1.2.2

Supporting Documents- Department of Physical Sciences

Copy of Syllabus of All Programs Offered Indicating Credits/Electives Approved by Board

B.Sc.(Hons.) Physics

Course Structure and Syllabus (Based on Choice Based Credit System) 2021 onwards

PROGRAM EDUCATIONAL OBJECTIVES: At the end of the program, the student will be able to:

PEO1	Apply principles of basic science concepts in understanding, analysis, and prediction of physical systems.
PEO2	Develop human resource with knowledge, abilities and insight in Physics and related fields required for career in academia and industry.
PEO3	Engage in lifelong learning and adapt to changing professional and societal needs.

PROGRAM OUTCOMES: At the end of the program, the student will be able to:

PO1	Apply the knowledge gained to solve the scientific problems.
PO2	Identify, formulate, and analyzescientific problems reaching substantiated conclusions using first principles of mathematical, physical, and chemical sciences.
PO3	Design solutions for physics problems that meet the specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal consideration.
PO4	Use research-based knowledge and methods including design of experiments, analysis, interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Create, select, and apply appropriate techniques, resources, and modern scientific tools to physics problems with an understanding of the limitations.
PO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues, and the consequent responsibilities relevant to the professional scientific practice.
PO7	Understand the impact of the scientific solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Apply ethical principles and commit to the norms of scientific practice.
PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communicate effectively on scientific activities with the Scientific/Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Demonstrate knowledge and understanding of the scientific principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Recognize the need forand have the preparation and ability to engage in independent and life-long learning in the broadest context of scientific and technological change.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Head of Department

Department of Physics

IK Gujit Punjab Ta hnikal University Jalandhar,

Kapurthala, Punjab-144603

Page 2 of 131

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Understand the concepts of different branches of physics.
PSO2	Demonstrate expertise to conduct wide range of scientific experiments.
PSO3	Apply the concepts of physics in areas of mechanics, electromagnetism, solid state, nuclear, etc., in industry, academia, and day-to-day life.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Head of Department

Head of Physics

Department of Physics

Department

Page 3 of 131

First Semester

Course type	Course Code	Course Title	Load Allocation				rks bution	Total Marks	Cr
			L	T	P	Internal	External		
PHYSICS-C- 1	BSHP-111-21	Optics	3	1	-	40	60	100	4
PHYSICS-C- 2	BSHP-112-21	Mechanics	3	1	-	40	60	100	4
PHYSICS-C	BSHP-113-21	Physics Lab-I	-	-	4	30	20	50	2
GE-1	BSHM-104-21	Calculus	4	1	-	40	60	100	4
GE-2	BHCL-103-21	Inorganic Chemistry	3	1	-	40	60	100	4
	BHCP-109-21	Chemistry Lab-I	-	-	4	30	20	50	2
AEC-1	BHHL-105-21	Communicative English-I	2	-	-	20	30	50	2
AEC-2	BHHL-106A-21 BHHL-106B-21	Punjabi Compulsory-I or Mudhli Punjabi-I	2	-	-	20	30	50	2
	T	OTAL	17	4	8	260	340	600	24

L:Lecture

PHYSICS-Core T: Tutorial

PHYSICS-C: PHYSICS-Core General Elective: GE

P:Practical Cr: Credit

Ability Enhancement Compulsory: AEC

Second Semester

Course type	Course Code	Course Title	Load Allocation				rks bution	Total Marks	Cr
			L	Т	P	Internal	External		
PHYSICS- C-3	BSHP-121-21	Waves and Vibrations	3	1	-	40	60	100	4
PHYSICS- C-4	BSHP-122-21	Electricity and Magnetism	3	1	-	40	60	100	4
PHYSICS- C	BSHP-123-21	Physics Lab-II	-	-	4	30	20	50	2
GE-3	BSHM-204-21	Vector Algebra & Vector Analysis	4	1	-	40	60	100	4
GE-4	BHCL-114-21	Organic Chemistry	3	1	-	40	60	100	4
	BHCP-116-21	Chemistry Lab-II	-	-	4	30	20	50	2
AEC-3	BHHL-115-21	Communicative English-II	2	-	-	20	30	50	2
AEC-4	BHHL-116A-21 BHHL-116A-21	Punjabi Compulsory-II or Mudhli Punjabi-II	2	-	-	20	30	50	2
	T	OTAL	17	4	8	260	340	600	24

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 4 of 131

Head of Department

Head of Department of Physics

Department of Physics

Department of Physics

A punjab-144603

Third Semester

Coursetype	Course Code			Load Allocation		Marks Distribution		Total Marks	Cr
			L	T	P	Internal	External		
PHYSICS-C-5	BSHP-211-21	Mathematical Physics-I	5	1	-	40	60	100	6
PHYSICS-C-6	BSHP-212-21	Elements of Modern Physics	3	1	-	40	60	100	4
	BSHP-213-21	Physics Lab-III	-	-	4	30	20	50	2
PHYSICS-C-7	BSHP-214-21	Analog Systems and Application	3	1	-	40	60	100	4
	BSHP-215-21	Physics Lab-IV	-	-	4	30	20	50	2
GE-5	BHCL-204-21	Physical Chemistry	3	1	-	40	60	100	4
	BHCP-208-21	Chemistry Lab-III	-	-	4	30	20	50	2
PHYSICS- SEC-1	BSHP-216-21	Workshop Skill Enhancement	-	1	2	30	20	50	2
	BSHP-217-21	Computational Physics							
	BSHP-218-21	Weather Forecasting							
		TOTAL	14	5	14	280	320	600	26

PHYSICS-SEC:PHYSICS-Skill Enhancement Elective Course

a -

ni No

Dist

Fon

1110

nead of Department
Department of Physics

I.K.Gujit Punich (e. hnich University Jalandhar,
Rapurthala, Punjab-144603

Head of Department

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 5 of 131

Fourth Semester

Coursetype	Course Code	Course Title		Load Allocation		Marks Distribution		Total Marks	Cr
			L	T	P	Internal	External		
PHYSICS-C-8	BSHP-221-21	Mathematical Physics-II	5	1	-	40	60	100	6
PHYSICS-C-9	BSHP-221-21	Thermal Physics	3	1	-	40	60	100	4
	BSHP-223-21	Physics Lab-V	-	T-	4	30	20	50	2
PHYSICS-C-	BSHP-224-21	Digital Electronics	3	1	-	40	60	100	4
10	BSHP-225-21	Physics Lab-VI	-	-	4	30	20	50	2
GE-6	BSHM-408- 21	Matrices & Ordinary Differential Equations	4	1	-	40	60	100	4
AEC-5	EVS-101A	Environmental Studies	2	-	-	20	30	50	2
PHYSICS- SEC-2	BSHP-226-21	Electrical Circuits and Network Skills	-	1	2	30	20	50	2
	BSHP-227-21	Basic Instrumentation Skills							
	BSHP-228-21	Scientific Word Processing							
		TOTAL	17	5	10	270	330	600	26

Fifth Semester

Coursetype	Course Code Course Title		Load Allocation		Marks Distribution		Total Marks	Cr	
		Ald at	L	T	P	Internal	External		1
PHYSICS-C- 11	BSHP-311-21	Quantum Mechanics	5	1	-	40	60	100	6
PHYSICS-C- 12	BSHP-312-21	Solid State Physics	3	1	-	40	60	100	4
PHYSICS-C	BSHP-313-21	Physics Lab-VII	-	-	4	30	20	50	2
PHYSICS-C-	BSHP-314-21	Computational Physics Lab-I	-	-	4	30	20	50	2
DSE-1 DSE-2	BSHP-315-21 BSHP-316-21	Department Specific Elective (DSE)-1	5	1	-	40	60	100	6
DSE-3 DSE-4 DSE-5	BSHP-317-21 BSHP-318-21 BSHP-319-21	Department Specific Elective (DSE)-2	5	1	-	40	60	100	6
		TOTAL	18	4	8	220	280	500	26

Department Specific Electives -1 and 2 (Any two from the following list)

YE.

lan

onic

Head of Department

Head of Department

Of Physics

Well the property of Physics

Well the prope

S. No.	Name of the Subject	Code
1	Atomic and Molecular Physics	BSHP-315-21
2	Nuclear Physics 95 Land	BSHP-316-21
3	Dissertation	BSHP-317-21
4	Communication Electronics	BSHP-318-21
5	Renewable Energy and Energy Harvesting	BSHP-319-21

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 7 of 131

Sixth Semester

Coursetype	Course Code	Course Title	Load Allocation			Marks Distribution		Total Marks	Cr
PHYSICS-C-	BSHP-321-21	Fl	L	T	P	Internal	External	1 141143	+
13	D3/1F-321-21	Electromagnetic Theory	5	1	-	40	60	100	6
PHYSICS-C- 14	BSHP-322-21	Statistical Mechanics	3	1	-	40	60	100	4
PHYSICS-C-	BSHP-323-21	Physics Lab -VIII	+-	-	4	30	20		_
OSE-7	BSHP-325-21	Department Specific Elective (DSE)-3	5	1	-	40	60	50 100	6
DSE-9	BSHP-326-21 BSHP-327-21 BSHP-328-21	Department Specific Elective (DSE)-4	5	1	-	40	60	100	6
		TOTAL	18	4	4	190	260	450	24

Department Specific Electives- 3 and 4 (Any two from the following list)

1 11 1

Mart Mart

S. No.	Name of the Subject			
1	Particle Physics	Code		
2	· Action and	BSHP-324-21		
	Advanced Mathematical Physics	BSHP-325-21		
3	Advanced Condensed Matter Physics	BSHP-326-21		
4	Experimental Techniques			
5		BSHP-327-21		
3	Radiation Safety	BSHP-328-21		

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 8 of 131

Head of Department
Department of Physics
Department of Physics
M.K.Gujn Punish Technical University Jalandhar,
Kapurthala, Punjab-144603

Examination and Evaluation

Theory			
S. No.	Evaluation criteria	Weightage in Marks	Remarks
1	Mid term/sessional Tests	24	Internal evaluation (40 Marks) MSTs, Quizzes, assignments,
2	Attendance	6	attendance, etc., constitute internal
3	Assignments	10	evaluation. Averageof two mid semester test will be considered for evaluation.
4	End semester examination	60	External evaluation
5	Total	100	Marks may be rounded off to nearest integer.
Practic	al		
1	Evaluation of practical record/Viva Voice/Attendance/Seminar/ Presentation	30	Internal evaluation
2	Final Practical Performance + Viva-Voce	20	External evaluation
3	Total	50	Marks may be rounded off to nearest integer.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 9 of 131

Head of Department

Head of Department

Department of Physics

Depar

Instructions for Paper-Setter in B. Sc.(Hons.) Physics

A. Scope

- 1. The question papers should be prepared strictly in accordance with the prescribed syllabus and pattern of question paper of the University.
- 2. The question paper should cover the entire syllabus with proper distribution and Weightage of marks for each question.
- 3. The language of questions should be simple, direct, and documented clearly and unequivocally so that the candidates may have no difficulty in appreciating the scope and purpose of the questions. The length of the expected answer should be specified as far as possible in the question itself.
- 4. The distribution of marks to each question/answer should be indicated in the question paper properly.

B. Type and difficulty level of question papers

- 1. Questions should be framed in such a way as to test the students intelligent grasp of broad principles and understanding of the applied aspects of the subject. The Weightage of the marks as per the difficulty level of the question paper shall be as follows:
 - i) Easy question 30%ii) Average questions 50%
- iii) Difficult questions 20%2. The numerical content of the question paper should be upto 25%.

C. Format of end semester question paper

- 1. Paper code and Paper-ID should be mentioned properly.
- 2. The question paper will consist of three sections: Sections-A, B and C.

TOPF

Head of Department
Head of Department of Physics
Department of Physics
University Jalandhar,
LK.Gujiki Punish February
Punish Punish Punish-144603

- 3. Section-A is COMPULSORY consisting of TEN SHORT questions carrying two marks each (total 20 marks) covering the entire syllabus.
- 4. The Section-B consists of FOUR questions of eight marks each covering the entire PART-A of syllabus (Taking two questions from every unit).
- 5. The Section-C consists of FOUR questions of eight marks each covering the entire PART-B of syllabus (Taking two questions from every unit).
- 6. Attempt any five questions from Section-B and Section-C, selecting at least two questions from each of the two sections.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 10 of 131

Question paper pattern for MST:

Roll No:	No of pages:
----------	--------------

IK Gujral Punjab Technical Univers	sity-Jalandhar
Department of Physical Sc	iences
Academic Session:	
Mid-Semester Test: I/II/III (Regular/reappear)	Date:
Programme: B.Sc.(Hons.) Physics	Semester:
Course Code:	Course:
Maximum Marks: 24	Time: 1 hour 30 minutes

❖ Note: Section A is compulsory; Attempt any two questions from Section B and one question from Section C.

Section: A		Marks	COs
1		2	
2		2	
3		2	
4	2	2	
Section: B			
5	11/2	4	
6	* 192 U	4	
7	+ Marie	4	
Section: C			
8		8	
9		8	

Details of Course Objectives

Details of Course	Objectives
CO1	
CO2	
CO3	
CO4	
CO5	contains.

Head of Department
Department of Physics

N. Gujiki Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

Kapurthala, Punjab-144603

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 11 of 131

SEMESTER-I

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 12 of 131

Head of Department

Head of Department of Physics

Department of Physics

IKGUIN Punith Technical University Jalandhar,

IKGUIN Punithala, Punjab-144603

PHYS	SICS-C	C-1 E	SSHP-1	11-21	Optio	S		L-	3, T-1,	P-0	4 Cı	edits
Pre-r	equis	ite: Unde	erstandir	ng of ser	nior seco	ondary I	evel Phy	sics and	Mathe	matics		
Interformand of pursue	erence ations. other i ephysi	pjectives , Diffract . Student related p cs as a ca	ion and swill be baramete areer.	Polariza e equipp ers, whi	tion am ed with ch will	ong stu knowle act as	dents.Thedge to a stror	ney also measur ng back	learn a e wavel ground	bout the ength, r	LASER efractiv	and its
		tcomes:										
CC)1		and illus wave ph			oncepts	and ter	minolog	y used	in optics	and oth	ner
CC)2		and und			nce and	phenon	nenon o	f interfe	erence a	nd their	
CO)3	Acquain	ted with	Fresnel	's and F	raunhof	er's diffi	raction a	and thei	r applica	tions.	
CO)4	Get tho	rough k	nowledg	e of the	e polar nalyze tl	ization on the polar	of light, ization i	change n optica	es upon	reflecti	on and
CO	5	Describe	e the di	fferent	types o	flasers	, its pri	nciple,	properti	es and	applicat	ions o
		Map	ping of	course	outco	mes w	ith the	progra	m outc	omes		
	PO1	PO2	PO3	PO4	PO5	P06	PO7	P08	PO9	PO10	PO11	PO12
CO1	2	1	2	1	-	1	2	1	2	3	2	2
02	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	ĺĺ	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
CO5	2	2	2	2	-1-	1	2	1	1	3	1	1

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Head of Department
Head of Department
Department of Physics
Department of Physics
University Jalandhar,
J.K. Gujiki Punix J. Fe. Innical University Jalandhar,
Rapur', Jala, Punjab-144603

Page 13 of 131

PART-A

UNITI

Interference: Definition and properties of wave front, Temporal and Spatial Coherence, Young's double slit experiment, Lloyd's single mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films, Fringes of equal inclination (Haidinger Fringes), Newton's Rings: Measurement of wavelength and refractive index, Interferometer: Michelson Interferometer-(1) idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, Fabry-Perot interferometer. (11 Lectures)

UNIT-II

Diffraction: Huygens Principle, Huygens-Fresnel Diffraction theory, Fraunhofer diffraction: Single slit. Circular aperture, Rayleigh criterion of resolution, Resolving Power of a telescope, Double slit, Multiple slits, Diffraction grating, Resolving power of grating. Fresnel Diffraction: Fresnel's Assumptions, Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light, Theory of a Zone Plate: Multiple Foci of a Zone Plate, Fresnel diffraction pattern of a straight edge and circular aperture. (11 Lectures)

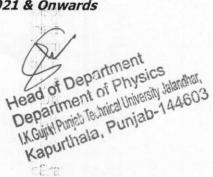
PART-B

UNIT-III

Polarization: Plane polarized light, Representation of Unpolarized and Polarized light, Polarization by Reflection, Brewster's law, Malus Law, Polarization by Selective absorption by Crystals, Polarization by Scattering, Polarization by Double Refraction, Nicol Prism, Huygen's theory of Double Refraction, Polaroid, Elliptically and Circularly polarized lights, Quarter and Half wave plates.

(11 Lectures)

UNIT-IV


Laser and Application: Lasers, Spontaneous emission, Stimulated absorption, Stimulated emission, Einstein coefficients, Einstein relations, Conditions for Laser actions, Population inversion, Different types of Laser Pumping mechanism: Optical Pumping, Electric Discharge and Electrical pumping, Resonators, Two, Three and Four level laser systems, Ruby laser, He-Ne gas Laser, Semiconductor laser, CO2 laser, applications of laser: Holography, Principle of Holography. (11 Lectures)

Text and Reference Books:

- 1. Optics: A.K. Ghatak (Tata-McGraw Hill), 1992.
- 2. Fundamentals of Optics: F.A. Jenkins and H.E. White (McGraw Hill), 1981.
- 3. A Textbook of Optics: Subrahmaniyam N. & et al., S. Chand Publishing, 2006.
- 4. O. Svelto: Principles of Lasers, Springer Science & Business Media, 2010.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 14 of 131

PHYS	SICS-C	-2 BS	HP-112	-21	Mec	hanics		L-3,	T-1, P-	0	4 Cred	its
Pre-r	equisit	te: Unde	erstandir	ng of ser	nior sec	ondary I	evel Phy	/sics and	d Mathe	matics		
stude so the backg	nts to that they round in	ne forma can use f he/she	al structi e these chooses	ure of ve in Engi s to purs	ector me neering sue high	echanics as per ner studi	their reies in ph	nic oscil equirem lysics.	lators, a ent. Th	cs is to and mec is will a	hanics o	f solid
		comes:										
CC)2									al syster ices, an		rvation
CC)3	Know th	e inertia	al and no	on-inerti	al syste	m.					
CC)4	Understa	and the	Gravitat	ion forc	e as a C	Central F	orce Mo	tion			
CC		Apply th	e knowl	edge ob	tained i	n this co	ourse to	day-to-	day prol	olems.		
		Мар	ping of	course	outco	mes w	ith the	progra	m outc	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
01	2	3	-	1	2	1	2	1	2	3	2	2
CO2	2	3	1	2	2	1	1	1	1	3	1	1
CO3	3	3	2	2	2	1	2	1	1	3	1	1
203	-	2	2	-	2	1	2	1	1	3	1	1
03	2	2	_		1							

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Head of Department

Head of Department

Of Physics

Department of Physics

Jechnical University Jalandia,

Jechnical University Jalandia,

Punjab-144603

Kapurthala, Punjab-144603

Page 15 of 131

UNIT I:

Fundamentals of Dynamics: Reference frames. Inertial frames; Review of Newton's Laws of Motion. Galilean transformations; Galilean invariance. Dynamics of a system of particles. Centre of Mass. Principle of conservation of momentum. Impulse. Momentum of variable-mass system: motion of rocket. (12 Lectures)

UNIT II:

Work and Energy: Work and Kinetic Energy Theorem. Conservative and non-conservative forces. Potential Energy. Energy diagram. Stable and unstable equilibrium. Force as gradient of potential energy. Work done by non-conservative forces. Law of conservation of Energy.

Collisions: Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frame of references. (12 Lectures)

UNIT-III

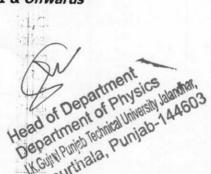
Non-Inertial Systems: Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications. Components of Velocity and Acceleration in Cylindrical and Spherical Coordinate Systems.

(12 Lectures)

UNIT-IV

Gravitation and Central Force Motion: Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and fields due to spherical shell and solid sphere. Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS).

Text and Reference Books:


- 1. Mechanics, Berkeley Physics, Vol.1, C. Kittel, W. Knight, et.al. 2007, Tata McGraw-Hill.
- 2. Physics, Resnick, Halliday and Walker 8/e. 2008, Wiley.
- 3. Feynman Lectures, Vol. I, R.P.Feynman, R.B.Leighton, M.Sands, 2008, Pearson Education
- 4. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons

Hitus

- 5. University Physics. F.W Sears, M.W Zemansky, H.D Young 13/e, 1986, Addison Wesley
- Physics for scientists and Engineers with Modern Phys., J.W.Jewett, R.A.Serway, 2010, Cengage Learning
- 7. Theoretical Mechanics, M.R. Spiegel, 2006, Tata McGraw Hill.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 16 of 131

PHY C	SICS-	BSHI 21	P-113-	Ph	ysics L	ab-I	L-0,	T-0, P-	4	2 (Credits	
Pre-	requisi	ite (If a	ny): Hi	gh-scho	ool educ	cation					2000	
the fuse t	rse Obj ormal s hese as	tructure per the	: The air of election	im and tromag ement.	objecti netism	ve of th and ph	enomer	non of v	vave op	otics so	he stud that th	ents t
Cour	se Out	comes	At the	end of	the cou	rse, the	studen	t will be	able to)		
CO1		Able t	o verify	the the	eoretical	concep	ts/laws	learnt i	n theor	v cours	es.	
CO2		Traine equip	ed in o	carrying	out	precise	meas	uremen	ts and	hand	ling se	nsitiv
CO3		Under	stand that	ne met	hods us	sed for "errors	estima	ting and	d dealir	ng with	experi	menta
CO4		_	to draw					evelon s	kille in	ovnorin	ontal d	
CO5		Docun	nent a te	echnica	report	which o	commun	nicates s	scientifi	c inforn	nation ir	a a
		Марр	ing of c	ourse	outcor	nes wi	th the	progra	m outo	omes		
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO1	PO1	PO1
				j-	His .					0	1	2
CO1	3	3	2	2	2	1	2	1	2	3	2	3
CO2	3	3	1	- 1	2	2	1	1	1	3	2	3
CO3	3	3	2	- 1	2	1	2	1	1	3	2	3
CO4	3	2	2	2	120	2	2	1	1	3	2	3
		2	2	2	-				-	_	-	

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 17 of 131

Head of Department
Department of Physics
LK. Gujrki Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

ille

T CHA

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses.
- 2. To study the laser beam characteristics like; wavelength, aperture, spot size, etc. using diffraction grating.
- 3. To study the diffraction using laser beam and thus to determine the grating element.
- 4. To study wavelength and laser interference using Michelson's Interferometer.
- 5. To find the refractive index of a material/glass using spectrometer.
- 6. To find the refractive index of a liquid using spectrometer.
- 7. To determine the angle of prism and resolving power of a prism.
- 8. To study the magnetic field of a circular coil carrying current using a Steward and Gees Tangent Galvanometer.
- 9. Determine the radius of circular coil using the Circular coil.
- 10. To study B-H curve using CRO.
- 11. To find out polarizability of a dielectric substance.
- 12. To find out the horizontal component of earth's magnetic field (B_h) .

Text and Reference Books:

- 1. A Textbook of Practical Physics, I. Prakash & Ramakrishna, 11thEdn, 2011, Kitab Mahal.
- 2. Engineering Practical Physics, S. Panigrahi& B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 3. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.

3"

1toi

clost mie


1. 75

2015 Char

- 4. Practical Physics, C L Arora. S. Chand & Company Ltd.
- 5. http://www.vlab.co.in

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 18 of 131

General Elective(GE)-	BSHM-104-21	CALCULUS-I	L-4, T-1, P-0	4 Credits
1	4			

Pre-requisite: Understanding of senior secondary level Mathematics

Course Objectives: The objectives of this course are to make the students understand the following:

- 1. The fundamental concepts of differential and integral calculus.
- 2. The geometrical meaning of functions, limits, continuity, derivatives, mean value theorems.
- 3. Applications of derivatives and integrals.
- 4. Limit, Continuity, partial derivatives and their applications in finding extreme values.
- 5. The utility of double and triple integrals in finding area and volume bounded by surfaces.

Course O	utcomes: At the end of the course, the student will be able to
CO1	Understand the basic concepts of Differential and Integral Calculus.
CO2	Visualize all concepts geometrically.
CO3	Apply the knowledge of derivatives in finding extreme values of the function and definite integrals to find area under the curve.
CO4	Explain the concept of Limit, Continuity, partial derivatives of functions of severable variables and their applications.
CO5	Utilize the concept of multiple integrals in finding areas and volumes of different geometrical shapes.

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	2	2	3	2	3	2	2	2	3
CO2	2	1	1	- 4	2	2	1	3	2	2	2	3
CO3	2	2	2	-	2	1	2	1	2	3	2	3
CO4	1	2	2	2	100	2	2	2	1	3	2	3
CO5	2	2	2	2	71	2	2	1	1	3	2	3

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 19 of 131

Head of Department
Head of Department of Physics
Department of Physics
Department Echnical University Jakanothar,
J.K. Gujin Punjab - 144603
J.K. Gujin Punjab - 144603

UNIT-I

Functions of single variable, Simple examples of limit, continuity, differentiability, Derivative of elementary functions (t-ratios, logarithmic functions, exponential functions), Higher order derivatives, Statement of Mean value theorems and simple applications, Applications of derivative: increasing decreasing functions, extreme values of functions. (**Ref. 1**)

UNIT-II

Integration as an inverse process of differentiation, Finding integrals by partial fractions, by parts, Statement of fundamental theorem of calculus, Finding definite integrals by method of substitution, Applications of definite integral in finding length of an arc, area under simple curves, area enclosed between two curves. (Ref. 1)

UNIT-III

Introduction of Limit, continuity of functions of two variables with simple examples, partial derivatives, Total derivatives, Homogeneous functions, Statement of Euler's theorem, Simple examples of maxima-minima of functions of several variables, Lagrange's method of multipliers.

UNIT-IV

Double integrals, Change of order of integration, Jacobian, Double integral in polar coordinates, Triple integrals, Simple applications in finding area and volumes.

RECOMMENDED BOOKS:

- Mathematics, A Text book for Class XII (Parts I & II), New Delhi: NCERT, 2003. (Unit I & II)
- R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Pub., 4th Edition, 2015.
- James Stewart, Calculus, 5th Edition, Brooks/Cole (Thomson), 2003.

