Methods for Scientific and Engineering Computation, 5<sup>th</sup> Edition, New Age international, 2008.
- 2. Hoffman Joe D., Numerical methods for Engineers and Scientists, McGraw-Hill, 1993.
- 3. Atkinson, K.E., An Introduction to Numerical Analysis, 2<sup>n</sup> Edition, John Wiley, 2004.
- 4. Gupta R.S., Elements of Numerical Analysis, McMillan India, 2009.
- 5. Seshu P., Textbook of Finite Element Analysis, Prentice Hall India, 2003.

**Subject Title: Continuum Mechanics** 

**Subject Code: PHDM-104** 

| L | T | P | Credits |
|---|---|---|---------|
| 3 | 1 | 0 | 4       |

#### Unit-I

Continuum Hypothesis: Notion of Continuum. Configuration of a Continuum, Mass and Density, Description of motion, Material and Spatial Coordinates

Analysis of Strain: Affine Transformation, infinitesimal Affine Deformation, Geometrical interpretation of the Components of Strain, Strain Quadric of Cauchy, Principal Strains, Invariants, General Infinitesimal Deformation, Examples of strain, Notation, Equations of Compatibility, Finite Deformation

# **Unit-II**

Analysis of Stress: Body and Surface Forces, Stress Tensor, Note on Notation and Units, Equations of Equilibrium, Transformation of Coordinates, Stress Quadric of Cauchy, Maximal Normal and Shear Stresses, Examples of Stresses.

# **Unit-III**

Stress Strain Relations: Hookes law, Generalized Hookes law, Homogeneous isotropic bodies, Elastic moduli of isotropic bodies, Equilibrium Equations for an isotropic elastic solid, Dynamical equations of an isotropic elastic solid.

The strain energy function and its connection with Hooke's law, Uniqueness of solution of the Boundary-value problems of Elasticity, Saint-Venant's principle.

# **Unit-IV**

Fundamental laws of continuum mechanics: Conservation of mass, Balance of linear momentum, Balance of angular momentum, General solutions of the Equation of Equilibrium, Balance of energy, Entropy inequality, Constitutive Equations

- 1. Sokolnikoff, I.S., Mathematical Theory of Elasticity, Krieger Publishing Company (1983)
- 2. Chandrasekharaiah and Debnath, Continuum Mechanics, Academic Press (1994).
- 3. Jog. C. S., Foundations and Applications of Mechanics: volume I: continuum Mechanics, Narosa Publications, (2006).

**Subject Title: Advanced Analysis** 

**Subject Code: PHDM-105** 

| ${f L}$ | T | P | Credits |
|---------|---|---|---------|
| 3       | 1 | 0 | 4       |

# **Unit-I**

Distributions: Test functions & Distributions, Some Operations with Distributions, Supports and singular Supports of Distributions, Convolution of functions, Convolution of Distributions, Fundamental solutions,

# **Unit-II**

The Fourier Transform, The Schwartz Space, The Fourier Inversion formula, Tempered Distributions.

# **Unit-III**

Sobolev spaces: Definition and basic properties, Approximation by smooth functions, Extension theorems, Imbedding theorems, compactness theorem, Dual spaces, fractional order spaces, trace spaces, trace theory.

# **Unit-IV**

Weak solutions of elliptic boundary value problems: Some abstract variational problems, examples of elliptic boundary value problems, Regularity of weak solutions, Examples of Galerkin method, Maximum Principles, eigenvalue problems, Introduction to Finite element methods.

# **Recommended Books:**

1. S. Kesavan: Topics in Functional Analysis and Applications, New Age Publishers (P) Limited; 2003. Chap-1,2, and 3.