I to

if fu

s for

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 20 of 131

Head of Department
Department of Physics

IK Gujiki Punjab Technical University Jalandhar,
ala, Punjab-144603

Elect (GE)	-2		L-102-2	C	NORGA HEMIS		T-1, P-		4 Cred	lits		
Pre-	requis	ite: Unde	erstandir	ng of se	nior sec	ondary	level Ph	ysics and	d Mathe	matics		
Cour applic	rse Obcations	ojectives	:To tea	ach the	funda	mental	concept	ts of I	norganio	chemi	stry an	d thei
Cour	se Ou	tcomes:	At the e	nd of th	ne cours	e, the s	tudent v	vill be al	ble to			
CC	01	Underst the stru	and the	fundam atom.	nental co	ncepts	and pos	tulates o	of variou	ıs theori	es regar	ding
CC	02	Learn th			the s &	n block	elemen	te				
CC	03	Understa	and the	e vario	us type	s of b	onding	presen	t in th	ne diffe	rent in	organi
CC	04			various	theorie	s pertair	ning to t	ho diffo	rent typ	es of bo	dina	
		-cuill ar					111101101					
	05	Louin at		i	17/11		ing to t	ne une	i cite typ	C3 01 D0	ung	
	05				e outco						uirig	
	PO1	Мар			1011						PO11	PO12
		Мар	ping of	cours	e outco	mes w	ith the	progra	m outo	omes		PO12
CO1	PO1	Map PO2	PO3	cours PO4	e outco	mes w	PO7	PO8	m outo	PO10	PO11	
CO1 CO2	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11 2	3
CC	PO1 2 2	Map PO2 3 3	PO3 2 1	PO4	PO5	PO6 1 2	PO7	PO8 2 2	PO9 2 2	PO10 3	PO11 2 2	3

PART-A

UNIT-I

Atomic Structure:

Bohr's theory, its limitations and atomic spectrum of hydrogen atom. Wave mechanics: deBroglie equation, Heisenberg's Uncertainty Principle and its significance, Schrödinger's wave equation, significance of ψ and ψ^2 . Quantum numbers and their significance. Normalized and orthogonal wave functions. Sign of wave functions. Radial and angular wave functions for hydrogen atom. Radial and angular distribution curves. Shapes of s, p, dand f orbitals. Contour boundary and probability diagrams. Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations, Variation of orbital energy with atomic number

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Prin

ilons

Page 21 of 131

Head of Department
Department of Physics
I.K. Gujrki Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

UNIT-II

Chemical Bonding-I:lonic bond: General characteristics, types of ions, size effects, radius ratio rule and its limitations. Packing of ions in crystals. Born-Landé equation with derivation and importance of Kapustinskii expression for lattice energy. Madelung constant, Born-Haber cycle and its application, Solvation energy.

Metallic Bond: Qualitative idea of valence bond and band theories. Semiconductors and insulators, defects in solids.

Weak Chemical Forces: van der Waals forces, ion-dipole forces, dipole-dipole interactions, induced dipole interactions, Instantaneous dipole-induced dipole interactions. Repulsive forces, Hydrogen bonding (theories of hydrogen bonding, valence bond treatment) Effects of chemical force, melting and boiling points, solubility energetics of dissolution process.

UNIT-III

Chemical Bonding-II:Covalent bond: Lewis structure, Valence Bond theory (Heitler-London approach). Energetics of hybridization, equivalent and non-equivalent hybrid orbitals. Bent's rule, Resonance and resonance energy, Molecular orbital theory. Molecular orbital diagrams of diatomic and simple polyatomic molecules N_2 , O_2 , C_2 , B_2 , F_2 , CO, NO, and their ions; HCl, BeF_2 , CO_2 , (idea of s-p mixing and orbital interaction to be given). Formal charge, Valence shell electron pair repulsion theory (VSEPR), shapes of simple molecules and ions containing lone pairs and bond pairs of electrons, multiple bonding (σ and π bond approach) and bond lengths. Covalent character in ionic compounds, polarizing power and polarizability. Fajan's rules and consequences of polarization. Ionic character in covalent compounds: Bond moment and dipole moment. Percentage ionic character from dipole moment and electronegativity difference.

UNIT-IV

Chemistry of s and p Block Elements:

Inert pair effect, Relative stability of different oxidation states, diagonal relationship and anomalous behaviour of first member of each group. Allotropy and catenation. Complex formation tendency of s and p block elements. Hydrides and their classification ionic, covalent and interstitial. Basic beryllium acetate and nitrate. Study of the following compounds with emphasis on structure, bonding, preparation, properties and uses. Boric acid and borates, boron nitrides, borohydrides (diborane) carboranes and graphitic compounds, silanes, Oxides and oxoacids of nitrogen, Phosphorus and chlorine. Peroxo acids of sulphur, interhalogen compounds, polyhalide ions, pseudohalogens and basic properties of halogens.

Reference Books :-

- 1. Lee, J.D. Concise Inorganic Chemistry, ELBS, 1991.
- 2. Douglas, B.E; Mc Daniel, D.H. & Alexander, J.J. Concepts & Models of Inorganic Chemistry 3rd Ed., John Wiley Sons, N.Y. 1994.
- 3. Greenwood, N.N. & Earnshaw. Chemistry of the Elements, Butterworth-Heinemann. 1997.
- 4. Cotton, F.A. & Wilkinson, G. Advanced Inorganic Chemistry, Wiley, VCH, 1999.
- 5. Miessler, G. L. & Donald, A. Tarr. *Inorganic Chemistry 4th Ed.*, Pearson, 2010.

Ferc Perci

nistr Alæx

6. Shriver & Atkins, Inorganic Chemistry 5th Ed.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 22 of 131

Head of Department
Department of Physics
I.K. Gujrkl Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

Gene (GE)-		ective	ВНСР-	102-21	CHE	MISTR	Y LAB-	L-0,	T-0, P-	4	2 Cred	lits
		ite: Und	erstandir	ng of ser	nior seco	ondary I	evel Che	emistry				
comp	iments ounds.		arious ty	pes of ir	norganio	titratio	ns and p	reparat	ion of si	vledge a mple ind	and illus organic	trative
Cours	se Ou	tcomes:	At the e	end of th	e cours	e, the st	tudent w	ill be al	ole to			
CC)1	Underst	and to c	alibrate	and rur	the ins	trument	s for an	alysis.			
CC)2			antitative	-					and ani	ons.	
CC)3		and the	various								itative
CC)4	Learn to	prepare	e various	inorga	nic com	pounds					
		Maj	oping o	fcourse	outco	mes w	ith the	progra	m outc	omes		
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	2	1	2	1	2	3	2	3
CO2	2	3	1	3	2	2	1	1		2	2	3
CO3	2	3	2	3	2	1	2	1	1	2	2	3
COS												

List of Experiments:

(A) Titrimetric Analysis

- (i) Calibration and use of apparatus
- (ii) Preparation of solutions of different Molarity/Normality of titrants

(B) Acid-Base Titrations

- (i) Estimation of carbonate and hydroxide present together in mixture.
- (ii) Estimation of carbonate and bicarbonate present together in a mixture.
- (iii) Estimation of free alkali present in different soaps/detergents

(C) Oxidation-Reduction Titrimetry

(i) Estimation of Fe(II) and oxalic acid using standardized KMnO4 solution.

rlo

- (ii) Estimation of oxalic acid and sodium oxalate in a given mixture.
- (iii) Estimation of Fe(II) with $K_2Cr_2O_7$ using internal (diphenylamine, anthranilic acid) and external indicator.

Reference text:

1. Vogel, A.I. A Textbook of Quantitative Inorganic Analysis, ELBS.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 23 of 131

Head of Department
Department of Physics
I.K.Gujrkl Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

Ability Enhancement	BHHL- 105-21	Communicative English -I	L-2, T-0, P-0	2 Credits
Compulsory (AEC)-1				

Pre-requisite: Basic proficiency in Communication Skills

Course Objectives: The main objective of this course is:

- To help the students become proficient in LSRW-Listening, Speaking, Reading & Writing skills
- To help the students become the independent users of English language
- To develop in them vital communication skills, integral to their personal, social and professional interactions
- To teach them the appropriate language of professional communication
- To prepare them for job market

Course Outcomes: At	the	end	of	the	course,	the	student	will
---------------------	-----	-----	----	-----	---------	-----	---------	------

CO1	acquire basic proficiency in reading &listening, writing and speaking skills
CO2	be able to understand spoken and written English language, particularly the language of their chosen technical field.
CO3	be able to converse fluently.
CO4	be able to produce on their own clear and coherent texts.
CO1	become proficient in professional communication, such as, interviews, group discussions, office environments, important reading skills as well as writing skills and thereby will have better job prospects.

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2 -	-2	2	2	3	2	3	2	2
CO2	2	2	2	1	1	2	2	3	2	3	2	2
CO3	1	-	2	1	2	2	2	3	2	3	2	2
CO4	1	-	-	1	1	2	2	3	2	3	2	2
CO5	2	-	-	1	1	2	2	3	2	3	2	2

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 24 of 131

Head of Department
Department of Physics
I.K.Gujrki Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

Part -A

UNIT I-(Literature)

(A) The Poetic Palette (Orient Black Swan, Second Edition, 2016)

The following poems from this anthology are prescribed:

- 1. Pippa's Song: Robert Browning
- 2. Apparently With No Surprise: Emily Dickinson
- 3. Fool and Flea: Jeet Thayil

(B) Prose Parables (Orient Black Swan, 2013)

The following stories from the above volume are prescribed:

- a. The Kabuliwallah: Rabindranath Tagore
- b. The Eyes Are Not Here: Ruskin Bond
- c. Grief: Anton Chekov

UNIT-II

Vocabulary: Word Formation Processes; Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives; Synonyms, antonyms

Grammar: Subject-verb agreement; Noun-pronoun agreement; Misplaced modifiers; Articles Determiners; Modals; Prepositions;

PART-B

UNIT-III

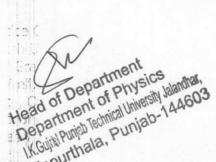
Reading and Understanding: Close Reading; Comprehension;

UNIT-IV

Mechanics of Writing & Speaking Skills

Essay Writing (Descriptive/Narrative/Argumentative); Business letters; Précis Writing; Self Introductions; Group Discussion

TEXT AND REFERENCE BOOK


- 1. John Eastwood, Oxford Practice Grammar, Oxford University Press, 2014
- 2. Michael Swan, Practical English Usage, OUP. 1995.
- 3. F.T. Wood, Remedial English Grammar, Macmillan. 2007.
- 4. William Zinsser, On Writing Well, Harper Resource Book 2001.
- 5. Sanjay Kumar and Pushp Lata, Oxford University Press. 2011.

11 11

- 6. Communication Skills, Oxford University Press. 2011.
- 7. Liz Hamp-Lyons and Ben Heasly, Study Writing, Cambridge University Press. 2006.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 25 of 131

Ability BHHL- Enhancement 106A-21 Compulsory (AEC)-2				1 11 1	ਜਾਬੀਲਾਜ ompuls	ਜ਼ਮੀ (Punjabi sory)-I	L-2, T	-0, P-0	2	Credit	S
Pre-re	quisit	e: Under	standing	of sen	ior seco	ndary level Punj	abi				
1.To e 2.To e langua	nhance enhance ige teac	ching wit	juage ab bility of h science	ility of s Learni e subjec	students ng scie cts.				teracy	through	local
CO	1	Translate	e and	transfe	er/broad	cast the wes	tern sc	ientific	knowle		the
СО	2	Translate	e and tra	into En	glish and	genous/tradition d other global la	nguages			availa	ble in
	-		and the c	ociety	through	Punjabi languag	e literat				
СО	3	Understa	ind the s				je, neera	ture and	culture		
СО	4	Learning	science	and in	develop	ing science liter		ture and	culture		
	4	Learning Improve	science the inte	and in	develop	ing science liter	асу.				
СО	4	Learning Improve	science the inte	and in	develop	ing science liter	асу.				
СО	4	Learning Improve	science the inte	and in	develop mmunica e outco	ing science liter	асу.			PO11	PO12
СО	95	Learning Improve Map	science the inte	and in rnal cor course	develop mmunica e outco	ing science liter ation. mes with the p	orogran	ı outco	mes		PO12
CO	94 95	Learning Improve Map PO2	science the inte ping of	and in rnal cor course	develop mmunica e outco	ing science literation. mes with the page 1906 PO7	progran	PO9	mes PO10	PO11	
CO CO	PO1 2	Learning Improve Map PO2 2	science the inte ping of PO3	and in rnal cor course PO4	develop mmunica e outco	ing science literation. mes with the position of the position	PO8	PO9	PO10	PO11 2	2
CO1 CO2	PO1 2 2	Learning Improve Map PO2 2 2	science the inte ping of PO3 2	and in rnal cor course PO4 2	develop mmunica e outco PO5	ring science literation. mes with the property of the propert	PO8 3 3	PO9 2 2	PO10 3 2	PO11 2 2	2

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 26 of 131

Head of Department

Department of Physics

Department of Physics

I.K. Gujiki Punjab Technical University Jalandhar,

Kapurthala, Punjab-144603

Kapurthala, Punjab-144603

PART-A

UNIT I :ਕਵਿਤਾਭਾਗ:

ਭਾਈਵੀਰਸਿੰਘ:

ਸਮਾਂ, ਚਸ਼ਮਾ

ਪ੍ਰੋ.ਪੂਰਨਸਿੰਘ:

ਪੰਜਾਬਨੂੰਕੂਕਾਂਮੈਂ, ਹੱਲਵਾਹੁਣਵਾਲੇ

ਪ੍ਰੋ.ਮੋਹਨਸਿੰਘ:

ਮਾਂ,ਕੋਈਆਇਆਸਾਡੇਵਿਹੜੇ,ਪਿਆਰਪੰਧ

ਅੰਮ੍ਰਿਤਾਪ੍ਰੀਤਮ:

ਆਖਾਂਵਾਰਿਸਸ਼ਾਹਨੂੰ,ਅੰਨਦਾਤਾ(Lecture 11)

UNIT-IIਕਹਾਣੀਭਾਗ:

ਸੰਤਸਿੰਘਸੇਖੋਂ:

ਪੇਮੀਦੇਨਿਆਣੇ

ਸੁਜਾਨਸਿੰਘ :

ਕੁਲਫੀ

ਕੁਲਵੰਤਸਿੰਘਵਿਰਕ:

ਤੂੜੀਦੀਪੰਡ

ਗੁਰਦਿਆਲਸਿੰਘ: ਸਾਂਝ(Lecture 12)

PART-B

UNIT-III

ਭਾਸ਼ਾਦਾਟਕਸਾਲੀਰੂਪ, ਭਾਸ਼ਾਤੇਉਪ-ਭਾਸ਼ਾਵਿਚਅੰਤਰ, ਪੰਜਾਬੀਦੀਆਂਉਪ-ਭਾਸ਼ਾਵਾਂ,ਪੰਜਾਬੀਭਾਸ਼ਾ:ਨਿਕਾਸਤੇਵਿਕਾਸ। ਭਾਸ਼ਾਤੇਲਿਪੀ, ਗੁਰਮੁਖੀਲਿਪੀਦੀਆਂਵਿਸ਼ੇਸ਼ਤਾਵਾਂ, ਗੁਰਮੁਖੀਲਿਪੀ: ਨਿਕਾਸਤੇਵਿਕਾਸ। (Lecture 11)

UNIT-IV

ਸੰਖੇਪਰਚਨਾ (ਪ੍ਰੈਸੀ) ਪੈਰ੍ਹਾਰਚਨਾ ਸਰਲਅੰਗਰੇਜ਼ੀਪੈਰ੍ਹੇਦਾਪੰਜਾਬੀਅਨੁਵਾਦ(Lecture 11)

TEXT AND REFERENCE BOOK:

1.ਸੰਪ.ਡਾ.ਮਹਿਲਸਿੰਘ, ਸਾਹਿਤਦੇਰੰਗ, ਰਵੀਸਾਹਿਤਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ,2016.

YEd,

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 27 of 131

Head of Department
Head of Department
Department of Physics
Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Department of Physics

Departme

Ability Enhancement Compulsory	BHHL- 106B-21	ਮੁਢਲੀਪੰਜਾਬੀ (Mudhli Punjabi)-I	L-2, T-0, P-0	2 Credits
(AEC)-2				

Pre-requisite: Understanding of senior secondary level Physics and Mathematics

Course Objectives: The objective of the course is to:

1.enhance the language ability of students.

2.enhance the ability of Learning science and developing science literacy through local language teaching with science subjects.

Course Outcomes: At the end of the course, the student will be able to

CO1	Translate and transfer/broadcast the western scientific knowledge in the local language.
CO2	Translate and transfer the indigenous/traditional scientific knowledge available in local knowledge into English and other global languages.
CO3	Understand the society through Punjabi language, literature and culture.
CO4	Learning science and in developing science literacy.
CO5	Improve the internal communication.
	Manning of course outcomes with the meaning of

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	2	2	3	2	3	2	2
CO ₂	2	2	2	1	1	2	2	3	2	2	2	2
CO3	3	1	2	1	2	2	2	3	2	2	2	2
CO4	3	1	-	1	1	2	2	3	2	3	2	2
CO5	3	1	-	1	1	2	2	3	2	3	2	2

Detailed Syllabus:

PART-A

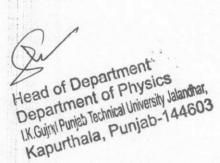
n is

clare

UNIT I

ਪੈਂਤੀਅੱਖਰੀ (ਵਰਣਮਾਲਾ), ਅੱਖਰਕ੍ਰਮ ਮਾਤਰਾਵਾਂ : ਮੁਢਲੀਜਾਣ-ਪਛਾਣ ਲਗਾਖਰ :ਬਿੰਦੀ, ਟਿੱਪੀ, ਅੱਧਕ

UNIT-II


ਪੰਜਾਬੀਸ਼ਬਦਬਣਤਰ: ਮੁਢਲੀਜਾਣ-ਪਛਾਣ ਮੁਲਸ਼ਬਦ , ਅਗੇਤਰ, ਪਿਛੇਤਰ ਸਮਾਨਾਰਥਕਸ਼ਬਦ, ਵਿਰੋਧਾਰਥਕਸ਼ਬਦ

ਸੁੱਧ- ਅਸੁੱਧ: ਦਿੱਤੇਪੈਰ੍ਹੇਵਿੱਚੋਂਅਸੁੱਧਸ਼ਬਦਨੂੰਸੁੱਧਕਰਨਾ

(11 Lectures)

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 28 of 131

PART-B

UNIT-III ਹਫਤੇਦੇਸੱਤਦਿਨਾਂਦੇਨਾਂ ਬਾਰ੍ਹਾਂਮਹੀਨਿਆਂਦੇਨਾਂ ਰੁੱਤਾਂਦੇਨਾਂ ਇਕਸੌਤੱਕਗਿਣਤੀਸ਼ਬਦਾਂਵਿਚ

UNIT-IV

ਸਧਾਰਣਸ਼ਬਦਾਂਦਾਅੰਗਰੇਜ਼ੀਤੋਂਪੰਜਾਬੀਅਨੁਵਾਦ ਸਧਾਰਣਸ਼ਬਦਾਂਦਾਪੰਜਾਬੀਤੋਂਅੰਗਰੇਜ਼ੀਅਨੁਵਾਦ

TEXT AND REFERENCE BOOK

1.ਸੰਪ.ਡਾ.ਮਹਿਲਸਿੰਘ, ਸਾਹਿਤਦੇਰੰਗ, ਰਵੀਸਾਹਿਤਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ, 2016.

THE.

Head of Department

Head of Department

Department of Physics

Department of Physics

IK. Gujiki Punjab Technical University Jalandhar,

Kapurthala, Punjab-144603

Kapurthala,

SEMESTER-II

Head of Department

Head of Department of Physics

Department

Departmen

PHYS	SICS-C		SPH- 21-21	W	aves a	nd Vibi	ations	L-3,	T-1, P-	0	4 Cred	its
Pre-r	equis	ite: Unde	erstandin	g of ser	nior seco	ondary I	evel phy	sics and	Mather	matics		
motio waves interfa	ns, da s, prop ace of	jectives mped ha pagation mediums	rmonic of wave	motions s in va	and fo rious m	rced os ediums	cillations and ref	: Stude lection/	nts lear transmi	ns abou	it the d	ifferen
Cours	se Out	comes:	At the e	nd of th	e course	e, the st	udent w	rill be ab	ole to			
CC)1	Underst	and the	simple a	and dam	ped har	monic n	notion o	f an osc	illator.		
CC)2	Underst	and Ford	ed Vibr	ations a	nd pher	omenon	of Res	onance			
CO)3	Apply th	ne Couple	ed oscill	ator to t	he real-	life prob	lems.				
CO)4	Underst	and the	transmi	ssion of	signals	and Elec	tromag	netic W	aves		
CO)5		ne knowl									
		Мар	pping of	course	outco	mes w	ith the	progra	m outc	omes		
	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	1	11	1	2	-	2	3	2	3
CO2	2	2	1	2	1	1	1	-	1	3	2	3
СОЗ	3	2	-	2	_1	1	2	-	1	3	2	3
CO4	2	2	-	2	1	1	2	1	1	3	3	1
CO5	2	2	1-	2	1	1	2	1	1	3	3	3

Head of Department

Head of Department

Department of Physics

Department of Physics

JK Guin Punjab Technical University Jalandian

JK Supurthala, Punjab-144603

PART-A

UNIT-I

Simple and Damped Harmonic Motion: Simple harmonic motion, energy of a SHO, Compound pendulum, Torsional pendulum, Electrical Oscillations, Lattice Vibrations, Transverse Vibrations of a mass on a string, Anharmonic Oscillations. Damped simple harmonic motion, Decay of free Vibrations due to damping, types of damping, Determination of damping coefficients: Logarithmic decrement, relaxation time and Q-factor. Electromagnetic damping.

(12 Lectures)

UNIT-II

Forced Vibrations and Resonance: Forced mechanical and electrical oscillator, Transient and Steady State Oscillations, Displacement and velocity variation with driving force frequency, Variation of phase with frequency resonance, Power supplied to forced oscillator by the driving force. Q-factor and band width of a forced oscillator, Electrical and nuclear magnetic resonances. (12 lectures)

PART-B

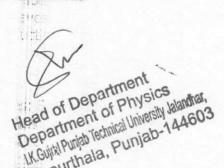
UNIT-III

Coupled Oscillations: Stiffness coupled oscillators, Normal coordinates, and modes of vibrations. Inductance coupling of electrical oscillators, Normal frequencies, forced vibrations and resonance for coupled oscillators, Masses on string-coupled oscillators.

Waves in Physical Media: Types of waves, wave equation (transverse) and its solution characteristics impedance of a string, Impedance matching, Reflection and Transmission of waves at boundary, Energy of vibrating string, wave, and group velocity. (12 Lectures)

UNIT-IV

Transmission of signals and Electromagnetic Waves: Transmissionofa non-monochromaticwave, Frequencyrange and Signalduration, Bandwidth theorem, Group and phase velocities, Electromagnetictheoryofdispersion, Dopplereffect, Electromagnetic (EM) Waves: Maxwell Equations, Wave equation, EM waves in a medium of finite ε , μ and σ . Energy flow due to a plane EM wave, EM waves in a conducting medium, Skin depth. (12 Lectures)


Text and Reference Books:

- 1. Text Book of Vibrations and Waves: S.P. Puri (Macmillan India), 2004.
- 2. The Physics of Vibrations and Waves: H.J. Pain (Wiley and ELBS), 2013.
- 3. N.K. Bajaj, The Physics of Waves and Oscillations, Tata McGraw Hill, 1998.

g In

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 32 of 131

PHY	SICS-(C-4	BSHF 122-2			tricity a		L-3,	T-1, P-	0	4 Cred	dits
Pre-	requis	ite: Basi	c knowle	edge of	Electrici	ty and N	1agnetis	m at hig	h schoo	l level.		
Cour of ele	se Ob	jectives and mag	: The obgretism	jective so that	of the co	ourse is n use th	to expo	se the soer their	tudents require	to the f	ormal s	tructu
Cour	se Ou	tcomes:	At the	end of th	ne cours	e, the s	tudent v	will be a	ble to			
C	01	Underst	and and	describ	e the di	fferent	concept	s of elec	trostatio	s and m	nagnetos	statics
CC	02	Apply the	ne know									
CC)3	Analyze		ve propa	gation i	n differe	ent med	ia				
CC)4	Compar	e the dif	fferent t	ypes of	polariza	tion					
CO)5	have a	solid s	foundat	ion in	electror	magneti	sm fun	damenta	als requ	uired to	solv
		_		f course	outco	mes w	ith the	progra	m outc	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	
	3			-	2			1				PO12
CO1	3	1	2	2	2	1	2	1	2	3	2	PO12
CO1	3	2	1	-	2	2	2	1	2	3	2	
02				- 1	()							2
	3	2	1	-	2	2	1	1	1	3	1	2

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 33 of 131

Head of Department
Department of Physics
I.K.Gujrkl Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

PART-A

UNITI

Review of Vector Analysis and Electrostatics: scalar and vector product; gradient, divergence and curl and their significance; Gauss-divergence theorem and Stoke's theorem (statement only); Electrostatic field; electric flux; Gauss's law of electrostatics; Applications of Gauss law-Electric filed due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charge sheet; Electric potential as line integral of electric field, potential due to point charge and electric dipole; calculation of electric field from potential; Poisson's equation and Laplace's equation(Cartesian coordinate); Capacitance; capacitance of a spherical conductor and cylindrical capacitor, Energy per unit volume in electrostatic field, Dielectric medium, dielectric polarization and its types, Displacement vector, Boundary conditions (11 Lectures)

UNIT-II

Magnetostatics: Magnetic flux; magnetic flux density; Faraday's law; magnetomotive force; Biot-Savart's law and its applications-straight conductor, circular coil, divergence and curl of magnetic field; Ampere's work law in differential form; Magnetic vector potential; ampere's force law; magnetic vector potential; Energy stored in a magnetic field, boundary conditions on magnetic fields. (10 Lectures)

PART-B

UNIT-III

Maxwell's Equations and Poynting Vector: Equation of continuity for time varying fields; Inconsistency of ampere's law; concept of sinusoidal time variations (Phasor notation); Maxwell's equations with physical significance; Maxwell equations in free space, static field and in Phasor notation; Difference between displacement current and conduction current; Concept of Poynting vector; Poynting Theorem. (11 Lectures)

UNIT-IV

Electromagnetic Waves: Wave equation in free space or non-conducting or lossless medium; wave equation for conducting medium; wave propagation in lossless and conducting medium (phasor form); Propagation characteristics of EM waves in free space, lossless and in conducting medium; Uniform plane waves and solution; relation between electric and magnetic fields of an electromagnetic wave; Linear, circular and elliptical polarization; depth of penetration, Reflection of waves by a perfect conductor: normal incidence and oblique incidence; Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence. (12 Lectures)

Reference Books:

- 1. David Griffiths, Introduction to Electrodynamics, Pearson Education India Learning Private Limited; 4thedition.
- 2. Edward C Jordan and Keith G Balmain, Electromagnetic waves and radiating systems, Prentice Hall
- 3. Kraus John D, Electromagnetics, McGraw-Hill Publisher
- 4. W. Saslow, Electricity, magnetism and light, Academic Press

511 0

1.05

5. A Textbook of Electricity and Magnetism, S K Sharma, Shalini Sharma, Publisher: S Dinesh & Co.

Head of Department

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 34 of 131

PHYS:	ICS	BSHP-12	3-21	Physi	cs Lab-	II	L-0, T-0), P-4		2 Cre	edits	
Pre-re	equisi	tes (if an	y): High	-school	educatio	n with P	hysics la	b as one	of the s	subject.		
Cours	e Obj	ectives: 7	he aim	and obje	ective of	the Phy	sics Lab	course i	s to intro	oduce the	e studen	ts of B
Sc. (Ho	ons.) F	Physics to	the form	al struct	ture of v	wave and	d vibrati	ons and	mechan	ics so th	at they	can use
these a	as per	their requ	irement.	11								
Cours	e Out	comes: A	t the end	of the	course, t	the stud	ent will l	oe				
CO1		Able to ur	nderstan	d the the	eoretical	concept	s learne	d in the	theory c	ourse.		
CO2		Trained in	carrying	g out pre	cise me	asureme	ents and	handling	g equipm	nent.		
CO3		Learn to d	draw con	clusions	from da	ita and d	develop s	skills in e	experime	ntal desi	gn.	
CO4		Able to udesign.	indersta	nd the	principle	s of err	or anal	ysis and	develo	skills i	n exper	imenta
CO5		Able to do			cal repo	rt which	commu	nicates s	cientific	informat	ion in a	clear
		Ma	pping c	f cours	e outco	mes wi	th the	progran	n outco	mes		
	POI	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	2	1	2	3	2	3
CO2	3	3	1	-	2	2	1	1	1	3	2	3
CO3	3	3	2	-	2	1	2	1	1	3	2	3
CO4	3	2	2	2		2	2	1	1	3	2	3
CO5	2	2	2	2		2	2	1	1	3	2	3

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 35 of 131

Head of Department
Department of Physics

I.K. Gujrk Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

Note: Students are expected to perform about 8-10 experiments from the following list, selecting minimum of 6-7 from the Physical Lab and 2-3 from the Virtual lab.

List of experiments:

- 1. Measurements of length (or diameter) using vernier caliper and screw gauge.
- 2. Measurement of volume using travelling microscope. Use of Plumb line and Spirit level.
- 3. To determine the frequency of an electrically maintained tuning fork in a) Transverse mode of vibration b) Longitudinal mode of vibration.
- 4. To verify the law of vibrating string Using Melde's experiment.
- 5. To compare mass per unit length of two strings by Melde's experiment.
- 6. To find out the frequency of AC mains using electric-vibrator/sonometer.
- 7. To determine the horizontal and vertical distance between two points using a Sextant.
- 8. To determine the height of an inaccessible object using a Sextant.
- 9. To determine the angular diameter of the sun using the sextant.
- 10. To determine the angular acceleration a, torque T, and Moment of Inertia of flywheel.
- 11. To study the Motion of a Spring and calculate (a) Spring Constant (b) Value of g and (c) Modulus of rigidity.
- 12. To determine the time-period of a simple pendulum for different length and acceleration due to gravity.
- 13. To study the variation of time-period with distance between centre of suspension and centre of gravity for a compound pendulum and to determine: (i) Radius of gyration of the bar about an axis through its C.G. and perpendicular to its length. (ii) The value of g in the laboratory.
- 14. To find the moment of inertia of an irregular body about an axis through its C.G with the torsional pendulum.

Reference book and suggested readings:

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practical's, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11thEdn, 2011, Kitab Mahal.
- 4. Engineering Practical Physics, S. Panigrahi& B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.

BU.

8 01

adi iri st

Dal's

2.D1 Chi

Head of Department Department of Physics LK Guirkl Puniab Technical University Jalandhar,

Wale Duniab-144603

- 6. Practical Physics, C L Arora. S. Chand & Company Ltd.
- 7. http://www.vlab.co.in

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 36 of 131

Co	eneral	D.	CLINA	1	Name of the last o					echnical	Universi	су, кар
Ele (C	ective GE)-3	20	SHM-)4-21	Analy	sis	bra & \		L-4	, T-1, P	2-0	4 Cre	edits
Pre-	requis	site: Elen	nentary	calculus	of mat	ric level	1					
Cour	se Ol	ojective	s:The o	bjectives	of th	is cours	se are	to make	the st	tudents	underst	and th
	_	fundame	ntal cor	cents of	Scalar	and Va						
2.	The	geometri	cal mea	ning of	orojecti	one and	ector aig	jebra.				
3.	Appl	ications of	of gradie	ent dive	roence	and cur	ortnogo	onality.				
4.	Geor	metric me	eanina d	of scalar	and ver	tor valu	ied func	tions a	radiont .	of coal-	: C	
5.	The	utility of	Gauss,	Green an	d Stoke	es Theo	rem	uons, gi	aulent (or scalar	point fi	unction
Cour	se Ou	tcomes:	At the	end of th	e cours	se the s	tudent	will be a	blo to			
CC		Underst	and the	basic co	ncepts	of Scala	ars and	Vector a	lgebra.			
CC		Visualize	e all con	cepts ge	ometric	cally.						
CC)3	Apply th	ne knov	vledge o	f dot p	roduct a	and cro	ss produ	uct in fi	nding p	roiection	ns, are
		and ortr	iogonali	ty.	ní a							
CO)4	Utilize t	he cond	cept of s	scalar a	and vect	tor valu	ed func	tions, g	radient	of scala	ar poin
		function	, aiver	gence	and co	url of	vector	point	functio	ns, the	ir geo	metrica
СО	5	Acquire spherica	the kno	wledge coordinat	of the des, Gau	concept uss, Gre	of relaten	tion bet	ween ca	rtesian,	cylindri	cal and
		Мар	ping of	course	outco	mes w	ith the	progra	m outc	omes		
	PO1		PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
01	2	2	2	2	2	2	2	3	2	3	2	2
02	2	2	2	1	1	2	2	3	2	3		
03	3	2	2	1	2	2	2	3	3		2	2
04	3	2	-	1	1	2	2			3	2	2
OF	2	-		- 11	1.51	2	2	3	2	3	2	2

(B.Sc. Hons. Physics) Batch 2021 & Onwards

1

CO5

Page 37 of 131

3

2

2

Head of Department
Department of Physics
Department of Physics
UK Gujist Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

1

2

3

PART-A

UNIT I

Definitions of Scalars, vectors, position vector, unit vector, types of vectors, Addition of vectors, direction ratios, direction cosines, multiplication by a scalar, dot product, cross product of vectors, projection of vectors on a line.

UNIT-II

Vector joining two points, section formula, angle between two vectors, Cauchy-Schwartz inequality, Solenoidal vectors, orthogonality, Area of triangle, area of parallelogram, Scalar and vector product of three vectors

PART-B

UNIT-III

Scalar valued point functions, vector valued point functions, Derivative along a curve, directional derivatives, Differentiation and partial differentiation of a vector function. Derivative of sum, dot product and cross product of two vectors, Gradient, divergence and curl Gradient of a scalar point function. Geometrical interpretation of gradient of a scalar point function (grad ϕ).

UNIT-IV

Divergence and curl of a vector point function, Character of divergence and curl of a vector point function, relation between Cartesian and cylindrical or spherical coordinates, Statements of Theorems of Gauss, Green and Stokes (without proof).

TEXT AND REFERENCE BOOK

- Mathematics, A Text book for Class XII (Parts I & II), New Delhi: NCERT, 2003. (Unit I & II)
- 2. G.B. Thomas and R.L. Finney, Calculus, 9th Ed., Pearson Education, Delhi, 2005.
- 3. H. Anton, I. Bivens and S. Davis, Calculus, John Wiley and Sons (Asia) P. Ltd. 2002.
- 4. P.C. Matthew's, Vector Calculus, Springer Verlag London Limited, 1998.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 38 of 131

Head of Department
Department of Physics
I.K.Gujini Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

General Elective (GE)-4	BSHC-113- 21	ORGANIC CHEMISTRY	L-3, T-1, P-0	4 Credits
Pre-requisite:	Understanding o	f senior secondary leve	Physics and Mathematic	S

Course Objectives:

- 1. To teach the basic principles, reaction mechanisms and stereochemistry of organic compounds.
- 2. To impart knowledge regarding physical properties and chemical reactions of alkanes, alkenes, dienes, alkynes, arenes, alkyl and aryl halides etc.
- 3. To predict and account for the most commonly encountered reaction mechanisms (substitution, addition, and elimination) in organic chemistry.

	and vario	ous effe	cts in o	ental co rganic co	ncepts of the compount of the	of organ ds.	ic chem	istry i.e.	structu	re, bond	ling
CO2	To learn conforma	the ster	eochen	nistry viz	. optica	lisomer	ism, ste s.	reoisom	erism a	nd	
CO3	To study	the var	ious kn	own rea	ctive int	ermedia	te in or	ganic sy	nthesis.		
CO4	To learn the fundamental and advanced concepts of reaction mechanisms along with the study of reaction mechanisms in various types of substitution addition and elimination reactions.										
CO5	To predic	ct the re	lations	nips betw	veen or	ganic ch	emical s	structure	es and th	neir read	ctivity.
	Мар	ping of	course	outco	mes wi	th the	prograi	m outc	omes		
PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	3	2	3	2	3	2	2
CO2	2	2	2	1	1	3	2	3	2	2	2	2
CO3	3	1	2	1	2	2	2	3	2	2	2	2
CO4	3	2	2	1	1	2	2	3	2	3	2	2
CO5	3	1	1	1	1	2	2	3	2	3	2	2

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 39 of 131

Head of Department
Department of Physics

I.K. Gujrki Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

(tall ≥ rach

H OL

PART-A

Unit-I

Basics of Organic Chemistry

Organic Compounds: Classification, and Nomenclature, Hybridization, Shapes of molecules, Influence of hybridization on bond properties. Electronic Displacements: Inductive, electromeric, resonance and mesomeric effects, hyperconjugation and their applications; Dipole moment; Organic acids and bases; their relative strength. Homolytic and Heterolytic fission with suitable examples. Curly arrow rules, formal charges; Electrophiles and Nucleophiles; Nucleophilicity and basicity; Types, shape and their relative stability of Carbocations, Carbanions, Free radicals and Carbenes. Introduction to types of organic reactions and their mechanism: Addition, Elimination and Substitution reactions.

Unit-II

Stereochemistry:

Fischer Projection, Newmann and Sawhorse Projection formulae and their interconversions; Geometrical isomerism: cis—trans and, syn-anti isomerism E/Z notations with C.I.P rules.

OpticalIsomerism: Optical Activity, Specific Rotation, Chirality/Asymmetry, Enantiomers, Molecules with two or more chiral-centres, Distereoisomers, meso structures, Racemicmixture and resolution. Relative and absolute configuration: D/L and R/S designations.

A. Carbon-Carbon sigma bonds formation:-

Chemistry of alkanes: Formation of alkanes, Wurtz Reaction, Wurtz-Fittig Reactions, Free radical substitutions: Halogenation -relative reactivity and selectivity.

PART-B

WH.

urtic

Unit-III

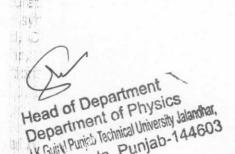
Carbon-Carbon pi bonds:

Formation of alkenes and alkynes by elimination reactions, Mechanism of E1, E2, E1cb reactions. Saytzeff and Hofmann eliminations.

Reactions of alkenes: Electrophilic additions their mechanisms (Markownikoff/ AntiMarkownikoff addition), mechanism of oxymercuration-demercuration, hydroboration oxidation, ozonolysis, reduction (catalytic and chemical), syn and anti-hydroxylation(oxidation). 1,2-and 1,4-addition reactions in conjugated dienes and, Diels-Alder reaction; Allylic and benzylic bromination and mechanism, e.g. propene, 1-butene, toluene, ethyl benzene. Reactions of alkynes: Acidity, Electrophilic and Nucleophilic additions. Hydration to formcarbonyl compounds, Alkylation of terminal alkynes.

Unit-IV

Cycloalkanes and Conformational Analysis


Types of cycloalkanes and their relative stability, Baeyer strain theory, Conformation analysis of alkanes: Relative stability: Energy diagrams of cyclohexane: Chair, Boat and Twist boat forms; Relative stability with energy diagrams.

Aromatic Hydrocarbons

Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions and

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 40 of 131

heterocyclic compounds with suitable examples. Electrophilic aromatic substitution: halogenation, nitration, sulphonation and Friedel-Craft's alkylation/acylation with their mechanism. Directing effects of the groups.

Text and Reference Books:

- 1. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt.Ltd. (Pearson Education).
- 2. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd.(Pearson Education).
- 3. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 4. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds; Wiley: London,1994.

134

- mate

5. Kalsi, P. S. Stereochemistry Conformation and Mechanism; New Age International, 2005.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 41 of 131

Head of Department Department of Physics I.K.Guiral Punjab Technical University Jalandhar, Kapurinala, Punjab-144603

									0.0.3	7	Credit	S
	neral re (GE)		BSHC- 119-21	CHE	MISTR	Y LAB-	II	L-0, 1	-0, P-2		Credit	
			standing									
a caree	r.		which wil							s to purs	sue phys	sics as
Course	Outco	mes: /	At the en	d of the	course	, the stu	ident wi	ii be abi				
CO	CO1											
CO	2										-	
CO	3											
CO												
CO	5		ping of		auton	mos wi	th the	prograi	n outco	mes		
		Map	ping of	course	outco	illes wi	til tile	pi og				
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	2	2	3	2	3	2	2
CO2	2	2	2	1	1	2	2	3	2	2	2	2
CO3	3	3	2	1 8	2	2	2	3	2	2	2	2
CO4	2	3	-	1	1	2	2	3	2	3	2	2
CO5	2	1	1	1	1	2	2	3	2	3	2	2

List of Experiments:

1. Checking the calibration of the thermometer

2. Purification of organic compounds by crystallization using the following solvents: a) Water b) Alcohol, and c) Alcohol-Water.

3. Determination of the melting points of above compounds and unknown organic compounds (Kjeldahl method and electrically heated melting point apparatus)

4. Effect of impurities on the melting point - mixed melting point of two unknown organic compounds

5. Determination of boiling point of liquid compounds. (boiling point lower than and more than 100°C by distillation and capillary method)

6. Chromatography a) Separation of a mixture of two amino acids by ascending and horizontal paper chromatography b) Separation of a mixture of two sugars by ascending paper chromatography, c) Separation of a mixture of o-and p-nitrophenol or o-and paminophenol by thin layer chromatography (TLC)

Reference Books

- 1. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009).
- 2. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry, 01.70 5th Ed., Pearson (2012).

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 42 of 131

Head of Department Department of Physics LV County Duniah Technical University Jalandhar, minh-144603

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 43 of 131

Head of Department
Department of Physics
LK.Guji VI Puniab Technical University Jalandhar,
Kapuri nala, Punjab-144603

Ability Enhancement Compulsory (AEC)-3	BHHL- 115-21	Communicative English-II	L-2, T-0, P-0	2 Credits
---	-----------------	-----------------------------	---------------	-----------

Pre-requisite: Basic proficiency in communicative English

Course Objectives: This course is designed to

- help the students become proficient in LSRW-Listening, Speaking, Reading & Writing skills
- help the students become the independent users of English language
- develop in them vital communication skills, integral to their personal, social and professional interactions
- teach them the appropriate language of professional communication
- prepare them for job market

Course O	atcomes: At the end of the course, the student will be able to
CO1	Students will acquire basic proficiency in reading &listening, writing and speaking
CO2	skills. Students will be able to understand spoken and written English language, particularly the language of their chosen technical field.
CO3	They will be able to converse fluently.
CO4	They will be able to produce on their own clear and coherent texts.
CO5	Students will become proficient in professional communication such as interviews, group discussions, office environments, important reading skills as well as writing skills and thereby will have better job prospects.

Mapping of course outcomes with the program outcomes

				1	DOF	DO6	PO7	PO8	PO9	PO10	PO11	PO12
	PO1	PO2	PO3	PO4	PO5	P06	101	100				1
			-	1	1	2	2	3	2	3	2	2
CO1	1	-		1	ļ	-	3	3	2	3	2	2
CO2	1	-	-	1	1	2	2	3			2	2
	1	-	-	1	1	2	2	3	2	3	2	2
CO3	1	-		1 2	117	2	2	3	2	3	2	2
CO4	1	-	-	1	1	2	2	3	-		2	2
	2	-	1-	1 1	1)/(1	2	2	3	2	3	2	
CO5	2	1										

mili

BVE ne (1)

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 44 of 131

Head of Department Department of Physics MK.Gujrki Punjab Technical University Jalandhaf, Vapur'nala, Punjab-144603

Part -A

UNIT I-(Literature)

(A) The Poetic Palette (Orient Black Swan, Second Edition, 2016)

The following poems from this anthology are prescribed:

- 1. The Soul's Prayer: Sarojini Naidu
- 2. I Sit and Look Out: Walt Whitman
- Women's Rights: Annie Louise Walker

Prose Parables (Orient Black Swan, 2013) (B)

The following stories from the above volume are prescribed:

- The Doctor's Word: R.K. Narayan 1.
- The Doll's House: Katherine Mansfield
- Dusk: H.H. Munroe (Saki)

UNIT-II

Vocabulary: Standard abbreviations; Oneword substitution; Word Pairs (Homophones/Homonyms) Grammar: Sentence Structures; Use of phrases and clauses in sentences; Transformation of Sentences; Importance of proper punctuation

PART-B

Reading and Understanding: Summary Paraphrasing; Analysis and Interpretation; Translation (from Hindi/Punjabi to English and vice-versa)

UNIT-IV

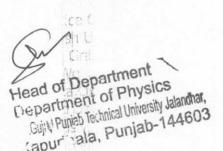
Mechanics of Writing & Speaking Skills: Report writing, Career Documents- Job applications, Resume/CV writing, Common Everyday Situations: Conversations & Dialogues, Formal Presentations

TEXT AND REFERENCE BOOK

- 1. John Eastwood, Oxford Practice Grammar, Oxford University Press, 2014
- 2. Michael Swan, Practical English Usage, OUP. 1995.
- 3. F.T. Wood, Remedial English Grammar, Macmillan. 2007.
- 4. William Zinsser, On Writing Well, Harper Resource Book 2001.

a (E

5. Sanjay Kumar and Pushp Lata, Oxford University Press. 2011.


ice-

LAN!

- 6. Communication Skills, Oxford University Press. 2011.
- 7. Liz Hamp-Lyons and Ben Heasly, Study Writing, Cambridge University Press. 2006.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 45 of 131

Compu	4		L-116A		•	abi ulsory)			0, P-0	2	Credit	S
Pre-re	quisite:	Unders	standing	of seni	or secon	idary lev	vel Punja	abı				
and dev	eloping	science	The object literacy at the en	throug	n local l	anguage	e teacim	ing with	Science	f via Lea subjects	g 30	
CO1 Translate and transfer/broadcast the western scientific knowledge in the										local		
CO	2 Tr	ranslate	and tr	into Enc	ilish and	other c	lopal la	nguages				
CO									ture arr	d culture		
CO	4 Le	earning	science	and in	develop	ing scie	nce liter	acy.				-
CO	5 Ir	nprove	the inte	rnal cor	nmunica	mes wi	th the	progran	n outco	omes		
		мар	ping or	Course	Outco	11.05					2011	DO41
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	2	2	3	2	3	2	2
CO2	2	2	2	1	1	2	2	3	2	2	2	2
CO3	3	3	2	1	2	2	2	3	2	2	2	2
CO4	2	3	-	1	1	2	2	3	2	3	2	2
COF 2		1	1	1 7	1	2	2	3	2	3	2	_

1

2

CO5

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 46 of 131

Head of Department Department of Physics I.K.Gujryl Punjab Technical University Jalandhar, yır' ıala; Punjab-144603

PART-A

UNITI

ਡਾ.ਹਰਿਭਜਨਸਿੰਘ:

ਅਪ੍ਰਮਾਣਿਕ,ਤੇਰੇਹਜ਼ੂਰਮੇਰੀਹਾਜ਼ਰੀਦੀਦਾਸਤਾਨ

ਸ਼ਿਵਕੁਮਾਰਬਟਾਲਵੀ:

ਕੰਡਿਆਲੀਥੋਰ੍ਹ, ਧਰਮੀਬਾਬਲਪਾਪਕਮਾਇਆ, ਰੁੱਖ

ਪਾਸ:

ਇਨਕਾਰ,ਸਭਤੋਂਖਤਰਨਾਕ,ਦਹਿਕਦੇਅੰਗਿਆਰਾਂ 'ਤੇ

ਸਰਜੀਤਪਾਤਰ:

ਹੁਣਘਰਾਂਨੂੰਪਰਤਣਾ, ਕੁਝਕਿਹਾਤਾਂ..., ਪੁਲ*(Lecture 12)*

UNIT-II

ਕਹਾਣੀਭਾਗ:

ਸੰਤੋਖਸਿੰਘਧੀਰ:

ਕੋਈਇਕਸਵਾਰ

ਪੇਮਪ੍ਰਕਾਸ਼:

ਲੱਛਮੀ

ਮੋਹਨਭੰਡਾਰੀ:

ਘੋਟਣਾ

ਵਰਿਆਮਸਿੰਘਸੰਧੁ:

ਆਪਣਾਆਪਣਾਹਿੱਸਾ(Lecture 11)

PART-B

Han

UNIT-III

ਪੰਜਾਬੀਭਾਸ਼ਾਦੀਆਂਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਪੰਜਾਬੀਭਾਸ਼ਾੳਪਰਪਏਪ੍ਰਭਾਵ(Lecture 12)

UNIT-IV

ਰਿਪੋਰਟਿੰਗ, ਸਮਾਚਾਰਲਿਖਣਦੀਵਿਧੀਤੇਤੱਤ ਪੰਜਾਬੀਪੈਰ੍ਹੇਦਾਸਰਲਅੰਗਰੇਜ਼ੀਅਨੁਵਾਦ ਦਫਤਰੀਚਿੱਠੀਪੱਤਰ

TEXT AND REFERENCE BOOK:

1. ਸੰਪ.ਡਾ.ਮਹਿਲਸਿੰਘ, ਸਾਹਿਤਦੇਰੰਗ, ਰਵੀਸਾਹਿਤਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ,2016.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 47 of 131

Head of Department Department of Physics I.K.Gujral Punjab Technical University Jalandhar, Kapurthala, Punjab-144603

BHHL- ਮੁਢਲੀਪੰਜਾਬੀ (Mudhli Inhancement 116B-21 Punjabi)-II Compulsory	L-2, T-0, P-0	2 Credits
--	---------------	-----------

Pre-requisite: Understanding of senior secondary level Physics and Mathematics

Course Objectives: The objective of the course is:

1.To enhance the language ability of students.

2.To enhance the ability of Learning science and developing science literacy through local language teaching with science subjects.

Course Outcomes: At the end of the course, the student will be able to

	scientific knowledge in the local
CO1	Translate and transfer/broadcast the western scientific knowledge in the local
CO2	Translate and transfer the indigenous/traditional scientific knowledge available in local knowledge into English and other global languages.
	Understand the society through Punjabi language, literature and culture.
CO3	
CO4	Learning science and in developing science literacy.
CO5	the internal communication.
CO3	Manning of course outcomes with the program outcomes

Mapping of course outcomes with the program outcomes

				0	DOF	DO6	P07	PO8	PO9	PO10	PO11	PO12
	PO1	PO2	PO3	PO4	PO5	PO6	707	2	2	3	2	2
CO1	2	2	2	2	2	2	2	3	2	3	2	2
	-	2	2	1 0	1	2	2	3	2	2	2	2
CO2	2	2	2	1	-	2	2	3	2	2	2	2
CO3	3	3	2	1	2	2	2	3	2	2	2	2
	2	3	-	1	1	2	2	3	2	3		2
CO4	2	3		1	1	2	2	3	2	3	2	2
CO5	2	1	1	1	1	2						

the

/ thro

ann

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Head of Department Department of Physics I.K.Gujiki Puniob Technical University Jalandhar,

Kapur' iala, Punjab-144603

Page 48 of 131

PART-A

UNITI

ਸ਼ਬਦਸ਼੍ਰੇਣੀਆਂ : ਪਛਾਣਤੇਵਰਤੋਂ-

ਨਾਂਵ

ਪੜਨਾਂਵ

ਵਿਸ਼ੇਸ਼ਣ

ਕਿਰਿਆ

ਕਿਰਿਆਵਿਸ਼ੇਸ਼ਣ

(12 Lectures)

UNIT-II

ਰੋਜ਼ਾਨਾਵਰਤੋਂਦੀਪੰਜਾਬੀਸ਼ਬਦਾਵਲੀ:

ਬਾਜ਼ਾਰ, ਵਪਾਰ,ਰਿਸ਼ਤੇ-ਨਾਤੇਤੇਕਿੱਤਿਆਂਸਬੰਧੀ। (12 Lectures)

PART-B

UNIT-III

ਪੰਜਾਬੀਵਾਕਬਣਤਰ:

ਸਧਾਰਣਵਾਕ

ਸੰਯਕਤਵਾਕ

ਮਿਸ਼ਰਤਵਾਕ

(12 Lectures)

UNIT-IV

ਸਧਾਰਣਵਾਕਾਂਦਾਅੰਗਰੇਜ਼ੀਤੋਂਪੰਜਾਬੀਅਨੁਵਾਦ ਸਧਾਰਣਵਾਕਾਂਦਾਪੰਜਾਬੀਤੋਂਅੰਗਰੇਜ਼ੀਅਨੁਵਾਦ(11 Lectures)

TEXT AND REFERENCE BOOK:

1.ਸੰਪ.ਡਾ.ਮਹਿਲਸਿੰਘ, ਸਾਹਿਤਦੇਰੰਗ, ਰਵੀਸਾਹਿਤਪ੍ਰਕਾਸ਼ਨ, ਅੰਮ੍ਰਿਤਸਰ, 2016.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 49 of 131

Head of Department Department of Physics I.K.Gujn Punin', Te hnical University Jalandhar, Kapur Jaia, Punjab-144603

SEMESTER-III

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 50 of 131

Head of Department

Head of Department

Department of Physics

Department of Physics

IKGujiki Punjab Technical University Jalandhar,

Kapurthala, Punjab-144603

Kapurthala, Punjab-144603

PHYS	ICS-C	-5 B	SHP-21	l1-21	Math	ematic	al	L-!	5, T-1,	P-0	6 Cr	edits
Pre-re	equisit	te: Unde	rstandin	g of sen	ior seco	ndary le	evel Phy	sics and	Mather	natics		
		ectives:								handling	g proble	ems o
Cours	e Out	comes:	At the e	nd of th	e course	e, the st	udent w	ill be ab	ole to			
СО	1		Inderstand math of complex number and application of Cauchy-Riemann Equations, lesidue Theorem and Taylor Series for analytic functions. pply numerical methods to solve physics problems.									
CO	2	apply nu	merical	method	s to solv	e physi	cs probl	ems.				
СО	3	Solve differential equations like Legend physical sciences						el and H	lermite 1	that are	commo	n in
CO	4	Understa	and prob	pability a	and erro	r propa	gation					
СО	5	Utilize sp						nd Dirac	Delta.			
		Мар	ping of	f course	outco	mes wi	th the	progra	m outc	omes		
	PO1	PO2	PO3	P04	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1 :	-	1	2	1	2	3	2	2
CO2	3	2	1	1	1	1	1	1	1	3	1	1
CO3	3	2	2	2	3	1	2	1	1	3	1	1
CO4	3	2	2	2	1	1	2	1	1	3	1	1
CU4												

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 51 of 131

Head of Department
Department of Physics

I.K.Guji Punin', Fechnical University Jalandhar,
Kapur Hala, Punjab-144603

00

PART-A

UNIT -I

Complex Analysis-I: Brief Revision of Complex Numbers and their Graphical Representation. Euler's formula, De Moivre's theorem, Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity, Cauchy's Integral formula. Simply and multiply connected region. Laurent and Taylor's expansion. Residues and Residue Theorem.

(15 Lectures)

UNIT-II

Numerical methods: Interpolations-cubic spline fitting, Numerical differentiation-Lagrange interpolation, Numerical integration by Simpson and Weddle's rules, Random number generators, Numerical solution of differential equations by Euler, predictor-corrector and Runge-Kutta methods, eigenvalue problems. (15 Lectures)

PART-B

UNIT-III

Introduction to probability: Independent random variables: Probability distribution functions; binomial, Gaussian, and Poisson, with examples. Mean and variance. Dependent events: Conditional Probability. Bayes' Theorem and the idea of hypothesis testing.

Theory of Errors: Systematic and Random Errors. Propagation of Errors. Normal Law of Errors. Standard and Probable Error. Least square fit. Error on the slope and intercept of a fitted line.

(15 Lectures)

UNIT-IV

Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral).

Dirac Delta function and its properties: Definition of Dirac delta function. Representation as limit of a Gaussian function and rectangular function. Properties of Dirac delta function.

(15 Lectures)

Text and Reference Books:

- 1. 1. Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier.
- 2. Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill.
- 3. Mathematics for Physicists, Susan M. Lea, 2004, Thomson Brooks/Cole.

1.6

- 4. An Introduction to Ordinary Differential Equations, E.A Coddington, 1961, PHI Learning
- 5. Differential Equations, George F. Simmons, 2006, Tata McGraw-Hill.
- 6. Partial Differential Equations for Scientists and Engineers, S.J. Farlow, 1993, Dover Publications.
- 7. Mathematical methods for Scientists & Engineers, D.A. McQuarrie, 2003, Viva Books.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 52 of 131

Head of Department Department of Physics E. L.K.Guji Puniab Technical University Jalandhar, for Kapurtnala, Punjab-144603

PHYSICS-C-6	BSHP-212-21	ELEMENTS OF MODERN PHYSICS	L-3, T-1, P-0	4 Credits
-------------	-------------	----------------------------------	---------------	-----------

Pre-requisite: Understanding of senior secondary level Physics and Mathematics

Course Objectives: The course content covers foundations of modern physics, experiments forming basis of quantum mechanics, Schrodinger equation and applications, uncertainty principle and applications. The topics covered in the course build a basic foundation of undergraduate physics students to study the advance branches: quantum physics, nuclear physics, particle physics and high energy physics.

Course O	utcomes: At the end of the course, the student will be able to
CO1	Understand the implication of special theory of relativity.
CO2	Understand and explain the differences between classical and quantum mechanics.
CO3	Identify properties of the nucleus and other sub-atomic particles.
CO4	Assess whether a solution to a given problem is physically reasonable and solve Schrodinger equation for simple potentials.
CO5	Describe theories explaining the structure of atoms and the origin of the observed spectra.

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12
CO1	2	1	2	1	-	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	1	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
CO5	2	2	2	2	1	1	2	1	1	3	1	1

Detailed Syllabus:

PART-A

UNIT -I

Special Theory of Relativity: Michelson-Morley Experiment and its outcome, Postulates of Special Theory of Relativity, Lorentz Transformations. Simultaneity and order of events, Lorentz contraction, Time dilation. Relativistic transformation of velocity, frequency, and wave number. Relativistic addition of velocities. Variation of mass with velocity, Massless Particles, Mass-energy Equivalence. Relativistic Doppler effect, Relativistic Kinematics. Transformation of Energy and Momentum. Energy-Momentum Four Vector. **(10 Lectures)**

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 53 of 131

Head of Department
Department of Physics
I.K.Guji V Punich (sechnical University Jalandhar,
Kapur Liala, Punjab-144603

UNIT-II

Particle Properties of Waves: Electromagnetic waves, Blackbody Radiation, ultraviolet catastrophe, Rayleigh-Jeans formula, Planck radiation hypothesis, Photoelectric Effect, Compton Scattering, Quantum theory of light: wave and particle nature, X-Rays, X-Ray Diffraction, determination of wavelengths using Compton Effect, Pair-Production. (10Lectures)

PART-B

UNIT-III

Dual Nature of Waves and Particles: Waves of probability, Description of a Waves in general, Group and Phase velocities and relation between them, De Broglie wavelength, wave-particle duality, Matter waves, Davisson-Germer experiment, Two-Slit experiment with electrons, gamma ray microscope thought experiment, Heisenberg uncertainty principle: Derivation and applications-impossibility of a particle following a trajectory, estimating minimum energy of a confined particle; Energy-time uncertainty principle-application to virtual particles and range ofinteraction. **(10Lectures)**

UNIT-IV

Introduction to Quantum mechanics: Need for Quantum mechanics, Wave description of particles by wave packets, Physical interpretation of a wave function: Born interpretation, probabilities, and normalization time-dependent and time-independent Schrodinger equation for wave function, Solution of stationary-state Schrodinger equation for one dimensional problems: particle in a box.(10Lectures)

Text and Reference Books:

- 1. 1. Concepts of Modern Physics, Arthur Beiser, 2002, McGraw-Hill.
- 2. Introduction to Quantum Mechanics, David J. Griffith, 2005, Pearson Education.
- 3. Introduction to Modern Physics, Rich Meyer, Kennard, Coop, 2002, Tata McGraw Hill.
- 4. Physics for Scientists and Engineers with Modern Physics, Jewett and Serway, 2010, Cengage Learning.
- 5. Modern Physics, G.Kaur and G.R. Pickrell, 2014, McGraw Hill.
- 6. Quantum Mechanics: Theory & Applications, A.K.Ghatak&S.Lokanathan, 2004, Macmillan.
- 7. Modern Physics, J.R. Taylor, C.D. Zafiratos, M.A. Dubson, 2004, PHI Learning.

105

- **8.** Theory and Problems of Modern Physics, Schaum's outline, R. Gautreau and W. Savin, 2ndEdn, Tata McGraw-Hill Publishing Co. Ltd.
- 9. Quantum Physics, Berkeley Physics, Vol.4. E.H.Wichman, 1971, Tata McGraw-Hill Co.
- 10. Basic ideas and concepts in Nuclear Physics, K. Heyde, 3rdEdn., Institute of Physics Pub.
- 11. Six Ideas that Shaped Physics: Particle Behave like Waves, T.A. Moore, 2003, McGraw Hill.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 54 of 131

Head of Department
Department of Physics
LK.Gujrkl Punjab Technical University Jalanchar,
Punjab-144603

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Head of Department
Department of Physics
IK. Guith Punich Technical University Jalandhar,
Kapurthala, Punjab-144603

Page 55 of 131

PHYS	SICS-(C E	SHP-2	13-21	PHYS	SICS LA	B-III	L-	0, T-0,	P-4	2 Cı	redits	
Pre-r	equis	ite: Unde	erstandir	ng of ser	nior sec	ondary I	evel Phy	sics and	d Mathe	matics			
photo	se O pelectri eling et	bjective: ic effect, ffect.	s: The ionizat	laborato tion pot	ery exp tential,	periment absorpt	ts form tion and	ing ba d emiss	sis of sion sp	quantu ectra, d	m med diffraction	chanics, on, and	
Cour	se Out	tcomes:	At the e	nd of th	e cours	e, the st	tudent v	vill be al	ole to				
CC)1	Able to	verify th	e theore	etical co	ncepts/l	aws lear	rnt in th	eory coi	ırses			
CC)2	Trained	Able to verify the theoretical concepts/laws learnt in theory courses. Trained in carrying out precise measurements and handling sensitive equipment.										
CC)3	Understa uncertai	and the	e metho	ods use	ed for	estimat	ing an	d deali	ng with	exper	imenta	
CC)4	Learn to					nd devel	op skills	in expe	rimental	design		
CO)5	Docume concise	nt a tec	hnical re	port wh	nich com	munica	tes scier	ntific info	ormation	in a cle	ear and	
		Мар	ping of	course	outco	mes w	ith the	progra	m outc	omes			
	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	2	1	17	1	2	1	2	3	2	2	
CO2	2	2	3	2	1	1	1	1	1	3	1	1	
	3	2	2	2	1	3	2	1	1	3	1	1	
CO3	3	_						1		1			
CO3	2	2	2	2	3	1	2	1	1	3	1	1	

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 56 of 131

Head of Department
Department of Physics
I.K.Gujrki Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

Note: Students are expected to perform 8-10 experiments from the list taking at least 2-3 from the virtual lab.

List of experiment:

- 1. Measurement of Planck's constant using black body radiation and photo-detector.
- 2. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photoelectrons versus frequency of light.
- 3. To determine work function of material of filament of directly heated vacuumdiode.
- 4. To determine the Planck's constant using LEDs of at least 4 different colours.
- 5. To determine the wavelength of H-alpha emission line of Hydrogenatom.
- 6. To determine the ionization potential ofmercury.
- 7. To determine the absorption lines in the rotational spectrum of Iodinevapour.
- 8. To determine the value of e/m by (a) Magnetic focusing or (b) Barmagnet.
- 9. To setup the Millikan oil drop apparatus and determine the charge of anelectron.
- 10. To show the tunneling effect in tunnel diode using I-Vcharacteristics.
- 11. To determine (i) wavelength and (ii) angular spread of a laser using plane diffraction grating.
- **12.** Dependence of scattering angle on kinetic energy and impact parameter in Rutherford scattering (mechanicalanalogue).
- **13.** Measurement of the electrical and thermal conductivity of copper to determine its Lorentz number.
- 14. To determine energy band gap of a givensemiconductor.

Reference Books:

- **1.** Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia PublishingHouse.
- 2. AdvancedlevelPhysicsPracticals,MichaelNelsonandJonM.Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers:
- 3. A Text Book of Practical Physics, In Prakash & Ramakrishna, 11thEdn, 2011, KitabMahal.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 57 of 131

Head of Department
Department of Physics
I.K.Gujral Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

PHYS	ICS-C	-7 BS	HP-214	1-21	ANAL ELEC	OG TRONI	CS	L-3, 1	Γ-1, P-(4 Cre	dits
Pre-re	equisi	te: Unde	rstandin	g of ser	nior seco	ondary le	evel Phy	sics and	Mather	matics		
	_	ectives:										
Cours	se Out	comes:	At the e	nd of th	e course	e, the st	udent w	vill be ab	ole to			
СО)1	Illustrate										
СО	2	Understa and thei	r perfori	mancep	aramete	r.						
СО	3	Design a mechani		lyse the	e differe	nt type	s of am	plifiers	and un	derstand	the fe	edbac
CO	4	Design a					and the same of th					
СО	5	Recogniz modern		-		465	rcuit and	d the us	e in ind	ustrial, r	eal life,	
		Мар	ping of	course	e outco	mes wi	ith the	progra	m outo	omes		
	PO1	PO2	PO3	P04	PO5	P06	P07	P08	PO9	PO10	PO11	PO1:
CO1	2	1	2	1	-	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	1	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
	2	2	2	2	1	1	2	1	1	3	1	1

PART-A

UNIT-I

Semiconductor Diodes: P and N type semiconductors. Energy Level Diagram. Conductivity and Mobility, Barrier Formation in PN Junction Diode. Static and Dynamic Resistance. Current Flow Mechanism in Forward and Reverse Biased Diode. Drift Velocity. Derivation for Barrier Potential, Barrier Width and Current for Step Junction. Current Flow Mechanism in Forward and Reverse Biased Diode. (10 Lectures)

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 58 of 131

Head of Department
Department of Physics
IK. Gujiki Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

UNIT-II

Two-terminal Devices and their Applications: (1) Rectifier Diode: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, C-filter (2) Zener Diode and Voltage Regulation. Principle and structure of (1) LEDs, (2) Photodiode and (3)Solar Cell.

Bipolar Junction transistors: n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Current gains α and β Relations between α and β . Load Line analysis of Transistors. DC Load line and Q-point. Physical Mechanism of Current Flow. Active, Cutoff and Saturation Regions. (12 Lectures)

PART-B

UNIT-III

Amplifiers: Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider Bias. Transistor as 2-port Network. h-parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using Hybrid Model. Input and Output Impedance. Current, Voltage and Power Gains. Classification of Class A, B &CAmplifiers. Coupled Amplifier: Two stage RC-coupled amplifier and its frequency response. (10 Lectures)

UNIT-IV

Oscillators: Introduction, Types of oscillators, Fundamental principle of oscillators, Feedback oscillators, Tunes collector oscillator, Hartley and Colpitts Oscillator, Phase shift oscillator, Wein bridge oscillator, crystal oscillators. (9 Lectures)

Reference Books:

- 1. Integrated Electronics, J. Millman and C.C. Halkias, 1991, Tata Mc-Graw Hill.
- 2. Electronics: Fundamentals and Applications, J.D. Ryder, 2004, Prentice Hall.
- 3. Solid State Electronic Devices, B. G. Streetman & S. K. Banerjee, 6th Edn., 2009, PHI Learning
- 4. Electronic Devices & circuits, S. Salivahanan N. S. Kumar, 3rd Ed., 2012, Tata Mc-Graw Hill
- 5. OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall
- **6.** Microelectronic circuits, A.S. Sedra, K.C. Smith, A.N. Chandorkar, 2014, 6th Edn, Oxford University Press.
- 7. Electronic circuits: Handbook of design & applications, U.Tietze, C.Schenk, 2008, Springer
- 8. Semiconductor Devices: Physics and Technology, S.M. Sze, 2ndEdn., 2002, Wiley India
- **9.** Microelectronic Circuits, M.H. Rashid, 2nd Edition, Cengage Learning
- 10. Electronic Devices, 7thedn. Thomas L. Floyd, 2008, Pearson India

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 59 of 131

Head of Department
Department of Physics
LK. Gujiti Punjab Technical University Jalandhar,
Kapurtmala, Punjab-144603

PHY	SICS-	С	BSHP-2	215-21	PHY	SICS L	AB-IV	L	-0, T-0,	, P-4	2 C	redits	
Pre-	requis	site: Und	erstandi	ng of ser	nior sec	ondary	level Ph	ysics an	d Mathe	ematics			
Study	cnara	pjectives acteristics ADC and	of varie	ous diod	es, sola	er cells.	e been s and BJ	so desig T and th	ned tha	at the st sing aspe	udents i ects, am	learn to	
		tcomes:					tudent v	will be al	ole to				
CC	01	Illustrat											
CC)2	Understand the working of semiconductor device and different operating condition and their performanceparameter.											
CC)3	Design and analyse the different types of amplifiers and understand the feedback mechanism.										edback	
CC		Design	and ana	lyse the	differen	t types	of oscilla	ators.					
CC)5	Recogni	ze diffe	rent sig system a	nal pro	cessing	circuit	and th	e use	in indus	trial, re	al life,	
		Мар	ping o	fcourse	outco	mes wi	ith the	progra	m outc	omes			
	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12	
01	2	1	2	1	-	1	2	1	2	3	2	2	
			1	2	1	1	1	1	1	3	1	1	
	2	2					1						
02	3	2	2	2	1	1	2	1	1	3	1	1	
CO2 CO3 CO4			2	2	1	1	2	1	1	3	1	1	

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 60 of 131

Head of Department
Department of Physics
I.K.Gujrki Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

Note: Students are expected to perform 8-10 experiments from the list taking at least 2-3 from the virtual lab.

- 1. To study I-V characteristics of different diodes Ge, Si, LED and Zener.
- 2. To study voltage regulation and ripple factor for a half-wave and a full-wave rectifier without and with different filters. Use of Zener diode and ICregulators.
- 3. To study common emitter characteristics of a given transistor and to determine various parameters.
- 4. Study of I-V & power curves of solar cells and find maximum power point &efficiency.
- 5. To design a CE transistor amplifier of a given gain (mid-gain) using voltage dividerbias.
- 6. To study the frequency response of voltage gain of a RC-coupled transistoramplifier.
- 7. To design a Wien bridge oscillator for given frequency using anop-amp.
- 8. To design a phase shift oscillator of given specifications using BJT.
- 9. To study the Colpitts'soscillator.
- 10. To design a digital to analog converter (DAC) of givenspecifications.
- 11. To study the analog to digital convertor (ADC)IC.
- **12.** To design an inverting amplifier using Op-amp (741,351) for dc voltage of givengain and study its frequencyresponse.
- 13. To draw the characteristics of a given triode and to determine the tubeparameters.
- 14. Calibration of a Si diode, a thermistor, and thermocouple for temperaturemeasurements.
- 15. To measure low resistance by Kelvin's double bridge/Carey Foster'sbridge.

Reference Books:

- 1. Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc- GrawHill.
- 2. OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, PrenticeHall.
- 3. Electronic Principle, Albert Malvino, 2008, Tata Mc-GrawHill.
- 4. Electronic Devices & circuit Theory, R.L. Boylestad& L.D. Nashelsky, 2009, Pearson.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Head of Department
Department of Physics
I.K.Gujryl Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

Page 61 of 131

General E Elective (GE)- 5 Chemistry			HCL-20	4-21	Physic Chem			L-3	3, T-1,	P-0	4 Cre	edits
Pre-re	equisite	: Under	rstandin	g of sen	ior seco	ndary le	vel cher	mistry				
Cours	e Objec	tives:										1
				1 611		11	J k	طم مطالة	la to			
Cours	e Outco	mes: /	At the er	nd of th	e course	e, the st	udent W	III be ab	ie to	-		
CO	1					er fan	Va ₁					
CO2												
CO	3											
CO	4											
CO	5				0							
		Мар	ping of	course	outco	mes wi	th the	prograi	n outc	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1	-	2	1	1/2	1	2	1	2	3	2	2
CO1	2	1	2	_		-			1			
CO1	2	2	1	2	1	1	1	1	1	3	1	1
					1 1	1 1	1 2	1	1	3	1	1
CO2	2	2	1	2								

PARTA

UNIT-I

Gaseous State: The kinetic molecular theory of gases, Postulates and derivation of kinetic gas equation and various gas laws, The ideal gas law: Applications, Behaviour of real gases: Deviations from ideal gas behaviour, compressibility factor, Zand its variation with pressure for different gases. Causes of deviation from ideal behavior. Van der Waals equation of state, its derivation and application in explaining real gas behaviour. Numerical.

UNIT-II

Liquid and Solid State: Physical properties of liquids; vapour pressure, surface tension and coefficient of viscosity and their determination, cleansing action of detergents.

Nature of the solid state, law of constancy of interfacial angles, law of rational indices, Miller than the solid state, and symmetry operations, qualitative

indices, elementary ideas of symmetry, symmetry elements and symmetry operations, qualitative idea of point and space groups, seven crystal systems and fourteen Bravais lattices; X-ray

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 62 of 131

Head of Department
Department of Physics
I.K.Gujryl Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

diffraction, Bragg's law

PART B

UNIT-III

Ionic equilibria: Concept of Acids and Bases. Electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect; dissociation constants of mono-, di-and triprotic acids. Buffer solutions; buffer capacity, buffer range, buffer action
Solubility and solubility product of sparingly soluble salts — applications of solubility product

principle.

UNIT-IV

Solutions and Colligative Properties: Ways of expressing the concentration, lowering of vapour pressure, Raoult's Law. Colligative properties (i) relative lowering of vapour pressure, (ii) elevation of boiling point, (iii) Depression of freezing point, (iv) osmotic pressure. Applications in calculating molar masses of normal, dissociated, and associated solutes in solution.

RECOMMENDED BOOKS:

- 1. P.W. Atkins & J. de Paula, Atkin's Physical Chemistry, Oxford University Press (2006).
- 2. S.H. Maron & C.F. Prutton, Principles of Physical Chemistry, 1st edition, Oxford and IBH (1958).
- 3. G.W. Castellan, Physical Chemistry, 4th edition, Narosa (2004)
- 4. I.N. Levine, Physical Chemistry 6th Ed., Tata Mc Graw Hill (2010)
- 5. T. Engel & P. Reid, Physical Chemistry 3rdEd., Prentice-Hall (2012)

118

DIE

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 63 of 131

Head of Department
Department of Physics
I.K.Gujrki Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

General E (GE)-5 Ch	The state of the s	BHCP-208- 21	Chemistry Lab-III	L-0, T-0, P-4	2 Credits
Pre-requi	site: Unde	rstanding of seni	ior secondary level Physic	cs and Mathematics	
			ents practical knowledge which in turn will enhanc		
Course O	itcomes:	At the end of the	e course, the student will	be able to	
CO1		tion and standard	cedures for carrying out a lization of solutions, handl		
CO2		e the theoretical ental error.	and practical aspects and	d know about the li	mits of the
CO3	Determi	ne the various ph	ysical parameters for the	various problems ur	nder consideration.
CO4	Verify va	arious laws studie	ed in the theory part.		
Mapping (of course	outcomes with	the program outcome	es	

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	-	3	-	-	3
CO2	-	3	-	-	3
CO3	-	3	-	-	3
CO4	_	3	-	-	3
CO5	-	3	-	-	3

UNIT-I

Preparation and Standardization of Solutions.

UNIT-II

Surface tension measurements.

a)Determine the surface tension by (i) drop number (ii) drop weight method.

UZ

b) Study the variation of surface tension of detergent solutions with concentration.

UNIT-III

Viscosity measurement using Ostwald's viscometer.

- a) Determination of viscosity of aqueous solutions of (i) polymer (ii) ethanol and (iii) sugar at room temperature.
- b) Study the variation of viscosity of sucrose solution with the concentration of solute.

UNIT-IV pH metry

a) Study the effect on pH of addition of HCl/NaOH to solutions of acetic acid, sodium acetate and

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 64 of 131

Head of Department
Department of Physics
LK.Gujrki Punjab Technical University Jalandhar,
Kapurtnala, Punjab-144603

their mixtures.

- b) Preparation of buffer solutions of different pH;
- (i) Sodium acetate-acetic acid
- (ii) Ammonium chloride-ammonium hydroxide
- c) pH metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base.
- d) Determination of dissociation constant of a weak acid.

Recommended Books

- 1. J.B. Yadav, Practical Physical Chemistry, Krishna
- 2. Findlay, Practical Physical Chemistry, Longman, New York

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 65 of 131

Head of Department Department of Physics I.K.Guji V Punjab Technical University Jalandhar, Kapurthala, Punjab-144603

-1	SICS-		BSHP-2		PHY:	KSHO	P SKILL		-0, T-1,		2 C	redits
Pre-	requis	ite: Unde	erstandi	ng of ser	nior sec	ondary	level Ph	ysics an	d Mathe	matics		
VVILII	various	jectives s mechan ents to fra	ilcai alla	electric	ai toois	through	h hands	he stude on mod	ents to de, and	familiar to impro	and exp ove the	perieno abilitio
Cour	se Ou	tcomes:	At the e	end of th	e cours	e, the s	tudent v	vill be al	ole to			
CC)1	Underst	and the	differen	t types	of unit's	system	and the	eir conv	ersion		
CC)2	Understand the different types of unit's system and their conversion Introduced the concept of prime movers.										
CC)3	Apply the Mechanical Skills and understand the concept of workshop practices.										
CO4 Understand the learned concepts to electronics a							and ele	ctrical c	ircuits.	ractices	•	
CC)5											
		Мар	ping of	f course	outco	mes w	ith the	progra	m outc	omes		
	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO1
01	2	1	2	1	-	1	2	1	2	3	2	2
02	2	2	1	2	1	1	1	1	1	3	1	1
	3	2	2	2	1	1	2	1	1	3	1	1
03			1	2	1	1	2	1	1	3	1	1
	2	2	2	- 1						1000	-	_
03 04 05	2	2	2	2	1	1	2	1	1	3	1	1

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 66 of 131

Head of Department
Department of Physics
LK.Gujryl Punjeb Technical University Jalandhar,
LK.Gujryl Punjeb Technical University Jalandh

PART-A

Unit-I

Introduction: Measuring units. conversion to SI and CGS unit system. Familiarization with meter scale, Vernier caliper, Screw gauge and their utilities. Measure the dimension of a solid block, volume of cylindrical beaker/glass, diameter of a thin wire, thickness of metal sheet, etc. Use of Sextant to measure height of buildings, mountains, etc. (4 Lectures)

Unit-II

Introduction to prime movers: Gear and gear mechanism, lever and lever mechanism, Brakes and braking mechanism, Pulley and pulley mechanism, power generator system. **(6 Lectures)**

PART-B

Unit-III

Mechanical Skills: Concept of workshop practice. Overview of manufacturing methods: foundry, machining, forming, and welding. Types of welding joints and welding defects. Common materials used for manufacturing like, metals, alloys, and composites. Concept of machine processing, introduction to common machine tools like lathe, shaper, drilling, milling and surface machines. Cutting tools, lubricating oils. Introduction to sheet metal, operations, and job of funnel fabrication. (5 Lectures)

Unit-IV

Electrical and Electronic Skill: Use of Multimeter. Soldering of electrical circuits having discrete components (R, L, C, diode) and ICs on PCB. Operation of oscilloscope. Making regulated power supply. Timer circuit, electronic switch using transistor and relay. (5 Lectures)

Reference Books:

- 1. A textbook in Electrical Technology B L Theraja S. Chand and Company.
- 2. Performance and design of AC machines M.G. Say, ELBS Edn.
- 3. Mechanical workshop practice, K.C. John, 2010, PHI Learning Pvt. Ltd.

8.10

- **4.** Workshop Processes, Practices and Materials, Bruce J Black 2005, 3rd Edn., Editor Newnes [ISBN: 0750660732]
- 5. New Engineering Technology, Lawrence Smyth/Liam Hennessy, The Educational Company of Ireland [ISBN: 0861674480]

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 67 of 131

Head of Department
Department of Physics
LK.Gujiki Punjab Technical University Jalandhar,
Kapur'hala, Punjab-144603

PHYSICS-SEC BSHP-217-21 COMPUTATIONAL L-0, T-1, P-2 2 Credits
-2 PHYSICS

Pre-requisite: Understanding of senior secondary level Physics and Mathematics

Course Objectives: The aim of this course is to

- Highlights the use of computational methods to solve physical problems
- Course will consist of hands-on training on the Problem solving on Computers.

Course Outcomes: At the end of the course, the student will be able to

CO1	Introduced the concept of using the computers in Physics.
CO2	analyze practical and theoretical aspects of physics problems with the help of asuitable mathematical model.
CO3	describe and evaluate sources of error for the modeling and calculation for a given problem.
CO4	mathematical modeling and numerical analysis of problems in science and technology.
CO5	how scientific knowledge is achieved by an interplay between theory, modeling and simulation.

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	-	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	01	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
CO5	2	2	2	2	1	1	2	1	1	3	1	1

Detailed Syllabus:

PART-A

113

lute

UNIT-I

Introduction: Importance of computers in Physics, paradigm for solving physics problems for solution. Operating system, Usage of Linux as an editor, Algorithms and Flowcharts. Concept of flowchart, symbols, guidelines, types. Examples: Cartesian to Spherical Polar Coordinates, Roots of Quadratic Equation, Sum of two matrices, Sum and Product of a finite series, calculation of sin(x) as a series, algorithm for plotting (1) Lissajous figures and (2) trajectory of a projectile thrown at an angle with the horizontal. **(5 Lectures)**

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 68 of 131

Head of Department
Department of Physics
I.K.Gujirti Punjab Technical University Jalandhar,
Kapur nala, Punjab-1446-3

UNIT-II

Scientific Programming using C++/Python: Introduction to the Concept of Object-Oriented Programming; Advantages of C++; Structure of a C++ program, concepts of compiling and linking, IDE and its features; Basic terminology - Character set, tokens, identifiers, keywords, fundamental data types, literal and symbolic constants, declaring variables, initializing variables, type modifiers. Operators in C++, Input/output using extraction and insertion operators, writing simple C++ programs, comments in C++, stages of program execution. (5 Lectures)

PART-B

UNIT-III

Control Statements: Types of Logic, Branching Statements, Looping Statements (DO-CONTINUE, DO-ENDDO, DO-WHILE, Implied and Nested DO Loops), Jumping Statements (Unconditional GOTO, Computed GOTO, Assigned GOTO), Subscripted Variables (Arrays: Types of Arrays, DIMENSION Statement, Reading and Writing Arrays), Functions and Subroutines (Arithmetic Statement Function, Function Subprogram and Subroutine), RETURN, CALL, COMMON and EQUIVALENCE Statements), Structure, Disk I/O Statements, open a file, writing in a file, (5 Lectures) reading from a file. Examples from physics problems.

UNIT-IV

Programming:

1. Exercises on syntax on usage of C++/Python

- 2. Usage of GUI Windows, Linux Commands, familiarity with DOS commands and working in an editor to write sources codes in C++/Python.
- 3. To print out all natural even/ odd numbers between given limits.
- 4. To find maximum, minimum and range of a given set of numbers.
- Calculating Euler number using exp(x) series evaluated at x=1.

Reference Books:

1. Introduction to Numerical Analysis, S.S. Sastry, 5thEdn., 2012, PHI Learning Pvt. Ltd.

2. Computer Programming in Fortran 77". V. Rajaraman (Publisher: PHI).

3. Schaum's Outline of Theory and Problems of Programming with Fortran, S Lipsdutz and A Poe, 1986Mc-Graw Hill Book Co.

4. Computational Physics: An Introduction, R. C. Verma et al., New Age International Publishers, New Delhi (1999)

- 5. A first course in Numerical Methods, U.M. Ascher and C. Greif, 2012, PHI Learning
- 6. Elementary Numerical Analysis, K.E. Atkinson, 3rdEdn. 2007, Wiley India Edition.

11-7

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 69 of 131

Head of Department Department of Physics LK Guinel Punicib Technical University Jalandhar, Kapurthala, Punjab-144603

PHYSICS- E SEC-3		SHP-2	L8-21	WEAT	THER	NG	L-	0, T-1,	P-2	2 Cr	edits	
Pre-r	equis	ite: Unde	rstandin	g of ser	nior seco	ondary l	evel Phy	sics and	Mather	matics		
stude	nts bu	jectives: t to enab of differen	ole them	to dev	relop an	awarei	ness and	d under.	standing	regard	wledge ling the	to the
Cours	se Out	tcomes:	At the e	nd of th	e course	e, the st	udent w	vill be ab	ole to			
CC)1	Students will understand the elements of weather that can be observed, measured andrecorded to make predictions and determine simple weather patterns.										
CO)2	Observe, measure, and record data on the basic elements of weather over a period of time (i.e., precipitation, air temperature, wind speed and direction, and air pressure).										
CO3		Interpret recorded weather data for simple patterns and infer relationships between wind and weather change (e.g., windy days often precede changes in the weather south winds in Utah often precede a cold front coming from the north).										
CO)4	Graph the recorded data to show daily and seasonal patterns in weather and evaluate weather predictions based upon observational data.										
CO)5	provide losses an health a	informa nd enha	tion to nce soci	people a ietal ber	and org nefits, ir	anization ncluding	ns can i	use to r	fe and p	roperty	
		Мар	ping of	course	outco	mes wi	th the	progra	m outc	omes		
	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12
CO1	2	1	2	1	0.7	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	1	1	2	1	1	3	1	1
CO4	2	2	2	2	i	1	2	1	1	3	1	1
CO5	2	2	2		1	1	2	1	1	3	1	1

PART-A

1.80

UNIT-I

Introduction to atmosphere: Elementary idea of atmosphere: physical structure and composition; compositional layering of the atmosphere; variation of pressure and temperature with height; air temperature; requirements to measure air temperature; temperature sensors: types; atmospheric pressure: its measurement; cyclones and anticyclones: its characteristics.

(3 Lectures)

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 70 of 131

Head of Department Department of Physics I.K.Gujrkl Punicab Technical University Jalandhar, Kanustiania Duniah-144603

UNIT-II

Measuring the weather: Wind; forces acting to produce wind; wind speed direction: units, its direction; measuring wind speed and direction; humidity, clouds and rainfall, radiation: absorption, emission and scattering in atmosphere; radiation laws. Weather systems: Global wind systems; air masses and fronts: classifications; jet streams; local thunderstorms; tropical cyclones: classification; tornadoes; hurricanes.

Climate and Climate Change: Climate: its classification; causes of climate change; global warming and its outcomes; air pollution; aerosols, ozone depletion, acid rain, environmental issues related to climate. (7 Lectures)

PART-B

UNIT-III

Basics of weather forecasting: Weather forecasting: analysis and its historical background; need of measuring weather; types of weather forecasting; weather forecasting methods; criteria of choosing weather station; basics of choosing site and exposure; satellites observations in weather forecasting; weather maps; uncertainty and predictability; probability forecasts.

(4 Lectures)

UNIT-IV

Demonstrations and Experiments:

- 1. Study of synoptic charts & weather reports, working principle of weather station.
- 2. Processing and analysis of weather data:
 - (i) To calculate the sunniest time of the year.
 - (ii) To study the variation of rainfall amount and intensity by wind direction.
 - (iii) To observe the sunniest/driest day of the week.
 - (iv) To examine the maximum and minimum temperature throughout the year.
 - (v) To evaluate the relative humidity of the day.
 - (vi) To examine the rainfall amount month wise.
- 3. Exercises in chart reading: Plotting of constant pressure charts, surfaces charts, upper wind charts and its analysis.
- 4. Formats and elements in different types of weather forecasts/warning (aviation and nonaviation).

Reference books:

- 1. Aviation Meteorology, I.C. Joshi, 3rd edition 2014, Himalayan Books
- 2. The weather Observers Handbook, Stephen Burt, 2012, Cambridge University Press.
- 3. Meteorology, S.R. Ghadekar, 2001, Agromet Publishers, Nagpur.
- 4. Textbook of Agrometeorology, S.R. Ghadekar, 2005, Agromet Publishers, Nagpur.
- 5. Why the weather, Charls Franklin Brooks, 1924, Chpraman& Hall, London.
- 6. Atmosphere and Ocean, John G. Harvey, 1995, The Artemis Press.

11.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 71 of 131

Head of Department Department of Physics I.K. Guji t Punints Technical University Jalandhar, 1- Duniah-14460

SEMESTER-IV

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 72 of 131

Head of Department
Department of Physics
LK.Gujrkl Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

PHYS			SHP-22		PHYS	EMATI			5, T-1, I		6 Cre	edits
Pre-re	quisit	te: Under	standing	g of sen	ior seco	ndary le	vel Phys	sics and	Mathen	natics		
Cours to phy	e Objesicists.	Students	The emp	phasis of be exan	f the co nined ba	urse is o	on applion problem	cations in second	in solvin and uns	g proble seen.	ems of i	nteres
Cours	e Out	comes: A	At the er	nd of the	e course	e, the st	udent w	ill be ab	le to			
СО	1	Understa	nssuch a	n expan	sion is	valid.						
СО	2	Aware of the connection between Fourier and Laplace transforms and be able to use the latter to solve mathematical problems relevant to the physical sciences.										
CO3 Understand Gaussian integrals, integration by parts, of formany variables, Lagrange multipliers and Jaco applications inphysics.							Jacob	fferentia ins, Ta	al and in ylor ser	tegral c	alculu d thei	
CO	4	Understa	and the i	implicati	ions of l	aplace	transfor	m				
CO	5	Understa	and Four	rier anal	ysis of o	continuo	us-time	signals	and sys	tems.		
		Мар	ping of	course	outco	mes wi	th the	progra	m outc	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO1
CO1	2	1	2	1	24	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	§ 1	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
	2	2	2	2	1	1	2	1	1	3	1	1

PART-A

UNIT -I

Fourier Series: Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Complex representation of Fourier series. Expansion of functions with arbitrary period. Expansion of non-periodic functions over an interval. Even and odd functions and their Fourier expansions. **(15 Lectures)**

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 73 of 131

Head of Department
Department of Physics
I.K.Gujiki Punich Technical University Jalandhar,
Kapur' .: ala, Punjab-144603

UNIT-II

Frobenius Method and Special Functions: Singular Points of Second Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre, Bessel Differential Equations, Properties of Legendre Polynomials: Rodrigues Formula, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. Bessel Functions of the First Kind: Generating Function, simple recurrence relations. Zeros of Bessel Functions and Orthogonality. (15 Lectures)

PART-B

UNIT-III

Integrals Transforms: Fourier Transforms: Fourier Integral theorem. Fourier Transform. Examples. Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Convolution theorem. Properties of Fourier transforms (translation, change of scale, complex conjugation, etc.). Three dimensional Fourier transforms with examples. Application of Fourier Transforms to differential equations: One dimensional Wave and Diffusion/Heat Flow Equations.(15 Lectures)

UNIT-IV

Laplace Transforms: Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of 1st and 2nd order Derivatives and Integrals of Functions, Derivatives, and Integrals of LTs. LT of Unit Step function, Dirac Delta function, Periodic Functions. Convolution Theorem. Inverse LT. Application of Laplace Transforms to 2 order Differential Equations: Damped Harmonic Oscillator, Simple Electrical Circuits, coupled differential equations of1st order, Solution of heat flowalong infinite bar usingLaplacetransform.

(15 Lectures)

Reference Books:

- 1. Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd ed. 2006, Cambridge University Press.
- 2. Mathematics for Physicists, P. Dennery and A.Krzywicki, 1967, Dover Publications
- 3. Complex Variables, A.S. Fokas& M.J. Ablowitz Ed., 2011, Cambridge Univ. Press

es es

- 4. Complex Variables, A.K. Kapoor, 2014, Cambridge Univ. Press
- 5. Complex Variables and Applications, J.W. Brown & R.V. Churchill, 7th Ed. 2003, Tata McGraw-
- 6. First course in complex analysis with applications, D.G. Zill and P.D.Shanahan, 1940, Jones & Bartlett

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 74 of 131

Head of Department Department of Physics I.K.Gujrki Puniab Technical University Jalandhar, Kapur'nala, Punjab-144603

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 75 of 131

Head of Department
Department of Physics

IKGuin Punich Technical University Jalandhar,

Kapurtinala, Punjab-144603

	HYSICS-C-9 BS re-requisite: Unders		HP-22		THERM	CS			3, T-1, F		4 Cre	dits
Potentia transm	als, Ma ission d		Thermody	ınamic	Relation.	s, Kinet	ic theor	y of ga	ases, m	ations, 7 olecular	Thermody collisions	ynamic s, and
Cours		comes: A										
CO		Develop understa thermody	nding of namics,	how sy	ystems in cal gas th	n therma neory ar	al equilit nd basic	orium ca statistic	an be de al mech	escribed anics.	by	
СО	2	Understand the process of thermal conductivity, viscosity and diffusion in gases.									5.	
СО		Ability to evaluate entropy changes in a wide range of processes and determine the reversibility or irreversibility of a process from such calculations. Understand the interrelationship between thermodynamic functions and ability to										
СО		usesuch	relations	ships to	solve p	ractical	problem	S.				
СО	5	Developa knowled	geto exp	lorevar	riousappl	lications	topicsini	material	sscience	Э.	sandto	usethis
		Мар	ping of	cours	e outco	mes wi	th the	prograi	m outc	omes		
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	-	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	(1	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
		2	2	2	1	1	2	1	1	3	1	1

PART-A

adig

Unit-I

Laws of Thermodynamics: Thermodynamic Description of system: Zeroth Law of thermodynamics and temperature. First law and internal energy, conversion of heat into work, Various Thermodynamical Processes, Applications of First Law: General Relation between CP & CV, Work Done during Isothermal and Adiabatic Processes, Compressibility & Expansion Coefficient, Reversible & irreversible processes, Second law & Entropy, Carnot's cycle & theorem, Entropy changes in reversible & irreversible processes, Entropy-temperature diagrams, Third law of (12 Lectures) thermodynamics, Un-attainability of absolute zero.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 76 of 131

Head of Department Department of Physics I.K.Guji N Punit', Te, hrical University Jalandhar, Kapur "ala, Punjab-144603

PHYS	ICS-C	-9 B	SHP-22	2-21	THER PHYS			L-3	3, T-1,	P-0	4 Cre	edits
Pre-re	equisi	te: Unde	rstandin	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics		
Potenti	ials, M	jectives laxwell's of heat.	This co.	urse co lynamic	vers law Relation	s ofthei	rmodyna tic theoi	mics an	d applic ases, m	rations, i olecular	Thermoa collision	lynamic is, and
Cours	e Out	comes:										
CO	1		a theore									
			anding o								by	
			dynamics									
CO	2		Inderstand the process of thermal conductivity, viscosity and diffusion in gases.									
CO	3	Ability to evaluate entropy changes in a wide range of processes and determine the reversibility or irreversibility of a process from such calculations.										
											1 1 1111	
CO	4		and the						nic func	tions and	dability	to
			relation									1.1. 1
CO	5		aworking Igeto exp								sandto	usetnis
			pping of									
		Maj	ping o	cours	Julio			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1-	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
СОЗ	3	2	2	2	1	1	2	1	1	3	1	1
CO4	2	2	2	2	ri	1	2	1	1	3	1	1
CO5	2	2	2	2	1	1	2	1	1	3	1	1
	1				n hi e		1		1			

PART-A

0 80

Hou

Unit-I

Laws of Thermodynamics: Thermodynamic Description of system: Zeroth Law of thermodynamics and temperature. First law and internal energy, conversion of heat into work, Various Thermodynamical Processes, Applications of First Law: General Relation between CP & CV, Work Done during Isothermal and Adiabatic Processes, Compressibility & Expansion Coefficient, Reversible & irreversible processes, Second law & Entropy, Carnot's cycle & theorem, Entropy changes in reversible & irreversible processes, Entropy-temperature diagrams, Third law of thermodynamics, Un-attainability of absolute zero. (12 Lectures)

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 76 of 131

Head of Department
Department of Physics
I.K.Guji V Punir I, fechnical University Jalandhar,
Kapurinala, Punjab-144603

Unit-II

Thermodynamic Potentials: Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. Their Definitions, Properties and Applications. Surface Films and Variation of Surface Tension with Temperature. Magnetic Work, Cooling due to adiabatic demagnetization, First and second order Phase Transitions with examples, Clausius Clapeyron Equation and Ehrenfest equations, Expression for (CP-CV), CP/CV, TdS equations, Extensive and Intensive Thermodynamic Variables. (10 Lectures)

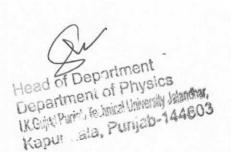
PART-B

Unit-III

Kinetic Theory of Gases: Distribution of Velocities, Maxwell-Boltzmann Law of Distribution of Velocities in an Ideal Gas and its Experimental Verification. Doppler Broadening of Spectral Lines and Stern's Experiment. Mean, RMS and Most Probable Speeds. Degrees of Freedom. Qualitative description of Law of Equipartition of Energy. Specific heats of Gases, Conduction-Coefficient of the thermal conductivity, Lee's disc method to find thermal conductivity of bad conductor.

Molecular Collisions: Mean Free Path. Collision Probability. Estimates of Mean Free Path. Transport Phenomenon in Ideal Gases: (1) Viscosity, (2) Thermal Conductivity and (3) Diffusion. Brownian Motion and its Significance. (10 Lectures)

UNIT-IV


Real Gases: Behavior of Real Gases: Deviations from the Ideal Gas Equation. The Virial Equation. Andrew's Experiments on CO2 Gas. Critical Constants. Continuity of Liquid and Gaseous State. Vapour and Gas. Boyle Temperature. Van der Waal's Equation of State for Real Gases. Values of Critical Constants. Law of Corresponding States. Comparison with Experimental Curves. p-V Diagrams. Joule's Experiment. Free Adiabatic Expansion of a Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule- Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule- Thomson Cooling. (10 Lectures)

Reference Books:

- Statistical Physics, Thermodynamics and Kinetic theory, V.S. Bhatia, 2017, Vishal Publishing Co.
- 2. Brijlal, N. Subrahmanyam and P. S. Hemne, Heat, Thermodynamics and Statistical Physics, S. Chand, and Company, 2010.
- **3.** Richard H Dittman and Zemansky MW, Heat and Thermodynamics, 3rd Special Edition,McGraw Hill, 2008.
- 4. Thermal Physics, S. Garg, R. Bansal and C. Ghosh, 1993, Tata McGraw-Hill.
- 5. A Treatise on Heat, MeghnadSaha, and B.N. Srivastava, 1969, Indian Press.
- 6. Thermodynamics, Enrico Fermi, 1956, Courier Dover Publications.
- 7. Thermodynamics, Kinetic theory & Statistical thermodynamics, F.W.Sears& G.L. Salinger, 1988, Narosa.
- 8. University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- 9. Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.
- 10. Thermal Physics, A. Kumar and S.P. Taneja, 2014, R. Chand Publications.
- **11.** Elements of Thermal Physics, 4th edition, James Wolfe.
- 12. AnIntroduction to the Thermal Physics, Daniel V. Schroeder.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 77 of 131

	ICS-C	B 8	SHP-22	3-21	PHYS	ICS LA	B-V	L-0	D, T-0,	P-4	2 Cr	edits
Pre-re	equisi	i te: Under	rstandin	g of sen	ior seco	ndary le	evel Phys	sics and	Mather	natics		
therm	se Ob al con ducers.	jectives: aductivity,	The late	boratory rature	exerci. Coefficie	ises havent of I	ve beer Resistan	so de ce, and	esigned Luse o	on mea f variou	asureme s tempe	ents o erature
Cours	e Out	comes:	At the er	nd of the	e course	e, the st	udent w	ill be ab	le to			
CO	1	Able to verify the theoretical concepts/laws learnt in theory courses. Trained in carrying out precise measurements and handling sensitive equipment.										
CO	2											
CO	3	Understa	and the	metho	ods use	ed for	estimat	ing and	d dealir	ng with	experi	menta
		uncertair										
CO		Learn to										
CO)5	Docume			port wh	ich com	imunicat	es scier	itific info	ormation	in a cie	ear and
		concise r	manner. ping of		outco	moc wi	th the	nrogra	m outo	omes		
		мар	ping or	Course	outco	illes wi	itii tiie	prograi	iii outc	omes		
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	021	1	2	1	2	3	2	2
	2	2	1	2	1	1	1	1	1	3	1	1
CO2	3 3 2 2 2		2	1	1	2	1	1	3	1	1	
		2	2	2	1	1	2	1	1	3	1	1
CO2 CO3 CO4	2			1	1		2	1	1	3	1	1

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 78 of 131

Head of Department
Department of Physics
I.K.Gujiki Punish Technical University Jalandhar,
Kapur 191a. Punjab-144603

Note: Students are expected to perform 8-10 experiments from the list taking at least 2-3 from the virtual lab.

- 1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.
- 2. To measure the coefficient of linear expansion for different metals and alloys.
- 3. To determine the value of Stefan's Constant of radiation.
- 4. To determine the Coefficient of Thermal Conductivity of Cu by Searle's Apparatus.
- 5. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method.
- **6.** To measure the thermal conductivity and thermal diffusivity of aconductor.
- 7. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's discmethod.
- **8.** To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer(PRT).
- **9.** To study the variation of Thermo-Emf of a Thermocouple with Difference of Temperature of its Two Junctions. To calibrate a thermocouple to measure temperature in a specified Range using (i) Null Method, (ii) Direct measurement using Op-Amp difference amplifier and to determine NeutralTemperature.
- **10.** To determine thermal conductivity of a bad conductor disc using Advance kit involving constant current source for heating and thermocouples for temperaturemeasurements.
- 11. Calibration of Si diode and Copper -Constantan thermocouple as temperature sensor.
- 12. Measurement of Planck's constant using black body radiation.
- **13.** To determine Stefan's Constant.
- **14.** To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method.
- 15. To determine the temperature co-efficient of resistance by Platinum resistance thermometer.
- 16. To calibrate Resistance Temperature Device (RTD) using Null Method/Off-Balance Bridge.

Reference Books

- **1.** Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia PublishingHouse
- 2. A Textbook of Practical Physics, I. Prakash & Ramakrishna, 11th Ed., 2011, KitabMahal

311 --

o⊬ef tore

11

- **3.** Advanced level Physics Practical's, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann EducationalPublishers
- 4. A Laboratory Manual of Physics for undergraduate classes, D.P. Khandelwal, 1985, Vani Pub.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 79 of 131

Head of Department
Department of Physics
LK.Gujrki Punish Technical University Jalandhar,
Kapur ata, Punjab-144603

PHYS	ICS-C	Э- В	SHP-22	24-21	DIGI	TAL TRONI	cs	L-:	3, T-1,	P-0	4 Cr	edits
Pre-re	equisi	ite: Unde	rstandin	g of bas	sics of el	lectronic	CS.					
	gates	jectives: 5, sequen										
Cours	e Out	tcomes:	At the e	nd of th	e course	e, the st	udent w	ill be ab	le to			
СО	1	Understand the fundamentals of codes and number system										
CO	2	Understand the binary arithmetic, logics, and Boolean functions.										
CO	3	Understand the functions and working of flipflop circuits register s and counters.										
CO	4	Understa	and the	applicat	ions into	memo	ry circuit	ts.				
СО	5	Understa	and synd	hronou	s seque	ntial circ	cuits, reg	gisters a	nd mult	iplexer-c	demultip	lexer.
		Мар	ping of	course	outco	mes w	ith the	progra	m outc	omes		
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1.5	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	1	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
CO4			2	2	1	1	2	1	1	3	1	1

15

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 80 of 131

Head of Department
Department of Physics
I.K.Gujrtl Punjab Technical University Jalandhar,
Kapur' Mata, Punjab-144603

PART-A

UNIT-I

Digital Circuits: Binary Numbers. Decimal to Binary and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers. AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates and application as Parity Checkers. Boolean algebra: De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean Algebra. Fundamental Products. Idea of Minterms and Maxterms. Conversion of a Truth table into Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map. **(11 Lectures)**

UNIT-II

Data Processing Circuits: Basic idea of Multiplexers, De-multiplexers, Decoders, Encoders. Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor. **(9 Lectures)**

PART-B

UNIT-III

Sequential Circuits: SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Race-around conditions in JK Flip-Flop. M/S JK Flip-Flop. Timers: IC 555: block diagram and applications: Astable multivibrator and Monostable multivibrator. Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits). (10 Lectures)

UNIT-IV

Counters and Converters: Counters (4 bits): Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter. Computer Organization: Input/Output Devices. Data storage (idea of RAM and ROM). Computer memory. Memory organization & addressing. Digital to analogue converter, analogue to digital converter using counter. **(10**

Reference Books:

- 1. Digital Principles and Applications, A.P. Malvino, D.P.Leach and Saha, 7th Ed., 2011, Tata McGraw
- 2. Fundamentals of Digital Circuits, Anand Kumar, Edn, 2009, PHI Learning Pvt. Ltd.
- 3. Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- 4. Digital Electronics G K Kharate ,2010, Oxford University Press
- 5. Digital Systems: Principles & Applications, R.J.Tocci, N.S. Widmer, 2001, PHI Learning
- 6. Logic circuit design, Shimon P. Vingron, 2012, Springer.
- 7. Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning.

Ani

8. Digital Electronics, S.K. Mandal, 2010, edition, McGraw Hill

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 81 of 131

Head of Department
Department of Physics
I.K.Gujral Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

PHYS	ICS-C	В	SHP-22	5-21	PHYS	ICS LA	B-VI	L-	0, T-0,	P-4	2 Cr	edits
Pre-re	equisi	te: Unde	rstandin	g of sen	ior seco	ndary le	evel Phy	sics and	Mather	natics		
verify	some ng on	ectives: of the co basic Lo	oncepts	learnt ii	n the th	neory co	ourse of	digital	electron	ics. It c	overs p	ractica
Cours	e Out	comes:	At the e	nd of th	e course	e, the st	udent w	ill be ab	ole to			
СО	1	Able to v	erify the	e theore	tical cor	ncepts/l	aws lear	nt in the	eory cou	irses.		
CO2 Trained in carrying out precise measurements and handling sensitive equipment.								nt.				
СО	3	Understa uncertain					estimat	ing and	d dealir	ng with	experi	menta
CO	4	Learn to	draw co	nclusio	ns from	data an	d develo	op skills	in expe	rimental	design.	
СО	5	Docume concise			port wh	ich com	municat	es scier	ntific info	ormation	in a cle	ear and
		Мар	ping of	course	outco	mes w	th the	progra	m outc	omes		
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	-	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	2	1
CO3	3	2	2	2	2	1	2	1	1	3	2	1
CO4	2	2	2	2	1	1	2	1	1	3	2	1

(B.Sc. Hons. Physics) Batch 2021 & Onwards

11 11

Page 82 of 131

Head of Department
Department of Physics

I.K.GujiN Punjab Technical University Jalandhar,
Kapur Hala, Punjab-144603

Note: Students are expected to perform 8-10 experiments from the list taking at least 2-3 from the virtual lab.

List of Experiments:

- 1. To measure (a) Voltage, and (b) Time period of a periodic waveform usingCRO.
- 2. To test a Diode and Transistor using aMultimeter.
- 3. To design a switch (NOT gate) using atransistor.
- 4. To verify and design AND, OR, NOT and XOR gates using NANDgates.
- To design a combinational logic system for a specified TruthTable.
- 6. To convert a Boolean expression into logic circuit and design it is using logic gateICs.
- 7. To minimize a given logiccircuit.
- 8. Half Adder, Full Adder, and 4-bit binaryAdder.
- 9. Half Subtractor, Full Subtractor, Adder-Subtractor using Full AdderI.C.
- 10. To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NANDgates.
- 11. To build JK Master-slave flip-flop using Flip-FlopICs
- 12. To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timingdiagram.
- 13. To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-FlopICs.
- 14. To design an astable multivibrator of given specifications using 555Timer.
- 15. To design a monostable multivibrator of given specifications using 555Timer.

Reference Books:

1. Modern Digital Electronics, R.P. Jain, 4th Edition, 2010, Tata McGrawHill.

fid-

UE

Bria

2. Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-GrawHill.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 83 of 131

Head of Department
Department of Physics
I.K.Gujiti Punjab Technical University Jalandhar,
Kapur Iala, Punjab-144603

General (GE)-6 Mathen		re	BSHN	1-408-2	D	latrices different quation	ial	nary	L-4, T	-1, P-0	40	Credits
Pre-req integration		Students	s must h	ave the	knowle	edge of b	pasic alg	ebraic o	peration	ns, differ	rentiatio	n, and
to equip	the B.S. ions and	c. (Hons d real-lif) studer	nts with	the the	eoretical	aspects	of matr	ices. Th	eir appli	cations	ations in system Ordinary
Course	Outcon	nes: At 1	the end	of the co	ourse,	the stude	ent will l	oe able	to			,
CO1	Lea	rn the b	asic cor	cepts of	Matri	ces.						
CO2	Understand about operations on matrices, such as, addition, subtraction and multiplication and concept of determinants.								tiplication			
CO3	Use	matric	es in s	olving sy	ystem	of equa		sing Ga	uss Elin	nination	method	d, Gauss
CO4		acquain	ted witl	n knowle	edge d	of ordina	ry differ	rential e	equation	s and L	inear d	ifferentia
CO5	App	oly the le	earnt ted	chniques	in solv	ving vario	ous prob	olems re	lated to	differen	tial equ	ations.
		Мар	ping of	course	outco	mes wi	th the p	orograi	n outco	mes		
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	-	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	2	1
CO3	3	2	2	2	2	1	2	1	1	3	2	1
CO4	2	2	2	2	g 1	1	2	1	1	3	2	1
CO5	2	2	2	2	1	1	2	1	1	3	2	1

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 84 of 131

Head of Department
Department of Physics
I.K.Gujrkl Punjab Technical University Jalandhar,
Kapur Thala, Punjab-144603

Course Title: Matrices & Ordinary Differential Equations Course Code: UC-BSHM-408-19

PART A

UNIT-I

Matrices: Introduction to matrix, Different kinds of matrices, Addition, Multiplication, Symmetric and Skew symmetric matrix, Transpose of matrix, trace of a matrix.

Determinants: Determinant of matrix, Properties of determinant, Singular and non-singular matrices, Adjoint and inverse of a matrix, Rank of a matrix.

UNIT-II

Linear System of Equations: Introduction to system of linear equations, Condition of Consistency of system of linear equations, Homogenous and Non-homogenous system of equations, Echelon form. Solving Linear system of Equations: Matrix inversion method, Gauss-Jordon method and Gauss Elimination method.

PART B

8 1

UNIT-III

ODE: Introduction of differential coefficient, Ordinary differential equation, Order and degree of differential equation, Formation of differential equation, Difference between linear and non-linear differential equations.

UNIT-IV

Solving Ordinary Differential Equations: Solution of Separable differential equations, linear differential equations of the first order, Exact differential equations, Solution of homogeneous differential equations, Bernoulli's equation and Riccati equation, The chemical application of these first order differential equations.

Text and Reference Books:

- 1. Mathematics 10+2, NCERT, New Delhi.
- 2. Kreyszig, E., Advanced Engineering Mathematics, 9th Edition Wiley Publications, 2005.
- **3.** O'Neil, P.V., *Advanced Engineering Mathematics 7th Edition*, Cengage Learning Custom Publishing, 2011.
- **4.** Jain, R.K. and Iyengar, S.K., *Advanced Engineering Mathematics 5th Edition*. New Delhi: Narosa Publication, 2011.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 85 of 131

Head of Department
Department of Physics
LK.Gujit/ Puniab Technical University Jalandhar,
Kapur Hala, Punjab-144603

Course Title: Matrices & Ordinary Differential Equations
Course Code: UC-BSHM-408-19

PART A

UNIT-I

Matrices: Introduction to matrix, Different kinds of matrices, Addition, Multiplication, Symmetric and Skew symmetric matrix, Transpose of matrix, trace of a matrix.

Determinants: Determinant of matrix, Properties of determinant, Singular and non-singular matrices, Adjoint and inverse of a matrix, Rank of a matrix.

UNIT-II

Linear System of Equations: Introduction to system of linear equations, Condition of Consistency of system of linear equations, Homogenous and Non-homogenous system of equations, Echelon form. Solving Linear system of Equations: Matrix inversion method, Gauss-Jordon method and Gauss Elimination method.

PART B

UNIT-III

ODE: Introduction of differential coefficient, Ordinary differential equation, Order and degree of differential equation, Formation of differential equation, Difference between linear and non-linear differential equations.

UNIT-IV

Solving Ordinary Differential Equations: Solution of Separable differential equations, linear differential equations of the first order, Exact differential equations, Solution of homogeneous differential equations, Bernoulli's equation and Riccati equation, The chemical application of these first order differential equations.

Text and Reference Books:

1. Mathematics 10+2, NCERT, New Delhi.

2. Kreyszig, E., *Advanced Engineering Mathematics*, 9th Edition Wiley Publications, 2005.

3. O'Neil, P.V., Advanced Engineering Mathematics 7th Edition, Cengage Learning Custom Publishing, 2011.

4. Jain, R.K. and Iyengar, S.K., *Advanced Engineering Mathematics 5th Edition.* New Delhi: Narosa Publication, 2011.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 85 of 131

Head of Department
Department of Physics
I.K.Gujitl Punish Technical University dalandhar,
Kapurinala, Plunjab-144603

	/ icemen e (AEC		EVS-10)1A	Envi Stud	ronmen ies	tal	L	-2, T-0, F	P-0	2 Cred	its
Pre-re	equisite	es (if an	y): NA									
Enviro	nment a	as a who	The aim le along along wi	with Na	tural Res	sources,	their ty	pes, and	h the fun I issues re	damen elated v	tal cond vith sust	epts o
			t the end									
CO1		Unders	stand the	fundam	ental co	ncepts a	bout En	vironmer	nt and its	compo	nents.	
CO2		Know about various types of natural resources, their functions, uses, exploitation and the problems arise due to these along with suitable case studies.										
CO3		Gain k		about v	working				their featu	ires an	d function	ns and
CO4		Know a	about bio	diversity	, its vari	ous forn	ns, impo	rtance a	nd signific	ant are	eas	
		Ма	pping o	f course	e outco	mes wi	th the p	rogram	outcom	es	-	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	2	1	2	1	2	1	2	2	2	3	2	2
CO1	_		-	2	11 2	1	1	2	2	3	2	2
CO1	2	2	1	2	2	1	-	_	_	-	_	
		2	2	2	2	1	2	2	1	3	2	2
CO2	2											

PART-A

UNIT-I

Multidisciplinary nature of environmental studies, Definition, scope and importance, Need for public awareness. (2)

UNIT-II

Natural Resources: Renewable and non-renewable resources: Natural resources and associated problems.

- a) Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forest and tribal people.
- b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
- d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- e) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.

-16

itst

1511

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 86 of 131

Head of Department
Department of Physics
I.K.Gujrki Punjab Technical University Jalandhar,
Kapur'hala, Punjab-144603

- f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.
- Role of an individual in conservation of natural resources.
- Equitable use of resources for sustainable lifestyles.

(10)

PART-B

UNIT-III

Ecosystems

- · Concept of an ecosystem.
- Structure and function of an ecosystem.
- Producers, consumers and decomposers.
- · Energy flow in the ecosystem.
- Ecological succession.
- Food chains, food webs and ecological pyramids.
- Introduction, types, characteristic features, structure, and function of the following ecosystem: -
- a. Forest ecosystem
- b. Grassland ecosystem
- c. Desert ecosystem
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

(8)

UNIT-IV

Biodiversity and its conservation

- Introduction Definition: genetic, species and ecosystem diversity.
- Biogeographical classification of India
- Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values
- Biodiversity at global, National, and local levels.
- India as a mega-diversity nation.
- Hot spots of biodiversity.
- Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts.
- Endangered and endemic species of India
- Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity

(6)

RECOMMENDED BOOKS

- 1. K.C. Aggarwal, Environmental Biology, Nidi Publishers, 2001
- 2. E.P. Odum, Fundamentals of Ecology, WB Saunders, 1971
- 3. ErachBharucha, The Biodiversity of India, Mapin Publishers, 2003
- 4. Benny Joseph, Environmental Studies, McGraw Hills, 2015.
- 5. R Rajagopalan, Environmental Studies, Oxford Higher Education, 2016.

13

6. S.P. Misra& S.N. Pandey, Essential Environmental Studies, Ane Books Pvt. Ltd. 2016.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 87 of 131

Head of Department Department of Physics LK.Gujrkl Puniab Technical University Jalandhar, Kapur hala, Punjab-144603

PHYS -4	SICS-S	SEC B	SHP-2	26-21	CIRC	TRICAL UITS A VORK S	ND	L-	0, T-1,	P-2	2 Cr	edits
Pre-r	equisi	ite: Unde	rstandin	g of ser				sics and	Mather	matics		
		jectives: / circuits,								sign, and	d trouble	e-shoo
Cours	se Out	comes:	At the e	nd of th	e course	e, the st	udent w	ill be ab	ole to			
CC)1	Familiari ammete		vith basi	c electro	onics de	vices su	ch as, n	nultimet	er, voltn	neter, a	nd
CC	2	Understa	Understand the concept of generators and transformers.									
CC	3		Understand the DC Power sources, AC/DC generators, Inductance, capacitance, and impedance.									
CC)4	Apply th	e conce	ot of op	eration	of trans	formers.	BE I				
CC)5	Understa			***************************************		The second second second second					
			ping of						m outc	omes		
	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	co	1	2	1	2	3	2	2
	2	2	1	2	1/1	1	1	1	1	3	1	1
CO2			1	2	1	1	2	1	1	3	1	1
	3	2	2	2	+ +			1				
CO2 CO3 CO4	3	2	2	2	1	1	2	1	1	3	1	1

Wer

Tof

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 88 of 131

Head of Department
Department of Physics
LK.Gujrkl Punjab Technical University Jalandhar,
Kapur hala, Punjab-144603

PART-A

UNITI

Basic Electricity Principles: Voltage, Current, Resistance, and Power. Ohm's law. Series, parallel, and series-parallel combinations. AC Electricity and DC Electricity. Familiarization with multimeter, voltmeter, and ammeter.

Understanding Electrical Circuits: Main electric circuit elements and their combination. Rules to analyze DC sourced electrical circuits. Current and voltage drop across the DC circuit elements. Single-phase and three-phase alternating current sources. Rules to analyze AC sourced electrical circuits. Real, imaginary, and complex power components of AC source. Power factor. Saving energy and money.

(6 Lectures)

UNIT-II

Generators and Transformers: DC Power sources. AC/DC generators. Inductance, capacitance, and impedance. Operation of transformers.

Electric Motors: Single-phase, three-phase & DC motors. Basic design. Interfacing DC or AC sources to control heaters & motors. Speed & power of ac motor. (5 Lectures)

PART-B

UNIT-III

Solid-State Devices: Resistors, inductors, and capacitors. Diode and rectifiers. Components in Series or in shunt. Response of inductors and capacitors with DC or AC sources.

Electrical Protection: Relays. Fuses and disconnect switches. Circuit breakers. Overload devices. Ground-fault protection. Grounding and isolating. Phase reversal. Surge protection. Interfacing DC or AC sources to control elements (relay protection device) (6 Lectures)

UNIT-IV

Electrical Wiring: Different types of conductors and cables. Basics of wiring-Star and delta connection. Voltage drops and losses across cables and conductors. Instruments to measure current, voltage, power in DC and AC circuits. Insulation. Solid and stranded cable. Conduit. Cable trays. Splices: wirenuts, crimps, terminal blocks, split bolts, and solder. Preparation of extension board.

(5 Lectures)

Reference Books:

- 1. A textbook in Electrical Technology B L Theraja and A K Theraja S Chand & Co.
- 2. Performance and design of AC machines M G Say, CBS Publisher.

Hay'

3. Electronic Principles (SIE)- Albert Malvino and David J. Bates 7th Edition, McGraw Hill Education.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 89 of 131

Head of Department
Department of Physics
I.K.Gujini Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

-5	SICS-		BSHP-2		CKTI	RUMEN	NOITATION	1	L-0, T-		20	Credits
Pre-	requis	site: Und	derstand	ing of se	enior se	condary	level Phy	/sics ar	nd Math	ematics		
Cou usag topic	rse Ob le throi	jectives ugh hand	s:This co ds-on m	ourse is ode. Ex	to get perimer	exposur nts listed	e with va d below	arious a are to	aspects be don		ments a tinuatio	and the
Cou	rse Ou	tcomes	: At the	end of t	he cour	se, the s	student w	vill be a	ble to			
C	01	Apply t	he funda nents.	amental	s of inst	rumenta	ation in m	neasure	ements	and calib	ration c	of
C	02	Make u range i	Make use of instrument with appropriate specifications and design of extension of ange instrument.									
C	03	Experin Capacit	Experiment with different bridge circuits for unknown parameter (Resistance, Capacitance) measurement.									
CC	04	Demons	strate th	e use of	oscillos	scopes f	or electric	cal para	ameter	MARCUEO	mont	
CC	05	Select t	ne digita	ii instrui	ment fo	r the me	asureme the speci	nt of a	iven nar	ameter	and mal	ke use
		Maj	oping o	f cours	e outco	mes w	ith the p	progra	m outc	omes		
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO 8	PO9	PO10	PO11	PO12
01	2	1	2	1	5/	1	2	1	2	3	2	2
02	2	2	1	2	1	1	1	1	1	3	1	1
03	3	2	2	2	1	1	2	1	1	3	1	1
04	2	2	2	2	1	1	2	1	1	3	1	1
05	2	2	2		1	1	2	1	1	3	1	1
etail	ed Svi	labus:			D3C =			-	-	3	1	1

UNIT-I PART-A

Basic of Measurement: Instruments accuracy, precision, sensitivity, resolution range etc. Errors in measurements and loading effects. Multimeter: Principles of measurement of dc voltage and dc current, ac voltage, ac current and resistance. Specifications of a multimeter and their significance.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 90 of 131

Head of Depratment
Department of Physics
I.K.GujiN Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

Electronic Voltmeter: Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity. Principles of voltage, measurement (block diagram only). Specifications of an electronic Voltmeter/ Multimeter and their significance. AC millivoltmeter: Type of AC millivoltmeters: Amplifier- rectifier, and rectifier- amplifier. Block diagram ac millivoltmeter, specifications and their significance. (6 Lectures)

UNIT-II

Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only-no mathematical treatment), brief discussion on screen phosphor, visual persistence & chemical composition. Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance.

Use of CRO for the measurement of voltage (dc and ac frequency, time-period, Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working. **(6 Lectures)**

PART B

UNIT-III

Signal Generators and Analysis Instruments: Block diagram, explanation, and specifications of low frequency signal generators. pulse generator, and function generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis.

Impedance Bridges & Q-Meters: Block diagram of bridge. working principles of basic (balancing type) RLC bridge. Specifications of RLC bridge. Block diagram & working principles of a Q-Meter. Digital LCR bridges. (6 Lectures)

UNIT-IV

Digital Instruments: Principle and working of digital meters. Comparison of analog & digital instruments. Characteristics of a digital meter. Working principles of digital voltmeter.

Digital Multimeter: Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time-base stability, accuracy, and resolution. **(5 Lectures)**

The test of lab skills will be of the following test items:

- 1. Use of an oscilloscope.
- 2. CRO as a versatile measuring device.
- 3. Circuit tracing of Laboratory electronic equipment,
- 4. Use of Digital multimeter/VTVM for measuring voltages

DVV

VICE

- 5. Circuit tracing of Laboratory electronic equipment
- **6.** Winding a coil / transformer
- 7. Study the layout of receiver circuit.
- 8. Trouble shooting a circuit
- 9. Balancing of bridges

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 91 of 131

Head of Department
Department of Physics
LK.Gujnyl Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

Electronic Voltmeter: Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity. Principles of voltage, measurement (block diagram only). Specifications of an electronic Voltmeter/ Multimeter and their significance. AC millivoltmeter: Type of AC millivoltmeters: Amplifier- rectifier, and rectifier- amplifier. Block diagram ac millivoltmeter, specifications and their significance. (6 Lectures)

UNIT-II

Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only-no mathematical treatment), brief discussion on screen phosphor, visual persistence & chemical composition. Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance.

Use of CRO for the measurement of voltage (dc and ac frequency, time-period, Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working.

(6 Lectures)

PART B

UNIT-III

Signal Generators and Analysis Instruments: Block diagram, explanation, and specifications of low frequency signal generators. pulse generator, and function generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis.

Impedance Bridges & Q-Meters: Block diagram of bridge. working principles of basic (balancing type) RLC bridge. Specifications of RLC bridge. Block diagram & working principles of a Q- Meter. Digital LCR bridges. (6 Lectures)

UNIT-IV

Digital Instruments: Principle and working of digital meters. Comparison of analog & digital instruments. Characteristics of a digital meter. Working principles of digital voltmeter.

Digital Multimeter: Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time-base stability, accuracy, and resolution. (5 Lectures)

The test of lab skills will be of the following test items:

- Use of an oscilloscope.
- 2. CRO as a versatile measuring device.
- 3. Circuit tracing of Laboratory electronic equipment,
- 4. Use of Digital multimeter/VTVM for measuring voltages5. Circuit tracing of Laboratory electronic equipment

MIL.

CHO

- **6.** Winding a coil / transformer
- 7. Study the layout of receiver circuit.
- 8. Trouble shooting a circuit
- 9. Balancing of bridges

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 91 of 131

Head of Department
Department of Physics

I.K.Gujrki Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

Laboratory Exercises:

- 1. To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance.
- 2. To observe the limitations of a multimeter for measuring high frequency voltage and currents.
- 3. To measure Q of a coil and its dependence on frequency, using a Q-meter.
- 4. Measurement of voltage, frequency, time period and phase angle using CRO.
- 5. Measurement of time period, frequency, average period using universal counter/ frequency counter.
- 6. Measurement of rise, fall and delay times using a CRO.
- 7. Measurement of distortion of a RF signal generator using distortion factor meter.
- 8. Measurement of R, L and C using a LCR bridge/ universal bridge.
- 9. Using a Dual Trace Oscilloscope
- 10. Converting the range of a given measuring instrument (voltmeter, ammeter)

Reference Books:

1. A Textbook in Electrical Technology - B L Theraja - S Chand and Co.

] 3 .

n'ea

ngro

, 50

- 2. Performance and design of AC machines M G Say ELBS Edn.
- 3. Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- 4. Logic circuit design, Shimon P. Vingron, 2012, Springer.
- 5. Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning.
- 6. Electronic Devices and circuits, S. Salivahanan N. S. Kumar, Ed., 2012, Tata Mc Graw Hill.
- 7. Electronic circuits: Handbook of design and applications, U.Tietze, Ch.Schenk, 2008, Springer
- 8. Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 92 of 131

Head of Department
Department of Physics
I.K.Gujiki Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

PHYSICS-SEC -6	BSHP-228-21	SCIENTIFIC WORD PROCESSING	L-0, T-1, P-2	2 Credits
-------------------	-------------	----------------------------------	---------------	-----------

Pre-requisite: Understanding of senior secondary level Physics and Mathematics

Course Objectives: The aim of this course is not just to teach scientific documentation methods and numerical analysis but to emphasize its role in solving problems in Physics.

- Use of latex as a tool in writing scientific document in physics applications.
- Course will consist of hands-on training on the latex on Computers.

Course O	utcomes: At the end of the course, the student will be able to
CO1	Explain, install, and use of TeX and LaTeX.
CO2	Describes the development process of TeX and LaTeX.
CO3	Explains the difference between TeX and LaTeX.
CO4	Tells the advantages of LaTeX over other more traditional software's.
CO5	Lists LaTeX compatible operating systems and use latex for scientific documentation purpose.
	•••

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	P06	PO7	P08	P09	PO10	PO11	PO12
CO1	2	1	2	1	160	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	1	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
CO5	2	2	2	2	1	1	2	1	1	3	1	1

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 93 of 131

Head of Department
Department of Physics
I.K.Gujrki Punjab Technical University Jalandhar,
Kapur Spala, Punjab-144603

PART-A

UNIT-I

Introduction to LaTeX:TeX/LaTeX word processor, preparing a basic LaTeX file, Document classes, preparing an input file for LaTeX, Compiling LaTeX File, LaTeX tags for creating different environments, Defining LaTeX commands and environments, Changing the type of style, Symbols from other languages.

UNIT-II

Equation representation: Formulae and equations, Figures and other floating bodies, lining in columns- Tabbing and tabular environment, generating table of contents, bibliography, and citation, making an index and glossary, List making environments, Fonts, Picture environment and (8 Lectures)

PART-B

UNIT-III

Visualization: Introduction to graphical analysis and its limitations. Introduction to Gnuplot importance of visualization of computational and computational data, basic Gnuplot commands: simple plots, plotting data from a file, saving, and exporting, multiple data sets per file, physics with Gnuplot (equations, building functions, user defined variables and functions), Understanding data with Gnuplot. (8 Lectures)

UNIT-IV

Exercises:

1. Write a 20 pages report in latex on any topic of your interest in Physics.

111

tist Pro

2. Creating an input Gnuplot file for plotting a data and saving the output for seeing on the screen. Saving it as an .eps file and as a .pdf file.

Reference Books:

- 1. LaTeX-A Document Preparation System", Leslie Lamport (Second Edition, Addison- Wesley,
- 2. Gnuplot in action: understanding data with graphs, Philip K Janert, (Manning 2010)
- 3. Schaum's Outline of Theory and Problems of Programming with Fortran, S Lipsdutz and A Poe, 1986Mc-Graw Hill Book Co.
- 4. Computational Physics: An Introduction, R. C. Verma et al. New Age International Publishers,

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 94 of 131

Head of Department Department of Physics I.K. Guiral Punjab Technical University Jalandhar, K aur ala, Punjab-144603

PART-A

UNIT-I

Introduction to LaTeX:TeX/LaTeX word processor, preparing a basic LaTeX file, Document classes, preparing an input file for LaTeX, Compiling LaTeX File, LaTeX tags for creating different environments, Defining LaTeX commands and environments, Changing the type of style, Symbols from other languages. (6 Lectures)

UNIT-II

Equation representation: Formulae and equations, Figures and other floating bodies, lining in columns- Tabbing and tabular environment, generating table of contents, bibliography, and citation, making an index and glossary, List making environments, Fonts, Picture environment and colors, errors.

(8 Lectures)

PART-B

UNIT-III

Visualization: Introduction to graphical analysis and its limitations. Introduction to Gnuplot importance of visualization of computational and computational data, basic Gnuplot commands: simple plots, plotting data from a file, saving, and exporting, multiple data sets per file, physics with Gnuplot (equations, building functions, user defined variables and functions), Understanding data with Gnuplot.

(8 Lectures)

UNIT-IV

Exercises:

1. Write a 20 pages report in latex on any topic of your interest in Physics.

TOP

W.

Proc

2. Creating an input Gnuplot file for plotting a data and saving the output for seeing on the screen. Saving it as an .eps file and as a .pdf file.

Reference Books:

- LaTeX-A Document Preparation System", Leslie Lamport (Second Edition, Addison- Wesley, 1994).
- 2. Gnuplot in action: understanding data with graphs, Philip K Janert, (Manning 2010)
- 3. Schaum's Outline of Theory and Problems of Programming with Fortran, S Lipsdutz and A Poe, 1986Mc-Graw Hill Book Co.
- 4. Computational Physics: An Introduction, R. C. Verma et al. New Age International Publishers, New Delhi (1999).

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 94 of 131

Head of Department
Department of Physics
I.K.Gujn/Purir', Fe.hni.al University Jalandhar,
Kapur ...ata, Puniab-144603

SEMESTER-V

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 95 of 131

Head of Department Department of Physics I.K.Gujtki Punjab fechnical University Jalandhar, Kapurthala, Punjab-144603

PHYSICS-C-	BSHP-311-21	QUANTUM	L-5, T-1, P-0	6 Credits
11	9	MECHANICS		

Pre-requisite: Understanding of senior secondary level Physics and Mathematics

Course Objectives: The aim of course includes examples to explain the quantization of energy, superposition principle, wave-particle duality, tunnelling and quantum theory of hydrogen atom, atoms in electric and magnetic field.

CO1	Understand and explain the differences between classical and quantum mechanics and origins of quantum mechanics											
CO2	Understand the idea of wave functions, probability and uncertainty relations											
CO3	Understand the Schrodinger wave mechanics and operator formalism											
CO4	Solve the Schrodinger equation for simple 1D time-independent potentials											
CO5	Identify and relate the eigenvalue problems for energy, momentum angularmomentum, and central potentials											

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	-	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	1	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
CO5	2	2	2	2	11	1	2	1	1	3	1	1

Detailed Syllabus:

PART-A

UNIT-I

Time dependent Schrodinger wave equation: Time dependent Schrodinger equation and dynamical evolution of a quantum state; Properties of Wave Function. Interpretation of Wave Function Probability and probability current densities in three dimensions; Conditions for Physical Acceptability of Wave Functions. Normalization. Linearity and Superposition Principles. Eigenvalues and Eigenfunctions. Position, momentum, and Energy operators; commutator of position and momentum operators; Expectation values of position and momentum. Wave Function of a Free Particle. **(15 Lectures)**

(B.Sc. Hons. Physics) Batch 2021 & Onwards

ETT

VIEW

Page 96 of 131

Head of Department
Department of Physics
LK.Gujty Punish Technical University Jalandhar,
Kapur' hala, Punjab-144603

UNIT-II

Time independent Schrodinger wave equation-Hamiltonian, stationary states, and energy eigenvalues; expansion of an arbitrary wavefunction as a linear combination of energy eigenfunctions; General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states; Application to spread of Gaussian wave-packet for a free particle in one dimension; wave packets, Fourier transforms and momentum space wavefunction; Position-momentum uncertainty principle.

General discussion of bound states in an arbitrary potential: Application to one-dimensional problem-square well potential; simple harmonic oscillator-energy levels and energy eigenfunctions using Frobenius method; Hermite polynomials; ground state, zero-point energy & uncertainty principle. (15 Lectures)

PART-B

UNIT-III

Quantum theory of hydrogen-like atoms: time independent Schrodinger equation in spherical polar coordinates; separation of variables for second order partial differential equation; angular momentum operator & quantum numbers; Radial wavefunctions from Frobenius method; shapes of the probability densities for ground & first excited states; Orbital angular momentum quantum numbers I and m; s, p, d, ... shells.

Atoms in Electric & Magnetic Fields: Electron angular momentum. Space quantization. Electron Spin and Spin Angular Momentum. Larmor's Theorem. Spin Magnetic Moment. Stern-Gerlach Experiment. Zeeman Effect: Electron Magnetic Moment and Magnetic Energy, Gyromagnetic Ratio and Bohr Magneton. (15 Lectures)

UNIT-IV

Atoms in External Magnetic Fields: Normal and Anomalous Zeeman Effect. Paschen Back and Stark Effect (Qualitative Discussion only).

Many electron atoms: Pauli's Exclusion Principle. Symmetric & Antisymmetric Wave Functions. Periodic table. Fine structure. Spin orbit coupling. Spectral Notations for Atomic States. Total angular momentum. Vector Model. Spin-orbit coupling in atoms: L-S and J-J couplings. Hund's Rule. Spectra of Hydrogen and Alkali Atoms (Na etc.). (15 Lectures)

Reference Books:

- 1. A Textbook of Quantum Mechanics, P.M. Mathews and Venkatesan, 2nd Ed. 2010, McGraw Hill
- 2. Quantum Mechanics, Robert Eisberg and Robert Resnick, 2nd Edn., 2002, Wiley.
- Quantum Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tata McGraw Hill.
 Quantum Mechanics, G. Aruldhas, 2nd Edn. 2002, PHI Learning of India.
- 5. Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.
- 6. Quantum Mechanics: Foundations & Applications, Arno Bohm, 3rd Edn., 1993, Springer
- 7. Quantum Mechanics for Scientists & Engineers, D.A.B. Miller, 2008, Cambridge University Press
- 8. Quantum Mechanics, Eugen Merzbacher, 2004, John Wiley and Sons, Inc.

Edhi Liza

9. Introduction to Quantum Mechanics, D.J. Griffith, 2nd Ed. 2005, Pearson Education

10. Quantum Mechanics, Walter Greiner, 4th Edn., 2001, Springer.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 97 of 131

Head of Department
Department of Physics
LK.Gujiki Punich fechnical University Jalandhar,
Kapurtnala, Punjab-144603

PHYSICS-C- 12 BSHP-312-21					SOLI	D STAT	E	L-	3, T-1,	P-0	4 Cr	edits		
Pre-r	equis	ite: Unde	erstandin	g of ser	nior seco	ondary I	evel Phy	sics and	Mather	matics				
stude prope phend	ent to e erties o omena	jectives. employ close of solids. in the so	assical a Empha lid state.	nd qua esis is	ntum m put on	echanic buildin	al theori g mode	ies need els able	to exp	ndersta	nd the p	hysica		
CC			and free		The second					vel, and	electrica	al		
CC)2		and elec				ential: e	energy	bands t	heory c	lassifica	tion o		
CC)3	Underst	Understand semiconductors: band gap, effective masses, charge carrier distributions, doping, p-n junctions											
CC)4		Understand metals: Fermi surfaces, temperature dependence of electrical conductivity											
CC)5	Underst		relat	ionship	betwee	en con	ductors	and i	nsulator	s and	supe		
		Мар	ping of	course	outco	mes w	ith the	progra	m outc	omes				
				201	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12		
	PO1	. PO2	PO3	PO4	103			9						
CO1	PO1	PO2	PO3	1	1703	1	2	1	2	3	2	2		
								1	2	3	2	2		
CO2	2	1	2	1	1 7	1	2							
CO1 CO2 CO3	2	1 2	2	1 2	1 1	1	2	1	1	3	1	1		

(B.Sc. Hons. Physics) Batch 2021 & Onwards

110

Page 98 of 131

Head of Department
Department of Physics
I.K.Gujist Punich Technical University Jalandhar,
Kapurthala, Punjab-144603

PART-A

UNIT-I

Crystal Structure: Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors. Lattice with a Basis – Central and Non-Central Elements. Unit Cell. Miller Indices. Reciprocal Lattice. Types of Lattices. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg's Law. Atomic and Geometrical Factor.

Lattice Dynamics: Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit's Law, Einstein and Debye's theories of specific heat of solids. T3/2 law. (15 Lecturers)

Unit-II

Elementary Band theory: Nearly Free electron model, Density of states, Bloch Theorem, the wavefunction of an electron in a periodic potential, Origin of Band Gap, Kronig Penny model, Tight binding method, Semiconductor crystals (P and N type), Effective mass, Conductivity of Semiconductor, mobility, Hall Effect, Measurement of conductivity using four probe method & Hall coefficient. (12 Lectures)

PART-B

UNIT-III

Magnetic Properties of Matter: Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical Langevin Theory of dia- and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss.

Ferroelectric Properties of Materials: Structural phase transition, Classification of crystals, Piezoelectric effect, Pyroelectric effect, Ferroelectric effect, Electrostrictive effect, Curie-Weiss Law, Ferroelectric domains, PE hysteresis loop. (15 Lectures)

UNIT-IV

Dielectric Properties of Materials: Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion.

Superconductivity: Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation and Penetration Depth. Isotope effect, Idea of BCS theory (No derivation) (15 Lectures)

Reference Books:

- 1. Introduction to Solid State Physics, Charles Kittel, 8th Edition, 2004, Wiley India Pvt. Ltd.
- 2. Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India
- 3. Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill
- 4. Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning
- 5. Solid-state Physics, H. Ibach and H. Luth, 2009, Springer
- 6. Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India

i Di

7. Solid State Physics, M.A. Wahab, 2011, Narosa Publications

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 99 of 131

Head of Department
Department of Physics
I.K.Guji (Purit), fechnical University Jalandhar,
Kapurtnata, Punjab-144603

PHYS	ICS-C	В	SHP-31	13-21	PHYS	ICS LA	B-VII	L-	0, T-0,	P-4	2 Credits					
Pre-re	equisi	i te: Unde	rstandin	g of ser	nior seco	ondary le	evel Phy	sics and	Mather	natics						
		jectives: ture of so			-							to the				
Cours	e Out	tcomes:	At the e	nd of th	e course	e, the st	udent w	vill be ab	le to							
СО	1	Able to \	Able to verify the theoretical concepts/laws learnt in theory courses.													
СО	2	Trained in carrying out precise measurements and handling sensitive equipment.														
CO3 Understand the methods used for estimating and dealing uncertainties and systematic "errors".								ng with experimental								
СО	4	Learn to	draw co	onclusio	ns from	data an	d devel	op skills	in expe	rimental	design.					
СО	5	Docume			eport wh	nich com	municat	tes scier	ntific info	ormation	in a cle	ear and				
		Мар	ping of	course	outco	mes w	ith the	progra	m outc	omes						
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	2	1	2	1	ST	1	2	1	2	3	2	2				
CO2	2	2	1	2	1	1	1	1	1	3	1	1				
CO3	3	2	2	2	1	1	2	1	1	3	1	1				
CO4	2	2	2	2	1	1	2	1	1	3	1	1				
CO5	2	2	2	2	1	1	2	1	1	3	1	1				

nat ins ispo

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 100 of 131

Head of Department
Department of Physics
I.K.Gujityl Punic', Technolal University Jalandhar,
Kapur Jiata, Punjab-144603

Note: Students are expected to perform 8-10 experiments from the list taking at least 2-3 from the virtual lab.

List of Experiments:

- 1. Measurement of susceptibility of paramagnetic solution (Quinck's Tube Method)
- 2. To measure the Magnetic susceptibility of Solids.
- 3. To determine the Coupling Coefficient of a Piezoelectric crystal.
- 4. To measure the Dielectric Constant of a dielectric Materials with frequency
- **5.** To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR)
- 6. To determine the refractive index of a dielectric layer using SPR
- 7. To study the PE Hysteresis loop of a Ferroelectric Crystal.
- 8. To draw the BH curve of Fe using Solenoid & determine energy loss from Hysteresis.
- **9.** To measure the resistivity of a semiconductor (Ge) with temperature by four-probe method (room temperature to 150 oC) and to determine its band gap.
- 10. To determine the Hall coefficient of a semiconductor sample.
- **11.**Study of Electron spin resonance- determine magnetic field as a function of the resonance frequency
- 12. To study of Zeeman effect: with external magnetic field; Hyperfine splitting
- 13. To show the tunneling effect in tunnel diode using I-V characteristics.
- 14. Quantum efficiency of CCDs

Reference Books

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. Advanced level Physics Practicals, Michael Nelson, and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3. A Text Book of Practical Physics, I.Prakash& Ramakrishna, 11th Ed., 2011, Kitab Mahal
- 4. Elements of Solid-State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India.

SYT

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 101 of 131

Head of Department
Department of Physics
LK.Guja Porit, fe haud University Jalandhar,
Kapurtmala, Punjab-144603

PHYS	PHYSICS-C BS			L4-21		PUTATI		L-	0, T-0,	P-4	2 Cr	edits
Pre-re	equisi	te: Unde	rstandin	g of ser	nior seco	ndary le	evel Phy	sics and	Mather	natics		
	struct	ectives: ure of co										
Cours	e Out	comes:	At the e	nd of th	e course	e, the st	udent w	ill be ab	le to			
СО	1	Able to v	erify the	e theore	etical cor	ncepts/l	aws lear	nt in the	eory cou	irses.		
CO	2	Trained i	in carryi	ng out p	orecise r	neasure	ments a	nd hand	dling ser	nsitive e	quipmer	nt.
СО	3	Understand the methods used for estimating and dealing with e uncertainties and systematic "errors".								experimental		
CO	4	Learn to	draw co	onclusio	ns from	data an	d develo	op skills	in expe	rimental	design.	
СО	5	Documer concise r			port wh	ich com	municat	es scier	itific info	ormation	in a cle	ear and
		Мар	ping of	course	outco	mes wi	ith the	progra	m outc	omes		
	PO1	PO2	PO3	P04	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	-	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	1	1	2	1	1	3	1	1
	2	2	2	2	1	1	2	1	1	3	1	1
CO4				2	1	1	2	1	1	3	1	1

15

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 102 of 131

Head of Department Department of Physics I.K.Gujrki Punjab Technical University Jalandhar, Kapurthala, Punjab-144603

Note: Students are expected to perform atleast 10 experiments out of following list using C++ and Gnuplot.

List of experiments:

- 1. To find the standard deviation, mean, variance, moments etc. of at least 15 entries.
- 2. To compile a frequency distribution and evaluate mean, standard deviation etc.
- 3. To evaluate sum of finite series and the area under a curve.
- 4. To find the product of two matrices
- 5. To find a set of prime numbers and Fibonacci series.
- 6. To write program to open a file and generate data for plotting using Gnuplot.
- 7. To choose a set of 10 values and find the least squared fitted curve.
- 8. Plotting trajectory of a projectile projected horizontally.
- 9. Plotting trajectory of a projectile projected making an angle with the horizontally.
- **10.** To find the roots of a quadratic equation.
- 11. Motion of a projectile using simulation and plot the output for visualization.
- **12.** Numerical solution of equation of motion of simple harmonic oscillator and plot the outputs for visualization.
- 13. Motion of particle in a central force field and plot the output for visualization.
- 14. To find the determinant of a matrix and its eigenvalues and eigenvectors.
- **15.** To generate random numbers between (i) 1 and 0, (ii) 1 and 100.

Text and Reference Books:

- 1. Numerical Mathematical Analysis, J.B. Scarborough (Oxford & IBH Book Co.) 6th ed., 1979.
- 2. A first course in Computational Physics: P.L. DeVries (Wiley) 2nd edition, 2011.
- 3. Computer Applications in Physics: S. Chandra (Narosa) 2nd edition, 2005.

i iti

10

, J.I

- 4. Computational Physics: R.C. Verma, P.K. Ahluwalia and K.C. Sharma (New Age) 2000.
- 5. Object Oriented Programming with C++: Balagurusamy, (Tata McGrawHill) 4th edition 2008.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 103 of 131

Head of Department
Department of Physics
I.K.Gujiti Puriting in Annual University Jalandhar,
Kapur mala, Punjab-144603

PHYS -1	ICS-D	SE B	SHP-31	15-21	1 100	IIC ANI CULAR ICS		L-	5, T-1,	P-0	6 Cr	edits
Pre-re	equisit	te: Unde	rstandin	g of ser	nior seco	ondary le	evel Phy	sics and	Mather	natics		
alkali s	spectra	ectives: , couplin	g schen	nes, mo	lecular e	lectronic	c spectra	a, Infrai	red and			•
Cours	e Out	comes:	At the e	nd of th	e course	e, the st	udent w	ill be ab	le to			
СО		Understa								signal-	to-noise	ratio
СО		Understa								LS and	JJ coupl	ing.
СО		Understa Zeeman	and effe									
СО	1	Understa			vibration	nal, elec	tronic a	and Ran	nan spe	ctra of	molecul	es and
СО	5	Understa								eter and	princip	oles o
					e outco					omes		
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	-	1	2	1	2	3	2	2
CO2	2	2	1	2	f 1	1	1	1	1	3	1	1
соз	3	2	2	2	101	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
	2	2	2	2	1	1	2	1	1	3	1	1

W

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 104 of 131

Head of Department
Department of Physics
IK.Gujty Purk' framual University Jalandhar,
K.a.pu ana, Punjab-144603

PARTA

UNIT I

Atomic structure: Atomic models, Electron orbits, Atomic spectra, The Bohr Model, Energy level and Spectra, Correspondence principle, Effect of Nuclear motion, Atomic excitation, Many electron atoms, Exclusion Principle, electron spin, X-ray spectra. (12 Lectures)

UNIT-II

Hydrogen and Alkali Spectra: Quantum theory of hydrogen atom, Series in hydrogen, nuclear mass effect, elliptical orbits, Sommerfeld model, spin-orbit coupling, relativistic correction, and Lamb shift (qualitative). Alkali Spectra and intensity ratios in doublets, LS-Coupling scheme, normal triplets, basic assumptions of the theory, identification of terms, selection rules, jj-coupling, Lande's interval rule, Selection rules, intensity ratios, regularities in complex spectra. Normal and anomalous Zeeman and Paschen Back effects, intensity rules. **(16 Lectures)**

PART B

Unit-III

Molecular structure: Bonding mechanism, Types of bonds, Classification of electronic states in molecules: Orbital angular momentum, electronic energy and potential curves, resolution of total energy, Vibrational Structure of Electronic transitions. Vibrational analysis, Rotational Structure of Electronic bands: General relations, branches of a band, band-head formation, Intensity distribution in a vibrational band system. Franck-Condon Principle and its wave mechanical formulation. (15 Lectures)

UNIT IV

Infrared and Raman Spectroscopy: Rigid rotator, energy levels, spectrum, intensity of rotational lines, Harmonic oscillator: energy levels, eigenfunctions, spectrum, Raman effect, Rotational and Vibrational Raman spectrum. Infrared and Raman Spectrum, Vibrational frequency, and force constants. Non-rigid rotator including symmetric top: energy levels, spectrum, Vibrating-rotator energy levels, Infrared and Raman spectrum, Symmetry properties of rotational levels.

(15 Lectures)

Recommended Books:

- 1. Atomic Spectra: H. Kuhn (Longman Green) 1969.
- 2. Molecular Spectra and Molecular Structure I: G. Herzberg (Van-Nostrand Rein-hold), 1950.
- 3. Atomic Spectra: H.E. White (McGraw Hill) 1934.
- 4. Fundamentals of Molecular spectroscopy: Banwell and McCash (Tata McGraw Hill), 1994.
- 5. Molecular Spectroscopy: S. Chandra (Narosa), 2009.
- 6. Atomic, Molecular and Photons, Wolfgang Damtrodes (Springer), 2010.

10

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 105 of 131

Head of Bepartment
Department of Physics
I.K.Guird Purit for himsel University Jalandhar,
Kapur Jala, Punjab-144603

PHYSICS-DSE	BSHP-316-21	Nuclear Physics	L-5, T-1, P-0	6 Credits
-------------	-------------	-----------------	---------------	-----------

Pre-requisite: Understanding of senior secondary level Physics and Mathematics

Course Objectives: The course contents cover general properties of nuclei, nuclear models, radioactive decays, nuclear reactions, fission and fusion processes and applications, interaction of gamma ray, charged particles and neutrons radiation with matter and respective detectors.

Course O	utcomes: At the end of the course, the student will be able to
CO1	Understand the ideas of basics of nucleus and their energy.
CO2	Understand the procedures for nuclear fission and fusion.
CO3	Understand the relationship between various types of couplings.
CO4	Ability to have insight into the interplay between theory, models, and data from modernexperiments and into how the major open questions are being addressed.
CO5	A basic understanding of nuclear properties and models that describe the quantum structure, decay, and reactions of nuclei.

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1		1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	1	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
CO5	2	2	2	2	1	1	2	1	1	3	1	1

Detailed Syllabus

PART A

UNIT-I

General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states.

Radioactivity decay: (a) Alpha decay: basics of a-decay processes, radioactive series, tunnel theory of a emission, Gamow factor, Geiger Nuttall law, a-decay spectroscopy. (b) β -decay: β -, β+, EC decays, beta energy spectrum, end point energy, Gamma decay: Gamma rays' emission & (16 Lectures) kinematics, internal conversion.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 106 of 131

Head of Department Department of Physics I.K.Grij V. Punir : Te. hnical University Jalandhar, Kinur vala Duniah 144000

Nuclear Models: Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, two nucleon separation energies, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model, concept of mean field, residual interaction, concept of nuclear force, Meson theory of nuclear forces. (14 Lectures)

PART B

UNIT-III

Nuclear Reactions: Types of Reactions, Coulomb scattering (Rutherford scattering), Coulomb barrier, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct Reaction, resonance reaction.

Fission and Fusion: Nuclear reactors, Breeder reactors, nuclear fusion in stars, formation of heavier elements, nuclear reactor accidents - Chernobyl and Fukushima, nuclear weapons, Fusion reactors, International thermonuclear experimental reactor (ITER). (15 Lectures)

UNIT-IV

Interaction of radiation and charged particles with matter: Interaction of gamma rays with matter - photoelectric effect, Compton scattering, pair production, Energy loss of electrons and positrons, Positron annihilation in condensed media, Stopping power and range of heavier charged particles, derivation of Bethe-Bloch formula, neutron interaction with matter.

Nuclear Detectors: Gas-filled detectors: ionization chamber, proportional counter and GM Counter. Basic principle of Organic and Inorganic scintillation detectors for gamma and electron radiation, photo-multiplier tube, Semiconductor detectors, Solid state nuclear track detectors, (15 Lectures) Neutron detector, Cherenkov detector, radiation monitoring devices.

Reference Books:

- 1. Introductory Nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008).
- 2. Concepts of Nuclear Physics by Bernard L. Cohen. (Tata Mcgraw Hill, 1998).
- 3. Concepts of Modern Physics by Arthur Beiser, Shobit Mahajan and S. Rai Choudhury (Tata Mcgraw Hill, 2006).
- 4. Modern Physics by J. Bernstein, Paul M. Fishbane, S. G. Gasiorowicz (Pearson, 2000).
- 5. Introduction to the physics of Nuclei & Particles, R.A. Dunlap. (Thomson Asia, 2004).
- 6. Basic ideas and concepts in Nuclear Physics An Introductory Approach by K. Heyde (IOP-Institute of Physics Publishing, 2004).
- 7. Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).
- 8. Physics and Engineering of Radiation Detection, Syed Naeem Ahmed (Academic Press, Elsevier, 2007).
- 9. Theoretical Nuclear Physics, J.M. Blatt &V.F.Weisskopf (Dover Pub.Inc., 1991).

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 107 of 131

epartment of Physics inal University Jalanchar,

PHYSICS-DSE BSHP-317-21 DISSERTATION L-5, T-1, P-0 6 Creditary -3 Pre-requisite: Understanding of Physics and Mathematics												edits
	quisite	: Under	standing	of Phy	sics and	Mathem	atics					
Cours	e Obje	ctives:										
Cours	e Outc	omes: A	at the en	d of the	e course	, the stud	dent wi	ll be abl	e to			
СО	1	wider cor	mmunity			ie of prob						
СО	1	vnorime	ntc			nents as						
СО	1 .	ennronri	ate for a	nswerir	na specif	experim	ons.					
										1 - C - L	!!-	+ +-
СО		nhy cicc		mmuni	cate scie	entific kn	owledg					
со		physics.	new area	mmuni	cate scie	entific kn	owledg and all	lied field	ls of scie	ence and		
		physics.	new area	mmuni	cate scie	entific kn	owledg and all	lied field	ls of scie	ence and		
		physics.	new area	mmuni	cate scie	entific kn	owledg and all	lied field	ls of scie	ence and		ology.
	5	physics. Explore r Map	new area	mmuni	cate scie search in e outco	n physics mes wit	and all	lied field progran	s of scient	ence and	d techno	ology.
СО	5 PO1	PO2	ping of	mmunions of recourse	search in PO5	n physics mes wit	and all h the p	program	n outco	omes PO10	PO11	PO12
CO1	PO1 2	physics. Explore r Map PO2	ping of PO3 2	mmunions of recourse	search in PO5	physics mes wit	and all h the p	PO8	n outco	PO10	PO11	PO12 2 1
CO1 CO2	PO1 2 2	PO2 1 2	ping of PO3 2	mmunions of recourse	search in PO5	physics mes wit	and all h the p PO7 2	PO8	PO9 2	PO10 3	PO11 2 1	PO12

Guidelines:

 The aim of project work in B.Sc. (H.S.) 5th semester is to expose the students to Instrumentation, Power Electronics, Microcontroller, Digital communication.

179

- It may include development of pulse processing electronic modules, power supplies, software-controlled equipment in a research laboratory, or fabrication of a device. Project work based on participation in some ongoing research activity or analysis of data or review of some research papers is included.
- A student will work under the guidance of a faculty member from the department before the end of the 5th semester.
- A report of nearly 40 pages about the work done in the project (typed on both the sides of the paper and properly bound) will be submitted by a date to be announced by the Department.
- Assessment of the work done under the project will be carried out by a committee based on grasp of the problem assigned, efforts put in the execution of the project, degree of interest shown in learning the methodology, report prepared, and viva-voce/seminar, etc., as per guidelines.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 108 of 131

Head of Department
Department of Physics

KC \ fechnical University Jalandhar,

Parish 144602

id

g

PHYSICS- DSE-4	BSHP-318-21	COMMUNICATION ELECTRONICS	L-5, T-1, P-0	Credits
Pre-requisite:	Understanding of ser	nior secondary level Physic	cs and Mathematics	

Course Objectives: The fundamental objectives of this course are to make the student understand and use the basic concepts of the circuits found in radiocommunications, be able to interpret and analyze the characteristics of the main components of communication electronics and be able to design the simplest devices and transmitting the signals.

urse O	utcomes: At the end of the course, students will be able to
CO1	Introduced to the communicationmethods means and modes.
CO2	Compare the performance of AM, FM and PM schemes with reference to SNR
CO3	Understand noise as a random process and its effect on communication receivers
CO4	Evaluate the performance of PCM, DPCM and DM in a digital communication system
CO5	Identify source coding and channel coding schemes for a given communication link
	to the state of th

Course Outcomes: At the end of the course students will be able to

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	lië	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	1	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
CO5	2	2	2	2	1	1	2	1	1	3	1	1

PART A

UNIT-I

Electronic communication: Introduction to communication - means and modes. Need for modulation. Block diagram of an electronic communication system. Basic principles of propagation of e. m. waves through atmosphere and ionosphere, Brief idea of frequency allocation for radio communication system in India (TRAI). Electromagnetic communication spectrum, band designations and usage. Channels and base-band signals. Concept of Noise, signal-to-noise (S/N) (10 Lectures) ratio.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 109 of 131

Head of Department Department of Physics Lik ... \ Punjab Technical University Jalandhar,

AM Transmission and Reception: Mathematical analysis of AM, Power content of sidebands and carrier, Generation of AM signals, switching modulator, square law modulation, double sideband suppressed carrier modulation, Ring modulator, Coherent detection, Costas receiver, Receiver Parameters; Selectivity, Sensitivity, Fidelity, Super heterodyne Receiver. Generation of SSB signals; Filter method, Phase-shift Method, Demodulation of SSB-SC signals. Transmission and reception of vestigial side band signals.

FM Transmission and Reception: Frequency Modulation (FM) and Phase Modulation (PM), modulation index and frequency spectrum, FM allocation standards, generation of FM signals, Direct and Indirect FM, Diode reactance modulator, Phase-Locked-Loop, Armstrong method, RC phase shift method, Frequency stabilized reactance FM transmitter. Frequency demodulators tuned circuit frequency discriminators; FM stereo multiplexing, FM detection using PLL. **(16 Lectures)**

PART B

UNIT-III

Analog Pulse Modulation: Channel capacity, Sampling theorem, Basic Principles-PAM, PWM, PPM, modulation and detection technique for PAM only, Multiplexing.

Digital transmission – Need for digital transmission, Pulse code modulation, Sampling, Aliasing, quatisation error, Digital carrier modulation and demodulation techniques: Information capacity, Shannon limit of information capacity, ASK, FSK, PSK, Differential encoder and decoder, Differential PSK, modulators and detectors, Scrambling and descrambling.

Advanced communication: Overview of picture and sound transmission and reception, channel band width, television standards, Block diagram of T.V. receivers, Concept of colour picture transmission. (15 Lectures)

UNIT-IV

Satellite Communication: Introduction, need, Geosynchronous satellite orbits, geostationary satellite advantages of geostationary satellites. Satellite visibility, transponders (C - Band), path loss, ground station, simplified block diagram of earth station. Uplink and downlink. FDMA, TDMA, CDMA, SDMA.

Mobile Telephony System – Basic concept of mobile communication, frequency bands used in mobile communication, concept of cell sectoring and cell splitting, SIM number, IMEI number, need for data encryption, architecture (block diagram) of mobile communication network, simplified block diagram of mobile phone handset, 2G, 3G 4G and 5G concepts (qualitative only). GPS navigation system (qualitative idea only) (14 Lectures)

TUTORIALS: Relevant problems on the topics covered in the course.

Reference Books:

- 1. Communication Systems: B.P. Lathi, Wiley Eastern Limited.
- 2. Communication Systems, S. Haykin, 2006, Wiley India
- 3. Principles of Communication Systems: Taub and Schilling, John Wiley and Sons.

(d

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 110 of 131

Head of Department
Department of Physics
& G. N Punish Technical University Jalandhar,

- 4. Electronic Communications, D. Roddy and J. Coolen, Pearson Education India.
- 5. Advanced Electronics Communication Systems- Tomasi, 6th edition, Prentice Hall.
- 6. Electronic Communication systems, G. Kennedy, 3rd Edn., 1999, Tata McGraw Hill.
- 7. Principles of Electronic communication systems Frenzel, 3rd edition, McGraw Hill
- 8. Electronic Communication system, Blake, Cengage, 5th edition.
- 9. Wireless communications, Andrea Goldsmith, 2015, Cambridge University Press
- 10. Digital Computer Electronics: Albert P. Malvino, Jerald A Brown Tata-McGraw Hill.
- 11. Digital signal Transmission: C.C. Bissell and D.A. Chapman, Cambridge University Press.

PHYS: -5	ICS-D	SE B	SHP-31	9-21	AND	WABLE ENERGY ESTING		GY	L-5, T-	1, P-0	6 Cr	edits
Pre-re	equisi	te: Under	rstandin	g of sen	ior seco	ndary le	evel Phys	sics and	Mathen	natics		
Cours studer	e Obj nts but	ectives: to provid	The air de them	m of th with ex	is cours posure a	e is not and han	t just to ds-on le	impart arning v	theores	tical kno r possibl	wledge le	to the
Cours	e Out	comes:	At the er	nd of th	e course	e, the st	udent w	ill be ab	ole to			
СО	1	Understa				of world	d & disti	nguish	between	traditio	nal and	
СО	2	Describe				nergy ra	diation a	and ther	mal app	lications		
СО	3	Analyze	making	of solar	cell and	its type	es.					
CO	4	Identify										
CO	5	Compare	e wind e	nergy, v	vave en	ergy and	d ocean	therma	l energy	convers	ion.	
		Мар	ping of	course	outco	mes wi	th the	progra	m outc	omes		
	PO1	PO2	PO3	PO4	PO5	P06	PO7	P08	PO9	PO10	PO11	PO12
CO1	2	1	2	1 ,	hā.	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	, 1	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
CO5	2	2	2	2	1	1	2	1	1	3	1	1

PART A

CE

UNIT-I

Introduction to alternate sources of energy: Fossil fuels and nuclear energy, their limitation, need of renewable energy, non-conventional energy sources. Renewable energy source, Types of

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 111 of 131

Head of Department
Department of Physics
LK. Gujiki Punjab Technical University Jalandhar,
Punjab-144603

renewable energy, zero-carbon or low-carbon energy, Working of renewable energy sources: Solar energy, Wind energy, Hydro energy, Tidal energy, Geothermal energy, Biomass energy, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity. Scope and future of renewable energy.

(11 Lectures)

Unit II

Solar energy and solar cell: Solar energy, its importance, storage of solar energy, solar pond, non-convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems.

Wind Energy harvesting: Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies.

(13 Lectures)

PART B

UNIT-III

Hydrogen Energy: Solar hydrogen through photo electrolysis and photocatalytic process, Physics of material characteristics for production of solar hydrogen.

Production storage and transportation: Storage processes, solid state hydrogen storage materials, structural and electronic properties of storage materials, new storage modes, safety factors, use of hydrogen as fuel; use in vehicles and electric generation, fuel cells, hydride batteries. **(15 Lectures)**

UNIT-IV

Ocean Energy: Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics, Wave Energy Devices, Tide characteristics and Statistics, Tide Energy Technologies, Ocean Thermal Energy, Osmotic Power, Ocean Bio-mass, Geothermal Energy: Geothermal Resources, Geothermal Technologies. Hydro Energy: Hydropower resources, hydropower technologies, environmental impact of hydro power sources.

Piezoelectric Energy harvesting: Introduction, Physics and characteristics of piezoelectric effect, materials, and mathematical description of piezoelectricity, Piezoelectric parameters and modeling piezoelectric generators, Piezoelectric energy harvesting applications, Electromagnetic Energy Harvesting: Linear generators, physics mathematical models, recent applications.

(15 Lectures)

Demonstrations and Experiments

- 1. Demonstration of Training modules on Solar energy, wind energy, etc.
- 2. Conversion of vibration to voltage using piezoelectric materials
- 3. Conversion of thermal energy into voltage using thermoelectric modules.

Reference Books:

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 112 of 131

Head of Department
Department of Physics
A Gujtal Purieb Technical University Jalandhar,

- 1. Non-conventional energy sources G.D Rai Khanna Publishers, New Delhi
- 2. Solar energy M P Agarwal S Chand and Co. Ltd.
- 3. Solar energy Suhas P Sukhative Tata McGraw Hill Publishing Company Ltd.
- **4.** Godfrey Boyle, "Renewable Energy, Power for a sustainable future", 2004, Oxford University Press, in association with The Open University.
- 5. Dr. P Jayakumar, Solar Energy: Resource Assesment Handbook, 2009
- 6. J.Balfour, M.Shaw and S. Jarosek, Photovoltaics, Lawrence J Goodrich (USA).

SEMESTER-VI

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 113 of 131

Head of Department
Department of Physics
I.K.Gujrd Puniab Technical University Jalandhar,
Kapurchala, Punjab-144603

PHYS	ICS-C	- В	SHP-32	1-21		TROMA EORY	GNET	L-!	5, T-1,	P-0	6 Cr	edits
Pre-re	equisi	te: Unde	rstandin	g of ser	ior seco	ndary le	evel Phys	sics and	Mather	natics		
		ectives:									ishes the	e basio
Cours	e Out	comes:	At the er	nd of th	e course	e, the st	udent w	ill be ab	le to			
СО	1	Analyze Ampere's potential	s law, Fa	araday's	Electro	magneti	ic induct	ion & ve	erify wit	h vector		ar
СО	2	Basic ide	electrom	agnetic	waves							1
СО	3	Examine	the phe	nomen	a of wav	e propa	gation i	n differe	ent med	ia and it	s interfa	ces
СО	4	Analyze used in r	the natu	ire of el ve appli	ectroma cations.	ignetic v	vave pro	pagatio	n in gui	ded med	dium wh	ich are
СО	5	Ability inhomogous between	jeneous	media,	includ	ke cald ing refl	culations exion o	of pof such	lane e waves	ectroma in plai	ignetic ne boui	waves ndaries
		Мар	ping of	course	outco	mes wi	ith the	progra	m outc	omes		
	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	-	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
CO3	3	2	2	2	1	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
CO5	2	2	2	2	1	1	2	1	1	3	1	1

Detailed Syllabus

PARTA

1118.0

DOW

UNIT-I

Maxwell Equations: Review of Maxwell's equations. Displacement Current. Vector and Scalar Potentials. Gauge Transformations: Lorentz and Coulomb Gauge. Boundary Conditions at Interface between Different Media. Wave Equations. Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector. Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field Energy Density, Momentum Density and Angular Momentum Density. (12 Lectures)

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 114 of 131

Head of Department
Department of Physics
Ik.G.j.td Punich Technical University Jalandhar,
Kapurthala, Punjab-144603

EM Wave Propagation in Unbounded Media: Plane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media, relaxation time, skin depth.

EM Wave in Bounded Media: Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at plane interface between two dielectric media-Laws of Reflection & Refraction. Reflection & Transmission coefficients. Fresnel's Formulae for perpendicular & parallel polarization cases. (10 Lectures)

PART B

UNIT-III

Polarization of Electromagnetic Waves: Description of Linear, Circular and Elliptical Polarization. Propagation of E.M. Waves in Anisotropic Media. Symmetric Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light. (12 Lectures)

UNIT-IV

Wave Guides: Planar optical wave guides. Planar dielectric wave guide. Condition of continuity at interface. Phase shift on total reflection. Eigenvalue equations. Phase and group velocity of guided waves. Field energy and Power transmission.

Optical Fibres: Introduction, Brewster's law. Acceptance angle, Numerical Aperture. Step index and Graded Index. Single and Multiple Mode Fibres, material dispersion and pulse broadening in optical fibre, fible connector, splicer and couplers, application of optical fiber. (15 Lectures)

Reference Books:

- 1. Introduction to Electrodynamics, D.J. Griffiths, 3rd Ed., 1998, Benjamin Cummings.
- 2. Elements of Electromagnetics, M.N.O. Sadiku, 2001, Oxford University Press.
- 3. Introduction to Electromagnetic Theory, T.L. Chow, 2006, Jones & Bartlett Learning
- 4. Fundamentals of Electromagnetics, M.A.W. Miah, 1982, Tata McGraw Hill
- 5. Electromagnetic field Theory, R.S. Kshetrimayun, 2012, Cengage Learning
- 6. Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer
- 7. Electromagnetic Fields & Waves, P.Lorrain&D.Corson, 1970, W.H. Freeman & Co.
- 8. Electromagnetics, J.A. Edminster, Schaum Series, 2006, Tata McGraw Hill.
- Electromagnetic field theory fundamentals, B. Guru and H. Hiziroglu, 2004, Cambridge University Press.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 115 of 131

Head of Department
Department of Physics
LK.Gujisi Punjab Technical University Jalandhar,
Kapurthala, Punjab-144603

PHYS 14	ICS-C	C- BSHP-322-21 STATISTICAL L-3, T-1, P-0 4 Credits MECHANICS										
Pre-re	equisi	te: Unde	rstandin	g of ser	nior seco	ondary le	evel Phy	sics and	Mather	natics		
Cours <i>mecha</i>		ectives:	The aim	of the	course i	is to fan	niliarize	the stud	dents wi	th he ide	ea of sta	atistica
Cours	e Out	comes:	At the e	nd of th	e course	e, the st	udent w	ill be ab	ole to			
СО	1	Understa		-		Thermod	dynamic	s and S	Statistica	al Mecha	nics-en	semble
СО	2	Understa throughs principle	and the statistica	relation I mecha	betwee anics, kr							and
СО	3	Boson g				on, Deb	ye theo	ry, Bose	-Einstei	n conder	nsation	
СО	4	understa	and stati	stics of	particles	s and sta	atistics o	of fields,				
CO	5	understa	and vario	ous mod	lels in st	atistical	mechar	nics, and	apply t			
		Мар	ping of	course	outco	mes wi	ith the	progra	m outc	omes		
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	-	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
СОЗ	3	2	2	2	1	1	2	1	1	3	1	1
CO4	2	2	2	2	1	1	2	1	1	3	1	1
		2	2	2	og.	1	2	1	1	3	1	1

PART A

UNIT-I

Classical Statistics: Macrostate Microstate, Elementary Concept of Ensemble, Phase Space, Entropy and Thermodynamic Probability, Maxwell-Boltzmann Distribution Law, Partition Function, Thermodynamic Functions of an Ideal Gas, Classical Entropy Expression, Gibbs Paradox, Sackur Tetrode equation, Law of Equipartition of Energy with proof — Applications to Specific Heat and its Limitations, Thermodynamic Functions of a Two-Energy Levels System, Negative Temperature.

(11 Lectures)

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 116 of 131

Head of Department
Department of Physics
LK.Gujiki Punjab fechnical University Jalandhar,
Kapurthala, Punjab-144603

Classical Theory of Radiation: Properties of Thermal Radiation. Blackbody Radiation. Pure temperature dependence. Kirchhoff's law. Stefan-Boltzmann law: Thermodynamic proof. Radiation Pressure. Wien's Displacement law. Wien's Distribution Law. Saha's Ionization Formula. Rayleigh-Jean's Law. Ultraviolet Catastrophe.

Quantum Theory of Radiation: Spectral Distribution of Black Body Radiation. Planck's Quantum Postulates. Planck's Law of Blackbody Radiation: Experimental Verification. Deduction of (1) Wien's Distribution Law, (2) Rayleigh-Jeans Law, (3) Stefan-Boltzmann Law, (4) Wien's Displacement law from Planck's law. (10 Lectures)

PART B

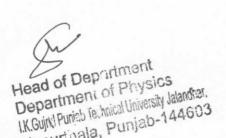
UNIT-III

Bose-Einstein Statistics: B-E distribution law, Thermodynamic functions of a strongly Degenerate Bose Gas, Bose Einstein condensation, properties of liquid He (qualitative description), Radiation as a photon gas and Thermodynamic functions of photon gas. Bose derivation of Planck's law.

(9 Lectures)

UNIT-IV

Fermi-Dirac Statistics: Fermi-Dirac Distribution Law, Thermodynamic functions of a Completely and strongly Degenerate Fermi Gas, Fermi Energy, Electron gas in a Metal, Specific Heat of Metals, Relativistic Fermi gas, White Dwarf Stars, Chandrasekhar Mass Limit. (15 Lectures)


Reference Books:

- 1. Statistical Mechanics, R.K. Pathria, Butterworth Heinemann: 2nd Ed., 1996, Oxford University Press.
- 2. Statistical Physics, Berkeley Physics Course, F. Reif, 2008, Tata McGraw-Hill.

- 3. Statistical and Thermal Physics, S. Lokanathan and R.S. Gambhir. 1991, Prentice Hall.
- **4.** Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and Gerhard L. Salinger, 1986, Narosante
- 5. Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.
- **6.** An Introduction to Statistical Mechanics & Thermodynamics, R.H. Swendsen, 2012, Oxford Univ. Press.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 117 of 131

PHYS -6	ICS-	DSE	BSHP-3	24-21	PAR	TICLE		L	·5, T-1,	P-0	6 Cı	redits
Pre-re	equis	ite: Und	erstandi	ng of ser	nior sec	ondary I	evel Phy	sics and	d Mathe	matics		
proper	ties a	pjectives and their or high er	reaction	ns, evolu	ntents ution of	cover ti univers	he elem se, Parti	entary icle acco	particles	s, cosmio s, collidii	c rays, ng bear	particl ns, and
Cours	e Ou	tcomes:	At the e	end of th	e cours	e, the s	tudent v	vill be al	ole to			
СО	1	Underst	and bas	sic knov	vledge	about	the Star	ndard N	Model o	f eleme	ntary p	article
CO	2	Ability to	o apply	fundame d decay	ental co	nservati ses for n	ion laws	and sy	mmetrie	es to jud	ge the	viabilit
CO	3	To impa	art the ki	nowledge	e of fun	dament	al partic	les, and	fundan	nental in	teraction	ns.
CO	4	andastr	ophysics	roles of - for ex element	ample	now to s	search fo	hysics ir or dark	n energy matter a	produc	tion, me to unde	edicine erstan
CO	5	To impa	rt the ki	nowledge	e of cor	cept of	particles	s and ho	w they	are proc	luced.	
		Maj	pping of	f course	outco	mes w	ith the	progra	m outc	omes		
	PO1	. PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	2.	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	1	1	3	1	1
03	3	2	2	2	1	1	2	1	1	3	1	1
004	2	2	2	2	1	1	2	1	1	3	1	1
CO5	2	2	2	2	ĺ	1	2	1	1	3	1	1
Detail	ed Sv	llabus										

PART A

UNIT-I

Elementary Particles: Historical introduction, fermions and bosons, particles and antiparticles, Classification of elementary particles and their interactions -electromagnetic, weak, strong, and gravitational interactions.

Cosmic Connection: Cosmic rays, sources of cosmic rays and production of secondary cosmic rays in atmosphere, Van allen radiation belt, Carbon-14 and other isotopic datings, soft and hard cosmic rays, cosmic ray experiments: discovery of particles, Brief about ground-based experiments: GRAPES. (16 Lectures)

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 120 of 131

Head of Department Department of Physics I.K.Gujral Punich Technical University Jalandhar, La Duniah-144603

Symmetries and Conservation Laws: Invariance in classical mechanics and quantum mechanics, Energy, momentum, and angular momentum, Parity, baryons number, lepton number, Isospin, strangeness and charm, Charge conjugation, Time reversal invariance, CPT theorem, concept of quark model and color quantum number. (13 Lectures)

PART B

UNIT-III

Particle Properties and their reactions: Properties and lifetime of muon, pions: Determination of mass, spin, and parity. Lifetime of neutral pion and isotopic spin. Strange particles: V particles, charged K-mesons, mass and lifetime for charged K-mesons. Observations of different strange particles, strange particle production and decay. Strangeness and Hypercharge. (15 Lectures)

UNIT-IV

Particle Accelerators: Accelerators, Ion sources, Introduction to beam optics, beamline components - magnets and vacuum systems. Linear accelerator, Cockroft accelerator, Van-de Graaff generator, Tandem accelerator, Cyclotron, Electron synchrotron, Accelerator facilities in India. Introduction to colliding beam machines CERN LHC facility.

Detectors: Nuclear emulsions, Bubble chamber, Cloud chamber, Position-sensitive gas-filled and scintillator detectors, electromagnetic calorimeter, and hadron calorimeter. (15 Lectures)

Reference Books:

- 1. Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press.
- 2. Introduction to Elementary Particles, D. Griffith, John Wiley & Sons.
- 3. Quarks and Leptons, F. Halzen and A.D. Martin, Wiley India, New Delhi.

ma TIE CCC

- 4. Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).
- 5. Physics and Engineering of Radiation Detection, Syed Naeem Ahmed (Academic Press,
- 6. Concepts of Modern Physics by Arthur Beiser, Shobit Mahajan and S. Rai Choudhury (Tata
- 7. Modern Physics by J. Bernstein, Paul M. Fishbane, S. G. Gasiorowicz (Pearson, 2000).

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 121 of 131

Head of Department Department of Physics I.K.Gujrki Puniab Technical University Jalandhar, Kapurinala, Punjab-144603

-7	SICS-I			325-21	MAT	ANCED HEMAT SICS	TICAL		-5, T-1		6 0	redits	
Pre-	requis	ite: Und	erstandi	ng of se	nior sec	condary	level Ph	ysics an	d Mathe	ematics	-		
Cour to ph	rse Ob	jectives . Studer	The ents are to	mphasis o be exa	of the o	course is based or	s on app n proble	olications ms, see	s in solv n and ui	ring prob nseen.	olems of	intere	
Cour	rse Out	comes:	At the	end of th	ne cours	se, the s	tudent	will be a	ble to		. 4. 4		
C	01	Develop vector s	knowle space.	edge and	d under	standing	g of the	concep	t that q	uantum	states I	ive in	
			the un	derstand	ling and	need for	or linear	trancfo	rmation				
CC	03	unaerst	and the	concep	ding and need for linear transformation. ot and have learned the basic skills in using linear algebrates analysis in solving physics problems.								
CC	04	Use the	concept	t of Calc	Ilus of	Variation	orving p	rigsics p	Poblems	<u>.</u>			
CC	05	Unidersi	and the	e vector	and t	ensor a	analysis	provide	c a kin	e. nd of b	ridge b	etwee	
		Мар	ping o	f course	outco	mes w	ith the	progra	m outc	omes			
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	
01	2	1	2	1 ;	7/7:0	1	2	1	2	3	2	2	
02	2	2	1	2	1	1	1	1	1	3	1	1	
03	3	2	2	2	1	1	2	1	1	3	1	1	
CO4	2	2	2	2	1	1	2	1	1	3	1	1	
CO5	2	2	2	2	1	1	2	1	1				

Detailed Syllabus

PART A

UNIT-T

Linear Algebra: Vector Spaces: Vector Spaces over Fields of Real and Complex numbers. Examples. Vector space of functions. Linear independence of vectors. Basis and dimension of a vector space. Change of basis. Subspace. Isomorphisms. Inner product and Norm. Inner product of functions: the weight function. Triangle and Cauchy Schwartz Inequalities. Orthonormal bases. Sine and cosine functions in a Fourier series as an orthonormal basis. Gram Schmidt orthogonalisation.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 122 of 131

Head of Deprintment
Department of Physics
NK.Gujiki Punit Jahnical University Jalandhar,

Linear Transformations: Introduction. Identity and inverse. Singular and non-singular transformations. Representation of linear transformations by matrices. Similarity transformation. Linear operators. Differential operators as linear operators on vector space of functions. Commutator of operators. Orthogonal and unitary operators and their matrix representations. Adjoint of a linear operator. Hermitian operators and their matrix representation. Hermitian differential operators and boundary conditions. Examples. Eigenvalues and eigenvectors of linear operators. Properties of eigenvalues and eigenvectors of Hermitian and unitary operators. Functions of Hermitian operators/ matrices. (8 Lectures)

PART B

UNIT-III

Tensors: Tensors as multilinear transformations (functionals) on vectors. Examples: Moment of Inertia, dielectric susceptibility. Components of a tensor in basis. Symmetric and antisymmetric tensors. The completely antisymmetric tensor. Non-orthonormal and reciprocal bases. Summation convention. Inner product of vectors and the metric tensor. Coordinate systems and coordinate basis vectors. Reciprocal coordinate basis. Components of metric in a coordinate basis and association with infinitesimal distance. Change of basis: relation between coordinate basis vectors. Change of tensor components under change of coordinate system. Example: Inertial coordinates & bases in Minkowski space, Lorentz transformations as coordinate transformations, Electromagnetic tensor and change in its components under Lorentz transformations. (8 Lectures)

UNIT-IV

Calculus of Variations & Variational Principle: Euler's Equation. Application to Simple Problems (shape of a soap film, Fermat's Principle, etc.). Several Dependent Variables and Euler's Equations. Example: Hamilton's Principle and the Euler-Lagrange equations of motion. Geodesics: geodesic equation as a set of Euler's equations.

Constrained Variations: Variations with constraints. Applications: motion of a simple pendulum, particle constrained to move on a hoop. (12 Lectures)

Reference Books:

- 1. Mathematical Tools for Physics, James Nearing, 2010, Dover Publications
- 2. Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, and F.E. Harris, 1970, Elsevier.
- 3. Introduction to Matrices and Linear Transformations, D.T. Finkbeiner, 1978, Dover Pub.
- 4. Linear Algebra, W. Cheney, E.W.Cheney&D.R.Kincaid, 2012, Jones & Bartlett Learning
- 5. Mathematics for Physicists, Susan M. Lea, 2004, Thomson Brooks/Cole

ma. 100

with

ame

6. Mathematical Methods for Physicis& Engineers, K.F.Riley, M.P.Hobson, S.J.Bence, 3rd Ed., 2006, Cambridge University Press.

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 123 of 131

Head of Department Department of Physics I.K.Gujral Puniab Technical University Jalandhar, Kapurinala, Punjab-144603

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 124 of 131

Head of Department Department of Physics I.K.Gujini Punk J. fe. Inical University Jalandhar, Kapur Jala, Punjab-144603

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 124 of 131

Head of Department
Department of Physics
I.K.Gujrt Punjab Technical University Jalandhar,
Kapurahala, Punjab-144603

PHYSICS-DSE -8			326-21	CO	VANCE NDENS	ED		L-5, T-1		6	Credits	
Pre	-requi	site: Und	derstand	ding of se	enior se	condary	level P	hysics a	nd Math	ematics		
Cou cond inter	irse Oi densed ractions	bjective matter s effects.	s:The physics	aim of to	the prop o famili	posed c iarize ti	course is the stud	s to int ents wi	roduce ith the			n of the
	01	Explain		end of t								
	02	- and	oject wi quantun betweei	II be use n mecha nmany a	ful to g	ain an u	ındersta	nding of	f the int	erplay be	etween omic pr ies of o	classica ocesse differer
CO3 Understand the Def CO4 Learn the basic t materials.					in crys	tals. of synt	thesis a	nd cha	racteriza	ation of	nanos	ructur
C	05	Critically	analy	se and	evalua	ate evr	orimont	tal atu-				
		Map	ping o	f course	outco	mes w	ith the	ns. progra	m outo	omes		
	PO1		PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
01	2	1	2	1	1.5	1	2	1	2	3	2	2
02	2	2	1	2	1	1	1	1	1	3	1	1
22	3	2	2	2	. 1	1	2	1	1	3	1	1
	1 2	2	2	2	1	1	2	1	1	3	1	T
03 04 05	2			-			_	-	1			1

PART A

UNIT-I

Crystal Types and Crystal Binding Ionic crystals: Types: Ionic crystals, Covalent crystals, Metal crystals, Molecular crystals, Hydrogen-Bonded crystals. Calculations of binding energies in Ionic crystals, Covalent crystals, Metal crystals, and the crystals of inert gases Elastic Constants of Crystals: Analysis of stress. Analysis of strain. Dilation. Elastic compliance and stiffness constants. Elastic energy density. Elastic stiffness constants of cubic crystals. Elastic Waves in Cubic Crystals. Waves in [100], [110], and [111] directions. Experimental determination

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 125 of 131

Head of Department Department of Physics I.K.Gujrel Punies Technical University Jalandhar, Kapur nala, Punjab-144603 of elastic constants.

(15 Lectures)

UNIT-II

Defects in crystals: Point Defects, Impurities, Vacancies, Schottky and Frenkel intrinsic vacancies, Extrinsic vacancies, Diffusion through solids, Measurement of diffusion constant and its applications, Kirkendall effect, Colour centers and coloration of crystals, F-center model, V-centers, Colour centers produced by other treatments.

Line Defects (or the Dislocations), Geometry of dislocations, Edge dislocation, Screw dislocations, Burgers vector, Stress fields of dislocations: dislocation energy, Dislocation densities, Shear strength of single crystals, Slip, Plastic deformation. (15 Lectures)

PART B

UNIT-III

NANOSCALE SYSTEMS: Length scales in physics, Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thin films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano systems, Quantum confinement: Applications of Schrodinger equation- Infinite potential well, potential step, potential box, quantum confinement of carriers in 3D, 2D, 1D nanostructures and its consequences. (12 Lectures)

UNIT-IV

SYNTHESIS OF NANOSTRUCTURE MATERIALS: Top-down and bottom-up approach, Photolithography. Ball milling. Gas phase condensation. Vacuum deposition. Physical vapor deposition (PVD): Thermal evaporation, E-beam evaporation, Pulsed Laser deposition. Chemical vapor deposition (CVD). Sol-Gel. Electro deposition. Spray pyrolysis. Hydrothermal synthesis. Preparation through colloidal methods. MBE growth of quantum dots.

CHARACTERIZATION: X-Ray Diffraction. Optical Microscopy. Scanning Electron Microscopy. Transmission Electron Microscopy. Atomic Force Microscopy. Scanning Tunneling Microscopy.

(16 Lectures)

Reference books:

1. C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.).

2. S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publishing Company)

3. K.K. Chattopadhyay and A. N. Banerjee, Introduction to Nanoscience and Technology (PHI

4. Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).

5. M. Hosokawa, K. Nogi, M. Naita, T. Yokoyama, Nanoparticle Technology Handbook (Elsevier,

6. Bharat Bhushan, Springer Handbook of Nanotechnology (Springer-Verlag, Berlin, 2004). ect

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 126 of 131

tro Head of Department rno Department of Physics Flan AK.Gujrel Puniab Technical University Jalandhar, Kapur iala, Punjab-144603 lobe

PHYSICS-DSE	BSHP-327-21	T-1		
-9	- J.	TECHNIQUES	L-5, T-1, P-0	6 Credits
Dro vonility		nior secondary level Phys		

-requisite: Understanding of senior secondary level Physics and Mathematics

Course Objectives: The aim of course is to introduce students to basic experimental techniques, measurement theory and experiment design. The primary goal is to develop an appreciation of the role and significance of experimentation in the field of science. Students will be exposed to some widely employed experimental techniques and be introduced to some of the instrumentation that is used in experimental physics research.

CO1	mastered the use of digital multimeters and oscilloscopes to measure DC and AC voltages and currents.
CO2	mastered the assessment of reasonable experimental uncertainty in a variety of different measurements and understood how to minimize that uncertainty.
CO3	rigorously analyzed experimental data using accepted error analysis methodologies to verify theoretical predictions.
CO4	Use the tools, methodologies, language and conventions of physics to test
CO5	learned to efficiently search the scientific literature and critically assess the scientific merit of what they read.

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	P06	PO7	DOG	DOO	1		The state of
CO1	2	1	2		ile C	100	FO	PO8	PO9	PO10	PO11	PO12
	-	1	2	1	-	1	2	1	2	3	2	2
CO2	2	2	1	2	1	1	1	-		3		2
CO3	3	2	-		-	1	1	1	1	3	1	1
	3	2	2	2	1	1	2	1	1	3	4	
CO4	2	2	2	2 :	1.1	1	_		-	3	1	1
CO5	2	-	_	-	CIL	1	2	1	1	3	1	1
CUS	2	2	2	2	1	1	2	1	1	-		-
					10-		_	1	1	3	1	1

PARTA

EHIC

UNIT-I

Measurements: Accuracy and precision. Significant figures. Error and uncertainty analysis. Types of errors: Gross error, systematic error, random error. Statistical analysis of data (Arithmetic mean, deviation from mean, average deviation, standard deviation, chi-square) and curve fitting. (10 Lectures)

(B.Sc. Hons. Physics) Batch 2021 & Onwards

Page 127 of 131

Head of Department Department of Physics I.K.Guji VI Punia's Technical University Jalandhar, Kapur :ala, Punjab-144603